JP7339516B2 - Method for producing sintered ore - Google Patents

Method for producing sintered ore Download PDF

Info

Publication number
JP7339516B2
JP7339516B2 JP2019165400A JP2019165400A JP7339516B2 JP 7339516 B2 JP7339516 B2 JP 7339516B2 JP 2019165400 A JP2019165400 A JP 2019165400A JP 2019165400 A JP2019165400 A JP 2019165400A JP 7339516 B2 JP7339516 B2 JP 7339516B2
Authority
JP
Japan
Prior art keywords
coke
segregation
raw material
iron ore
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019165400A
Other languages
Japanese (ja)
Other versions
JP2021042436A (en
Inventor
謙一 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2019165400A priority Critical patent/JP7339516B2/en
Publication of JP2021042436A publication Critical patent/JP2021042436A/en
Application granted granted Critical
Publication of JP7339516B2 publication Critical patent/JP7339516B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、焼結鉱の製造方法に関する。 The present invention relates to a method for producing sintered ore.

現在、高炉製銑法の主原料は、焼結鉱である。焼結鉱は、通常、次のように製造される。まず、原料となる鉄鉱石(粉)、製鋼ダスト等の含鉄雑原料、橄欖岩等のMgO含有副原料、石灰石等のCaO含有副原料、返鉱、燃焼熱によって焼結鉱を焼結(凝結)させる燃料となる炭材(凝結材とも言う)を、所定の割合で混合する。混合した配合原料に適当な水分を加えて造粒して原料造粒物とする。 At present, the main raw material for blast furnace ironmaking is sintered ore. Sintered ore is usually manufactured as follows. First, iron ore (powder) as a raw material, iron-containing miscellaneous raw materials such as steelmaking dust, MgO-containing auxiliary raw materials such as peridotite, CaO-containing auxiliary raw materials such as limestone, return ore, and sintered ore are sintered (coagulated) by combustion heat. ) is mixed with a carbonaceous material (also referred to as a coagulant), which is used as a fuel for the sintering process, at a predetermined ratio. Appropriate moisture is added to the mixed compounded raw material and granulated to obtain raw material granules.

次に、この原料造粒物を、下方吸引式のドワイトロイド(DL)式焼結機(以下、焼結機ともいう)に装入する。具体的には、原料造粒物を、焼結機直上のホッパから原料切出装置により定量を切出し、装入シュートを介してパレット上に搭載して、原料充填層を形成する。形成した原料充填層の上部(表面層)から、点火炉により原料充填層中の炭材に点火する。そして、パレットを連続的に移動させながらパレットの下方から空気を吸引する。吸引により酸素を供給し、原料充填層中の炭材の燃焼を上層から下層に向けて進行さて、炭材の燃焼熱により、原料充填層を順次焼結させる。焼結により得られた焼結部(シンターケーキ)は、所定の粒度に粉砕、篩分け等により整粒され、一定の粒径以上のものが高炉用原料である焼結鉱となる。 Next, this raw material granule is charged into a downward suction type Dwight Lloyd (DL) type sintering machine (hereinafter also referred to as a sintering machine). Specifically, a fixed amount of raw material granules is cut out from a hopper immediately above the sintering machine by a raw material cutting device, and mounted on a pallet via a charging chute to form a raw material packed bed. The carbonaceous material in the raw material packed bed is ignited from the upper portion (surface layer) of the raw material packed bed formed by an ignition furnace. Then, air is sucked from below the pallet while continuously moving the pallet. Oxygen is supplied by suction, and the combustion of the carbon material in the raw material packed bed proceeds from the upper layer to the lower layer, and the raw material packed bed is sequentially sintered by the combustion heat of the carbon material. The sintered part (sinter cake) obtained by sintering is pulverized to a predetermined particle size, sieved, etc., and particles having a certain particle size or more become sintered ore, which is a raw material for blast furnaces.

ここで、原料造粒物は、装入シュートの傾斜面を介する装入により、パレット上に搭載される。装入された原料造粒物自体もパレット上に載置される際に斜面を形成する。これらの斜面での滑降において分級作用が起こる。この転動分級作用により、原料充填層の層厚(層高)方向に粒度偏析が起き、焼結用原料のうち、粒度や比重の小さいものが原料充填層の上層側に、粒度や比重の大きいものが原料充填層の下層側に装入されやすくなる。 Here, the raw material granules are loaded onto the pallet by charging through the inclined surface of the charging chute. The charged raw material granules themselves also form slopes when placed on the pallet. Classification occurs during downhill descent on these slopes. Due to this rolling classification action, grain size segregation occurs in the layer thickness (layer height) direction of the raw material packed bed. A large one is likely to be charged to the lower layer side of the raw material packed bed.

下方吸引式のDL式焼結機による焼結では、原料充填層の上層(表面層)に点火し、上層から下層に向けて順次焼結させる。下方から空気を吸引するため、焼結用原料が受ける熱量は層厚方向によって異なる。上層側では、低温の空気が吸引されるので熱量が不足しがちであるのに対し、下層側では、上層側での燃焼による予熱が吸引空気により持ち込まれるので熱量過剰となる。そのため、一般的に、焼結過程において、原料充填層の下層部では熱量が十分であっても、上層部では熱量不足となる。 In sintering by a downward suction type DL type sintering machine, the upper layer (surface layer) of the raw material packed layer is ignited and sequentially sintered from the upper layer to the lower layer. Since air is sucked from below, the amount of heat received by the raw material for sintering varies depending on the layer thickness direction. On the upper layer side, low-temperature air is sucked, so the amount of heat tends to be insufficient. Therefore, generally, in the sintering process, even if the lower layer portion of the raw material packed layer has a sufficient amount of heat, the upper layer portion has an insufficient amount of heat.

このような層厚方向における焼結用原料の粒度偏析および層厚方向における熱量の違いによって、層厚方向に、主原料である鉄鉱石の融液の量の偏りが生じ、層厚方向で焼成される焼結鉱の歩留や品質が異なってくる。その結果、全体としての歩留が低下してしまうことがある。歩留の低下を防ぐために、焼結用原料の層厚方向の分布を制御する技術が開示されている。 Due to the grain size segregation of the raw material for sintering in the layer thickness direction and the difference in the amount of heat in the layer thickness direction, the amount of iron ore melt, which is the main raw material, is uneven in the layer thickness direction. The yield and quality of the sintered ore produced are different. As a result, the yield as a whole may be lowered. Techniques for controlling the distribution of sintering raw materials in the layer thickness direction have been disclosed in order to prevent a decrease in yield.

例えば、燃料である炭材を、熱量不足となる上層に多く偏析させることのできる、以下のような装入方法や装入装置が開示されている。多数の棒状部材を原料流下方向に配して焼結用原料を確率的に分級しつつ装入する方法(特許文献1:整粒分散式装入装置)、進行するパレット上の焼結用原料上面に、その進行方向に対して横断する方向に設けられた分散板を介して粉体燃料を散布する装置(特許文献2:二段式装入装置(スリップスキップコンベア))、装入シュートに設けた開口部の上方に気体吹き付けノズルを設け、気体により微粒コークスなどを分級する装入装置(特許文献3:風力偏析式装入装置)、多数の棒状部材を原料流下方向に垂直に配して形成されたシュートを介して焼結用原料を確率的に分級しつつ装入する方法(特許文献4:スリットバー式装入装置)などがある。 For example, the following charging method and charging apparatus are disclosed, which are capable of segregating a large amount of carbonaceous material, which is a fuel, to the upper layer where the amount of heat is insufficient. A method of stochastically classifying and charging sintering raw materials by arranging a large number of rod-shaped members in the raw material flow direction (Patent Document 1: Grain-regulating dispersion type charging device), sintering raw materials on advancing pallets A device for dispersing powdered fuel through a dispersing plate provided on the upper surface in a direction transverse to the direction of movement (Patent Document 2: Two-stage charging device (slip skip conveyor)), a charging chute A charging device (Patent Document 3: wind segregation type charging device) in which a gas blowing nozzle is provided above the provided opening and fine coke is classified by gas (Patent Document 3: wind segregation type charging device). There is a method of stochastically classifying and charging raw materials for sintering through a chute formed by a method (Patent Document 4: slit bar type charging device).

また、鉄鉱石の配合に応じた装入方法の開示もある。鉄鉱石の層厚方向の分布は、鉄鉱石の種類によって大きく変わる。特に、吸熱反応を引き起こす結晶水を多く含むピソライト系鉱石は、他の鉱石に比べて粗く、下層部の多く偏析する傾向がある。高結晶水鉱石、又は、ピソライト系鉱石と規定された原料を使用した焼結鉱の製造方法としては、以下の開示がある。なお、ピソライト系鉱石とは、鉱物学的な分類において、豆状の形態を有する岩石である。
特許文献5では、結晶水含有量の多い鉄鉱石を使用して焼結鉱を製造するに際し、従来のように炭材を上層に多く偏析させる(段落0008参照)のではなく、焼結鉱原料充填層上下方向のフリーカーボン量が均等になるようするのがよいとの知見が提示されている。また、特許文献6には、ピソライト系鉱石配合量Xが10質量%≦X<30質量%であるときに、コークスの偏析度Y(=(最上層カーボン質量%-最下層カーボン質量%)/平均カーボン質量%)が、-0.1≦Y≦0.25-(0.005×X)となるように装入する焼結鉱の製造方法が開示されている。特許文献7には、鉄鉱石中に占める高結晶水鉄鉱石の配合割合が10~50質量%であるとき、中層部のコークス含有率Cmiddleと下層部のコークス含有率Cbottomとが、0≦(Cmiddle-Cbottom)≦0.15(mass%)の関係を満たす焼結機への原料装入方法が開示されている。
There is also disclosure of a charging method according to the composition of iron ore. The distribution of iron ore in the layer thickness direction varies greatly depending on the type of iron ore. In particular, pisolitic ore, which contains a large amount of water of crystallization that causes an endothermic reaction, is coarser than other ores and tends to segregate more in the lower layer. A method for producing sintered ore using a raw material defined as high crystal water ore or pisolitic ore is disclosed below. The pisolitic ore is a rock having a bean-like form in the mineralogical classification.
In Patent Document 5, when producing sintered ore using iron ore with a high content of water of crystallization, instead of segregating a large amount of carbonaceous material in the upper layer as in the past (see paragraph 0008), sintered ore raw materials It is suggested that the amount of free carbon in the vertical direction of the filling layer should be uniform. Further, in Patent Document 6, when the pisolite ore blending amount X is 10% by mass ≤ X < 30% by mass, the coke segregation degree Y (= (top layer carbon mass% - bottom layer carbon mass%) / A method for producing sintered ore is disclosed in which the average carbon mass %) is charged so that -0.1 ≤ Y ≤ 0.25 - (0.005 x X). In Patent Document 7, when the mixing ratio of high-crystalline-water iron ore in the iron ore is 10 to 50% by mass, the coke content Cmiddle of the middle layer and the coke content Cbottom of the lower layer are 0≦( Cmiddle-Cbottom)≦0.15 (mass%) is disclosed.

特開昭61-223136号公報JP-A-61-223136 特開2000-178661号公報JP-A-2000-178661 特開平11-351756号公報JP-A-11-351756 特開昭57-164940号公報JP-A-57-164940 特開平08-81717号公報JP-A-08-81717 特開2007-169774号公報JP 2007-169774 A 特開2009-197264号公報JP 2009-197264 A

特許文献1~3に示されるように、一般的に熱量不足となる上層に、燃料の炭材を多く偏析させる必要があった。 As shown in Patent Documents 1 to 3, it was necessary to segregate a large amount of fuel carbonaceous material in the upper layer, which generally has an insufficient amount of heat.

近年、良質鉄鉱石の枯渇により、高結晶水鉄鉱石を多量に使用するようになってきている。従来、熱量不足となる上層に、燃料の炭材を多く偏析させるのがよいとされていたが、特許文献5には、原料に高結晶水鉄鉱石を使用する場合には、従来と異なる炭材の偏析度が好ましいことが提示されている。しかしながら、原料の鉄鉱石に対し、高結晶水鉄鉱石が50質量%を超える割合で配合した場合についての知見はこれまでなかった。発明者は、高結晶水鉄鉱石の1つであるピソライト系鉱石に着目し、研究を重ねたところ、原料鉄鉱石中のピソライト系鉱石の配合量(配合割合)が50重量%を超えると、下層部の結晶水濃度の上昇が著しく、熱不足による下層部の歩留低下が顕著となることが判明した。 In recent years, due to depletion of high-quality iron ore, a large amount of high-crystalline water iron ore has been used. Conventionally, it was believed that a large amount of fuel carbon material should be segregated in the upper layer where the amount of heat is insufficient. It is suggested that the degree of segregation of the material is preferred. However, until now, there has been no knowledge about the case where high crystal water iron ore is blended at a ratio exceeding 50% by mass with respect to the raw material iron ore. The inventor focused on pisolite-based ore, which is one of high-crystalline-water iron ores, and conducted repeated research. It was found that the concentration of water of crystallization in the lower layer increased significantly, and the yield in the lower layer decreased significantly due to insufficient heat.

本発明の目的は、焼結用原料中の全鉄鉱石に対して、ピソライト系鉱石の配合割合が50質量%を超える配合原料を使用した焼結鉱の製造方法において、高歩留を可能とする焼結鉱の製造方法を提供することである。 An object of the present invention is to enable a high yield in a method for producing sintered ore using a mixed raw material in which the mixed ratio of pisolitic ore exceeds 50% by mass with respect to the total iron ore in the raw material for sintering. It is to provide a method for producing sintered ore to be used.

本発明の要旨とするところは、以下のとおりである。
(1)焼結用原料中の全鉄鉱石に対して、ピソライト系鉄鉱石を、50質量%を超える割合で配合して焼結鉱を製造する焼結鉱の製造方法において、
前記全鉄鉱石に対する前記ピソライト系鉄鉱石の配合割合(Wp)と、コークス偏析度(dC)とが、以下の関係を満たすように、前記焼結用原料を焼結機に装入することを特徴とする焼結鉱の製造方法。
dC=-0.02・Wp+2.0±0.2
Wp(質量%):ピソライト系鉄鉱石の全鉄鉱石配合に対する割合
dC(質量%):コークス偏析度
ここで、
コークス偏析度(dC)=
(全層厚の30%分の上層部のコークス濃度の平均値)-
(全層厚の70%分の下層部のコークス濃度の平均値)
(2)前記ピソライト系鉄鉱石の配合割合(Wp)を変更した際の前記コークス偏析度(dC)の調整は、コークスの粒度調整によることを特徴とする(1)に記載の焼結鉱の製造方法。
(3)前記焼結用原料を装入する際に、スリットバーにより分級を行うスリットバー式装入装置を使用する場合に、
前記ピソライト系鉄鉱石の配合割合(Wp)を変更した際の前記コークス偏析度(dC)の調整は、前記スリットバーの間隔の調整によることを特徴とする(1)又は(2)に記載の焼結鉱の製造方法。
(4)前記焼結用原料を装入する際に、気体の吹き付けにより分級を行う風力偏析式装入装置を使用する場合に、
前記ピソライト系鉄鉱石の配合割合(Wp)を変更した際の前記コークス偏析度(dC)の調整は、吹き付ける前記気体の風量の調整によることを特徴とする(1)から(3)のいずれか1つに記載の焼結鉱の製造方法。
The gist of the present invention is as follows.
(1) In a method for producing sintered ore, the sintered ore is produced by blending pisolitic iron ore at a ratio exceeding 50% by mass with respect to the total iron ore in the raw material for sintering,
The raw material for sintering is charged into the sintering machine so that the blending ratio (Wp) of the pisolitic iron ore with respect to the total iron ore and the degree of coke segregation (dC) satisfy the following relationship: A method for producing sintered ore characterized by:
dC=−0.02・Wp+2.0±0.2
Wp (% by mass): ratio of pisolitic iron ore to total iron ore composition
dC (mass%): degree of coke segregation where,
Coke segregation degree (dC) =
(Average value of coke concentration in the upper layer for 30% of the total layer thickness)-
(Average value of coke concentration in the lower layer for 70% of the total layer thickness)
(2) The adjustment of the coke segregation degree (dC) when changing the blending ratio (Wp) of the pisolitic iron ore is by adjusting the particle size of coke. Production method.
(3) When using a slit bar type charging device that classifies with a slit bar when charging the raw material for sintering,
The adjustment of the degree of coke segregation (dC) when the blending ratio (Wp) of the pisolitic iron ore is changed is by adjusting the interval of the slit bars. (1) or (2). A method for producing sintered ore.
(4) When using a wind force segregation type charging device that classifies by blowing gas when charging the raw material for sintering,
Any one of (1) to (3), wherein the adjustment of the degree of coke segregation (dC) when the mixing ratio (Wp) of the pisolitic iron ore is changed is by adjusting the air volume of the blown gas. 1. Manufacturing method of sintered ore according to one.

本発明によれば、焼結用原料中のピソライト系鉱石が全鉄鉱石に対して50質量%を超える高い配合率であっても、適正な炭材偏析条件が保つことにより、高歩留とすることができる。 According to the present invention, even if the pisolitic ore in the raw material for sintering has a high blending ratio exceeding 50% by mass with respect to the total iron ore, by maintaining appropriate carbon material segregation conditions, high yield and can do.

コークス偏析度dCを説明する図である。It is a figure explaining coke segregation degree dC. 本実験において使用した篩分け装置(スリットバー式装入装置を模擬した篩分け装置)を模式的に示す図である。FIG. 2 is a diagram schematically showing a sieving device (a sieving device simulating a slit bar type charging device) used in this experiment. ピソライト系鉄鉱石の配合割合Wpとコークス偏析度dCとの関係を示す図である。FIG. 3 is a diagram showing the relationship between the mixing ratio Wp of pisolitic iron ore and the degree of coke segregation dC.

以下に課題を解決した経緯について詳細に説明する。
ピソライト系鉄鉱石は、他の鉱石に比べて、粒度が粗く、かつ、結晶水含有量が顕著に高いという2つの特徴を有する。粒度が粗いため、ピソライト系鉄鉱石を含む焼結用原料をパレット上に装入した際に、ピソライト系鉄鉱石の多くが原料充填層の下層側へ配合され、層厚方向に偏析する。特に、ピソライト系鉄鉱石の配合割合が、焼結用原料中の全鉄鉱石に対して50質量%を超えると、ピソライト系鉄鉱石の下層部への偏析により、原料充填層の下層部の結晶水濃度が大きく上昇することとなる。
The details of how the problem was solved are described below.
Pisolite iron ore has two characteristics of coarser grain size and remarkably high content of water of crystallization compared to other ores. Because of its coarse grain size, when sintering raw materials containing pisolitic iron ore are charged onto a pallet, most of the pisolitic iron ore is mixed in the lower layer side of the raw material packed bed and segregates in the layer thickness direction. In particular, when the blending ratio of pisolitic iron ore exceeds 50% by mass with respect to the total iron ore in the raw material for sintering, the segregation of pisolitic iron ore to the lower layer causes crystals in the lower layer of the raw material packed layer. The water concentration will rise greatly.

また、ピソライト系鉄鉱石の配合割合が、焼結用原料中の全鉄鉱石に対して50質量%を超えると、ピソライト系鉄鉱石の配合量の多さが、コークスの偏析にも影響を与える。焼結原料は、ドラムフィーダー(原料切出装置)から切り出されて装入シュートの傾斜面を介してパレット上に装入される。また、パレット上に装入された焼結原料もパレット上に斜面を形成する。焼結原料はこれらの斜面を滑降し、その滑降距離は約4mにもなる。ピソライト系鉄鉱石の粗粒粒子(主に3mm以上)は同一の粒径のコークスに比べると比重が大きい。そのため、ピソライト系鉄鉱石の粗粒粒子は、パレットに装入される際に、コークスよりも先行してパレット底部へ充填される。相対的にコークスのパレット底部へ充填が妨げられ、原料充填層の下層部におけるコークスの濃度は、通常の原料配合の場合よりも低下する。 In addition, when the blending ratio of pisolitic iron ore exceeds 50% by mass with respect to the total iron ore in the raw material for sintering, the large amount of pisolitic iron ore blending also affects coke segregation. . A raw material for sintering is cut out from a drum feeder (raw material cutting device) and charged onto a pallet through an inclined surface of a charging chute. In addition, the sintering raw material charged onto the pallet also forms a slope on the pallet. The raw material for sintering slides down these slopes, and the sliding distance is about 4m. Coarse particles (mainly 3 mm or more) of pisolitic iron ore have a higher specific gravity than coke of the same particle size. Therefore, the coarse particles of pitolitic iron ore are filled into the bottom of the pallet prior to coke when they are charged into the pallet. The filling of the coke to the pallet bottom is relatively hindered, and the coke concentration in the lower layer of the raw material packed layer is lower than in the case of normal raw material blending.

ここで、通常の原料配合においては、大気の下方吸引により熱量不足となる上層部の熱量を補うために、コークスは、原料充填層の下層部よりも、上層部に多く偏析させる。これに対し、焼結用原料中のピソライト系鉄鉱石の配合量を多くした原料配合の場合には、コークスを上層部に偏析させると、下層部の歩留が著しく低下することに、発明者は着目した。特に、ピソライト系鉄鉱石の配合量が、焼結用原料中の全鉄鉱石に対して50質量%を超えた場合には、上述したように、原料充填層の下層部において、結晶水濃度が大きく上昇することに加えて、燃料のコークスの濃度が過度に低下する。そのため、焼結過程において、下層部では、燃料が少ないうえに結晶水の脱水反応(吸熱)が起きて熱量不足となり、下層部の歩留が著しく低下することになる。 Here, in normal raw material blending, more coke is segregated in the upper layer than in the lower layer of the raw material packed bed in order to compensate for the heat quantity in the upper layer, which is insufficient due to the downward suction of the atmosphere. On the other hand, in the case of raw material blending in which the amount of pisolite iron ore in the raw material for sintering is increased, if coke is segregated in the upper layer, the yield in the lower layer is significantly reduced. noticed. In particular, when the amount of pisolitic iron ore blended exceeds 50% by mass with respect to the total iron ore in the raw material for sintering, as described above, the concentration of water of crystallization in the lower layer of the raw material packed layer increases. In addition to the large increase, the coke concentration of the fuel drops excessively. As a result, in the sintering process, the fuel is scarce and the dehydration reaction (endothermic reaction) of the water of crystallization occurs in the lower layer, resulting in an insufficient amount of heat, and the yield of the lower layer is remarkably reduced.

発明者は、従来よりもコークスの上層部への偏析の程度を緩和させて、下層部にコークスを多く分配することにより、下層部の歩留が改善し、全体の歩留が向上すると考えた。そこで、ピソライト系鉄鉱石の配合量が、焼結用原料中の全鉄鉱石に対して50質量%を超えた場合の、ピソライト系鉄鉱石の配合量とコークスの偏析度の適正な関係について調べた。その結果、以下に示す条件を満たすように、コークスを偏析させると、全体の歩留が向上することがわかった。 The inventor thought that by alleviating the degree of coke segregation in the upper layer and distributing more coke in the lower layer than before, the yield in the lower layer would be improved and the overall yield would be improved. . Therefore, an appropriate relationship between the blending amount of pisolitic iron ore and the segregation degree of coke when the blending amount of pisolitic iron ore exceeds 50% by mass with respect to the total iron ore in the raw material for sintering was investigated. Ta. As a result, it was found that segregating coke so as to satisfy the following conditions improved the overall yield.

(ピソライト系鉄鉱石の割合とコークスの偏析度)
ピソライト系鉄鉱石の配合量が、焼結用原料中の全鉄鉱石に対して50質量%を超えた場合、原料充填層中のコークスの偏析度が以下の条件式(1)を満たすようにする。
dC=-0.02・Wp+2.0±0.2 ・・・(1)
Wp(質量%):ピソライト系鉄鉱石の全鉄鉱石に対する配合割合
dC(質量%):コークス偏析度
(Proportion of pitolitic iron ore and degree of segregation of coke)
When the blending amount of pisolite iron ore exceeds 50% by mass with respect to the total iron ore in the raw material for sintering, the segregation degree of coke in the raw material packed bed satisfies the following conditional expression (1) do.
dC=−0.02·Wp+2.0±0.2 (1)
Wp (% by mass): Blending ratio of pisolitic iron ore to total iron ore dC (% by mass): Degree of coke segregation

ここで、式(1)のコークス偏析度dCは、コークスの偏析の度合いを表すパラメータであり、式(2)で定義する。
コークス偏析度(dC)=
(全層厚の30%分の上層部のコークス濃度の平均値)-
(全層厚の70%分の下層部のコークス濃度の平均値)・・・(2)
図1は、コークス偏析度dCを説明する図である。
図1は、ある条件において形成された原料充填層の層厚方向におけるコークス(フリーカーボン)の濃度分布を示す図である。図中の白丸は、異なる層厚方向におけるフリーカーボン濃度の実測値を示す。図中の黒丸は、全層厚の30%分の上層部のフリーカーボン濃度(3つの実測値)の平均値を示し、図中の黒四角は、全層厚の70%分の下層部のフリーカーボン濃度(7つの実測値)の平均値を示す。本発明では、全層厚の30%分の上層部のフリーカーボン濃度の平均値(黒丸)から、全層厚の70%分の下層部のフリーカーボン濃度の平均値(黒四角)を減じた値を、コークス偏析度dCと定義した。コークスの偏析を緩めると、コークス偏析度dCの値は小さくなり、コークスの偏析を強めると、コークス偏析度dCの値は大きくなる。
ここに、上層部を全層厚の30%としたのは、層高方向にシンターケーキの強度分布を測定すると、下面(100%位置)から30%位置までは概ね強度変化なく高強度である一方、30%位置から上面(0%位置)に向けて急激に強度が低下するためである。コークス偏析度を式(2)で定義したのは、上層部30%の原料を採取し、そのフリーカーボン濃度を測定することによって上層部のコークス濃度を特定する一方、下層部のコークス濃度は、既知である全体のコークス濃度から推定できるので、簡易にコークス偏析度を評価できるためである。
Here, the coke segregation degree dC in Equation (1) is a parameter representing the degree of coke segregation, and is defined by Equation (2).
Coke segregation degree (dC) =
(Average value of coke concentration in the upper layer for 30% of the total layer thickness)-
(Average value of coke concentration in the lower layer portion for 70% of the total layer thickness) (2)
FIG. 1 is a diagram for explaining coke segregation degree dC.
FIG. 1 is a diagram showing the concentration distribution of coke (free carbon) in the layer thickness direction of a raw material packed bed formed under certain conditions. The white circles in the figure indicate measured values of the free carbon concentration in different layer thickness directions. The black circles in the figure show the average value of the free carbon concentration (three measured values) in the upper layer for 30% of the total layer thickness, and the black squares in the figure show the lower layer for 70% of the total thickness. The average value of free carbon concentration (seven measured values) is shown. In the present invention, the average value of the free carbon concentration in the lower layer portion of 70% of the total layer thickness (black square) is subtracted from the average value of the free carbon concentration of the upper layer portion of 30% of the total layer thickness (black circle). The value was defined as coke segregation degree dC. When the segregation of coke is loosened, the value of coke segregation degree dC decreases, and when the segregation of coke is strengthened, the value of coke segregation degree dC increases.
Here, the reason why the upper layer is 30% of the total layer thickness is that when the strength distribution of the sinter cake is measured in the layer height direction, the strength is generally high from the lower surface (100% position) to the 30% position without any change in strength. On the other hand, this is because the strength sharply decreases from the 30% position toward the upper surface (0% position). The reason why the degree of coke segregation is defined by the formula (2) is that the coke concentration of the upper layer is specified by sampling the raw material of 30% of the upper layer and measuring the free carbon concentration, while the coke concentration of the lower layer is This is because the degree of coke segregation can be easily evaluated because it can be estimated from the known overall coke concentration.

また、式(1)の配合割合Wpは、全鉄鉱石配合に対するピソライト系鉄鉱石の配合割合を示す。Wpの係数は「-0.02」であり、ピソライト系鉄鉱石の全鉄鉱石配合に対する割合が増えれば、コークスの偏析は緩まるという関係になっている。式(1)に、焼結用原料の全鉄鉱石に対するピソライト系鉄鉱石の配合割合Wp(以下、適宜、ピソライト系鉄鉱石配合割合Wpという)を代入することにより、コークス偏析度dCを導くことができる。なお、Wpの係数の絶対値は、全鉄鉱石配合に対するピソライト系鉄鉱石の配合割合が50%以下である場合と比べて大きな値となっており、ピソライト系鉄鉱石の配合割合が50%を超えた場合には、下層部の熱量不足が予想以上であることを示している。 Moreover, the blending ratio Wp in the formula (1) indicates the blending ratio of the pisolite iron ore to the total iron ore blend. The coefficient of Wp is "-0.02", and there is a relationship that coke segregation is relaxed as the ratio of pisolitic iron ore to the total iron ore mixture increases. The coke segregation degree dC is derived by substituting the blending ratio Wp of the pisolitic iron ore with respect to the total iron ore of the raw material for sintering (hereinafter referred to as the pisolitic iron ore blending ratio Wp as appropriate) into the formula (1). can be done. The absolute value of the coefficient of Wp is a large value compared to the case where the blending ratio of pisolitic iron ore to the total iron ore blend is 50% or less, and the blending ratio of pisolitic iron ore is less than 50%. If it exceeds, it indicates that the heat quantity in the lower layer is insufficient than expected.

(コークス偏析度dCの調整方法)
コークスを偏析させる装置や方法については、所望のコークス偏析(dC)を実現できるものであればよく、特に限定しない。例えば、焼結用原料として使用するコークスの粒度の調節や、偏析装入装置における装入条件の調整により、所望のコークス偏析度dCを実現することができる。偏析装入装置としては、整流分散式装入装置(特許文献1)、二段式装入装置(特許文献2)、風力偏析式装入装置(特許文献3)、スリットバー式装入装置(特許文献4)などが挙げられる。
(Method for adjusting coke segregation degree dC)
The apparatus and method for segregating coke are not particularly limited as long as they can achieve the desired coke segregation (dC). For example, a desired coke segregation degree dC can be achieved by adjusting the particle size of coke used as a raw material for sintering or by adjusting charging conditions in a segregation charging device. Examples of segregation charging devices include a rectifying distributed charging device (Patent Document 1), a two-stage charging device (Patent Document 2), a wind segregation charging device (Patent Document 3), and a slit bar charging device ( Patent document 4) etc. are mentioned.

所望のコークス偏析度dCを実現する手段の例として、スリットバー式装入装置(特許文献4)を使用した場合について、コークスの粒度を調節する方法と、装入条件を調整する方法について、以下に順に述べる。 As an example of a means for realizing a desired coke segregation degree dC, when using a slit bar charging device (Patent Document 4), a method for adjusting the particle size of coke and a method for adjusting charging conditions are described below. will be described in order.

まず、コークスの粒度の調節により所望のコークス偏析度dCを実現する方法について述べる。通常、焼結用のコークスは、高炉用コークスの篩下(40mm未満)を粉砕したものを使用する。粉砕する際にコークスの粒度の調節を行うことができる。
一般的に、コークスの粒度を大きくすると、コークス偏析度(dC)は減少する。コークスの粒度を大きくすると、鉄鉱石とコークスの粒度差が減少し、粒度の違いによるパレット装入時の偏析作用が低下するためである。
コークス偏析度(dC)とコークスの粒径(MS:算術平均径)との関係の一例を、式(3)に示す。式(3)によってコークスの粒径(MS)を求め、求めた粒径(MS)に基づいて、焼結用原料として使用するコークスの粒径(MS)を調節して、所望のコークス偏析(dC)とすることが可能である。
dC=-0.71×(コークス粒径MS)+2.28 ・・・(3)
MS:算術平均径(mm)
ここで、算術平均径とは、篩目(目開き寸法)の異なる篩を使用して篩分けた際の粒度分布から、粒度区分の中央値を、粒度区分毎の質量分率で荷重して算出した平均値である。
First, a method for realizing a desired degree of coke segregation dC by adjusting the particle size of coke will be described. Coke for sintering is usually obtained by pulverizing blast furnace coke under sieves (less than 40 mm). Coke particle size control can be performed during grinding.
In general, increasing the coke particle size decreases the coke segregation degree (dC). This is because if the particle size of coke is increased, the difference in particle size between iron ore and coke is reduced, and the segregation effect during pallet charging due to the difference in particle size is reduced.
An example of the relationship between the coke segregation degree (dC) and the coke particle size (MS: arithmetic mean size) is shown in Equation (3). The particle size (MS) of coke is obtained by Equation (3), and the particle size (MS) of coke used as a raw material for sintering is adjusted based on the obtained particle size (MS) to achieve the desired coke segregation ( dC).
dC = -0.71 x (coke particle size MS) + 2.28 (3)
MS: arithmetic mean diameter (mm)
Here, the arithmetic mean diameter is the median value of the particle size classification from the particle size distribution when sieving using sieves with different meshes (mesh opening dimensions), weighted by the mass fraction for each particle size classification. It is the calculated average value.

次に、装入条件の調整により所望のコークス偏析度dCを実現する方法について述べる。
スリットバーとは、水平方向(原料の降下方向と垂直方向)に等間隔に配した棒から成る篩である。この上を原料が流下すると、確率的に分級されて、比較的細かい原料粒子が篩下に落下し、原料充填層の上層部を形成する。スリットバー式装入装置の装入条件の調整は、スリット幅(スリットバー間隔)や装入シュート角度の調整により、コークス偏析度dCが所定の値となるように調整することができる。装入シュート角度を40度とし、コークスの粒度(MS)を1.8mmとした場合の一例として、以下の式(4)に従ってスリットバーの間隔を調整して、所望のコークス偏析(dC)とすることが可能である。例えば、コークス偏析(dC)を「1.0」とするには、バーの間隔は12.5mmとなる。
dC=-0.2×L+3.5 ・・・(4)
L(mm):バーの間隔
Next, a method for realizing a desired degree of coke segregation dC by adjusting charging conditions will be described.
A slit bar is a sieve consisting of bars equally spaced in the horizontal direction (perpendicular to the direction of material descent). When the raw material flows down on this, it is stochastically classified, and relatively fine raw material particles fall under the sieve to form the upper layer of the raw material packed layer. The charging conditions of the slit bar type charging device can be adjusted so that the coke segregation degree dC becomes a predetermined value by adjusting the slit width (slit bar interval) and charging chute angle. As an example when the charging chute angle is 40 degrees and the coke particle size (MS) is 1.8 mm, the gap between the slit bars is adjusted according to the following formula (4) to obtain the desired coke segregation (dC) and It is possible to For example, for a coke segregation (dC) of 1.0, the bar spacing is 12.5 mm.
dC=−0.2×L+3.5 (4)
L (mm): Bar spacing

上述のように、スリットバー式装入装置(偏析装入装置)を用いて、所望のコークス偏析度dCを実現することができる。なお、ここに示したスリットバー式装入装置によるコークスの粒度の調節方法および装入条件の調整方法は、一般的なスリットバー式装入装置を使用した場合の一例であって、スリットバー式装入装置によって、粒度や装入条件と、偏析度との関係を予め調べた上で、調整する必要がある。また、コークスの粒度を調節し、かつ、装入条件を調整する方法でもよい。コークスの粒度と、装入条件と、コークス偏析度dCとの関係を、予め調べることにより、所望のコークス偏析度dCを実現することができる。 As described above, a slit bar type charging device (segregation charging device) can be used to achieve the desired degree of coke segregation dC. The coke particle size adjustment method and charging condition adjustment method using the slit bar type charging device shown here is an example of using a general slit bar type charging device, and the slit bar type Depending on the charging device, it is necessary to check the relationship between the grain size, charging conditions, and the degree of segregation in advance, and then make adjustments. Alternatively, a method of adjusting the particle size of coke and adjusting charging conditions may be used. A desired coke segregation degree dC can be achieved by previously examining the relationship between coke particle size, charging conditions, and coke segregation degree dC.

また、他の偏析装入装置についても、スリットバー式装入装置と同様に、コークスの粒度の調節や、装入条件の調整により、所望のコークス偏析度dCを実現することができる。詳細は後述するが、二段式装入装置(特許文献2)では上段と下段の配合原料の配合割合を、風力偏析式装入装置(特許文献3)では風量を調整することにより、所望のコークス偏析度dCを実現することができる。 Also, with other segregation charging devices, the desired coke segregation degree dC can be achieved by adjusting the particle size of coke and adjusting the charging conditions, as in the case of the slit bar type charging device. Although the details will be described later, in the two-stage charging device (Patent Document 2), the blending ratio of the raw materials in the upper and lower stages is adjusted, and in the wind segregation type charging device (Patent Document 3), the air volume is adjusted to achieve the desired value. A coke segregation degree dC can be realized.

実施例として、焼結用原料中の全鉄鉱石に対してピソライト系鉄鉱石が50質量%を超えた場合におけるピソライト系鉄鉱石配合割合Wpと、コークス偏析度dCとの関係を示す条件式(1)を決定した根拠を示す。本実施例では、偏析装入装置を用いて原料充填層を形成し、形成した原料充填層を一般的な焼結実験装置(焼結鍋試験)で焼成することで、実際の焼結機を再現する手法を採用した。偏析装入装置は、成分偏析や粒度偏析などの配合原料の装入状況を、比較的簡便に再現できるスリットバー式の篩分け装置を使用した。 As an example, a conditional expression ( Show the grounds for determining 1). In this embodiment, a raw material packed layer is formed using a segregation charging device, and the formed raw material packed layer is fired in a general sintering experimental device (sintering pot test), thereby making an actual sintering machine. A reproducible method was used. As the segregation charging device, a slit bar type sieving device was used, which can relatively easily reproduce the charging state of the compounded raw materials such as component segregation and particle size segregation.

(焼結用原料の配合割合)
本発明者が行った実験の内容は以下のようである。
まず、本実験では、ピソライト系鉄鉱石配合割合Wpと、コークス偏析度dCと変化させた9種類の配合原料について、実験を行った。具体的には、表2に示すように、ピソライト系鉄鉱石配合割合Wpが50.9%(実験例1~3)、70.3%(実験例4~6)、90.9%(実験例7~9)と異なる3種類について、それぞれ、コークス偏析度dCの条件の違う3つの実験(計9つの実験)を行った。なお、この時、全ての実験において、全配合原料中の平均コークス濃度、およびコークス粒度は一定とした。コークス粒度は、一般的な実機の焼結鉱製造工程で使用されるものに合わせた。表1は、本実験に用いたコークスの粒度分布と平均粒径を示す。
(Mixing ratio of raw materials for sintering)
The contents of the experiment conducted by the inventor are as follows.
First, in this experiment, experiments were conducted on nine types of mixed raw materials with different pisolitic iron ore mixing ratios Wp and coke segregation degrees dC. Specifically, as shown in Table 2, the pisolitic iron ore blending ratio Wp is 50.9% (Experimental Examples 1 to 3), 70.3% (Experimental Examples 4 to 6), 90.9% (Experimental Three experiments (a total of nine experiments) were conducted with different conditions for the degree of coke segregation dC for each of the three types different from Examples 7 to 9). At this time, in all the experiments, the average coke concentration and coke particle size in all blended raw materials were kept constant. The coke particle size was adjusted to that used in a general sintered ore manufacturing process. Table 1 shows the particle size distribution and average particle size of coke used in this experiment.

Figure 0007339516000001
Figure 0007339516000001

(焼結用原料の配合と造粒)
表2は、使用した焼結用原料の配合割合を示す。
表2に示すように、返鉱およびコークスを除いた原料を100質量%として、返鉱とコークスの配合割合を、それぞれ外数で、15.0質量%、4.8質量%とした。これらの原料をドラムミキサーによって32rpmで1分間混合(乾燥混合)した。混合後、水分を、配合原料に対して7.0質量%添加して3分間造粒し、原料造粒物(以下、適宜、全原料造粒物という)を製造した。また、表3に示す原料からコークスを除いた原料を、同様に混合して造粒した原料造粒物(以下、適宜、C抜き原料造粒物という)も製造した。
(Mixing and granulation of raw materials for sintering)
Table 2 shows the mixing ratio of the raw materials for sintering used.
As shown in Table 2, the ratio of the return ores and the coke was set to 15.0% by mass and 4.8% by mass, respectively, with the raw material excluding the return ores and coke being 100% by mass. These raw materials were mixed (dry mixed) by a drum mixer at 32 rpm for 1 minute. After mixing, 7.0% by mass of water was added to the blended raw materials, and the mixture was granulated for 3 minutes to produce raw material granules (hereinafter, appropriately referred to as whole raw material granules). In addition, raw material granules (hereinafter referred to as C-free raw material granules as appropriate) were produced by similarly mixing and granulating raw materials shown in Table 3 from which coke was removed.

Figure 0007339516000002
Figure 0007339516000002

(原料造粒物の篩分け)
パレットへの装入時に起こる配合原料充填層の層厚方向における粒度偏析を再現するために、スリットバー式篩分け装置を使用した。このスリットバー式篩分け装置は、上述のスリットバー式装入装置(特許文献4)での装入を模すことができるものである。
(Sieving of raw material granules)
A slit bar type sieving device was used to reproduce the grain size segregation in the layer thickness direction of the mixed raw material packed bed that occurs when the raw material is charged into the pallet. This slit bar type sieving device can imitate the charging in the above slit bar type charging device (Patent Document 4).

図1は、本実験において使用した配合原料篩分け装置であるスリットバー式篩分け装置1を模式的に示す図である。
図1に示すように、このスリットバー式篩分け装置1は、焼結用原料2を供給するための供給部3と、供給された焼結用原料2を分級するためのスリット5とを備えている。
FIG. 1 is a diagram schematically showing a slit bar type sieving apparatus 1, which is a mixed raw material sieving apparatus used in this experiment.
As shown in FIG. 1, this slit bar type sieving apparatus 1 includes a supply unit 3 for supplying the raw material 2 for sintering, and a slit 5 for classifying the supplied raw material 2 for sintering. ing.

スリット5の下方には、スリット5により分級された焼結用原料2を回収する複数の回収ボックス7(本実施例では6個)が並んで配置される。スリット5は、複数のスリットバー5aを有する。スリットバー5aは、供給部3から下方に傾斜して配置され、焼結用原料の移動方向に対して直交して延出し、この移動方向に等間隔に配置される。供給された焼結用原料2は、図1に示すように、スリットバー5a上を上流側(図の左上)から下流側(図の右下)に向かって移動する。この移動の間に、焼結用原料2は粒度(粒径)の小さいものから、順次スリット5を抜けて回収ボックス7へと落下する。このように、焼結用原料2は粒径に応じて回収ボックス7に分けられる。具体的には、スリット5の上流側の回収ボックス7には粒度の小さい細粒のものが、下流側の回収ボックス7には粒度の大きい粗粒のものが回収される。 Below the slits 5, a plurality of collection boxes 7 (six in this embodiment) for collecting the raw materials 2 for sintering classified by the slits 5 are arranged side by side. The slit 5 has a plurality of slit bars 5a. The slit bars 5a are inclined downward from the supply section 3, extend perpendicularly to the moving direction of the raw material for sintering, and are arranged at equal intervals in this moving direction. As shown in FIG. 1, the supplied raw material 2 for sintering moves on the slit bar 5a from the upstream side (upper left in the figure) toward the downstream side (lower right in the figure). During this movement, the raw materials 2 for sintering pass through the slits 5 and drop into the recovery box 7 in ascending order of particle size (particle size). Thus, the sintering raw material 2 is sorted into the recovery box 7 according to the particle size. Specifically, fine grains with a small grain size are collected in the collection box 7 on the upstream side of the slit 5, and coarse grains with a large grain size are collected in the collection box 7 on the downstream side.

図1に示すスリットバー式篩分け装置1を用いて、上述の全原料造粒物およびC抜き原料造粒物を、それぞれ、篩い分けた。表3は、スリットバー式篩分け装置1の仕様および篩分け条件を示す。スリット5の傾斜角度は事前検討の結果、連続的な偏析が得られた40°とした。 Using the slit bar type sieving apparatus 1 shown in FIG. 1, the above-mentioned whole raw material granules and C-free raw material granules were each sieved. Table 3 shows the specifications and sieving conditions of the slit bar type sieving device 1. The inclination angle of the slit 5 was set to 40°, which obtained continuous segregation as a result of preliminary examination.

Figure 0007339516000003
Figure 0007339516000003

(篩分けした原料造粒物のコークス偏析度dCの調整)
篩分けした全原料造粒物の各回収ボックス7内のカーボン濃度を測定し、適宜、上層部用の焼結用原料には粉コークスを添加し、下層部用の焼結用原料にはC抜き原料造粒物を追加するなどして、装入した際に所定のコークス偏析度dCとなるように調整した。回収ボックス7毎に調整した各原料造粒物を、粗粒側から順に後述する焼結鍋に装入して(層厚435mm)、実機焼結機の原料充填層と同様な粒度偏析、原料成分偏析を再現した。
(Adjustment of coke segregation degree dC of sieved raw material granules)
The carbon concentration in each collection box 7 of the sieved all raw material granules is measured, and as appropriate, coke powder is added to the sintering raw material for the upper layer, and C is added to the sintering raw material for the lower layer. The raw material granules were added to adjust the coke segregation degree dC to a predetermined value when charged. Each raw material granule adjusted for each collection box 7 is charged into a sintering pot described later in order from the coarse grain side (layer thickness 435 mm), and the same grain size segregation as the raw material packed bed of the actual sintering machine, raw material The component segregation was reproduced.

(焼結鍋試験)
表4は、焼結鍋試験に用いた実験装置の仕様と実験条件を示す。焼結鍋試験により実機での原料充填層の焼成過程をシミュレートした。原料造粒物の充填後の充填層の表面に点火し、焼結鍋の下部に設置した風箱からブロワーで空気を吸引して、原料充填層を焼成した。
(Sintering pot test)
Table 4 shows the specifications and experimental conditions of the experimental apparatus used for the sintering pot test. A sintering pot test simulated the sintering process of the raw material packed bed in an actual machine. The surface of the packed bed after filling the raw material granules was ignited, and the raw material packed bed was sintered by sucking air with a blower from an air box installed at the bottom of the sintering pot.

Figure 0007339516000004
Figure 0007339516000004

(焼結鉱の成品歩留の測定)
成品歩留は、以下のように測定した。焼成後のシンターケ-キを、落錘試験(4kgの錘を2mの高さから4回繰り返し試料上に落下させた)後に目開き5mmの篩にかけ、篩に残った焼結鉱の粒子(+5mm粒子)の、シンターケ-キの総質量に対する質量%を、ここでの成品歩留(+5mm%)と定義した。
(Measurement of product yield of sintered ore)
Product yield was measured as follows. The sinter cake after baking is subjected to a falling weight test (a weight of 4 kg is dropped from a height of 2 m onto the sample four times repeatedly), and then passed through a sieve with an opening of 5 mm. The mass % of the particles) with respect to the total mass of the sinter cake was defined as the product yield (+5 mm %) here.

(実験結果)
表2の最下段に、実験1~9の成品歩留試験の結果を示す。なお、表2において、同じピソライト系鉄鉱石配合割合Wpで行った実験のうち、歩留が最も高いものを本発明1~3とし、それ以外を比較例1~6としている。
ピソライト系鉄鉱石配合割合Wpが50.9%の条件で、コークス偏析度dCが0.6%だと偏析が不十分であり、歩留が79%と低位にとどまった(比較例1)。コークス偏析度dCを0.9%まで偏析強化すると歩留は83%まで上昇した(本発明1)。しかし、コークス偏析度dCを1.3%までさらに偏析を強化させると、下層部の熱不足を招いて歩留まりが79%まで低下した(比較例2)。
ピソライト系鉄鉱石配合割合Wpが70.3%の条件で、コークス偏析度dCが0.3%だと偏析が不十分であり、歩留が78%と低位にとどまった(比較例3)。コークス偏析度dCを0.6%まで偏析強化すると歩留は79%まで上昇した(本発明2)。しかし、コークス偏析度dCを0.9%までさらに偏析を強化させると、下層部の熱不足を招いて歩留まりが75%まで低下した(比較例4)。
ピソライト系鉄鉱石配合割合Wpが90.9%の条件で、コークス偏析度dCが-0.2%だと偏析が不十分であり、歩留が70%と低位にとどまった(比較例5)。コークス偏析度dCを0.2%まで偏析強化すると歩留は75%まで上昇した(本発明3)。しかし、コークス偏析度dCを0.5%までさらに偏析を強化させると、下層部の熱不足を招いて歩留まりが70%まで低下した(比較例6)。
(Experimental result)
At the bottom of Table 2, the results of product yield tests for Experiments 1-9 are shown. In Table 2, among the experiments conducted with the same pisolitic iron ore blending ratio Wp, the ones with the highest yield are Inventive Examples 1 to 3, and the others are Comparative Examples 1 to 6.
When the pitolitic iron ore blending ratio Wp was 50.9% and the degree of coke segregation dC was 0.6%, the segregation was insufficient, and the yield was as low as 79% (Comparative Example 1). When the coke segregation degree dC was segregated to 0.9%, the yield increased to 83% (Invention 1). However, when the coke segregation degree dC was further strengthened to 1.3%, the heat shortage in the lower layer was caused and the yield decreased to 79% (Comparative Example 2).
When the pitolitic iron ore blending ratio Wp was 70.3% and the degree of coke segregation dC was 0.3%, the segregation was insufficient and the yield was as low as 78% (Comparative Example 3). When the coke segregation degree dC was segregated to 0.6%, the yield increased to 79% (Invention 2). However, when the coke segregation degree dC was further strengthened to 0.9%, the heat shortage in the lower layer was caused and the yield decreased to 75% (Comparative Example 4).
When the coke segregation degree dC was -0.2% under the condition that the pisolitic iron ore blending ratio Wp was 90.9%, the segregation was insufficient, and the yield was as low as 70% (Comparative Example 5). . When the coke segregation degree dC was segregated to 0.2%, the yield increased to 75% (Invention 3). However, when the coke segregation degree dC was further strengthened to 0.5%, the heat shortage in the lower layer was caused and the yield decreased to 70% (Comparative Example 6).

図3は、ピソライト系鉄鉱石配合割合Wpおよびコークス偏析度dCとの関係を示す図である。図3にプロットされた黒い三角は、それぞれ本発明1~3を示し、黒い丸はそれぞれ比較例1~6を示す。条件式(1)「dC=-0.02・Wp+2.0±0.2」を満たす範囲は、図3右側の、3本の右肩下がりの斜め線のうち、一番上の線を一番下の線に挟まれた領域である。ピソライト系鉄鉱石配合割合Wpが50%を超える高配合の条件下においては、成品の高歩留を確保するために、「dC=-0.02・Wp+2.0±0.2」で示される条件式(1)を満たす必要があることが確認された。 FIG. 3 is a diagram showing the relationship between the pitolitic iron ore blending ratio Wp and the degree of coke segregation dC. Black triangles plotted in FIG. 3 indicate Inventions 1 to 3, respectively, and black circles indicate Comparative Examples 1 to 6, respectively. The range that satisfies the conditional expression (1) “dC=−0.02・Wp+2.0±0.2” is the top line of the three downward-sloping diagonal lines on the right side of FIG. It is the area sandwiched between the bottom lines. Under high blending conditions where the pisolitic iron ore blending ratio Wp exceeds 50%, "dC = -0.02 · Wp + 2.0 ± 0.2" is shown in order to ensure a high yield of the product. It was confirmed that conditional expression (1) must be satisfied.

上述の実施例においては、スリットバー式装入装置(特許文献4)での装入を模したスリットバー式篩分け装置1を用いて、コークスの偏析が所定のコークス偏析度dCとなるようにしたが、他の偏析装入装置を用いてもよいことは上述した通りである。以下、他の偏析装入装置を用いた場合について、変形例として説明する。 In the above-described embodiment, the slit bar type sieving device 1 that imitates charging with a slit bar type charging device (Patent Document 4) is used so that coke segregation reaches a predetermined coke segregation degree dC. However, as mentioned above, other segregation charging devices may be used. Hereinafter, the case of using another segregation charging device will be described as a modification.

(変形例1:風力偏析式装入装置)
風力偏析式装入装置(中村ら:鉄と鋼、1987-S845)は、装入シュートの傾斜面を滑降する原料造粒物に気体を吹き付ける風力分級により偏析装入を行う装置である。風力分級の風量を調整して、コークス偏析度dCを所定の値に調整することができる。例えば、使用する風力偏析式装入装置について、風量とコークス偏析度dCとの関係を求め、この関係に基づいて、風量を調整して、コークス偏析度dCを所定の値に調整すればよい。
例えば、コークス粒径MSが1.8mmの場合について調べたところ、コークス偏析度dCと風量分級の風量Vとは下記の式(5)で表された。式(5)に従って風量を調整することができることが確認された。例えば、コークス偏析度dCを「1.0」とするには、風量Vは約240m/分となる。
dC=+0.008×V-0.9
V(m/分):吹き込み風量
(Modification 1: Wind segregation type charging equipment)
The wind segregation type charging device (Nakamura et al.: Tetsu to Hagane, 1987-S845) is a device that performs segregation charging by wind classification in which gas is blown onto the raw material granules sliding down the inclined surface of a charging chute. The degree of coke segregation dC can be adjusted to a predetermined value by adjusting the air volume of the wind classifier. For example, for the wind segregation type charging equipment to be used, the relationship between the air volume and the coke segregation degree dC is obtained, and based on this relationship, the air volume is adjusted to adjust the coke segregation degree dC to a predetermined value.
For example, when the coke particle size MS is 1.8 mm, the degree of coke segregation dC and the air volume V for air volume classification are expressed by the following equation (5). It was confirmed that the air volume can be adjusted according to equation (5). For example, in order to set the degree of coke segregation dC to "1.0", the air volume V is approximately 240 m 3 /min.
dC=+0.008×V−0.9
V (m 3 /min): Blowing air volume

(変形例2:スリット式風力偏析装入装置)
スリット式風力偏析装入装置(特許文献3(図1参照))は、風力分級により偏析装入を行う風力偏析式装入装置であり、装入シュートには、上下方向の中間部分にスリット(開口部)が設けられている。第1の気体吹き付け装置により、スリット上を滑降する焼結用原料に向かって気体を吹き付け、微・細粒焼結用原料を開口部より下方に落下させ、さらに、第2の気体吹き付け装置により、落下した微・細粒焼結用原料に気体を吹き付けて微粒と細粒に分離して分級を行う。第1の気体吹き付け装置および第2の気体吹き付け装置による風量を調整して、コークス偏析度dCが所定の値に調整することができる。
(Modification 2: Slit type wind power segregation charging device)
The slit type wind segregation charging device (Patent Document 3 (see Fig. 1)) is a wind segregation charging device that performs segregation charging by wind classification, and the charging chute has a slit ( opening) is provided. The first gas blowing device blows gas toward the sintering raw material sliding down the slit to drop the fine/fine-grained sintering raw material downward from the opening, and the second gas blowing device Then, a gas is blown onto the dropped raw material for sintering to separate fine grains and fine grains, followed by classification. The degree of coke segregation dC can be adjusted to a predetermined value by adjusting the air volumes of the first gas blowing device and the second gas blowing device.

(変形例3:二段式装入装置)
二段式装入装置は、供給手段(ホッパ)と分散板とを有するスリップスティックコンベア(特許文献2)を上層用と下層用の二段にして設けた装置である。所望のコークス濃度にした上層用の原料と下層用を、それぞれ、別に準備して、パレット上に装入することにより、コークス偏析度dCを調整することができる。
(Modification 3: Two-stage charging device)
The two-stage charging device is a device in which a slip stick conveyor (Patent Document 2) having a supply means (hopper) and a dispersing plate is provided in two stages, one for the upper layer and the other for the lower layer. The coke segregation degree dC can be adjusted by separately preparing raw materials for the upper layer and for the lower layer, each of which has a desired coke concentration, and charging them onto a pallet.

以上、本発明の好適な実施形態について詳細に説明したが、上述の各実施形態により、原料鉄鉱石中のピソライト系鉱石の配合割合が50質量%を超える配合原料を使用しても、所定のコークス偏析度dCとなるよう調整することができ、高歩留とすることができた。なお、本発明は、上述した実施形態に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。 Although the preferred embodiments of the present invention have been described in detail above, according to each of the above-described embodiments, even if a blended raw material in which the blending ratio of pisolite-based ore in the raw iron ore exceeds 50% by mass, a predetermined It was possible to adjust the degree of coke segregation dC and achieve a high yield. In addition, this invention is not limited to embodiment mentioned above. It is obvious that a person having ordinary knowledge in the technical field to which the present invention belongs can conceive of various modifications or modifications within the scope of the technical idea described in the claims. It is understood that these also naturally belong to the technical scope of the present invention.

1…スリットバー式篩分け装置、2…焼結原料、3…供給部、5…スリット、5a…スリットバー、7…回収ボックス DESCRIPTION OF SYMBOLS 1... Slit bar-type sieving apparatus, 2... Sintering raw material, 3... Supply part, 5... Slit, 5a... Slit bar, 7... Recovery box

Claims (4)

焼結用原料中の全鉄鉱石に対して、ピソライト系鉄鉱石を、50質量%を超える割合で配合して焼結鉱を製造する焼結鉱の製造方法において、
前記全鉄鉱石に対する前記ピソライト系鉄鉱石の配合割合(Wp)と、コークス偏析度(dC)とが、以下の関係を満たすように、前記焼結用原料をドワイトロイド(DL)式焼結機に装入することを特徴とする焼結鉱の製造方法。
dC=-0.02・Wp+2.0±0.2
Wp(質量%):ピソライト系鉄鉱石の全鉄鉱石配合に対する割合
dC(質量%):コークス偏析度
ここで、
コークス偏析度(dC)=
(全層厚の30%分の上層部のコークス濃度の平均値)-
(全層厚の70%分の下層部のコークス濃度の平均値)
In a method for producing sintered ore, the sintered ore is produced by blending pisolitic iron ore at a ratio exceeding 50% by mass with respect to the total iron ore in the raw material for sintering,
The raw material for sintering is used in a Dwightroid (DL) sintering machine so that the blending ratio (Wp) of the pisolitic iron ore with respect to the total iron ore and the degree of coke segregation (dC) satisfy the following relationship. A method for producing sintered ore, characterized by charging into.
dC=−0.02・Wp+2.0±0.2
Wp (% by mass): ratio of pisolitic iron ore to total iron ore composition
dC (mass%): degree of coke segregation where,
Coke segregation degree (dC) =
(Average value of coke concentration in the upper layer for 30% of the total layer thickness)-
(Average value of coke concentration in the lower layer for 70% of the total layer thickness)
前記ピソライト系鉄鉱石の配合割合(Wp)を変更した際の前記コークス偏析度(dC)の調整は、コークスの粒度調整によることを特徴とする請求項1に記載の焼結鉱の製造方法。 The method for producing sintered ore according to claim 1, wherein the adjustment of the degree of coke segregation (dC) when the blending ratio (Wp) of the pisolitic iron ore is changed is by adjusting the particle size of coke. 前記焼結用原料を装入する際に、スリットバーにより分級を行うスリットバー式装入装置を使用する場合に、
前記ピソライト系鉄鉱石の配合割合(Wp)を変更した際の前記コークス偏析度(dC)の調整は、前記スリットバーの間隔の調整によることを特徴とする請求項1又は請求項2に記載の焼結鉱の製造方法。
When using a slit bar type charging device that classifies with a slit bar when charging the raw material for sintering,
3. The adjustment of the degree of coke segregation (dC) when changing the blending ratio (Wp) of the pisolitic iron ore is according to the adjustment of the interval between the slit bars. A method for producing sintered ore.
前記焼結用原料を装入する際に、気体の吹き付けにより分級を行う風力偏析式装入装置を使用する場合に、
前記ピソライト系鉄鉱石の配合割合(Wp)を変更した際の前記コークス偏析度(dC)の調整は、吹き付ける前記気体の風量の調整によることを特徴とする請求項1から請求項3のいずれか一項に記載の焼結鉱の製造方法。
When using a wind force segregation type charging device that classifies by blowing gas when charging the raw material for sintering,
4. The adjustment of the degree of coke segregation (dC) when changing the mixing ratio (Wp) of the pisolitic iron ore is performed by adjusting the air volume of the gas to be blown. A method for producing a sintered ore according to item 1.
JP2019165400A 2019-09-11 2019-09-11 Method for producing sintered ore Active JP7339516B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019165400A JP7339516B2 (en) 2019-09-11 2019-09-11 Method for producing sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019165400A JP7339516B2 (en) 2019-09-11 2019-09-11 Method for producing sintered ore

Publications (2)

Publication Number Publication Date
JP2021042436A JP2021042436A (en) 2021-03-18
JP7339516B2 true JP7339516B2 (en) 2023-09-06

Family

ID=74862906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019165400A Active JP7339516B2 (en) 2019-09-11 2019-09-11 Method for producing sintered ore

Country Status (1)

Country Link
JP (1) JP7339516B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106702145A (en) 2015-07-21 2017-05-24 宝山钢铁股份有限公司 Method for intensifying sintering of limonite with high content of crystal water

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5930776B2 (en) * 1981-04-02 1984-07-28 新日本製鐵株式会社 Raw material charging method and device for sintering machine
JPH0881717A (en) * 1994-09-13 1996-03-26 Kobe Steel Ltd Production of sintered ore
JP3902332B2 (en) * 1998-06-09 2007-04-04 新日本製鐵株式会社 Sintering raw material charging equipment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106702145A (en) 2015-07-21 2017-05-24 宝山钢铁股份有限公司 Method for intensifying sintering of limonite with high content of crystal water

Also Published As

Publication number Publication date
JP2021042436A (en) 2021-03-18

Similar Documents

Publication Publication Date Title
JP5408179B2 (en) Raw material charging equipment for sintering machine
JP5365226B2 (en) Sizing method of sintered ore aggregate
JP7339516B2 (en) Method for producing sintered ore
US5102586A (en) Agglomerating process of sinter mix and apparatus therefor
JP6102462B2 (en) Raw material charging method to blast furnace
JP7180406B2 (en) Method for producing sintered ore
JP2020521050A (en) Sinter plant operation method
JP7205362B2 (en) Method for producing sintered ore
JP2014037575A (en) Production method of reduced iron
JP2012158813A (en) Charging method of sintering material
JP5124969B2 (en) Sinter ore manufacturing method
JP3706468B2 (en) Method and apparatus for charging sintered raw material
JP2784603B2 (en) Method and apparatus for controlling pulverization of reduced iron powder for powder metallurgy
JP3688591B2 (en) Method for producing sintered ore
JP2608425B2 (en) Loading method of sintering raw material
JP4438477B2 (en) Method for producing sintered ore for blast furnace
JP2001227872A (en) Device for feeding material into sintering machine and its method for using
JP6477312B2 (en) Method for charging sintered raw material grains
JP2000144267A (en) Method for controlling charge of sintering raw material
JP2018178165A (en) Blast furnace operation method
JPS62248988A (en) Method of charging sintering raw material
JPH04231424A (en) Production of sintered ore
JPH0655096A (en) Method for sizing powder coke for sintering and device therefor
JP5974723B2 (en) Blast furnace raw material sieving method
JP5505292B2 (en) Batch type sintering apparatus and batch type sintering method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230807

R151 Written notification of patent or utility model registration

Ref document number: 7339516

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151