JP2012046828A - Method for producing sintered ore - Google Patents

Method for producing sintered ore Download PDF

Info

Publication number
JP2012046828A
JP2012046828A JP2011265365A JP2011265365A JP2012046828A JP 2012046828 A JP2012046828 A JP 2012046828A JP 2011265365 A JP2011265365 A JP 2011265365A JP 2011265365 A JP2011265365 A JP 2011265365A JP 2012046828 A JP2012046828 A JP 2012046828A
Authority
JP
Japan
Prior art keywords
mass
ore
raw material
layer
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011265365A
Other languages
Japanese (ja)
Inventor
Satoshi Machida
智 町田
Nobuyuki Oyama
伸幸 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011265365A priority Critical patent/JP2012046828A/en
Publication of JP2012046828A publication Critical patent/JP2012046828A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve strength and productivity of a sintered ore product in the production of sintered ore by using a large quantity of iron ore with a high content of crystallization water as a part of iron ore for raw materials for sintering.SOLUTION: When sintered ore is produced by blending a large quantity (10-50 mass%) of iron ore with a high content of crystallization water as a part of iron ore for raw materials for sintering, the raw materials for sintering are charged in such a manner that: the segregation degree Y of coke (=((carbon in mass% in the uppermost layer)-(carbon in mass% in the lowermost layer))/(average carbon in mass%)) in a layer of the raw materials for sintering satisfies -0.1≤Y≤0.25; and the segregation degree Z of limestone (=((a calcium oxide in % in the uppermost layer)-(a calcium oxide in % in the lowest layer))/(an average calcium oxide in %)) in the layer of the raw materials for sintering satisfies -0.1≤Z≤0.2.

Description

本発明は、下方吸引構造のドワイトロイド式焼結機を用いて高炉用焼結鉱を製造する際に、焼結原料中の鉄鉱石の一部として、高結晶水鉄鉱石を用いて焼結する方法に関するものである。   In the present invention, when producing a blast furnace sinter using a dwy toroid type sintering machine having a downward suction structure, as a part of the iron ore in the sintering raw material, the high crystal hydrous iron ore is used for sintering. It is about how to do.

高炉の操業を安定かつ高効率で行うには、冷間強度や被還元性、耐還元粉化性などの諸特性に優れた高品質の焼結鉱を使用することが不可欠である。しかし、このような焼結鉱はコスト高となる問題があり、そのために製造に当たっては成品の歩留りや生産性の向上を図ることが求められる。   In order to operate the blast furnace stably and with high efficiency, it is indispensable to use high-quality sintered ore excellent in various properties such as cold strength, reducibility, and resistance to reduced dusting. However, such sintered ore has a problem of high cost, and therefore, it is required to improve the yield and productivity of the product in manufacturing.

このような課題を有する焼結鉱は、一般に、次のような方法で製造されている。すなわち、製造に当たっては、焼結原料をまず、10mm程度以下の大きさの粉鉄鉱石に対し、石灰石などのCaO含有副原料やニッケルスラグ等のSiO含有副原料、コークスなどの固体燃料を加えて混合し、さらにこれに適当な水分を加えて造粒する。得られた粒状の焼結原料は、ドワイトロイド式焼結機のパレット上に粉コークスと共に装入される。その装入によってパレット上には焼結原料層が形成される。次いで、その焼結原料層には表層部の固体燃料を介して着火が行われる。その焼結原料層は、下方に吸引される空気の作用により、該焼結原料層中の固体燃料が順次に燃焼し、その燃焼作用により焼結し、焼結ケーキとなる。その後、その焼結ケーキは、破砕され整粒されたのち、一定粒径以上のものが成品焼結鉱となる。なお、一定粒径未満(通常は−5mm)のものは、返鉱として焼結原料の一部とされる。 The sintered ore having such a problem is generally manufactured by the following method. That is, in the production, first, a sintered raw material is added to a fine iron ore having a size of about 10 mm or less with a CaO-containing auxiliary material such as limestone, a SiO 2- containing auxiliary material such as nickel slag, or a solid fuel such as coke. Then, mix it with water and granulate it. The obtained granular sintered raw material is charged together with the powder coke on a pallet of a dweroid type sintering machine. By the charging, a sintered raw material layer is formed on the pallet. Next, the sintered raw material layer is ignited via the solid fuel in the surface layer portion. The sintered raw material layer sequentially burns the solid fuel in the sintered raw material layer by the action of air sucked downward, and sinters by the combustion action to form a sintered cake. Thereafter, the sintered cake is crushed and sized, and then a product having a certain particle size or more becomes a product sintered ore. In addition, the thing of less than a fixed particle size (usually -5 mm) is made into a part of sintering raw material as a return ore.

焼結機では一般に、前記焼結原料層(以下、単に「装入層」とも言う)の上層部は、中層部や下層部に比べて点火後の層内温度が低く、かつ高温に保持される時間が短い。従って、上層部で生成した焼結ケーキは、溶融結合度が弱いため焼結鉱の強度が低くなり、そのために、焼結鉱の歩留まりが低下するという問題があった。そこで、従来、こうした問題を解決するために、焼結原料の供給(装入)方法として、パレット上に堆積した前記装入層の高さ方向についての原料粒度分布やカーボン含有率を意識的に変えて装入する、所謂、偏析装入法が開発され、それなりの効果をあげてきた。例えば、特許文献1記載のワイヤー方式や特許文献2記載の磁気ブレーキ方式などでは、焼結原料の中で比較的粒径の小さい粉コークスのみを偏析装入させる装置を提案している。とくに、特許文献1記載のワイヤー装入装置では、偏析度−0.6に達する偏析装入技術を提案している。   In a sintering machine, generally, the upper layer portion of the sintering raw material layer (hereinafter also simply referred to as “charge layer”) has a lower internal temperature after ignition than the middle layer portion and lower layer portion, and is maintained at a high temperature. It takes a short time. Accordingly, the sintered cake produced in the upper layer portion has a problem that the strength of the sintered ore is lowered because the melt bond degree is weak, and the yield of the sintered ore is lowered. Therefore, conventionally, in order to solve these problems, as a method for supplying (charging) the sintering raw material, the particle size distribution and the carbon content in the height direction of the charging layer deposited on the pallet are consciously used. A so-called segregation charging method, in which charging is performed in a different manner, has been developed and has been effective. For example, the wire system described in Patent Document 1 and the magnetic brake system described in Patent Document 2 propose a device for segregating and charging only powder coke having a relatively small particle size among the sintered raw materials. In particular, the wire charging device described in Patent Document 1 proposes a segregation charging technique that reaches a segregation degree of -0.6.

ところで、焼結原料となる鉄鉱石は、近年、ヘマタイトあるいはマラマンバ鉱石のようなゲーサイトとマータイト(マグネタイト構造を有するFe)やマグネタイト(Fe)などの良質な鉄鉱石の産出量が減少し、それに代って、リモナイト鉱石のようなゲーサイト(Fe:・nHO)を多量に含有する鉄鉱石の使用量が増加する傾向がある。ただし、このゲーサイトは、一般に、多量の結晶水(約5mass%)を含有しており、常温および加熱後の気孔率が高いことが特徴であり、そのために、これを焼結原料として多量に使用すると、焼結鉱の成品冷間強度が低下するだけでなく、歩留りや生産性の低下を招くという問題があった。 By the way, in recent years, iron ores used as raw materials for sintering have been produced in high-quality iron ores such as goethite such as hematite or maramamba ore and martite (Fe 2 O 3 having a magnetite structure) and magnetite (Fe 3 O 4 ). The amount of iron ore containing a large amount of goethite (Fe 2 O 3 : · nH 2 O) like limonite ore tends to increase instead. However, this goethite generally contains a large amount of crystal water (about 5 mass%) and is characterized by a high porosity at room temperature and after heating. When used, there is a problem that not only the cold strength of the sintered ore product is lowered, but also yield and productivity are lowered.

このような問題が生じる理由は、ゲーサイトの場合、他の鉄鉱石と比較すると気孔率が高く反応性が高いため、焼結焼結過程において、CaOとFeとが反応してカルシウムフェライト系の融液を生成する。このとき、その融液中のFe濃度が高くなるために、液相温度が上がって気孔の再配列に必要な時間が不足し、その結果、気孔の再配列が阻害されて1〜5mm程度の粗大気孔の割合が増加し、焼結鉱強度や歩留りの低下を招くのである。 The reason why such a problem occurs is that in the case of goethite, the porosity is high and the reactivity is high compared to other iron ores, so that CaO and Fe 2 O 3 react with each other in the sintering process. Produces a ferrite-based melt. At this time, since the Fe 2 O 3 concentration in the melt is increased, the liquidus temperature is increased and the time required for the rearrangement of the pores is insufficient. As a result, the rearrangement of the pores is hindered. The proportion of coarse air holes of about 5 mm increases, leading to a decrease in sintered ore strength and yield.

このように、結晶水を多く含有する鉄鉱石、例えばゲーサイトを多量に含有する高結晶水鉄鉱石は、これを焼結原料として使用すると、多くの問題が生じることが指摘されていた。このことから、従来、かかるゲーサイトを多く含む高結晶水鉄鉱石を焼結原料として多量に使用しても不都合が生じない焼結技術の開発について検討されてきた。例えば、特許文献3では、これらの高結晶水鉄鉱石のまわりに、MgO−SiOを含有する副原料を所定の割合で配置することにより、カルシウムフェライト系融液中にFeが多量に溶融するのを防止する方法を提案している。この提案技術は、MgO−SiOを含有する副原料を多く配合しなければならず、製造コストが高くなる。さらに、この技術では、MgO−SiOを含有する副原料の質に応じて多くの固体燃料を添加する必要が生じ、消費熱量の増大による製造コストの上昇を招くという問題もある。さらに、MgO−SiO含有副原料と高結晶水鉄鉱石とは所定の割合で配合しなければならないから、高結晶水鉄鉱石の配合率のみを、例えば30mass%以上にすることはできない。つまり、この場合は、MgO−SiOもその分だけ多く配合する必要があり、これでは、高炉でのスラグ比の上昇を招くという問題が生じる。 As described above, it has been pointed out that iron ore containing a large amount of crystal water, for example, a high crystal water iron ore containing a large amount of goethite, causes many problems when used as a sintering raw material. For this reason, conventionally, development of a sintering technique that does not cause any inconvenience even when a large amount of such high-crystal hydrous ore containing a lot of goethite is used as a sintering raw material has been studied. For example, in Patent Document 3, a large amount of Fe 2 O 3 is contained in the calcium ferrite-based melt by disposing an auxiliary material containing MgO—SiO 2 at a predetermined ratio around these high crystal hydrous ores. It proposes a method to prevent melting. In this proposed technique, a large amount of auxiliary materials containing MgO—SiO 2 must be blended, resulting in high manufacturing costs. Furthermore, in this technique, it is necessary to add a large amount of solid fuel in accordance with the quality of the auxiliary raw material containing MgO—SiO 2, and there is a problem in that the manufacturing cost increases due to an increase in the amount of heat consumed. Furthermore, since the MgO—SiO 2 -containing auxiliary raw material and the high crystal water ore must be blended at a predetermined ratio, only the blend ratio of the high crystal hydro iron ore cannot be set to, for example, 30 mass% or more. In other words, in this case, it is necessary to add more MgO—SiO 2 as much, and this causes a problem of increasing the slag ratio in the blast furnace.

その他、特許文献4では、ゲーサイト(針鉄鉱)を多く含有する鉄鉱石を1200℃以上の温度で一定時間加熱し、この鉄鉱石を緻密化させることによって気孔率を低下させ、カルシウムフェライト系の融液中にFeが多量に溶融することを防止する方法を開示している。しかし、この方法では、原料を予め高温で加熱処理をしなければならないので、消費熱量の増大による製造コストの上昇を招くという問題がある。 In addition, in Patent Document 4, iron ore containing a large amount of goethite (goethite) is heated at a temperature of 1200 ° C. or more for a certain period of time, and the porosity is reduced by densifying the iron ore. A method for preventing a large amount of Fe 2 O 3 from melting in the melt is disclosed. However, in this method, since the raw material must be preheated at a high temperature, there is a problem in that the manufacturing cost increases due to an increase in heat consumption.

一方、同じ高結晶水鉄鉱石の中でも、マラマンバ鉱石のような高微粉・高結晶水鉄鉱石の場合、(1)焼結時における結晶水離脱時の熱分解反応に対する熱補償が必要になるため、その分、配合する炭材(粉コークスなど)を増量する必要がある、(2)結晶水の離脱に起因して、溶融反応過程で生成する融液により局部的過溶融反応が引き起こされ、その下部では未焼結領域が発生する。   On the other hand, among the same high crystal water ore, in the case of high fine powder and high crystal water iron ore such as Maramamba ore, (1) thermal compensation for thermal decomposition reaction at the time of crystallization water separation during sintering is required. Therefore, it is necessary to increase the amount of carbonaceous materials (eg, powdered coke) to be blended. (2) Due to the detachment of crystal water, a local overmelting reaction is caused by the melt generated in the melting reaction process. In the lower part, an unsintered region is generated.

従来、マラマンバ鉱石のような高微粉・高結晶水鉄鉱石を多量に使用する焼結鉱の製造方法としては、例えば、特許文献5では、マラマンバ鉱石の融液浸透性が大きい点に着目し、粗粒鉄鉱石の配合率を増量して擬似粒子の粒径を増加させ、成品歩留まり及び焼結鉱品質を改善させる方法を開示しており、また、特許文献6にも、粒径1.0mm以上の粗粒原料を併用して焼結する方法を開示している。   Conventionally, as a method for producing a sintered ore using a large amount of high fine powder and high crystalline hydrous ore like Maramanba ore, for example, in Patent Document 5, focusing on the point that the melt permeability of Maramanba ore is large, A method is disclosed in which the blending ratio of coarse iron ore is increased to increase the particle size of pseudo particles to improve the product yield and the quality of sintered ore. Patent Document 6 also discloses a particle size of 1.0 mm. A method of sintering by using the above coarse raw materials in combination is disclosed.

さらに、特許文献7には、混合撹拌による造粒を強化することを目指して、マラマンバ鉱石が配合された焼結原料を高速撹拌して混合・造粒する方法が開示されている。   Furthermore, Patent Document 7 discloses a method of mixing and granulating a sintered raw material mixed with maramamba ore at high speed with the aim of strengthening granulation by mixing and stirring.

特許第2714276号Patent No. 2714276 特許第3201726号Japanese Patent No. 3201726 特開平3−47927号公報Japanese Patent Laid-Open No. 3-47927 特開平3−10027号公報Japanese Patent Laid-Open No. 3-10027 特開2002−129246号公報JP 2002-129246 A 特開平6−228663号公報JP-A-6-228663 特開平7−331342号公報JP-A-7-331342

上述したように、焼結鉱の製造に当って、焼結原料として高結晶水鉄鉱石を多量に使用すると、焼結鉱の強度や生産性の低下を招くことが知られている。この点に関し、発明者らの研究によると、高結晶水鉄鉱石を焼結原料として多量に使用することによる問題は、上述した理由の他、さらに次のような現象によっても起ることがわかった。それは、高結晶水鉄鉱石のうち、比較的粗粒の多いリモナイト鉱石は、平均粒径が約2.8mm〜4.2mm程度で他の普通の鉄鉱石や副原料、粉コークスと比べると、5mm以上の粒径の割合が大きいため、これをパレット上に装入すると、該パレット上の下層側に堆積する割合が高くなる。その結果、粒径の細かい粉コークスや石灰石の粉は相対的にパレットの上層部に多く、下層部に少ない偏析状態となる。   As described above, in the production of sintered ore, it is known that the use of a large amount of high-crystal hydrous ore as a raw material for sintering causes a decrease in strength and productivity of the sintered ore. In this regard, according to research by the inventors, it has been found that the problem caused by using a large amount of high crystal hydrous ore as a sintering raw material is caused by the following phenomenon in addition to the above-described reason. It was. Limonite ore, which has relatively coarse grains among high crystal hydrous ores, has an average particle size of about 2.8 mm to 4.2 mm, compared to other ordinary iron ore, auxiliary materials, and powdered coke. Since the ratio of the particle diameter of 5 mm or more is large, when it is loaded on a pallet, the ratio of depositing on the lower layer side on the pallet increases. As a result, fine powder coke and limestone powder are relatively segregated in the upper part of the pallet and less in the lower part.

一般に、パレット上に装入された焼結原料は、これを焼成する時に約400℃付近で結晶水の離脱が起るため、熱量の消費が激しくなる。しかし、上述したように、装入層のうちの下層部では粉コークスが少ないため、どうしても熱不足の状態となる。その結果、焼成に必要な温度や保持時間の確保ができず、不充分な焼結となって歩留の低下を招くのである。とくに、高結晶水鉄鉱石を含有する場合、結晶水が離脱した後は、該鉄鉱石内には多数の微細な気孔が生成する。しかも、マラマンバ鉱石の場合は、ヘマタイト鉱石などに比べると、気孔径が1μm以下の気孔が多いという特徴がある。その結果、焼結過程で生成するカルシウムフェライト等の融液が、これらの気孔内に吸引されてしまう。融液は本来、鉱石粒子間を繋ぐという役目があるが、この融液が気孔中に入ると、粒子間の結合という本来の役目を担うべき融液の量が不足することになる。その結果、粉コークス不足の場合と同様に、不充分な焼結を招いて歩留の低下を招くのである。   In general, since the sintering raw material charged on the pallet is crystallized at about 400 ° C. when it is fired, the consumption of heat becomes intense. However, as described above, since the powder coke is low in the lower layer portion of the charging layer, it is in a state of heat shortage. As a result, the temperature and holding time necessary for firing cannot be secured, resulting in insufficient sintering and a decrease in yield. In particular, when high crystal hydrous iron ore is contained, a large number of fine pores are formed in the iron ore after the crystallization water is released. Moreover, maramamba ore has a feature that there are many pores having a pore diameter of 1 μm or less as compared with hematite ore. As a result, a melt such as calcium ferrite produced in the sintering process is sucked into these pores. The melt originally has the role of connecting the ore particles, but when this melt enters the pores, the amount of the melt that should play the original role of bonding between the particles becomes insufficient. As a result, as in the case of powder coke shortage, insufficient sintering is caused and yield is lowered.

これらの問題に対しては、焼結原料中への粉コークスの添加量や石灰石の添加量を増加させることが考えられる。しかし、この方法では、焼結の上層部から中層部にかけて粉コークスの量と石灰石の量が増加し、熱量の増加およびカルシウムフェライト発生量の増加により融液の発生量が過剰になり、焼結操業が不安定化するおそれがある。さらに、焼結鉱の成分は一般に、高炉で発生するスラグの成分を調整するため厳しく管理されており、その石灰石の添加量を単純に増加させることは困難がある。このことはとくに、結晶水の含有量が6mass%以上である高結晶水鉄鉱石を使用する場合に顕著に表れる。   For these problems, it is conceivable to increase the amount of powder coke added to the sintered raw material or the amount of limestone added. However, in this method, the amount of powdered coke and the amount of limestone increase from the upper layer to the middle layer of the sintering, and the amount of melt generated becomes excessive due to the increase in the amount of heat and the amount of calcium ferrite generated, and the sintering Operation may be destabilized. Furthermore, the components of the sinter are generally strictly controlled to adjust the components of the slag generated in the blast furnace, and it is difficult to simply increase the amount of limestone added. This is particularly noticeable when using a high crystalline hydrous ore having a crystal water content of 6 mass% or more.

本発明の目的は、高結晶水鉄鉱石を焼結原料の一部として多量に用いて焼結鉱を製造するに際し、特別な手段や事前の処理をしなくとも、成品焼結鉱の強度の向上、成品歩留りの向上および生産性の向上を図ることができる技術を提案することにある。   The object of the present invention is to produce a sintered ore using a large amount of high-crystal hydrous ore as a part of the sintering raw material, and without any special means or prior treatment, The purpose is to propose a technology capable of improving the product yield and the productivity.

本発明は、従来技術が抱えている上述した課題を解決し、上記目的を実現するための方法として、焼結原料中の鉄鉱石の一部として、結晶水を6.0mass%以上含有する高結晶水鉄鉱石を10mass%〜50mass%配合して焼結鉱を製造する方法において、焼結原料層中のコークスの偏析度Y(=(最上層カーボンmass%−最下層カーボンmass%)/平均カーボンmass%)が、−0.1≦Y≦0.25を満足するように、かつ焼結原料層中の石灰石の偏析度Z(=(最上層酸化カルシウム%−最下層酸化カルシウム%)/平均酸化カルシウム%)が、−0.1≦Z≦0.2を満足するように焼結原料の装入を行うことを特徴とする焼結鉱の製造方法を提案する。   The present invention solves the above-mentioned problems of the prior art, and as a method for realizing the above-mentioned object, as a part of iron ore in a sintering raw material, high water containing 6.0 mass% or more of crystal water. In the method for producing sintered ore by blending 10 mass% to 50 mass% of crystalline hydrous ore, the segregation degree Y of coke in the sintered raw material layer (= (uppermost layer carbon mass% −lowermost layer carbon mass%) / average The carbon mass%) satisfies −0.1 ≦ Y ≦ 0.25, and the segregation degree Z of limestone in the sintering raw material layer (= (uppermost layer calcium oxide% −lowermost layer calcium oxide%) / We propose a method for producing sintered ore characterized in that the sintering raw material is charged so that (average calcium oxide%) satisfies −0.1 ≦ Z ≦ 0.2.

また、本発明は、
(1)焼結原料中の装入に当たっては、鉄鉱石中に占める高結晶水鉄鉱石の配合割合Xmass%に応じて、焼結原料層中のコークスの偏析度Y(=(最上層カーボンmass%−最下層カーボンmass%)/平均カーボンmass%)が、−0.1≦Y≦0.25−(0.005×X)を満足するように焼結原料の装入を行うこと、
(2)焼結原料中の装入に当たっては、鉄鉱石中に占める高結晶水鉄鉱石の配合割合Xmass%に応じて、焼結原料層中の石灰石の偏析度Z=(最上層酸化カルシウム%−最下層酸化カルシウム%)/平均酸化カルシウム%)が、−0.1≦Z≦0.25−(0.005×X)を満足するように焼結原料の装入を行うこと、
(3)鉄鉱石中に占める高結晶水鉄鉱石の配合割合Xが10mass%〜30mass%未満であるとき、この割合Xmass%に応じて、焼結原料層中のコークスの偏析度Y(=(最上層カーボンmass%−最下層カーボンmass%)/平均カーボンmass%)が、−0.1≦Y≦0.25−(0.005×X)を満足すると共に、石灰石の偏析度Z(=(最上層酸化カルシウム%−最下層酸化カルシウム%)/平均酸化カルシウム%)が、−0.1≦Z≦0.25−(0.005×X)を満足するように焼結原料の装入を行うこと、
(4)鉄鉱石中に占める高結晶水鉄鉱石の配合割合が、30mass%以上50mass%以下のとき、焼結原料層中のコークスの偏析度Y(=(最上層カーボンmass%−最下層カーボンmass%)/平均カーボンmass%)が、−0.1≦Y≦0.1を満足するように焼結原料の装入を行うこと、
(5)鉄鉱石中に占める高結晶水鉄鉱石の配合割合が、30mass%以上50mass%以下であるとき、焼結原料層中の石灰石の偏析度Z(=(最上層酸化カルシウム%−最下層酸化カルシウム%)/平均酸化カルシウム%)が、−0.1≦Z≦0.1を満足するように焼結原料の装入を行うこと、
(6)鉄鉱石中に占める高結晶水鉄鉱石の配合割合が、30mass%以上50mass%以下のとき、焼結原料層中のコークスの偏析度Y(=(最上層カーボンmass%−最下層カーボンmass%)/平均カーボンmass%)が、−0.1≦Y≦0.1を満足すると共に、石灰石の偏析度Z(=(最上層酸化カルシウム%−最下層酸化カルシウム%)/平均酸化カルシウム%))が、−0.1≦Z≦0.1を満足するように焼結原料の装入を行うこと、
(7)上記〔0017〕段落および上記(3)、(4)のいずれかに記載の各製造方法においては、コークスの偏析度Yおよび石灰石の偏析度Zを同程度にすること、
が好ましい解決手段と考えられる。
The present invention also provides:
(1) In charging the sintered raw material, the segregation degree Y of the coke in the sintered raw material layer Y (= (the uppermost carbon mass) according to the compounding ratio Xmass% of the high crystalline hydrous iron ore in the iron ore. % -Lowermost layer carbon mass%) / average carbon mass%) satisfying −0.1 ≦ Y ≦ 0.25− (0.005 × X),
(2) In charging the sintered raw material, the segregation degree Z of the limestone in the sintered raw material layer Z = (% calcium oxide on the uppermost layer), depending on the compounding ratio Xmass% of the high crystalline hydrous iron ore in the iron ore The lowermost calcium oxide%) / average calcium oxide%) is such that the sintered raw material is charged so that −0.1 ≦ Z ≦ 0.25− (0.005 × X);
(3) When the compounding ratio X of the high crystalline hydrous iron ore in the iron ore is 10 mass% to less than 30 mass%, the segregation degree Y of coke in the sintered raw material layer Y (= ( The uppermost layer carbon mass% −the lowermost layer carbon mass%) / average carbon mass%) satisfy −0.1 ≦ Y ≦ 0.25− (0.005 × X), and the segregation degree Z (= The sintering raw material is charged so that (the uppermost layer calcium oxide% −the lowermost layer calcium oxide%) / average calcium oxide%) satisfies −0.1 ≦ Z ≦ 0.25− (0.005 × X) To do the
(4) When the blending ratio of the high crystal hydrous iron ore in the iron ore is 30 mass% or more and 50 mass% or less, the segregation degree Y of coke in the sintering raw material layer (= (uppermost carbon mass% −lowermost carbon) mass%) / average carbon mass%) is such that the sintered raw material is charged so that −0.1 ≦ Y ≦ 0.1.
(5) When the blending ratio of the high crystal hydrous iron ore in the iron ore is 30 mass% or more and 50 mass% or less, the segregation degree Z of the limestone in the sintered raw material layer (= (top layer calcium oxide% -bottom layer) Charging the sintered raw material so that (calcium oxide%) / average calcium oxide%) satisfies −0.1 ≦ Z ≦ 0.1,
(6) When the blending ratio of the high crystal hydrous iron ore in the iron ore is 30 mass% or more and 50 mass% or less, the segregation degree Y of coke in the sintering raw material layer (= (uppermost carbon mass% −lowermost carbon) mass%) / average carbon mass%) satisfies −0.1 ≦ Y ≦ 0.1, and segregation degree Z of limestone (= (uppermost layer calcium oxide% −lowermost layer calcium oxide%) / average calcium oxide) %)) Is charged with the sintering raw material so as to satisfy −0.1 ≦ Z ≦ 0.1,
(7) In each of the production methods according to the above [0017] paragraph and (3) and (4), the segregation degree Y of coke and the segregation degree Z of limestone are set to the same level.
Is considered a preferred solution.

なお、本発明の上記各発明においては、上記コークスおよび石灰石の偏析度は、同程度とすること、および前記高結晶水鉄鉱石としては、平均粒径が2.8mm〜4.2mm程度の大きさを有し、結晶水を6mass%以上含有する鉄鉱石を用いることが好ましい解決手段の1つと考えられる。   In the above inventions of the present invention, the segregation degree of the coke and limestone should be the same, and the high crystallite ore has an average particle size of about 2.8 mm to 4.2 mm. Therefore, it is considered that one of the preferable solutions is to use an iron ore containing 6 mass% or more of crystal water.

本発明によれば、高結晶水鉄鉱石を焼結原料中の鉄鉱石に対し10mass%以上50mass%に達するような多量の配合を行ったとしても、焼結鉱(成品)強度、成品焼結鉱の生産性(成品歩留り)を向上させることができる。しかも、本発明によれば、高結晶水鉄鉱石の配合割合に対応した偏析度の制御を行うことにより、強度および生産性が安定した成品焼結鉱を低コストで製造することができる。   According to the present invention, even if a large amount of high crystal hydrous iron ore is mixed with iron ore in the sintering raw material to reach 10 mass% or more and 50 mass%, the strength of sintered ore (product) and product sintering The productivity (product yield) of the ore can be improved. In addition, according to the present invention, by controlling the segregation degree corresponding to the blending ratio of the high crystalline hydrous ore, a product sintered ore having stable strength and productivity can be produced at a low cost.

焼結機のワイヤー型装入装置の強偏析型のワイヤー配置例を示す側面図である。It is a side view which shows the example of a strong segregation type wire arrangement | positioning of the wire type charging device of a sintering machine. 焼結機のパレット上の焼結原料を、高さ方向に採取して分析したカーボンおよび酸化カルシウム、結晶水の測定結果を示す図である。It is a figure which shows the measurement result of the carbon, calcium oxide, and crystal water which collected and analyzed the sintering raw material on the pallet of a sintering machine in the height direction. 高結晶水鉄鉱石配合時の焼結鍋実験中の吸引ガス風速および排ガス成分、排ガス温度の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the suction gas wind speed, exhaust gas component, and exhaust gas temperature during the sintering pot experiment at the time of a high crystalline hydrous ore combination. X線CT装置の概略を示す図である。It is a figure which shows the outline of a X-ray CT apparatus. 小型鍋試験の焼結完了後のCT画像を表す図である。It is a figure showing CT image after completion of sintering of a small pan test. 小型鍋試験での気孔幅の経時変化を示すグラフである。It is a graph which shows a time-dependent change of the pore width | variety in a small pot test. 融液流動性指数に及ぼすCaO濃度の影響を示すグラフである。It is a graph which shows the influence of the CaO density | concentration which acts on a melt fluidity index. 高結晶水鉄鉱石配合時の粉コークスの偏析度を変更したときの鍋焼成試験の結果(強度・生産率)を示すグラフである。It is a graph which shows the result (strength and production rate) of the pan baking test when changing the segregation degree of the powder coke at the time of blending the high crystalline hydrous ore. 高結晶水鉄鉱石配合時の石灰石の偏析度を変更したときの鍋焼成試験の結果(強度・生産率)を示すグラフである。It is a graph which shows the result (strength and production rate) of the pan baking test when changing the segregation degree of the limestone at the time of blending the high crystalline hydrous ore. 高結晶水鉱石の配合割合に対する、粉コークス及び石灰の偏析度の適正領域を示すグラフである。It is a graph which shows the appropriate area | region of the segregation degree of a powder coke and a lime with respect to the mixture ratio of a highly crystalline water ore. 実施例1の操業における原料フリーカーボンおよび酸化カルシウムの高さ方向の分布を示すグラフである。2 is a graph showing the distribution in the height direction of raw material free carbon and calcium oxide in the operation of Example 1; 実施例1の操業中における生産率およびタンブラー強度のグラフである。2 is a graph of production rate and tumbler strength during operation of Example 1. FIG. 実施例2で用いた偏析抑制型のワイヤー配置例の側面図である。6 is a side view of a segregation suppression type wire arrangement example used in Example 2. FIG. 実施例2の操業における原料中フリーカーボンおよび酸化カルシウムの高さ方向の分布を示すグラフである。4 is a graph showing the distribution in the height direction of free carbon and calcium oxide in raw materials in the operation of Example 2. 実施例2の操業における生産率およびタンブラー強度のグラフである。It is a graph of the production rate and the tumbler strength in the operation of Example 2. 実施例2の操業における焼結鉱見掛比重のグラフである。3 is a graph of apparent specific gravity of sintered ore in the operation of Example 2. 強偏析型と偏析抑制型のワイヤ配置例を示す略線図である。It is a basic diagram which shows the example of a wire arrangement | positioning of a strong segregation type | mold and a segregation suppression type | mold.

以下、粗粒が多く平均粒径の大きい(2.8mm〜4.2mm)リモナイト鉱石の如き高結晶水鉄鉱石(銘柄名;ローブリバー、ヤンディクージナなど)を多量に使う本発明に係る方法の好適実施形態を、発明者らが行った実験の内容に併せて説明する。なお、以下の説明において、これらの高結晶水鉄鉱石の配合割合は、焼結原料中の鉄鉱石及び返鉱の合計に対する高結晶水鉄鉱石が占める割合を意味するものである。
なお、平均粒径は算術平均粒径で示した。また、粗粒が多い高結晶水鉄鉱石とは、粒径0.25mm以下の微粉部分が10mass%以下のリモナイト鉱石をさす。
Hereinafter, the method according to the present invention using a large amount of high crystal hydrous ore such as limonite ore (brand name; robe river, yandi coujina, etc.) such as limonite ore with many coarse particles and large average particle size (2.8 mm to 4.2 mm) is suitable. The embodiment will be described together with the contents of the experiment conducted by the inventors. In the following description, the blending ratio of these high crystal hydrous ores means the ratio of the high crystal hydro iron ore to the total of iron ore and return ore in the sintering raw material.
In addition, the average particle diameter was shown by the arithmetic average particle diameter. Moreover, the high crystalline hydrous ore with many coarse grains refers to the limonite ore whose fine powder part with a particle size of 0.25 mm or less is 10 mass% or less.

発明者らは、まず、焼結原料として、リモナイト鉱石のような粗粒高結晶水鉄鉱石および/またはマラマンバ鉱石のような高微粉・高結晶水鉄鉱石を用いて製造した焼結鉱の見掛比重と強度との関係を明らかにする実験を行った。この実験においては、見掛比重の測定を、水銀浸漬法により行い、また、強度の測定は、回転強度試験(JIS−M8712)により行った。その結果を表1に示す。
この表に示す結果より、高結晶水鉄鉱石を使用した場合でも、見掛比重の大きい焼結鉱の方が好ましいことがわかる。
The inventors first looked at sintered ore produced using a coarse-grained high-crystallite ore such as limonite ore and / or a high-fine and high-crystallite ore such as maramamba ore as a sintering raw material. An experiment was conducted to clarify the relationship between the specific gravity and strength. In this experiment, the apparent specific gravity was measured by a mercury immersion method, and the strength was measured by a rotational strength test (JIS-M8712). The results are shown in Table 1.
From the results shown in this table, it is understood that a sintered ore having a large apparent specific gravity is preferable even when a high-crystal water ore is used.

Figure 2012046828
Figure 2012046828

なお、上記の実験において使用した焼結機はパレット上の原料装入部に、装入装置としてワイヤーまたは丸棒を用いたスクリーン状シュートを配置したものである。そのスクリーン状シュートは、図1に示すように、上位部分の間隔を細かく(狭く)、下位部分の間隔を大きくしたシュートである。このシュートでは、それぞれの間隙を通過した焼結原料は、上層部に細粒が、そして下層部に粗粒が堆積する偏析装入がなされる。   In addition, the sintering machine used in said experiment arrange | positions the screen-like chute | shoot using the wire or the round bar as a charging device in the raw material charging part on a pallet. As shown in FIG. 1, the screen-like chute is a chute in which the interval between the upper portions is fine (narrow) and the interval between the lower portions is increased. In this chute, the sintering raw material that has passed through each gap is subjected to segregation charging in which fine grains are deposited in the upper layer portion and coarse grains are deposited in the lower layer portion.

次に、この図1に示す装入装置を使って、パレット上に装入した焼結原料(リモナイト鉱石)の高さ方向(原料の層厚方向)の成分偏析の状況を調査した。その結果を図2(a)〜(c)に示す。この図は、焼結原料の高さ方向を上層、中層、下層と3分割し、各層毎(すなわち、上層、中層、下層の3ヶ所)に試料を採取し、原料中のカーボン、酸化カルシウム(CaO)および結晶水について調べたものである。この図に示す結果からわかるように、カーボンおよび酸化カルシウム、すなわち焼結原料の粉コークスと石灰石は、上層部に多く分布し、中層と下層部には少ないという偏析状態となっていることが判明した。一方、高結晶水鉄鉱石由来の結晶水は、上層に少なく、中層部、下層部に多く分布した偏析状態になっており、結晶水の多い部分にはカーボン及び酸化カルシウム、すなわち焼結原料の粉コークスと石灰石は存在しにくい傾向となることがわかった。また、この図から判明したことは、高さ方向の最大の濃度差は、リモナイト鉱石では、カーボンで0.5mass%、すなわちコークス換算で0.6mass%、酸化カルシウムで1.1mass%、すなわち石灰石換算で2.2mass%、原料中結晶水の差は0.5mass%であった。   Next, the state of component segregation in the height direction (raw material layer thickness direction) of the sintered raw material (limonite ore) charged on the pallet was investigated using the charging device shown in FIG. The results are shown in FIGS. In this figure, the height direction of the sintering raw material is divided into an upper layer, a middle layer, and a lower layer, and a sample is taken for each layer (ie, the upper layer, the middle layer, and the lower layer), and the carbon and calcium oxide in the raw material ( CaO) and water of crystallization were investigated. As can be seen from the results shown in this figure, it was found that carbon and calcium oxide, that is, powdered coke and limestone of the sintering raw material, are distributed in a large amount in the upper layer part and in a segregated state in the middle layer and the lower layer part. did. On the other hand, the crystal water derived from the high crystalline hydrous ore is in a segregated state with a small amount in the upper layer and a large amount distributed in the middle layer and the lower layer. It was found that powder coke and limestone tend not to exist. In addition, the maximum concentration difference in the height direction was found to be 0.5 mass% for carbon, that is, 0.6 mass% in terms of coke, and 1.1 mass% for calcium oxide, that is, limestone. The conversion was 2.2 mass%, and the difference in crystal water in the raw material was 0.5 mass%.

そこで、発明者らは、上記の結果を踏まえて、装入層の高さ方向の偏析の影響について、高結晶水鉄鉱石としてリモナイト鉱石を配合したときの焼結鉱強度に与える影響について、径300mm、高さ400mmの試験鍋を用いて実験した。この実験に用いた原料配合を表2、焼結原料の化学成分を表3に示す。表3中リモナイト鉱石は、Y鉱石、R鉱石として示した。この実験では、前記偏析装入層を再現すべく試験鍋内を、粉コークスの高さ方向の濃度差を0.6mass%とするため、原料充填層(装入層に相当)を3等分し、中層を基準として、粉コークスを上層では中層より0.3mass%増加させ、下層では中層より0.3mass%減少させる配合を行った。   Therefore, based on the above results, the inventors considered the effect of segregation in the height direction of the charging layer on the effect on the sintered ore strength when limonite ore was blended as a high crystal hydrous ore. The experiment was conducted using a test pan having a height of 300 mm and a height of 400 mm. The raw material composition used in this experiment is shown in Table 2, and the chemical components of the sintered raw material are shown in Table 3. In Table 3, the limonite ore is shown as Y ore and R ore. In this experiment, the raw material packed layer (corresponding to the charging layer) was divided into three equal parts in order to reproduce the segregation charging layer in the test pan, so that the concentration difference in the height direction of the powder coke was 0.6 mass%. Then, based on the middle layer, blending was performed in which the powder coke was increased by 0.3 mass% in the upper layer from the middle layer and decreased by 0.3 mass% in the lower layer from the middle layer.

図3は、このような装入条件の下で、焼結鍋実験を行ったときの風速、排ガス組成および排ガス温度の経時変化を示す。この図からわかるように、前記高結晶水鉄鉱石を50mass%配合したときは、この高結晶水鉄鉱石を0mass%配合したときに比べて、中層および下層を焼成しているときの風速が高く、この部分の原料充填層の通気性が高いことを示した。しかし、表4に示すように、上層、中層、下層の各層のシャッター強度は、高結晶水鉄鉱石の配合量0mass%に対して、50mass%配合したものでは、上層で2.2mass%の減少であったが、中層では8.1mass%も減少し、下層では10.4mass%も減少し、中層および下層で強度が大きく低下することがわかった。従って、これらの実験結果からは、焼結原料中の鉄鉱石の一部として高結晶水鉄鉱石を使用する場合、上層部だけでなく、冷間強度を左右する中層、下層の焼結性にも配慮することが必要である。   FIG. 3 shows changes over time in wind speed, exhaust gas composition, and exhaust gas temperature when a sintering pot experiment was conducted under such charging conditions. As can be seen from this figure, when 50 mass% of the high crystalline hydrous ore was blended, the wind speed when firing the middle layer and the lower layer was higher than when the high crystalline hydrous ore was blended with 0 mass%. This indicates that the material filled layer in this part has high air permeability. However, as shown in Table 4, the shutter strength of each of the upper layer, middle layer, and lower layer is reduced by 2.2 mass% in the upper layer when 50 mass% is blended with respect to the blending amount of high crystal hydrous ore of 0 mass%. However, it was found that 8.1 mass% was decreased in the middle layer and 10.4 mass% was decreased in the lower layer, and the strength was greatly reduced in the middle layer and the lower layer. Therefore, from these experimental results, when using high crystalline hydrous ore as part of the iron ore in the sintering raw material, not only the upper layer part, but also the sinterability of the middle and lower layers that affect the cold strength. It is also necessary to consider.

Figure 2012046828
Figure 2012046828

Figure 2012046828
Figure 2012046828

Figure 2012046828
Figure 2012046828

上記実験結果からわかるように、焼結機のパレット上に装入された焼結原料は、装入時の落差や装入層内の荷重により、シュートからの落差が小さい上層部では、充填密度が小さく空隙率が大きくなるため嵩密度は小さくなる。一方、下層部では、上層部よりも嵩密度が相対的に大きくなる。そこで、発明者らは、装入層の嵩密度および石灰石の配合量が、焼結鉱の気孔成長にどうような影響が出るのかを調査した。この調査では、径100mm、高さ100mmの小型試験鍋を用い、焼結完了後の焼結ケーキ(リモナイト鉱石使用)を、図4に示すX線CTを用いて焼結中に断層撮影を行い、内部の気孔構造を評価することにした。図5は、このときの撮影結果を示すものであり、原料充填層の嵩密度を1.55t/m、1.95t/mおよび配合原料中のCaO濃度を9mass%、12mass%としたときの焼結完了後のX線CT画像である。図中の黒色は気孔、白色は固体である。この図に示されているように、嵩密度が小さいほど融液の移動量が大きく、気孔が成長して焼結性の改善が行われる様子が観察された。 As can be seen from the above experimental results, the sintering raw material charged on the pallet of the sintering machine has a packing density in the upper layer where the drop from the chute is small due to the drop during loading and the load in the charging layer. Is small and the porosity is large, so the bulk density is small. On the other hand, in the lower layer portion, the bulk density is relatively larger than that in the upper layer portion. Therefore, the inventors investigated how the bulk density of the charging layer and the blending amount of limestone affect the pore growth of the sintered ore. In this investigation, a small test pan having a diameter of 100 mm and a height of 100 mm was used, and the sintered cake (using limonite ore) after completion of sintering was tomographed during sintering using the X-ray CT shown in FIG. We decided to evaluate the internal pore structure. Figure 5 shows an imaging result of this time, 1.55 T / m 3 the bulk density of the raw material packed layer, 1.95 T / m 3 and 9Mass% of CaO concentration formulation in the raw material, was 12 mass% It is an X-ray CT image after completion of sintering. Black in the figure is pores and white is solid. As shown in this figure, it was observed that the smaller the bulk density, the larger the amount of movement of the melt, and the growth of pores and improvement of sinterability.

図6(a)、(b)は、上記X線CTを用いた焼結実験における各嵩密度の焼結過程での気孔幅の時間変化を示す。ここで、気孔幅は焼結過程で増大していくものであり、焼結の進行を示す指標の1つである。この図6より、1.55t/mの低嵩密度ではCaO濃度に関わらず気孔幅は大きく増加し、1.95t/mの高嵩密度ではCaO濃度を増加させないと、気孔幅が成長しないことがわかった。 6 (a) and 6 (b) show the change in pore width over time during the sintering process of each bulk density in the sintering experiment using the X-ray CT. Here, the pore width increases in the sintering process, and is one of the indices indicating the progress of the sintering. From FIG. 6, the pore width increases greatly regardless of the CaO concentration at a low bulk density of 1.55 t / m 3 , and the pore width grows unless the CaO concentration is increased at a high bulk density of 1.95 t / m 3. I found out that I would not.

これらの結果から、低嵩密度になる装入層の上層部では、石灰石を減少させても焼結過程への影響は小さく、高嵩密度である装入層の下層部では逆に、焼結過程で十分な石灰石の配合が必要になることがわかった。   From these results, in the upper layer of the charging layer where the bulk density is low, even if limestone is reduced, the effect on the sintering process is small. It was found that sufficient limestone blending was required during the process.

なお、融液の移動量を示す融液流動性指数Fは、上記X線CTより得られた時間差を有する2つの断面画像から、下記式のように定義することができる。
F=(S1−S2)/t
t:2つの画像の時間差(t−t
S1:時間tの間に融液流動により固体から気孔に変化した部分
S2:時間tの間に融液流動により気孔から固体に変化した部分
The melt fluidity index F indicating the amount of movement of the melt can be defined by the following equation from two cross-sectional images having a time difference obtained from the X-ray CT.
F = (S1-S2) / t
t: time difference between two images (t 1 −t 2 )
S1: Part changed from solid to pores due to melt flow during time t 1 S2: Part changed from pores to solid due to melt flow during time t 2

図7(a)、(b)は、各嵩密度および各CaO濃度における前記融液流動性指数Fを示すものである。この図から、1.55t/mの低嵩密度の下では、CaO濃度にかかわらず融液は流動しやすく、一方、1.95t/mの高嵩密度の下では、CaO濃度を増加させないと融液が移動しないことがわかった。この結果から、低嵩密度である装入層の上層部では石灰石を減少させても融液の流動性への影響は小さく、高嵩密度である装入層の下層部では、融液の流動には十分な石灰石が必要であることがわかり、上述した結果とよく符号する内容となった。 7 (a) and 7 (b) show the melt fluidity index F at each bulk density and each CaO concentration. From this figure, under a low bulk density of 1.55 t / m 3 , the melt tends to flow regardless of the CaO concentration, while under a high bulk density of 1.95 t / m 3 , the CaO concentration increases. It was found that the melt would not move unless this was done. From this result, even if limestone is reduced in the upper layer of the charging layer having a low bulk density, the influence on the fluidity of the melt is small, and in the lower layer of the charging layer having a high bulk density, the flow of the melt is reduced. It was found that sufficient limestone was necessary for the, and the contents described above were well coded.

次に、気孔生成に及ぼす石灰石の影響をまとめると、表5に示すとおりである。焼結層全体の通気性を考慮すれば、融液の移動を決定する石灰石や粉コークスは下層部にある方が通気性や融液流動性改善の効果が大きいことが明らかになった。   Next, Table 5 summarizes the effects of limestone on pore formation. Considering the air permeability of the entire sintered layer, it became clear that limestone and powder coke that determine the movement of the melt are more effective in improving the air permeability and melt fluidity in the lower layer.

Figure 2012046828
Figure 2012046828

以上の実験結果より、装入層の上層に偏析させる石灰石や粉コークスの偏析度を強化する定法の焼結原料装入法と異なり、本発明のように、高結晶水鉄鉱石(例えば、粗粒系のリモナイト鉱石)を多量に使用する時には、これらを中層、下層域まで偏析させる必要があることが判明した。すなわち、高結晶水鉄鉱石使用時であっても、粉コークスや石灰石を、パレット上の高さ方向で適正に配分することにより、すなわち偏析を適正に制御することにより、焼結機操業における焼結鉱強度や生産性を改善できることがわかった。   From the above experimental results, unlike the conventional sintering raw material charging method that strengthens the segregation degree of limestone and powder coke to be segregated in the upper layer of the charging layer, as in the present invention, high crystal hydrous ore (for example, coarse ore) It was found that when a large amount of granular limonite ore is used, it is necessary to segregate them to the middle and lower layers. In other words, even when using high-crystal water ore, coke and limestone are properly distributed in the height direction on the pallet, that is, segregation is appropriately controlled, so that the sintering in the sintering machine operation can be performed. It was found that the strength and productivity can be improved.

そこで、発明者らは、高結晶水鉄鉱石の配合量に対する粉コークスおよび石灰石の適正な偏析がどのような形態になればよいのかを調査するために、再び焼結鍋による実験を行った。すなわち、粉コークスおよび石灰石の偏析が及ぼす焼結鉱の冷間強度および生産率への影響を評価するため、装入層を上層、中層、下層と3等分し、各層毎に粉コークスおよび石灰石の配合量とその偏析度を変化させる実験を行った。この実験に用いた原料の配合は、表6に示すとおりであり、焼結原料中の高結晶水鉄鉱石(リモナイト鉱石)の配合割合を10mass%、30mass%および50mass%の3通りとした。なお、各原料の成分は表3に示すものと同じであり、使用した試験鍋は、径300mm、高さ400mmのものを用いた。   Therefore, the inventors conducted an experiment using a sintering pot again in order to investigate what form should be appropriate segregation of the powder coke and limestone with respect to the blending amount of the high crystal hydrous iron ore. That is, in order to evaluate the influence of segregation of powder coke and limestone on the cold strength and production rate of sintered ore, the charge layer is divided into three equal parts, the upper layer, the middle layer, and the lower layer. Experiments were carried out to change the amount of segregation and the degree of segregation. The blending of raw materials used in this experiment is as shown in Table 6, and the blending ratio of the high crystalline hydrous ore (limonite ore) in the sintering raw material was set to three types of 10 mass%, 30 mass%, and 50 mass%. In addition, the component of each raw material is the same as what is shown in Table 3, and the used test pan used the thing of diameter 300mm and height 400mm.

Figure 2012046828
Figure 2012046828

図8は、粉コークスの偏析度を変えた場合の鍋焼成試験の結果を示すものである。図8(a)は、焼結鉱の落下強度とコークス偏析度との関係を、図8(b)は、焼結生産率とコークス偏析度との関係をそれぞれ求めたものである。   FIG. 8 shows the results of a pot firing test when the segregation degree of the powder coke is changed. FIG. 8A shows the relationship between the drop strength of the sintered ore and the coke segregation degree, and FIG. 8B shows the relationship between the sintering production rate and the coke segregation degree.

図8(a)おいて、高結晶水鉄鉱石を10〜50mass%配合した試験では、コークス偏析度−0.1から落下強度の改善が見られ、コークス偏析度0.25超で落下強度の低下が見られた。したがって、前記高結晶水鉄鉱石の配合割合が、焼結原料中の鉄鉱石に対し10mass%〜50mass%の場合には、粉コークスの下記のように定義される偏析度Yは、−0.1〜0.25を満足するような範囲に制御して焼結原料の装入を行うことが有効であると考えられる。また、図8(b)に示すとおり、焼結生産率とコークス偏析度Yとの関係においてもまた、粉コークスの偏析度Yは、−0.1〜0.25の範囲が好適であり、同じ結果を示した。つまり、本発明では、焼結原料中の鉄鉱石の一部として高結晶水鉄鉱石を配合して焼結鉱を製造する方法において、鉄鉱石中に占める前記高結晶水鉄鉱石の配合割合が10mass%〜50mass%であるときは、焼結原料層中のコークスの偏析度Yが、−0.1≦Y≦0.25を満足するように焼結原料の装入を行うことが効果的である。   In the test in which 10% by mass of high crystal hydrous ore is mixed in FIG. 8 (a), the drop strength is improved from the coke segregation degree of -0.1, and the drop strength is increased when the coke segregation degree exceeds 0.25. A decrease was seen. Therefore, when the blending ratio of the high crystal hydrous iron ore is 10 mass% to 50 mass% with respect to the iron ore in the sintering raw material, the segregation degree Y defined as follows of the powder coke is −0. It is considered that it is effective to charge the sintered raw material while controlling the range to satisfy 1 to 0.25. Moreover, as shown in FIG.8 (b), also in the relationship between a sintering production rate and the coke segregation degree Y, the range of -0.1-0.25 is suitable for the segregation degree Y of a powder coke, The same result was shown. That is, in the present invention, in the method for producing a sintered ore by blending high-crystal water ore as part of iron ore in the sintering raw material, the blending ratio of the high-crystal water ore in the iron ore is When it is 10 mass% to 50 mass%, it is effective to charge the sintering raw material so that the segregation degree Y of coke in the sintering raw material layer satisfies −0.1 ≦ Y ≦ 0.25. It is.

また、図8に示す結果から、前記高結晶水鉄鉱石の配合割合に基づき焼結鉱の落下強度、生産率を制御する場合は、下記のようなコークス偏析度Yに制御することが有効であることがわかった。すなわち、高結晶水鉄鉱石を10mass%配合した場合は、落下強度、生産率ともにコークスの偏析度Yは、0.2で最大を示し、−0.1以上0.2以下で良好な結果を示し、好ましくは0以上0.2以下であった。一方、高結晶水鉄鉱石の配合割合を30mass%および50mass%配合した場合はともに、焼結鉱の落下強度、生産率は、コークスの偏析度Yは0で最大を示し、−0.1以上0.1以下の範囲で効果があり、好ましくは0以上0.1以下の範囲であった。   Further, from the results shown in FIG. 8, when controlling the drop strength and production rate of sintered ore based on the blending ratio of the high crystalline hydrous ore, it is effective to control the coke segregation degree Y as follows. I found out. That is, when 10 mass% of high-crystal hydrous ore is blended, the segregation degree Y of coke shows the maximum at 0.2 for both drop strength and production rate, and good results are obtained at -0.1 to 0.2. Preferably 0 or more and 0.2 or less. On the other hand, when the blending ratio of the high crystalline hydrous ore is 30 mass% and 50 mass%, both the drop strength and the production rate of the sintered ore show the maximum when the segregation degree Y of coke is 0, and -0.1 or more The effect was in the range of 0.1 or less, preferably in the range of 0 to 0.1.

従って、鉄鉱石中の高結晶水鉄鉱石の配合割合が30mass%以上50mass%未満では、
−0.1≦Y≦0.1
で落下強度、生産率はともに良好になる。
Therefore, when the blending ratio of the high crystal hydrous iron ore in the iron ore is 30 mass% or more and less than 50 mass%,
−0.1 ≦ Y ≦ 0.1
Both drop strength and production rate are good.

また、高結晶水鉄鉱石が10mass%では、0.2以下0以上、30mass%未満では0.1以下0以上がとくに良好であることから、この場合、コークスの偏析度Yは、高結晶水鉄鉱石の配合量X%に対して、
−0.1≦Y≦0.25−(0.005×X)
が適正の範囲になることがわかった。なお、この場合のコークスの偏析度Yの、より好まし範囲は、0≦Y≦0.25−(0.005×X)である。
In addition, since the high crystal hydrous ore is 10% by mass, 0.2 or less is 0 or more and less than 30% by mass is 0.1 or less and 0 or more. In this case, the segregation degree Y of coke is high crystal water. For the amount of iron ore X%,
−0.1 ≦ Y ≦ 0.25− (0.005 × X)
Was found to be in the proper range. In this case, a more preferable range of the segregation degree Y of coke is 0 ≦ Y ≦ 0.25− (0.005 × X).

なお、コークスの偏析度Yは、下記式に示すように定義した。
Y=(Ctop−Cbottom)/Cavc
top :最上層カーボン%
bottom:最下層カーボン%
avc :平均カーボン%
The segregation degree Y of coke was defined as shown in the following formula.
Y = (C top −C bottom ) / C avc )
C top :% of top layer carbon
C bottom : bottom layer carbon%
C avc : Average carbon%

次に、石灰石について説明する。石灰石の偏析度Zを変えた場合の鍋焼成試験の結果を図9に示す。
図9(a)は、焼結鉱の落下強度と石灰石の偏析度Zとの関係を、図9(b)は、焼結生産率と石灰石の偏析度Zとの関係をそれぞれ求めたものである。この図から、高結晶水鉄鉱石10〜50mass%の配合において、石灰石の偏析度Zは−0.1から落下強度、生産率の改善が見られ、石灰石の偏析度Zは0.2超では落下強度が低下する。したがって、焼結原料中の鉄鉱石に対し、前記高結晶水鉄鉱石の配合割合が10mass%〜50mass%の場合に、石灰石の偏析度Zは、−0.1〜0.2に制御して装入することが効果的である。
Next, limestone will be described. FIG. 9 shows the results of the pot firing test when the segregation degree Z of limestone was changed.
9A shows the relationship between the drop strength of the sintered ore and the segregation degree Z of limestone, and FIG. 9B shows the relationship between the sintering production rate and the segregation degree Z of limestone. is there. From this figure, in the composition of 10 to 50 mass% of high crystal hydrous ore, the segregation degree Z of limestone is improved from -0.1, the drop strength and the production rate are improved, and the segregation degree Z of limestone is over 0.2 Drop strength decreases. Therefore, the segregation degree Z of limestone is controlled to -0.1 to 0.2 when the blending ratio of the high crystalline hydrous ore is 10 mass% to 50 mass% with respect to the iron ore in the sintered raw material. It is effective to insert.

さらに、この図9から、前記高結晶水鉄鉱石の配合割合に基づき焼結鉱の落下強度、生産率を制御する場合は、下記のような石灰石の偏析度Zに制御することが有効である。すなわち、高結晶水鉄鉱石を10mass%配合した場合は、落下強度、生産率ともに石灰石偏析度Zは0.2で最大を示し、0.1以上0.2以下で良好な結果を示した。そして、高結晶水鉱石を30mass%以上50mass%以下配合した場合はともに、焼結鉱の落下強度、生産率ともに石灰石の偏析度Zが0で最大を示し、−0.1以上0.1以下で効果があることがわかった。   Furthermore, from FIG. 9, when controlling the drop strength and production rate of sintered ore based on the blending ratio of the high crystalline hydrous ore, it is effective to control the segregation degree Z of limestone as follows. . That is, when 10 mass% of high crystalline hydrous ore was blended, the limestone segregation degree Z was maximum at 0.2 for both drop strength and production rate, and good results were obtained at 0.1 to 0.2. And when high crystal water ore is blended in an amount of 30 mass% to 50 mass%, the segregation degree Z of limestone shows the maximum at 0 for both the drop strength and the production rate of the sintered ore, and is from -0.1 to 0.1 It turned out to be effective.

従って、高結晶水鉄鉱石が30mass%以上50mass%以下では
−0.1≦Z≦0.1
で落下強度、生産率はともに良好になる。
Therefore, when the high crystallite iron ore is 30 mass% or more and 50 mass% or less, −0.1 ≦ Z ≦ 0.1.
Both drop strength and production rate are good.

また、高結晶水鉄鉱石が10mass%では0.2以下、30mass%未満では0.1以下がとくに良好であることから、この場合、石灰石の偏析度Zは、高結晶水鉄鉱石の配合量X%に対して、
−0.1≦Z≦0.25−(0.005×X)
が適正の範囲になることがわかった。なお、この場合のより好ましい石灰石の偏析度の範囲は0≦Z≦0.25−(0.005×X)である。
In addition, since the high crystallite ore is 0.2 mass or less at 10 mass% and 0.1 or less is less than 30 mass%, in this case, the segregation degree Z of limestone is the amount of the high crystallite ore. For X%,
−0.1 ≦ Z ≦ 0.25− (0.005 × X)
Was found to be in the proper range. In this case, the more preferable range of the segregation degree of limestone is 0 ≦ Z ≦ 0.25− (0.005 × X).

なお、石灰石の偏析度Zは、下記式に示すように定義した。
Z=Ltop−Lbottom)/Lavc
top :最上層酸化カルシウム%
bottom :最下層酸化カルシウム%
avc :平均酸化カルシウム%
In addition, the segregation degree Z of limestone was defined as shown in the following formula.
Z = L top −L bottom ) / L avc
L top : Top layer calcium oxide%
L bottom : Bottom layer calcium oxide%
L avc :% average calcium oxide

上記コークス偏析度Yおよび石灰石偏析度Zについて、高結晶水鉄鉱石の配合割合X%に対して適性な領域をまとめると図10に示すとおりである。   About the said coke segregation degree Y and the limestone segregation degree Z, it is as showing in FIG. 10 that a suitable area | region is put together with respect to the compounding ratio X% of a high crystalline hydrous ore.

以上説明したように、これらの実験結果に基づいて開発した本発明によれば、リモナイト鉱石が高結晶水鉄鉱石を焼結原料として使用する際に、焼結原料中の化学成分を変えることなく、これらの鉱石の配合量に応じて、単に焼結原料装入時の粉コークスや石灰石の偏析度を制御することにより、焼結鉱の生産性および強度を十分に高めることが可能になることがわかる。   As described above, according to the present invention developed based on these experimental results, when the limonite ore uses high-crystal water ore as a sintering raw material, the chemical composition in the sintering raw material is not changed. Depending on the blending amount of these ores, the productivity and strength of sintered ore can be sufficiently increased by simply controlling the segregation degree of powder coke and limestone when charging the sintering raw material. I understand.

本発明において用いる高結晶水鉄鉱石としては、平均粒径が2.8mm〜4.2mmと比較的大きく、粗粒の多いリモナイト鉱石に代表される高結晶水鉄鉱石を用いたが、このような鉄鉱石の場合、微粉の割合が少なく、粗粒が多いため、パレットに装入した場合に下層側に多く堆積することになるが、この下層側領域の熱不足を解消する上で効果がある。
従って、高結晶水鉄鉱石(リモナイト鉱石)と高微粉・高結晶水鉄鉱石(マラマンバ鉱石)とを混合状態で使用してもよく、この場合のコークスおよび石灰石の偏析度は、これらの配合割合に応じて中間の値となるように制御することが好ましい。
As the high crystalline hydrous ore used in the present invention, a high crystalline hydrous ore represented by limonite ore having a relatively large average particle size of 2.8 to 4.2 mm and many coarse grains was used. In the case of iron ore, since the proportion of fine powder is small and there are many coarse grains, it accumulates on the lower layer side when it is loaded on the pallet, but it is effective in eliminating the heat shortage of this lower layer region. is there.
Therefore, high crystal hydrous iron ore (limonite ore) and high fine powder / high crystal hydrous iron ore (Malamanba ore) may be used in a mixed state. In this case, the segregation degree of coke and limestone is the proportion of these components. It is preferable to control to be an intermediate value according to the above.

なお、焼結機に供給される焼結原料中には、予めコークス、石灰石が装入されているため、焼結機上でコークス偏析度と石灰石偏析度とを個別には制御することはできない。そのため、本発明にかかる焼結鉱の製造方法においては、コークス、石灰石の適正な偏析度の制御に際し、共通の偏析度範囲を用いて前記コークス、石灰石の混在した焼結原料を前記共通の偏析度範囲になるように焼結機パレット上に装入することにより、中層、下層へのコークス、石灰石の適正配分を実現するようにすることが好ましい。すなわち、これらの偏析度Y、Zの範囲が略同じになるように、粉コークス、石灰石をパレット上に装入し、その後、焼結することにより、焼結時の生産率が良好で、落下強度の高い焼結鉱を、高結晶水鉄鉱石を焼結原料として使用する際にも、確実に製造することができる。   In addition, since coke and limestone are previously charged in the sintering raw material supplied to the sintering machine, the coke segregation degree and the limestone segregation degree cannot be individually controlled on the sintering machine. . Therefore, in the method for producing sintered ore according to the present invention, when controlling the appropriate segregation degree of coke and limestone, the common segregation of the coke and limestone sintered raw material is performed using a common segregation degree range. It is preferable to achieve proper distribution of coke and limestone to the middle layer and lower layer by charging on the sintering machine pallet so as to be in the range of degrees. That is, the coke and limestone are charged on the pallet so that the ranges of the segregation degrees Y and Z are substantially the same, and then sintered, so that the production rate at the time of sintering is good and falls. A high-strength sintered ore can be reliably produced even when a high crystalline hydrous ore is used as a sintering raw material.

また、本発明方法の実施に当って、偏析の制御を実際の焼結焼結機で行うには、例えば、以下の手段を用いることができる。コークスや石灰石の偏析度の制御手段としては、上述した特許文献1、2に係わるワイヤー方式やシュート形式の装入装置を設置している場合には、焼結副原料として使用する粉コークスおよび石灰石の粗粒の割合を増やす方法がある。この方法は、粉コークスおよび石灰石の粗粒部分を増加させることにより、その粗粒部分を焼結原料装入層の下層部に装入する技術である。すなわち、同一装入装置を使用していても、粉コークス及び石灰石の粗粒の割合を増加させることにより、見掛け上の偏析度を変化させることができるからである。具体的には、粉コークスおよび石灰石では、2〜5mm径を増加させ、2〜5mm径の粉コークス及び石灰石を中層、下層に位置させること効果的である。   In carrying out the method of the present invention, for example, the following means can be used to control segregation with an actual sintering and sintering machine. As a means of controlling the segregation degree of coke and limestone, when the wire method and chute-type charging device according to Patent Documents 1 and 2 described above are installed, the powder coke and limestone used as sintering auxiliary materials There is a method of increasing the ratio of coarse particles. This method is a technique for charging coarse portions of powder coke and limestone into the lower layer portion of the sintered raw material charging layer by increasing the coarse portions of the powder coke and limestone. That is, even if the same charging device is used, the apparent segregation degree can be changed by increasing the ratio of coarse particles of powder coke and limestone. Specifically, in the powder coke and limestone, it is effective to increase the diameter of 2 to 5 mm and locate the powder coke and limestone having a diameter of 2 to 5 mm in the middle layer and the lower layer.

さらに、上記偏析度制御手段としては、装入装置機能を変更する方法がある。例えば、特許文献1等に開示されたワイヤー方式の装入装置を使用する偏析度制御では、偏析効果を抑制する方法が可能である。つまり、ワイヤー間の間隙を無くすことにより、装入部での篩い効果を低下させ、粒径の細かい原料が上層に偏析するのを抑制すること、すなわち偏析強化機能部分の作用の抑制を図ることで実現される。一方、特許文献2等に開示された装入装置では、磁力部分を取り外すこと、および/またはシュート傾斜角度を強めるなどの操作で偏析度調整が可能である。   Further, as the segregation degree control means, there is a method of changing the charging device function. For example, in the segregation degree control using the wire-type charging device disclosed in Patent Document 1 or the like, a method of suppressing the segregation effect is possible. In other words, by eliminating the gap between the wires, the sieving effect at the charging portion is reduced, and the raw material having a small particle size is prevented from segregating in the upper layer, that is, the action of the segregation strengthening function portion is to be suppressed. It is realized with. On the other hand, in the charging device disclosed in Patent Document 2 and the like, the segregation degree can be adjusted by operations such as removing the magnetic part and / or increasing the chute inclination angle.

例えば、図17(a)は、強偏析型(湾曲型)であり、図17(b)が偏析抑制型(ストレート型)の例であり、コークスの偏析度Yで示すと、前者はY=1.2、後者はY=0.3であり、湾曲抑制型でY=0.8程度に制御することができる。   For example, FIG. 17A shows a strong segregation type (curved type), and FIG. 17B shows an example of a segregation suppression type (straight type). When the segregation degree Y of coke is shown, the former is Y = 1.2, the latter is Y = 0.3, and can be controlled to be about Y = 0.8 in a curving suppression type.

以下、この発明の好適実施例を挙げて本発明をさらに説明する。そして、焼結鉱の製造方法として、ワイヤー方式の装入装置を具える焼結機に適用した例を示したが、本発明は、この例にのみ限られるものではない。   Hereinafter, the present invention will be further described with reference to preferred embodiments of the present invention. And although the example applied to the sintering machine provided with the charging apparatus of a wire system was shown as a manufacturing method of a sintered ore, this invention is not limited only to this example.

(実施例1)
この実施例は、高結晶水鉄鉱石としてリモナイト鉱石を鉄鉱石中の重量割合で40mass%配合した操業を行った後、この高結晶水鉄鉱石の使用量を20mass%の配合に変更した操業を行った2つの例を対比するものである。使用した装入装置は、強偏析型(図27(a))に属する図1に示すワイヤー配置としたものであり、それぞれの操業条件での粉コークスの偏析度Yおよび石灰石の偏析度Zを測定した。偏析度測定の結果を図11に示し、1日平均の代表的な生産率およびタンブラー強度を図12に示す。図11より、前記高結晶水鉄鉱石を40mass%配合したときは、コークス偏析度Yが0.27、石灰石偏析度Zが0.26でY、Zともに本発明の範囲外であった。なお、図12より生産率は1.37T/hr/m、タンブラー強度は65.5.%だった。これに対し、高結晶水鉄鉱石を20mass%配合したときは、図11よりコークス偏析度Yが0.14、石灰石偏析度Zが0.11で、いずれも本発明の範囲内の操業になった。このときは、生産率が11%改善し、タンブラー強度が2.9%も改善された。
Example 1
In this example, an operation in which limonite ore was blended by 40 mass% by weight in the iron ore as a high-crystal hydrous iron ore, and then the operation in which the usage amount of this high-crystal hydrous ore was changed to a blend of 20 mass% was performed. Contrast the two examples performed. The used charging apparatus is the wire arrangement shown in FIG. 1 belonging to the strong segregation type (FIG. 27 (a)), and the segregation degree Y of the powder coke and the segregation degree Z of the limestone under the respective operating conditions. It was measured. FIG. 11 shows the results of the segregation degree measurement, and FIG. 12 shows typical daily production rates and tumbler strengths. From FIG. 11, when 40 mass% of the high crystalline hydrous ore was blended, the coke segregation degree Y was 0.27 and the limestone segregation degree Z was 0.26, and both Y and Z were outside the scope of the present invention. From FIG. 12, the production rate is 1.37 T / hr / m 2 , and the tumbler strength is 65.5. %was. On the other hand, when 20% by mass of high crystalline hydrous ore is blended, as shown in FIG. 11, the coke segregation degree Y is 0.14 and the limestone segregation degree Z is 0.11, both of which are within the scope of the present invention. It was. At this time, the production rate was improved by 11% and the tumbler strength was improved by 2.9%.

(実施例2)
この実施例は、高結晶水鉱石(リモナイト鉱石)を鉄鉱石中の重量割合で、40mass%一定とし、装入装置のワイヤー配置を、図15に示す強偏析型から、図17(b)の偏析抑制型に属する図13に示す配置に変更して操業を行った。このときの前記高結晶水鉄鉱石の配合割合は、40mass%±2mass%とし、それぞれの操業条件での粉コークスおよび石灰石の偏析度Y、Zを測定した。その結果を図14に示す。図14より強偏析型の装入形態では、コークスの偏析度Yおよび石灰石の偏析度Zはそれぞれ0.14および0.12に適合しない操業例あるが、図17(b)の偏析抑制型とすることで、偏析度YおよびZはそれぞれ0.07および0.03で本発明に適合する操業になった。なお、図15より、装入形態を偏析抑制型のものとすることにより、生産率は8%改善され、タンブラー強度は2.2%改善した。また、図16はそれぞれの操業時の焼結鉱を採取し、見掛比重を測定した結果であるが、見掛比重は3.27t/mから3.43t/mに増加し、5%向上し、焼結鉱の強度が改善されていることを支持する結果が得られた。
(Example 2)
In this example, the high crystal water ore (limonite ore) is constant in the mass ratio of 40 mass% in the iron ore, and the wire arrangement of the charging device is changed from the strong segregation type shown in FIG. 15 to that shown in FIG. The operation was changed to the arrangement shown in FIG. 13 belonging to the segregation suppression type. The blending ratio of the high crystalline hydrous ore at this time was 40 mass% ± 2 mass%, and the segregation degrees Y and Z of the powder coke and limestone under each operating condition were measured. The result is shown in FIG. As shown in FIG. 14, the segregation degree Y of coke and the segregation degree Z of limestone do not conform to 0.14 and 0.12, respectively. As a result, the segregation degrees Y and Z were 0.07 and 0.03, respectively, and the operation was suitable for the present invention. In addition, from FIG. 15, the production rate was improved by 8% and the tumbler strength was improved by 2.2% by making the charging form a segregation suppression type. FIG. 16 shows the results of collecting the sintered ore during each operation and measuring the apparent specific gravity. The apparent specific gravity increased from 3.27 t / m 3 to 3.43 t / m 3 , and 5 % Results were obtained supporting the improved strength of the sinter.

この発明に係る技術は、各種の高結晶水鉱石を多量に用いた焼結鉱の製造技術の他、例えば、通常の焼結原料を用いる方法として、あるいは破砕粒径が大きく異なる鉱石を焼結原料に使用する焼結方法などにも利用できる。   The technology according to the present invention includes, in addition to the manufacturing technology of sintered ore using a large amount of various high crystal water ores, for example, as a method using a normal sintering raw material, or sintering ores having greatly different crushing particle sizes. It can also be used for sintering methods used as raw materials.

Claims (8)

焼結原料中の鉄鉱石の一部として、結晶水を6.0mass%以上含有する高結晶水鉄鉱石を10mass%〜50mass%配合して焼結鉱を製造する方法において、焼結原料層中のコークスの偏析度Y(=(最上層カーボンmass%−最下層カーボンmass%)/平均カーボンmass%)が、−0.1≦Y≦0.25を満足するように、かつ焼結原料層中の石灰石の偏析度Z(=(最上層酸化カルシウム%−最下層酸化カルシウム%)/平均酸化カルシウム%)が、−0.1≦Z≦0.2を満足するように焼結原料の装入を行うことを特徴とする焼結鉱の製造方法。   In a method for producing a sintered ore by mixing 10 mass% to 50 mass% of high crystal hydrous iron ore containing 6.0 mass% or more of crystal water as a part of iron ore in the sintered raw material, Coke segregation degree Y (= (uppermost layer carbon mass% −lowermost layer carbon mass%) / average carbon mass%) satisfies −0.1 ≦ Y ≦ 0.25, and the sintering raw material layer The segregation degree Z of the limestone in the inside (= (the uppermost layer calcium oxide% −the lowermost layer calcium oxide%) / average calcium oxide%) is set so that the sintering raw material satisfies −0.1 ≦ Z ≦ 0.2. A method for producing a sintered ore, wherein 焼結原料中の装入に当たっては、鉄鉱石中に占める高結晶水鉄鉱石の配合割合Xmass%に応じて、焼結原料層中のコークスの偏析度Y(=(最上層カーボンmass%−最下層カーボンmass%)/平均カーボンmass%)が、−0.1≦Y≦0.25−(0.005×X)を満足するように焼結原料の装入を行うことを特徴とする請求項1に記載の焼結鉱の製造方法。   When charging the sintered raw material, the segregation degree Y of the coke in the sintered raw material layer Y (= (the uppermost carbon mass% −the highest carbon mass% −the highest carbon mass) depending on the compounding ratio Xmass% of the high crystalline hydrous iron ore in the iron ore. The sintering raw material is charged so that (lower layer carbon mass%) / average carbon mass%) satisfies −0.1 ≦ Y ≦ 0.25− (0.005 × X). Item 2. A method for producing a sintered ore according to Item 1. 焼結原料中の装入に当たっては、鉄鉱石中に占める高結晶水鉄鉱石の配合割合Xmass%に応じて、焼結原料層中の石灰石の偏析度Z=(最上層酸化カルシウム%−最下層酸化カルシウム%)/平均酸化カルシウム%)が、−0.1≦Z≦0.25−(0.005×X)を満足するように焼結原料の装入を行うことを特徴とする請求項1に記載の焼結鉱の製造方法。   In charging the sintered raw material, the segregation degree Z of limestone in the sintered raw material layer Z = (uppermost calcium oxide% −lowermost layer) according to the compounding ratio Xmass% of the high crystalline hydrous iron ore in the iron ore. The sintered raw material is charged so that (calcium oxide%) / average calcium oxide%) satisfies -0.1 ≦ Z ≦ 0.25− (0.005 × X). 2. A method for producing a sintered ore according to 1. 鉄鉱石中に占める高結晶水鉄鉱石の配合割合Xが10mass%〜30mass%未満であるとき、この割合Xmass%に応じて、焼結原料層中のコークスの偏析度Y(=(最上層カーボンmass%−最下層カーボンmass%)/平均カーボンmass%)が、−0.1≦Y≦0.25−(0.005×X)を満足すると共に、石灰石の偏析度Z(=(最上層酸化カルシウム%−最下層酸化カルシウム%)/平均酸化カルシウム%)が、−0.1≦Z≦0.25−(0.005×X)を満足するように焼結原料の装入を行うことを特徴とする請求項1に記載の焼結鉱の製造方法。   When the compounding ratio X of the high crystal hydrous iron ore in the iron ore is 10 mass% to less than 30 mass%, the segregation degree Y of the coke in the sintered raw material layer Y (= (the uppermost carbon layer) according to this ratio Xmass% mass% −lowermost layer carbon mass%) / average carbon mass%) satisfies −0.1 ≦ Y ≦ 0.25− (0.005 × X), and the segregation degree Z of limestone (= (uppermost layer) The sintering raw material is charged so that (calcium oxide% −lowermost layer calcium oxide%) / average calcium oxide%) satisfies −0.1 ≦ Z ≦ 0.25− (0.005 × X). The manufacturing method of the sintered ore of Claim 1 characterized by these. 鉄鉱石中に占める高結晶水鉄鉱石の配合割合が、30mass%以上50mass%以下のとき、焼結原料層中のコークスの偏析度Y(=(最上層カーボンmass%−最下層カーボンmass%)/平均カーボンmass%)が、−0.1≦Y≦0.1を満足するように焼結原料の装入を行うことを特徴とする請求項1に記載の焼結鉱の製造方法。   When the blending ratio of the high crystal hydrous iron ore in the iron ore is 30 mass% or more and 50 mass% or less, the segregation degree Y of coke in the sintering raw material layer (= (uppermost carbon mass% −lowermost carbon mass%)) 2. The method for producing a sintered ore according to claim 1, wherein the sintering raw material is charged so that (/ average carbon mass%) satisfies −0.1 ≦ Y ≦ 0.1. 鉄鉱石中に占める高結晶水鉄鉱石の配合割合が、30mass%以上50mass%以下であるとき、焼結原料層中の石灰石の偏析度Z(=(最上層酸化カルシウム%−最下層酸化カルシウム%)/平均酸化カルシウム%)が、−0.1≦Z≦0.1を満足するように焼結原料の装入を行うことを特徴とする請求項1に記載の焼結鉱の製造方法。   When the blending ratio of the high crystal hydrous iron ore in the iron ore is 30 mass% or more and 50 mass% or less, the segregation degree Z of limestone in the sintering raw material layer (= (top layer calcium oxide% −bottom layer calcium oxide%) 2. The method for producing a sintered ore according to claim 1, wherein the sintering raw material is charged so that the ratio of () / average calcium oxide%) satisfies −0.1 ≦ Z ≦ 0.1. 鉄鉱石中に占める高結晶水鉄鉱石の配合割合が、30mass%以上50mass%以下のとき、焼結原料層中のコークスの偏析度Y(=(最上層カーボンmass%−最下層カーボンmass%)/平均カーボンmass%)が、−0.1≦Y≦0.1を満足すると共に、石灰石の偏析度Z(=(最上層酸化カルシウム%−最下層酸化カルシウム%)/平均酸化カルシウム%))が、−0.1≦Z≦0.1を満足するように焼結原料の装入を行うことを特徴とする請求項1に記載の焼結鉱の製造方法。   When the blending ratio of the high crystal hydrous iron ore in the iron ore is 30 mass% or more and 50 mass% or less, the segregation degree Y of coke in the sintering raw material layer (= (uppermost carbon mass% −lowermost carbon mass%)) / Average carbon mass%) satisfies −0.1 ≦ Y ≦ 0.1 and the segregation degree Z of limestone (= (uppermost layer calcium oxide% −lowermost layer calcium oxide%) / average calcium oxide%)) 2. The method for producing a sintered ore according to claim 1, wherein the sintering raw material is charged so as to satisfy −0.1 ≦ Z ≦ 0.1. 請求項1、4、7のいずれかに記載の各製造方法においては、コークスの偏析度Yおよび石灰石の偏析度Zを同程度にすることを特徴とする焼結鉱の製造方法。 In each manufacturing method in any one of Claim 1,4,7, the segregation degree Y of coke and the segregation degree Z of limestone are made comparable, The manufacturing method of the sintered ore characterized by the above-mentioned.
JP2011265365A 2005-11-25 2011-12-05 Method for producing sintered ore Pending JP2012046828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011265365A JP2012046828A (en) 2005-11-25 2011-12-05 Method for producing sintered ore

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005339839 2005-11-25
JP2005339839 2005-11-25
JP2011265365A JP2012046828A (en) 2005-11-25 2011-12-05 Method for producing sintered ore

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006067241A Division JP5168802B2 (en) 2005-11-25 2006-03-13 Method for producing sintered ore

Publications (1)

Publication Number Publication Date
JP2012046828A true JP2012046828A (en) 2012-03-08

Family

ID=45901997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011265365A Pending JP2012046828A (en) 2005-11-25 2011-12-05 Method for producing sintered ore

Country Status (1)

Country Link
JP (1) JP2012046828A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014189889A (en) * 2013-03-28 2014-10-06 Kobe Steel Ltd Method for producing sintered ore for iron making
CN104419824A (en) * 2013-09-05 2015-03-18 鞍钢股份有限公司 Material distribution method for producing pre-reduced agglomerate
JP2020012185A (en) * 2018-07-20 2020-01-23 日本製鉄株式会社 Height direction raw material distribution estimation device, height direction raw material distribution estimation program, and method therefor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0881717A (en) * 1994-09-13 1996-03-26 Kobe Steel Ltd Production of sintered ore

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0881717A (en) * 1994-09-13 1996-03-26 Kobe Steel Ltd Production of sintered ore

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014189889A (en) * 2013-03-28 2014-10-06 Kobe Steel Ltd Method for producing sintered ore for iron making
CN104419824A (en) * 2013-09-05 2015-03-18 鞍钢股份有限公司 Material distribution method for producing pre-reduced agglomerate
JP2020012185A (en) * 2018-07-20 2020-01-23 日本製鉄株式会社 Height direction raw material distribution estimation device, height direction raw material distribution estimation program, and method therefor
JP7070191B2 (en) 2018-07-20 2022-05-18 日本製鉄株式会社 Height direction raw material distribution estimation device, height direction raw material distribution estimation program, and its method

Similar Documents

Publication Publication Date Title
KR102110643B1 (en) Carbon material-containing granulated particles in production of sintered ore, method for producing the same
JP5168802B2 (en) Method for producing sintered ore
JP3656632B2 (en) Pseudoparticle raw material for sintering and method for producing pseudoparticle raw material for sintering
JP2012046828A (en) Method for producing sintered ore
JP4786022B2 (en) Method for producing sintered ore
JP2005171388A (en) Pseudo particle raw material for sintering, sintered ore for blast furnace, and method of producing pseudo particle raw material for sintering
JP4661154B2 (en) Method for producing sintered ore
WO2006030968A1 (en) Method for producing sintered steel
KR0173842B1 (en) Sintered ore manufacturing method using high crystal water iron ore as raw materials
JP4767388B2 (en) Method for producing sintered ore with excellent high-temperature properties
JPH08239704A (en) Method for charging raw material in blast furnace
JPH08269584A (en) Production of sintered ore
JP2015193898A (en) Method for charging sintering blending raw material comprising magnetization component raw material
JP4982993B2 (en) Method for producing sintered ore
JP2007031818A (en) Method for manufacturing sintered ore
JPH05339653A (en) Pretreatment of sintered ore raw material and sintered ore raw material for iron making
JP3006884B2 (en) Sinter for iron making using pisolite iron ore as raw material and method for producing the same
JP4438477B2 (en) Method for producing sintered ore for blast furnace
JP3952871B2 (en) Manufacturing method of high-strength sintered ore
JP3952906B2 (en) Ultra-low SiO2, ultra-low Al2O3 high-strength sintered ore and method for producing the same
JP5581875B2 (en) Method for producing sintered ore containing MgO lump
JPH0881717A (en) Production of sintered ore
JP4661077B2 (en) Method for producing sintered ore
JP5011637B2 (en) Processing method of ore for sintering
JP2004225147A (en) Method for manufacturing sintered ore for blast furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130906

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131119