JPH08269584A - Production of sintered ore - Google Patents

Production of sintered ore

Info

Publication number
JPH08269584A
JPH08269584A JP9593295A JP9593295A JPH08269584A JP H08269584 A JPH08269584 A JP H08269584A JP 9593295 A JP9593295 A JP 9593295A JP 9593295 A JP9593295 A JP 9593295A JP H08269584 A JPH08269584 A JP H08269584A
Authority
JP
Japan
Prior art keywords
ore
particles
sintered
raw material
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9593295A
Other languages
Japanese (ja)
Other versions
JP3344151B2 (en
Inventor
Takaya Akashi
孝也 明石
Noboru Sakamoto
登 坂本
Tatsuro Ariyama
達郎 有山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP09593295A priority Critical patent/JP3344151B2/en
Publication of JPH08269584A publication Critical patent/JPH08269584A/en
Application granted granted Critical
Publication of JP3344151B2 publication Critical patent/JP3344151B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE: To provide a process for producing sintered ore capable of maintaining high productivity at a low cost without being accompanied with difficulty when a large quantity of ores contg. water of crystallization at a high ratio, such as pisolite ores, as raw material ores are used. CONSTITUTION: Pseudo particles are formed by forming coating layers 2 mainly composed of hardly meltable ores, for example, magnetite ores, sand iron and solid fuel, contg. >=80wt.% of particles having a grain size of <=0.25mm on the surface layers of particles 1 mainly composed of the ores contg. water of crystallization at a high ratio and the assistant raw material contg. CaO at the time of producing the sintered one by using the ores contg. water of crystallization at a high ratio as the raw material ores. These pseudo particles are sintered.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えばピソライト鉱石
などの高結晶水含有鉱石を原料鉱石として多量に使用す
る焼結鉱の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a sinter that uses a large amount of a high crystal water content ore such as pisolite ore as a raw material ore.

【0002】[0002]

【従来の技術】焼結鉱の原料として、従来、赤鉄鉱(ヘ
マタイト)や磁鉄鉱(マグネタイト)の良質な鉱石を使
用していたが、近年ゲーサイト(Fe2 3 ・H2 O)
を多く含むピソライト鉱石(魚卵状の組織を有する)の
使用量が増加してきている。このピソライト鉱石は焼結
の生産性を維持する上で問題が多く、これに対応する技
術開発が望まれている。
2. Description of the Related Art Conventionally, high-quality ore such as hematite or magnetite has been used as a raw material for sinter, but in recent years, goethite (Fe 2 O 3 .H 2 O) has been used.
The amount of pisolite ore (containing fish-like tissue) containing a large amount of is increasing. This pisolite ore has many problems in maintaining the productivity of sintering, and the technical development corresponding to this has been desired.

【0003】ピソライト鉱石は4%以上の結晶水を含有
しており、300℃で結晶水を解離したピソライト鉱石
は多孔質となる。このため、1200℃以上の焼結過程
において、多孔質なピソライト鉱石は通常の鉱石と比較
してフラックスと反応しやすく、過剰の融液を生成す
る。この過剰の融液が焼結層の通気を悪化させ、生産性
を低下させることが報告されている。
[0003] Pisolite ore contains 4% or more of water of crystallization, and the pisolite ore obtained by dissociating the water of crystallization at 300 ° C becomes porous. Therefore, in the sintering process at 1200 ° C. or higher, the porous pisolite ore easily reacts with the flux as compared with the ordinary ore, and an excessive melt is generated. It has been reported that this excess melt deteriorates the ventilation of the sintered layer and reduces the productivity.

【0004】そこで、このような問題に対応する技術と
して、粗粒高ゲーサイト鉱石の周囲に蛇紋岩などの含M
gO−SiO2副原料粉からなる被覆層を形成した後、
焼結する方法が提案されている(特公平5−83620
号公報)。これによって、焼結過程で1200℃以上に
なった時、カルシウムフェライト融液が高ゲーサイト鉱
石と接触する前に、高ゲーサイト鉱石の緻密化が進行す
ると報告されている。
Therefore, as a technique for dealing with such a problem, M-bearing material such as serpentine around a coarse-grained high goethite ore is used.
After forming a coating layer made of gO-SiO2 auxiliary raw material powder,
A method of sintering has been proposed (Japanese Patent Publication No. 5-83620).
Issue). As a result, it is reported that when the temperature is 1200 ° C. or higher in the sintering process, the densification of the high goethite ore proceeds before the calcium ferrite melt comes into contact with the high goethite ore.

【0005】また、特開平5−339652号公報で
は、粗粒のピソライト鉱石の表面にCaO分の一部を付
着させた後、残りのCaO分、ピソライト粉鉱石および
他の粉鉱石とを付着させた2層の付着層からなる擬似粒
子を焼結する方法が考案されている。これによれば、2
層の付着層のCaO分の割合を所定の割合にすることで
融液の生成量を適正化している。
Further, in Japanese Patent Laid-Open No. 5-339652, after CaO is partially attached to the surface of coarse-grained pisolite ore, the remaining CaO, pisolite powdered ore and other powdered ores are attached. A method has been devised in which pseudo particles composed of two adhering layers are sintered. According to this, 2
By adjusting the ratio of CaO in the adhered layer of the layer to a predetermined ratio, the amount of melt generated is optimized.

【0006】[0006]

【発明が解決しようとする課題】前述したように、ピソ
ライト鉱石を配合し焼結した場合、過剰の融液生成によ
って焼結層の通気性悪化を引き起こし、生産性を低下さ
せる。
As described above, when pisolite ore is blended and sintered, excessive melt generation causes deterioration of air permeability of the sintered layer, thus lowering productivity.

【0007】この問題を解決するために、前述の特公平
5−83620号公報に開示された技術では粗粒高ゲー
サイト鉱石の周囲に蛇紋岩などの含MgO−SiO2副
原料粉からなる被覆層を形成した後、焼結するが、蛇紋
岩の添加によって成品焼結鉱中のSiO2 量が増加し、
高炉におけるスラグ処理コストが増加する。
In order to solve this problem, according to the technique disclosed in the above-mentioned Japanese Patent Publication No. 5-83620, a coating layer composed of MgO-SiO2 auxiliary raw material powder such as serpentine is formed around a coarse-grained high goethite ore. After the formation of sinter, it is sintered, but the addition of serpentine increases the amount of SiO 2 in the product sinter,
The slag treatment cost in the blast furnace increases.

【0008】また、融液の生成量を制御するために、前
述の特開平5−339652号公報に開示された技術で
は2層の付着層からなる擬似粒子を焼結するが、この方
法ではピソライト鉱石を微粉と粗粒とに分けるプロセス
が必要である。また、この方法では被覆用鉱石に易溶融
性のピソライト鉱石を使用しているために、融液生成を
制御するためには多量のピソライト微粉鉱石を確保しな
くてはならない。
Further, in order to control the amount of melt produced, the technique disclosed in the above-mentioned Japanese Patent Laid-Open No. 5-339652 sinters pseudo particles composed of two adhering layers. A process is needed to separate the ore into fines and coarses. Further, in this method, since the easily meltable pisolite ore is used as the coating ore, it is necessary to secure a large amount of fine pisolite ore in order to control the melt formation.

【0009】本発明は、かかる事情に鑑みてなされたも
のであって、ピソライト鉱石などの高結晶水含有鉱石を
原料鉱石として多量に使用した場合に、低コストでしか
も困難性を伴わずに高生産性を維持することができる焼
結鉱の製造方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and when a large amount of high crystal water-containing ore such as pisolite ore is used as a raw material ore, the cost is high and the difficulty is high. An object of the present invention is to provide a method for producing a sinter that can maintain productivity.

【0010】[0010]

【課題を解決するための手段および作用】本発明は、上
記課題を解決するために、高結晶水含有鉱石を原料鉱石
として使用する焼結鉱の製造方法であって、高結晶水含
有鉱石と含CaO副原料とを主体とする粒子の表層に、
粒径0.25mm以下の粒子を80重量%以上含有する
難溶融性鉱石と固体燃料とを主体とする被覆層を形成し
て擬似粒子を作成し、この擬似粒子を焼結することを特
徴とする焼結鉱の製造方法を提供する。
Means and Actions for Solving the Problems In order to solve the above problems, the present invention provides a method for producing a sintered ore using a high crystal water-containing ore as a raw material ore, which comprises: On the surface layer of particles mainly composed of CaO-containing auxiliary material,
A pseudo particle is formed by forming a coating layer mainly composed of a refractory ore containing 80 wt% or more of particles having a particle diameter of 0.25 mm or less and a solid fuel, and sintering the pseudo particle. A method for producing a sintered ore is provided.

【0011】以下、本発明について詳細に説明する。The present invention will be described in detail below.

【0012】本発明は、原料鉱石として高結晶水含有鉱
石、例えばピソライト鉱石を用い、その中の微粒のもの
は積極的に反応させるが、粗粒のものは緻密化して残留
元鉱として残存させるという思想に基づいている。すな
わち、本発明では、高結晶水含有鉱石と含CaO副原料
とを主体とする粒子の表層に微粉の難溶融性鉱石と固体
燃料とを主体とする被覆層を形成することによって擬似
粒子を形成し、この被覆層が高結晶水含有鉱石のうち微
粒のものの過度の溶融を抑制するとともに、粗粒に対す
る融液の侵入を抑制して粗粒の緻密化を促し、もって適
度な融液を確保するものである。
In the present invention, an ore containing a high amount of crystal water, such as a pisolite ore, is used as a raw material ore, and fine particles of the ore are positively reacted, but coarse particles are densified and left as a residual original ore. It is based on the idea. That is, in the present invention, pseudo particles are formed by forming a coating layer mainly composed of a finely powdered hardly-melting ore and a solid fuel on the surface layer of particles mainly composed of a highly crystallized water-containing ore and a CaO-containing auxiliary raw material. However, this coating layer prevents excessive melting of fine grains of ore containing high crystal water and suppresses the intrusion of the melt into the coarse grains to promote the densification of the coarse grains, thus ensuring an appropriate melt. To do.

【0013】本発明における擬似粒子は図1に示すよう
な構造を有している。ここで高結晶水含有鉱石、例えば
ピソライト鉱石は、微粒および粗粒の鉱石から構成され
ているので、図1の(a),(b)2種類の擬似粒子の
形態が考えられる。図1の(a)は微粒の高結晶水鉱石
と含CaO副原料とからなる集合粒子1の表層に、微粉
の難溶融性鉱石と固体燃料からなる被覆層2を形成した
擬似粒子であり、図1の(b)は粗粒の高結晶水鉱石3
に含CaO副原料4が付着した粒子の表層に、微粉の難
溶融性鉱石と固体燃料からなる被覆層5を被覆した擬似
粒子である。ここで、高結晶水含有鉱石が微粒であるか
粗粒であるかの粒径の目安はおよそ1mmである。
The pseudo particles in the present invention have a structure as shown in FIG. Here, the high crystal water containing ore, for example, the pisolite ore is composed of fine and coarse ores, and therefore two types of quasi-particle morphologies of (a) and (b) in FIG. 1 are conceivable. (A) of FIG. 1 is a pseudo particle in which a coating layer 2 composed of a fine powder refractory ore and a solid fuel is formed on the surface layer of an aggregate particle 1 composed of a fine grained highly crystalline water ore and a CaO-containing auxiliary raw material, 1 (b) is a coarse-grained highly crystalline water ore 3
It is a pseudo particle in which the surface layer of the particles to which the CaO-containing auxiliary raw material 4 is attached is coated with the coating layer 5 made of fine powder of infusible ore and solid fuel. Here, the standard of the particle size of the high crystal water containing ore is a fine particle or a coarse particle is about 1 mm.

【0014】図1(a)のような微粒の高結晶水鉱石
(例えばピソライト鉱石)を含む擬似粒子を焼結した場
合、300℃で高結晶水鉱石中の結晶水が解離し多孔質
になる。さらに、擬似粒子表層部の固体燃料の燃焼と微
粉の難溶融性鉱石の酸化が進行し、このとき発生する熱
によってさらに高温となる。そして1200℃以上にな
ると、擬似粒子内部で多孔質な高結晶水鉱石と副原料と
の反応によって多量の融液を生成する。このとき融液は
擬似粒子の外部へと流れ出そうとするが、表層に形成さ
れた微粉の難溶融性鉱石を含む被覆層2によって抑制さ
れる。つまり、従来と異なり融液が多量に生成しても融
液が擬似粒子の内部に閉じこめる作用が働くために焼結
層の通気性の悪化を抑制することができる。
When quasi-particles containing fine crystal water ore (for example, pisolite ore) as shown in FIG. 1 (a) are sintered, the crystal water in the crystal water ore at 300 ° C. dissociates and becomes porous. . Further, the combustion of the solid fuel in the surface layer of the pseudo particles and the oxidation of the fine powder of the refractory ore progresses, and the heat generated at this time raises the temperature further. Then, at 1200 ° C. or higher, a large amount of melt is generated by the reaction between the porous highly crystalline water ore and the auxiliary raw material inside the pseudo particles. At this time, the melt tends to flow out of the pseudo particles, but is suppressed by the coating layer 2 containing the fine powder of the hardly-melting ore formed on the surface layer. That is, unlike the conventional method, even if a large amount of melt is generated, the melt acts to confine it inside the pseudo particles, so that it is possible to suppress deterioration of the air permeability of the sintered layer.

【0015】一方、図1(b)のような粗粒の高結晶水
鉱石(例えばピソライト鉱石)を含む擬似粒子を焼結し
た場合、300℃で高結晶水鉱石中の結晶水が解離し多
孔質になる。そして、擬似粒子の被覆層5の固体燃料の
燃焼と微粉の難溶融性鉱石の酸化によって熱が発生し、
さらに高温となる。1200℃以上で粗粒の高結晶水鉱
石3と付着した副原料4とが反応するが、付着した副原
料が少ないために大部分が反応しないで残る。さらに1
300℃以上になると多孔質な高結晶水鉱石の緻密化が
進行し、強度が回復する。この際、高結晶水鉱石の表層
に形成した微粉の難溶融性鉱石を含む被覆層5は外部か
ら融液が進入してくるのを抑制する効果がある。
On the other hand, when pseudo particles containing coarse-grained high crystal water ore (for example, pisolite ore) as shown in FIG. 1B are sintered, the crystal water in the high crystal water ore dissociates at 300 ° C. Become quality. Then, heat is generated due to the combustion of the solid fuel in the coating layer 5 of the pseudo particles and the oxidation of the finely-melted ore,
It becomes even hotter. At 1200 ° C. or higher, the coarse-grained high crystal water ore 3 and the adhering auxiliary material 4 react with each other, but most of them remain without reacting because the adhering auxiliary material is small. 1 more
When the temperature is 300 ° C. or higher, densification of the porous highly crystalline water ore proceeds, and the strength is recovered. At this time, the coating layer 5 containing the fine powder of hardly-melting ore formed on the surface layer of the high crystal water ore has an effect of suppressing the intrusion of the melt from the outside.

【0016】なお、図1は擬似粒子の構造をわかりやす
く説明するために、高結晶水含有鉱石の微粒と粗粒の典
型例を示した。粗粒の構造を説明する図1(b)では、
1個の粒子の表面に含CaO副原料を付着させた状態を
示した。
Incidentally, FIG. 1 shows a typical example of fine and coarse particles of an ore containing high crystal water in order to easily understand the structure of the pseudo particles. In FIG. 1B for explaining the structure of coarse particles,
The state in which the CaO-containing auxiliary raw material is attached to the surface of one particle is shown.

【0017】本発明では被覆層として微粉の難溶融性鉱
石と固体燃料とを用いる。被覆層に難溶融性鉱石を用い
た理由は、被覆層の上述の機能を有効に発揮させるため
である。また固体燃料を擬似粒子の表層部に被覆した理
由は、固体燃料の燃焼速度を高めるためである。これに
より固体燃料は、高結晶水含有鉱石の結晶水を効率的に
解離し、多孔質化した高結晶水含有鉱石を早期に緻密化
する役割を果たす。なお、固体燃料はこのように被覆層
に含有されるが、焼結性を高める観点からその一部を補
助的に内層に含有させてもよい。
In the present invention, a fine powder of infusible ore and a solid fuel are used as the coating layer. The reason why the refractory ore is used for the coating layer is to effectively exhibit the above-mentioned functions of the coating layer. The reason why the surface layer of the pseudo particles is coated with the solid fuel is to increase the burning rate of the solid fuel. Thereby, the solid fuel plays a role of efficiently dissociating the crystal water of the high crystal water-containing ore and densifying the porous high crystal water-containing ore at an early stage. The solid fuel is contained in the coating layer as described above, but a part thereof may be supplementarily contained in the inner layer from the viewpoint of improving the sinterability.

【0018】被覆層に用いる難溶融性鉱石は、擬似粒子
への付着性が必要であるため、粒径0.25mm以下の
粒子を80重量%以上含有する微粉のものであることが
必要である。
Since the refractory ore used for the coating layer needs to adhere to pseudo particles, it needs to be a fine powder containing 80% by weight or more of particles having a particle size of 0.25 mm or less. .

【0019】被覆層に用いる微粉の難溶融性鉱石として
は、FeOを10重量%以上含む鉱石を用いることが好
ましい。このような鉱石としてはマグネタイトを含むマ
グネタイト系微粉鉱石が挙げられる。このマグネタイト
系微粉鉱石に代表されるFeOを10重量%以上含む鉱
石は、焼結の際の昇温過程においてFe3 4 からFe
2 3 へ結晶構造が変化し、結晶構造の再配列が起こ
る。このとき、被覆層の微粉鉱石間は一部焼結反応によ
り結合し、被覆の効果を高める。また、マグネタイトの
酸化熱は焼結を促進させる効果もある。ここで、FeO
を10重量%以上としたのはこれ以下では結晶構造の再
配列による被覆効果を高める機能が不十分になるからで
ある。
It is preferable to use an ore containing 10% by weight or more of FeO as the fine powder of the hardly fusible ore used for the coating layer. Examples of such ores include magnetite-based fine powder ores containing magnetite. An ore containing 10% by weight or more of FeO typified by the magnetite type fine powder ore is produced from Fe 3 O 4 to Fe in the temperature rising process during sintering.
The crystal structure changes to 2 O 3, and rearrangement of the crystal structure occurs. At this time, the fine ores in the coating layer are partially bonded by a sintering reaction to enhance the coating effect. Further, the heat of oxidation of magnetite also has the effect of promoting sintering. Where FeO
The content of 10% by weight or more is because if it is less than this, the function of enhancing the covering effect by rearrangement of the crystal structure becomes insufficient.

【0020】マグネタイト系鉱石に代表される、FeO
を10重量%以上含有する難溶融性鉱石の配合割合は原
料鉱石全体の3〜30重量%であることが好ましい。そ
の理由は、微粉鉱石の被覆量が3重量%未満では擬似粒
子の外側に融液が流れ出すのを抑制する効果が小さく、
逆に30重量%を超えると擬似粒子の外側に流れ出す融
液がなくなるために擬似粒子間の結合に必要な融液が不
足し、焼結鉱の歩留が低下するからである。
FeO represented by magnetite ore
It is preferable that the mixing ratio of the refractory ore containing 10% by weight or more is 3 to 30% by weight based on the entire raw material ore. The reason is that if the coating amount of fine ore is less than 3% by weight, the effect of suppressing the melt from flowing out of the pseudo particles is small,
On the other hand, when it exceeds 30% by weight, the melt flowing out to the outside of the pseudo particles disappears, so that the melt necessary for bonding between the pseudo particles becomes insufficient and the yield of the sintered ore decreases.

【0021】本発明において被覆層に用いる微粉の難溶
融性鉱石としては、上記のものの他、TiO2 を4重量
%以上含む鉱石も好適に用いることができる。このよう
な鉱石としては、砂鉄およびイルメナイト(FeTiO
3 )を挙げることができる。このようにTiO2 を4重
量%以上含む鉱石は、TiO2 の作用によって、擬似粒
子内部で生成した融液との反応性が小さいため、その配
合割合が低くても十分に被覆層の被覆効果を発揮させる
ことができる。具体的には、その原料鉱石全体に対する
配合割合が1重量%から融液の流れ出しを抑制する効果
が現れ、10重量%を超えると被覆粒子間の結合に必要
な融液が不足し、歩留低下を引き起こす。従って、この
場合には、難溶融性鉱石の原料鉱石全体に対する配合割
合が1〜10重量%であることが必要である。なお、例
示した砂鉄およびイルメナイトは、いずれもFeOを1
0重量%以上含有しており、上述したマグネタイト系微
粉鉱石と同様の機能をも果たすものである。
In addition to the above-mentioned ones, an ore containing 4% by weight or more of TiO 2 can be preferably used as the finely powdered, hardly-melting ore used in the coating layer in the present invention. Such ores include iron sand and ilmenite (FeTiO 3
3 ) can be mentioned. Thus ores containing TiO 2 4 wt% or more, by the action of TiO 2, for reactivity with the melt generated inside the pseudo particles is small, the coating effect of sufficiently cover layer be the mixing ratio is low Can be demonstrated. Specifically, the effect of suppressing the outflow of the melt appears when the content of the raw ore is 1% by weight, and when it exceeds 10% by weight, the melt necessary for bonding the coated particles is insufficient and the yield is high. Cause a decline. Therefore, in this case, the blending ratio of the refractory ore to the entire raw material ore needs to be 1 to 10% by weight. It should be noted that the iron sand and ilmenite exemplified above each contain 1% FeO.
It contains 0% by weight or more, and also fulfills the same function as that of the above-mentioned magnetite-based fine ore.

【0022】本発明において、高結晶水含有鉱石はおよ
そ4重量%以上の結晶水を含有しているものを指す。ま
た、高結晶水含有鉱石の原料鉱石全体に対する配合割合
はおよそ20重量%以上である。結晶水が4重量%未満
であるか、または4重量%以上であってもその配合割合
が20重量%未満であれば焼結の際の生産性低下の問題
が生じない。
In the present invention, the high crystal water content ore refers to one containing approximately 4% by weight or more of crystal water. Further, the compounding ratio of the high crystal water-containing ore to the entire raw material ore is about 20% by weight or more. If the amount of water of crystallization is less than 4% by weight, or even if it is 4% by weight or more and the compounding ratio is less than 20% by weight, there is no problem of productivity reduction during sintering.

【0023】前記固体燃料としては、コークス、無煙
炭、チャー、廃プラスチック等を用いることができ、こ
れら単独でも混合して用いてもよい。この中ではコーク
スが好適である。個体燃料の粒度は特に問わないが、被
覆効果を高めるためには3mm以下であることが好まし
い。
As the solid fuel, coke, anthracite, char, waste plastic and the like can be used, and these may be used alone or in combination. Of these, coke is preferred. The particle size of the solid fuel is not particularly limited, but it is preferably 3 mm or less in order to enhance the covering effect.

【0024】実際の焼結に際しては、上述のような擬似
粒子構造を持つ原料を、焼結機パレット上に装入して焼
結層(焼結ベッド)を形成し、そこにコークス炉ガスな
どを供給して点火し焼結を行う。ここで焼結層上下方向
で固体燃料量が偏析するように装入すると更なる改善の
効果が表れる。具体的には、熱量不足の焼結層上層部に
おける擬似粒子の固体燃料の量を増やし、熱量過剰の焼
結層下層部の擬似粒子の固体燃料の量を減らすことで、
焼結層上下方向の熱量が均一化する。このように熱量均
一化することによって上記擬似粒子設計による融液生成
の制御が容易となる。
At the time of actual sintering, the raw material having the above-mentioned pseudo-particle structure is charged on a sinter machine pallet to form a sintered layer (sinter bed), and a coke oven gas or the like is formed therein. Is supplied to ignite and sinter. Here, if the solid fuel amount is charged so as to segregate in the vertical direction of the sintered layer, the effect of further improvement will be exhibited. Specifically, by increasing the amount of solid fuel of the pseudo particles in the upper layer of the sintered layer with insufficient calorific value, and reducing the amount of the solid fuel of the pseudo particles in the lower layer of the sintered layer with excessive calorific value,
The amount of heat in the vertical direction of the sintered layer becomes uniform. By homogenizing the amount of heat in this way, it becomes easy to control the melt generation by the above-mentioned pseudo particle design.

【0025】[0025]

【実施例】従来法と実施例の配合条件を表1に示す。配
合率は、全鉱石を100%としたときの重量比率で示し
た。全ての実験条件で、高結晶水含有鉱石としてのピソ
ライト鉱石の使用量は40%、生石灰添加量は0.5
%、コークスの添加量は3.8%とした。また、A鉱
石、B鉱石および石灰石は、塩基度が1.8、成品焼結
鉱中のシリカ含有量(目標値)が5.3%となるように
配合調整を行った。なお、A鉱石とB鉱石とは成分が異
なり、A鉱石のほうがSiO2 が多い。このように2種
類の鉱石を使用したのは、焼結鉱のシリカ分を調節する
ためである。
EXAMPLES Table 1 shows the compounding conditions of the conventional method and the examples. The compounding ratio is shown as a weight ratio when the total ore is 100%. Under all experimental conditions, the amount of pisolite ore used as a high crystal water content ore was 40%, and the amount of quick lime added was 0.5.
%, And the amount of coke added was 3.8%. Further, A ore, B ore and limestone were adjusted to have a basicity of 1.8 and a silica content (target value) in the product sintered ore of 5.3%. Note that the ore A and the ore B have different components, and the ore A has more SiO 2 . The reason why two kinds of ores are used is to control the silica content of the sinter.

【0026】実施例1では、マグネタイト系微粉鉱石と
コークスを主体とする外層を、ピソライト鉱石を40%
含有する内層の外側に被覆した。また、生石灰を外層に
添加したが、これは造粒性を高めるためであり、反応に
は関与しないように添加量は0.5%とした。
In Example 1, the magnetite-based fine ore and the outer layer mainly composed of coke were composed of 40% of pisolite ore.
The inner layer contained was coated on the outside. Further, quick lime was added to the outer layer, but this was for the purpose of enhancing the granulation property, and the addition amount was 0.5% so as not to participate in the reaction.

【0027】また実施例2では、砂鉄とコークスを主体
とする外層を内層の外側に被覆し、実施例1と同様に
0.5%の生石灰を外層に添加した。
In Example 2, an outer layer mainly composed of iron sand and coke was coated on the outer side of the inner layer, and 0.5% quicklime was added to the outer layer as in Example 1.

【0028】[0028]

【表1】 実験のフローを図2に示す。従来法では、(a)に示す
ように、全原料14をミキサー11に装入し、混合した
後、ミキサー12にて水分を添加しながら造粒を行っ
た。一方、実施例1、2では、表1の内層用原料15を
ミキサー11にて混合、造粒を行った後、その粒子とと
もに表1の外層用原料16をミキサー12に装入し、ミ
キサー11で形成された粒子の表層部に原料16を被覆
させ、擬似粒子を形成した。その後、いずれの方法にお
いてもこの擬似粒子を焼結装置13に装入し、焼結を行
った。
[Table 1] The experimental flow is shown in FIG. In the conventional method, as shown in (a), all the raw materials 14 were charged into the mixer 11, mixed, and then granulated while adding water in the mixer 12. On the other hand, in Examples 1 and 2, after mixing the raw material 15 for the inner layer of Table 1 with the mixer 11 and granulating, the raw material 16 for the outer layer of Table 1 was charged into the mixer 12 together with the particles, and the mixer 11 The raw material 16 was coated on the surface layer portion of the particles formed in step 1 to form pseudo particles. Then, in any method, the pseudo particles were charged into the sintering device 13 and sintered.

【0029】実施例1にて造粒した擬似粒子の断面の写
真を図3に示す。図3の(a)は微粒のピソライト鉱石
を用いた擬似粒子の断面を示す。この(a)から、微粒
のピソライト鉱石、石灰石、A鉱石(微粉)、B鉱石
(微粉)からなる粒子の表層部にマグネタイト系微粉鉱
石とコークスからなる被覆層が形成されている様子が観
察できる。また、図3の(b)は粗粒のピソライト鉱石
を用いた擬似粒子の断面を示す。この(b)から、粗粒
のピソライト鉱石(中央の多孔質部分)に石灰石、A鉱
石(微粉)、B鉱石(微粉)、ピソライト鉱石(微粉)
が微量付着してなる粒子の表層部にマグネタイト系微粉
鉱石とコークスからなる被覆層が形成されているのがわ
かる。
A photograph of a cross section of the pseudo particles granulated in Example 1 is shown in FIG. FIG. 3A shows a cross section of a pseudo particle using fine pisolite ore. From this (a), it can be observed that a coating layer composed of magnetite-based fine ore and coke is formed on the surface layer of particles composed of fine pisolite ore, limestone, A ore (fine powder) and B ore (fine powder). . Further, FIG. 3B shows a cross section of a pseudo particle using coarse-grained pisolite ore. From this (b), limestone, A ore (fine powder), B ore (fine powder), pisolite ore (fine powder) is added to coarse-grained pisolite ore (porous portion in the center).
It can be seen that a coating layer composed of magnetite-based fine ore and coke is formed on the surface layer of the particles formed by adhering a small amount of.

【0030】なお、実際には図3(a),(b)に示す
擬似粒子以外に、粗粒のA鉱石、B鉱石を核粒子とする
擬似粒子も存在するが、本発明の作用には関与しないの
で説明を省略する。
Actually, in addition to the pseudo particles shown in FIGS. 3 (a) and 3 (b), there are also pseudo particles having coarse A ore and B ore as core particles. Since it is not involved, the explanation is omitted.

【0031】擬似粒子の焼結は、焼結装置13内に擬似
粒子を装入して焼結層を形成し、点火帯にて焼結層にコ
ークス炉ガスを供給して点火し、擬似粒子中のコークス
を燃焼させることによって行った。
For the sintering of the pseudo particles, the pseudo particles are charged into the sintering apparatus 13 to form a sintered layer, and the coke oven gas is supplied to the sintered layer in the ignition zone to ignite the pseudo particles. It was done by burning the coke inside.

【0032】上述した従来法、実施例1、実施例2の方
法によって形成した擬似粒子を用いてこのように焼成試
験を行った結果を図4に示す。図4は原燃料を均一に混
合した従来法、実施例1、実施例2の方法で製造した擬
似粒子を焼結してなる焼結鉱石の落下強度、および歩
留、生産率を示す図である。
FIG. 4 shows the result of the firing test as described above using the pseudo particles formed by the above-mentioned conventional method, the method of Example 1 and the method of Example 2. FIG. 4 is a graph showing the drop strength, yield, and production rate of sintered ore obtained by sintering the pseudo particles produced by the conventional method in which the raw fuel was uniformly mixed, and the methods in Examples 1 and 2. is there.

【0033】この図に示すように、実施例1、実施例2
によって製造した焼結鉱は共に従来法によって製造され
た焼結鉱よりも落下強度が高く、また実施例1、実施例
2の場合には従来法に対して生産率改善の効果が認めら
れた。
As shown in this figure, Example 1 and Example 2
Both of the sintered ores manufactured by the method have a higher drop strength than the sintered ores manufactured by the conventional method, and in the case of Examples 1 and 2, the effect of improving the production rate was recognized as compared with the conventional method. .

【0034】次に、外層用原料のマグネタイト系鉱石、
砂鉄の適正量を調べるために、表2に示す配合条件で試
験を行った。
Next, a magnetite ore as a raw material for the outer layer,
In order to examine the appropriate amount of iron sand, a test was conducted under the compounding conditions shown in Table 2.

【0035】この表において、配合率は、全鉱石を10
0%としたときの重量比率で示した。全ての実験条件
で、ピソライト鉱石の使用量は40%、生石灰添加量は
0.5%、コークスの添加量は4.0%(内層1.0
%、外層3.0%)とした。また、A鉱石、B鉱石およ
び石灰石は、塩基度が1.8、成品焼結鉱中のシリカ含
有量(目標値)が4.5%となるように配合調整を行っ
た。この原料を図2に示すフローで焼成試験を行った。
In this table, the compounding ratio is 10% for all ores.
The weight ratio is shown as 0%. Under all experimental conditions, the amount of pisolite ore used was 40%, the amount of quicklime added was 0.5%, the amount of coke added was 4.0% (inner layer 1.0
%, Outer layer 3.0%). Further, A ore, B ore and limestone were adjusted to have a basicity of 1.8 and a silica content (target value) in the product sintered ore of 4.5%. A firing test was performed on this raw material according to the flow shown in FIG.

【0036】実施例3では外層のマグネタイト系微粉鉱
石の量を0〜30%の間で変化させ、実施例4では外層
の砂鉄の量を0〜15%の間で変化させた。
In Example 3, the amount of magnetite type fine ore in the outer layer was changed between 0 and 30%, and in Example 4, the amount of sand iron in the outer layer was changed between 0 and 15%.

【0037】[0037]

【表2】 この際の難溶融性鉱石の被覆量が生産率に及ぼす影響を
図5、図6に示す。図5は難溶融性鉱石としてマグネタ
イト系微粉鉱石を用いた場合であり、図6は砂鉄を用い
た場合である。
[Table 2] The influence of the coating amount of the refractory ore on the production rate at this time is shown in FIGS. FIG. 5 shows the case of using magnetite type fine powder ore as the refractory ore, and FIG. 6 shows the case of using iron sand.

【0038】これらの図に示すように、微粉鉱石の被覆
量には適正値が存在することが明らかとなった。微粉鉱
石の被覆量の増加によって焼結時間が短縮され生産率が
改善されるが、さらに微粉鉱石の被覆量を増加すると融
液不足による歩留低下によって生産率が低下している。
図5から判断すると、マグネタイト系微粉鉱石の被覆量
の適正値は全鉱石量に対して最大30%であり、図6か
ら判断すると、砂鉄の被覆量の適正値は全鉱石量にに対
して最大10%である。
As shown in these figures, it became clear that there is an appropriate value for the coating amount of fine ore. Although the sintering time is shortened and the production rate is improved by increasing the coating amount of the fine ore, when the coating amount of the fine ore is further increased, the production rate is reduced due to a decrease in yield due to lack of melt.
Judging from FIG. 5, the optimum value of the coating amount of the magnetite-based fine ore is 30% at maximum with respect to the total ore amount, and judging from FIG. 6, the appropriate value of the coating amount of sand iron is against the total ore amount. The maximum is 10%.

【0039】[0039]

【発明の効果】以上説明したように、本発明によれば、
従来焼結原料として使用が困難であったピソライト鉱石
を多量に使用しても、高い生産性を維持したまま、品質
の優れた焼結鉱製造することが可能となる。
As described above, according to the present invention,
Even if a large amount of pisolite ore, which has been difficult to use as a sintering raw material in the past, is used, it becomes possible to manufacture a high quality sintered ore while maintaining high productivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法によって形成された擬似粒子の構
造を示す模式図であり、(a)は微粒のピソライト鉱石
を用いた場合、(b)は粗粒ののピソライト鉱石を用い
た場合を示すものである。
FIG. 1 is a schematic view showing the structure of pseudo particles formed by the method of the present invention, where (a) uses fine-grained pisolite ore, and (b) uses coarse-grained pisolite ore. Is shown.

【図2】焼結鉱石の製造フローを説明するための模式図
であり、(a)は従来のフロー、(b)は本発明の実施
例のフローを示すものである。
FIG. 2 is a schematic diagram for explaining a production flow of a sintered ore, (a) showing a conventional flow and (b) showing a flow of an embodiment of the present invention.

【図3】実施例1にて作成した擬似粒子の粒子構造を示
す写真であり、(a)は微粒のピソライト鉱石を用いた
もの、(b)は粗粒のピソライト鉱石を用いたものを示
す。
3A and 3B are photographs showing the particle structure of the pseudo particles prepared in Example 1, where FIG. 3A shows the one using fine pisolite ore, and FIG. 3B shows the one using coarse pisolite ore. .

【図4】従来法、実施例1および実施例2によって製造
した焼結鉱の落下強度、および従来法、実施例1および
実施例2によって焼結鉱を製造する際の歩留および生産
率を比較して示す図。
FIG. 4 shows the drop strength of the sinter produced according to the conventional method, Example 1 and Example 2, and the yield and production rate when producing the sinter according to the conventional method, Example 1 and Example 2. The figure shown in comparison.

【図5】被覆層(外層)に含有されるマグネタイト系微
粉鉱石の量と生産率との関係を示す図。
FIG. 5 is a graph showing the relationship between the amount of magnetite-based fine ore contained in the coating layer (outer layer) and the production rate.

【図6】被覆層(外層)に含有される砂鉄の量と生産率
との関係を示す図。
FIG. 6 is a diagram showing the relationship between the amount of iron sand contained in the coating layer (outer layer) and the production rate.

【符号の説明】[Explanation of symbols]

1……集合粒子 2……被覆層 3……高結晶水鉱石 4……含CaO副原料 5……被覆層 11,12……ミキサー 13……焼結装置 14,15,16……原料 1 ... Aggregate particles 2 ... Coating layer 3 ... Highly crystalline water ore 4 ... CaO-containing auxiliary raw material 5 ... Coating layer 11, 12 ... Mixer 13 ... Sintering device 14, 15, 16 ... Raw material

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 高結晶水含有鉱石を原料鉱石として使用
する焼結鉱の製造方法であって、高結晶水含有鉱石と含
CaO副原料とを主体とする粒子の表層に、粒径0.2
5mm以下の粒子を80重量%以上含有する難溶融性鉱
石と固体燃料とを主体とする被覆層を形成して擬似粒子
を作成し、この擬似粒子を焼結することを特徴とする焼
結鉱の製造方法。
1. A method for producing a sinter using a high crystal water-containing ore as a raw material ore, wherein the surface layer of particles mainly composed of the high crystal water-containing ore and a CaO-containing auxiliary material has a grain size of 0. Two
A sintered ore characterized by forming a pseudo particle by forming a coating layer mainly composed of a refractory ore containing 80% by weight or more of particles of 5 mm or less and a solid fuel, and sintering the pseudo particle. Manufacturing method.
【請求項2】 前記難溶融性鉱石は、FeOを10重量
%以上含み、その原料鉱石全体に対する配合割合が3〜
30重量%であることを特徴とする焼結鉱の製造方法。
2. The refractory ore contains 10% by weight or more of FeO and has a compounding ratio of 3 to 3 with respect to the entire raw material ore.
30% by weight of the method for producing a sintered ore.
【請求項3】 前記難溶融性鉱石は、マグネタイトを含
むことを特徴とする請求項2に記載の焼結鉱の製造方
法。
3. The method for producing a sintered ore according to claim 2, wherein the refractory ore contains magnetite.
【請求項4】 前記難溶融性鉱石は、TiO2 を4重量
%以上含み、その原料鉱石全体に対する配合割合が1〜
10重量%であることを特徴とする焼結鉱の製造方法。
4. The refractory ore contains TiO 2 in an amount of 4% by weight or more, and has a compounding ratio of 1 to the entire raw material ore.
A method for producing a sintered ore, which is 10% by weight.
【請求項5】 前記難溶融性鉱石は、砂鉄またはイルメ
ナイトを含むことを特徴とする請求項4に記載の焼結鉱
の製造方法。
5. The method for producing a sintered ore according to claim 4, wherein the refractory ore contains iron sand or ilmenite.
【請求項6】 前記高結晶水含有鉱石は、4重量%以上
の結晶水を含むことを特徴とする請求項1ないし請求項
5のいずれか1項に記載の焼結鉱の製造方法。
6. The method for producing a sintered ore according to claim 1, wherein the ore containing high crystal water contains 4% by weight or more of crystal water.
【請求項7】 前記高結晶水含有鉱石は、その原料鉱石
全体に対する配合割合が20重量%以上であることを特
徴とする請求項1ないし請求項6のいずれか1項に記載
の焼結鉱の製造方法。
7. The sinter according to any one of claims 1 to 6, wherein the high crystal water-containing ore has a compounding ratio of 20% by weight or more with respect to the entire raw material ore. Manufacturing method.
【請求項8】 前記固体燃料は、コークス、無煙炭、チ
ャー、廃プラスチックの1種または2種以上を含むこと
を特徴とする請求項1ないし請求項7のいずれか1項に
記載の焼結鉱の製造方法。
8. The sinter according to claim 1, wherein the solid fuel contains one or more of coke, anthracite, char, and waste plastic. Manufacturing method.
【請求項9】 前記擬似粒子を焼結炉にて焼結する際
に、焼結炉の焼結層上層の擬似粒子の固体燃料量が、焼
結層下層の擬似粒子の固体燃料量よりも多くなるように
して焼結機に装入し焼結することを特徴とする請求項1
ないし請求項8のいずれか1項に記載の焼結鉱の製造方
法。
9. When sintering the pseudo particles in a sintering furnace, the solid fuel amount of the pseudo particles in the upper layer of the sintering layer of the sintering furnace is larger than the solid fuel amount of the pseudo particles in the lower layer of the sintering layer. 2. A method of charging the sintering machine in a large number and sintering the same.
A method for manufacturing the sintered ore according to claim 8.
JP09593295A 1995-03-30 1995-03-30 Sinter production method Expired - Fee Related JP3344151B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09593295A JP3344151B2 (en) 1995-03-30 1995-03-30 Sinter production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09593295A JP3344151B2 (en) 1995-03-30 1995-03-30 Sinter production method

Publications (2)

Publication Number Publication Date
JPH08269584A true JPH08269584A (en) 1996-10-15
JP3344151B2 JP3344151B2 (en) 2002-11-11

Family

ID=14151055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09593295A Expired - Fee Related JP3344151B2 (en) 1995-03-30 1995-03-30 Sinter production method

Country Status (1)

Country Link
JP (1) JP3344151B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007211289A (en) * 2006-02-09 2007-08-23 Jfe Steel Kk Method for manufacturing sintered ore
KR100821076B1 (en) * 2001-11-02 2008-04-08 주식회사 포스코 A method of iron ore sintering using anthracite and coke as fuel
JP2012502185A (en) * 2008-09-11 2012-01-26 シーメンス・ファオアーイー・メタルズ・テクノロジーズ・ゲーエムベーハー Method for producing aggregates from particulate iron support
JP2015014015A (en) * 2013-07-03 2015-01-22 新日鐵住金株式会社 Production method of sintered ore
JP2015063716A (en) * 2013-09-24 2015-04-09 株式会社神戸製鋼所 Iron ore mini pellet for sintered ore manufacturing
JP2016130341A (en) * 2015-01-14 2016-07-21 株式会社神戸製鋼所 Method of producing sintered ore raw material using magnetite ore
JP2016183368A (en) * 2015-03-25 2016-10-20 株式会社神戸製鋼所 Material for sintered ore and method for producing material for sintered ore

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100821076B1 (en) * 2001-11-02 2008-04-08 주식회사 포스코 A method of iron ore sintering using anthracite and coke as fuel
JP2007211289A (en) * 2006-02-09 2007-08-23 Jfe Steel Kk Method for manufacturing sintered ore
JP2012502185A (en) * 2008-09-11 2012-01-26 シーメンス・ファオアーイー・メタルズ・テクノロジーズ・ゲーエムベーハー Method for producing aggregates from particulate iron support
JP2015014015A (en) * 2013-07-03 2015-01-22 新日鐵住金株式会社 Production method of sintered ore
JP2015063716A (en) * 2013-09-24 2015-04-09 株式会社神戸製鋼所 Iron ore mini pellet for sintered ore manufacturing
JP2016130341A (en) * 2015-01-14 2016-07-21 株式会社神戸製鋼所 Method of producing sintered ore raw material using magnetite ore
JP2016183368A (en) * 2015-03-25 2016-10-20 株式会社神戸製鋼所 Material for sintered ore and method for producing material for sintered ore

Also Published As

Publication number Publication date
JP3344151B2 (en) 2002-11-11

Similar Documents

Publication Publication Date Title
JP6620850B2 (en) Carbonaceous granulated particles for the production of sintered ore and method for producing the same
KR100569518B1 (en) Raw material for sintering in form of pseudo grain and method for producing the same
JP5168802B2 (en) Method for producing sintered ore
JP6288462B2 (en) Carbonaceous material-containing granulated particles for manufacturing sintered ore, method for manufacturing the same, and method for manufacturing sintered ore
JPH08269584A (en) Production of sintered ore
JP3736500B2 (en) Method for producing sintered ore
JP2005171388A (en) Pseudo particle raw material for sintering, sintered ore for blast furnace, and method of producing pseudo particle raw material for sintering
JP2002129247A (en) High grade sintered agglomerate for iron manufacturing and method for manufacturing the same
JP4175158B2 (en) Method for manufacturing raw materials for sintering
JPH0645829B2 (en) Sintering raw material and method for producing sintered ore
JP2711735B2 (en) Sinter production method
JPH0583620B2 (en)
JPH09209048A (en) Manufacture of sintered ore
JP5995005B2 (en) Sintering raw material manufacturing method
JPH05339654A (en) Pretreatment of sintered ore raw material and sintered ore raw material for iron making
JPH05339653A (en) Pretreatment of sintered ore raw material and sintered ore raw material for iron making
JPH1121634A (en) Production of sintered ore
JP4661077B2 (en) Method for producing sintered ore
RU2048548C1 (en) Method for production of fluxed iron-ore agglomerate
JPH0827525A (en) Production of sintered ore formed by using ore of high crystallization water as raw material
JPH10330850A (en) Production of sintered ore
JP3206324B2 (en) Sinter production method
JP2004225147A (en) Method for manufacturing sintered ore for blast furnace
JP2004076075A (en) High-strength sintered ore with extremely low silica and alumina, and manufacturing method therefor
JPH0730417B2 (en) Manufacturing method of sinter for blast furnace using high goethite ore

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070830

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20080830

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20080830

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20090830

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20090830

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100830

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees