WO2012015065A1 - Method for producing starting material for sintering - Google Patents

Method for producing starting material for sintering Download PDF

Info

Publication number
WO2012015065A1
WO2012015065A1 PCT/JP2011/067722 JP2011067722W WO2012015065A1 WO 2012015065 A1 WO2012015065 A1 WO 2012015065A1 JP 2011067722 W JP2011067722 W JP 2011067722W WO 2012015065 A1 WO2012015065 A1 WO 2012015065A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
sintering
solid fuel
powder raw
powder
Prior art date
Application number
PCT/JP2011/067722
Other languages
French (fr)
Japanese (ja)
Inventor
隆英 樋口
大山 伸幸
直幸 竹内
主代 晃一
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN201180037599.0A priority Critical patent/CN103052724B/en
Publication of WO2012015065A1 publication Critical patent/WO2012015065A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • C22B1/20Sintering; Agglomerating in sintering machines with movable grates
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/2406Binding; Briquetting ; Granulating pelletizing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/242Binding; Briquetting ; Granulating with binders
    • C22B1/244Binding; Briquetting ; Granulating with binders organic
    • C22B1/245Binding; Briquetting ; Granulating with binders organic with carbonaceous material for the production of coked agglomerates

Definitions

  • the present invention relates to a method for producing a raw material for sintering used when producing a sintered ore using a downward suction type dweroid type sintering machine.
  • the sintered ore charged into the blast furnace is generally manufactured through the following treatment.
  • raw materials roughly divided into the following (a) to (d) are charged into a drum mixer, mixed with an appropriate amount of water, and granulated to produce a granular sintering raw material.
  • Solid fuel-based powder raw material serving as a heat source for powder coke, anthracite, etc.
  • the sintering raw material composed of the granulated particles obtained by mixing and granulating the materials (a) to (d) described above has a predetermined thickness (usually 500 to 700 mm) on the pallet of a dwy-toroid type sintering machine. Are stacked in layers.
  • the solid fuel powder material distributed in the upper part of the sintering raw material layer loaded on the pallet is ignited, and after ignition, the solid fuel powder material is burned while sucking air downward.
  • the raw material for sintering is sintered with combustion heat to form a sintered cake.
  • hematite contained in iron ore reacts with limestone powder raw material and CaO contained in iron ore to produce calcium ferrite melt (hereinafter referred to as CF melt), which CF melt is used for sintering. Contributes to the combination of raw materials.
  • This sintered cake is crushed and sized to become a sintered ore having a predetermined particle size.
  • the sintered ore that does not satisfy the predetermined particle size is returned to ore and reused as a sintering raw material.
  • Patent Document 1 describes that (a) iron ore, (b) SiO 2 -containing material, and (c) limestone powder material are loaded from the inlet of the drum mixer, except for the solid fuel powder material.
  • a technique for adding a solid fuel-based powder raw material at a position where the residence time until the granulated particles (hereinafter referred to as pseudo particles) reach the outlet is 10 to 120 seconds is disclosed.
  • the solid fuel-based powder raw material can be attached to the surface of the pseudo particles obtained by granulating the iron ore, the SiO 2 -containing raw material, and the limestone-based powder raw material.
  • the solid fuel-based powder raw material is not taken into the pseudo-particles and burns in the surface of the pseudo-particles, so that the flammability is greatly improved, and the solid fuel-based powder raw materials such as powder coke and anthracite Therefore, it is possible to increase the pseudo particle size by granulating except this.
  • Patent Document 2 the above-mentioned (a) iron ore and (b) SiO 2 -containing raw material are charged and granulated from the inlet of the drum mixer, and the pseudo particles after granulation are discharged.
  • a technique is disclosed in which (c) a limestone powder raw material and (d) a solid fuel powder raw material are added to pseudo particles at a position where the residence time until reaching the outlet is 10 to 90 seconds. .
  • the limestone powder raw material and the solid fuel powder raw material are attached to the surface of the pseudo particles made of iron ore and the SiO 2 -containing raw material. Therefore, when such a raw material for sintering is sintered, a CF melt is selectively generated on the surface of the raw material for sintering, and the formation of calcium silicate is suppressed.
  • the coke cooling method at the time of coke production includes a wet type and a dry type (referred to as CDQ). Due to the characteristics of the apparatus, a considerable amount of fine coke is generated when any apparatus is used. The fine coke has been piled up for a long time. However, it is desirable to use such fine coke from the viewpoint of effective use of resources.
  • Patent Document 3 proposes a technique of using finely ground coke generated in the coke production process as a fuel for producing sintered ore, which is an iron source charged in a blast furnace. That is, in order to produce a sintered ore, powdery coke as a heat source is mixed with powdered iron ore, limestone, etc., and agglomerated by the combustion heat of the coke.
  • the above-mentioned patent document 3 kneads fine powder raw materials such as converter dust, sintered dust and water in fine powder coke recovered by CDQ at an appropriate ratio, and is a fuel for manufacturing sintered ore (hereinafter referred to as a sintering fuel). ) As a preferred particle size. As a result, it was expected that fine coke in a dry state could be reused while suppressing generation of dust.
  • the sintering fuel produced as described above has low strength as individual particles, it collapses when mixed with other sintering raw materials with a drum mixer, and the sintering raw materials are sintered.
  • a packed bed is formed on the machine pallet, fine coke is mixed and unevenly distributed in the packed bed. Therefore, when the so-called “sintering operation” is performed by igniting in this state, there is a problem that uneven burning occurs in the sintering machine and a preferable operation cannot be performed.
  • Patent Document 6 (a) iron ore and (b) SiO 2 -containing raw material are charged from a charging port of a drum mixer and granulated.
  • Disclosed is a technology that, when adding a limestone powder raw material and (d) a solid fuel powder raw material, the amount of coke powder mixed in (a) iron ore and (b) SiO 2 containing raw material is kept to 1.5 mass% or less. Has been. In this way, conventionally, finely ground coke is stopped using or the amount of mixing is stopped to 1.5 mass% or less, and the remaining portion is reused by being mixed into raw coal as waste. It was.
  • Japanese Patent No. 3794332 Japanese Patent No. 3755452 JP 61-291926 A JP 2000-169915 A JP 2000-96154 A Japanese Patent No. 39951825
  • the present invention is a further improvement of the technologies disclosed in Patent Documents 1 and 2 listed above.
  • fine coke that has been regarded as waste because of uneven burning in a sintering machine, It can be reused as a solid fuel powder material (condensation material) during production.
  • the present invention is a treatment for attaching a solid fuel-based powder raw material (hereinafter referred to as an exterior treatment) to the surface of the pseudo particle that is a granulated product composed of iron ore, a SiO 2 -containing raw material, and a limestone powder raw material,
  • an exterior treatment a solid fuel-based powder raw material
  • the exterior treatment of attaching limestone powder raw material and solid fuel powder raw material to the surface of pseudo particles of iron ore and SiO 2 -containing raw material it is contrary to the conventional knowledge by effectively utilizing fine powder coke etc. Furthermore, it aims at providing the advantageous manufacturing method of the raw material for sintering which can improve productivity.
  • the present inventors have intensively studied a technology for improving productivity when performing so-called exterior treatment in which a solid fuel powder raw material, or a limestone powder raw material and a solid fuel powder raw material are attached to the surface of a pseudo particle. went.
  • high carbon dust such as fine coke generated in CDQ, etc.
  • solid fuel-based powder raw materials represented by conventional powder coke and anthracite at an appropriate ratio so as to adhere to pseudo particles.
  • the gist configuration of the present invention is as follows. (1) Prepare a sintering raw material consisting of iron ore, SiO 2 containing raw material, limestone powder raw material and solid fuel powder raw material, From the drum mixer inlet, iron ore, SiO 2 containing raw material and limestone powder raw material are charged and granulated to form pseudo particles, A solid fuel-based powder raw material is added to the pseudo particles, and the solid fuel-based powder raw material is attached to the surface of the pseudo particles while being discharged from the drum mixer, The solid fuel-based powder raw material contains 5 to 40 mass% of high carbon dust. A method for producing a raw material for sintering.
  • the high carbon dust is at least one selected from the group consisting of CDQ dust collection powder, dust collection powder during iron powder production, and dust collection powder in a storage tank, and the C concentration is 50 mass% or more.
  • (11) The method for producing a sintering raw material according to (1), wherein the solid fuel-based powder raw material has an average particle diameter of 250 ⁇ m to 2.5 mm.
  • a method for producing a ligation raw material is adjusted.
  • the pseudo particle diameter can be kept large, and since it is not embedded in the pseudo particle, the combustibility is improved. Furthermore, since it is used in combination with ordinary solid fuel, scattering of high carbon dust, which is fine powder, is suppressed and handling becomes easy. In addition, since the exterior is filled with high carbon dust in the solid fuel voids during the exterior, the strength of the exterior also increases, and as a result, the strength of the pseudo particles is improved, and when the sintering machine is supplied Powder generation is also reduced. In addition, according to the present invention, since the pseudo particle diameter can be increased, the exterior time on the surface of the pseudo particle can be shortened, and the state of being built can be avoided.
  • the solid fuel powder material using high carbon dust and the limestone powder material can be attached to the surface of the pseudo particles, the generation of CF is promoted and the generation of calcium silicate having a low strength is suppressed.
  • the C concentration is 50 mass% or more, it can be used as a coagulating material for sintering. Even if the C concentration is less than 50 mass%, other fine powder having a C concentration of 50 mass% or more can be used. If it is mixed and the C concentration is adjusted to 50 mass% or more, it can be used.
  • FIG. 1 Comparison of the granulated strength after granulation and the sintered strength after sintering between the pseudo particles according to the present invention in which powder coke combined with high carbon dust is used and the conventional pseudo particles with high carbon dust inside FIG. It is a figure which compares and shows the burning speed of the pseudo
  • FIG. 8A is an image view of a cross section of a pseudo particle in which high carbon dust is embedded according to a conventional method
  • FIG. 8B is an enlarged view of the surface layer portion
  • FIG. 9A is an image view of a cross-section of a pseudo particle covering powdered coke and powdered limestone combined with high carbon dust according to the present invention
  • FIG. 9B is an enlarged view of the surface layer portion.
  • 1 and 2 schematically show an example of a sintering raw material manufacturing apparatus suitable for use in manufacturing a sintering raw material by applying the present invention.
  • reference numeral 1 is a drum mixer
  • 2 is iron ore
  • 3 is a SiO 2 -containing raw material
  • 4 is a limestone powder raw material
  • 5 is a solid fuel powder raw material
  • 6 is a sintering raw material.
  • FIG. 1 shows that iron ore 2, SiO 2 -containing raw material 3 and limestone powder raw material 4 are charged into the drum mixer 1 from the inlet and the solid fuel powder raw material 5 is discharged to the drum mixer outlet. It is a case where it adds.
  • FIG. 2 shows that the iron ore 2 and the SiO 2 -containing raw material 3 are charged into the drum mixer 1 from the charging port, and the limestone powder raw material 4 and the solid fuel-based powder raw material 5 are reached to the discharge port of the drum mixer. It is a case where it adds.
  • the manufacturing process of the raw material for sintering shown in FIGS. 1 and 2 will be described more specifically.
  • the iron ore 2, the SiO 2 -containing raw material 3 and the limestone-based powder raw material 4 are charged into the drum mixer 1 from the inlet and granulated.
  • the pseudo particles made of the iron ore 2 and the SiO 2 -containing raw material 3 granulated in the drum mixer 1 move to the discharge port.
  • the solid fuel-based powder raw material 5 is added at a position set in the middle of the downstream side where the residence time (that is, the exterior time) until the pseudo particles reach the discharge port is in the range of 10 to 50 seconds.
  • the position of the front end of a belt conveyor or a screw conveyor arranged so as to be able to advance and retreat in the longitudinal direction in the drum mixer 1 from the downstream discharge port is adjusted and the solid fuel powder raw material 5 is added.
  • the exterior time can be maintained within a predetermined range.
  • An appropriate amount of water may be added as necessary.
  • the solid fuel powder raw material 5 is uniformly coated on the surface of the pseudo particles until the pseudo particles reach the discharge port.
  • the iron ore 2 and the SiO 2 -containing raw material 3 are charged into the drum mixer 1 from the charging port and granulated.
  • the pseudo particles made of the iron ore 2 and the SiO 2 -containing raw material 3 granulated in the drum mixer 1 move to the discharge port.
  • the limestone powder raw material 4 and the limestone-based powder raw material 4 are located at the downstream side where the residence time (that is, the exterior time) until the pseudo particles reach the outlet is in the range of 10 to 50 seconds.
  • Solid fuel system powder raw material 5 is added. As a result, the limestone powder raw material 4 and the solid fuel powder raw material 5 are uniformly coated on the surface of the pseudo particles until the pseudo particles reach the discharge port.
  • the average particle diameter of the solid fuel-based powder raw material 5 used for the exterior treatment is about 250 ⁇ m to 2.0 mm.
  • the average particle size of the solid fuel-based powder raw material that has been conventionally used is relatively large, and it is not always possible to form a strong outer shell layer of the solid fuel-based powder raw material. The speed was not sufficiently satisfactory.
  • FIG. 3 shows the results of examining the relationship between the particle size of the powder coke and the combustion zone moving speed (hereinafter simply referred to as the combustion speed).
  • the combustion speed As shown in the figure, the smaller the particle size of the powder coke, the greater the specific surface area of the powder coke and the higher the ambient temperature, so the combustion rate increases. Therefore, an improvement in the combustion rate can be expected by using such ultrafine powder and highly reactive carbon material (high carbon dust) in an appropriate ratio.
  • the results of examining the influence on the burning rate and the maximum temperature reached in the layer of the pseudo particles coated with the powdered coke combined with the high carbon dust are shown. Shown in relation to rate.
  • the high carbon dust fine powder having a sieve size of 50 ⁇ m was used. Further, the total coke amount in the pseudo particles was fixed at 5 mass%.
  • the mixing ratio of high carbon dust is 0.25 mass% or more, that is, the mixing ratio of high carbon dust out of all carbon (solid fuel powder raw material).
  • the ratio is 5 mass% or more, the combustion rate increases, and the maximum reachable temperature in the layer increases accordingly.
  • the blending ratio of the high carbon dust exceeds 2 mass% (combination ratio with respect to the powder coke: 40 mass%), the highest temperature reached in the layer starts to decrease.
  • the blending ratio (combination ratio) of the high carbon dust in the solid fuel powder raw material is limited to a range of 5 to 40 mass%. This is because, in the solid fuel-based powder raw material, if the blending ratio of the high carbon dust is less than 5 mass%, it cannot be said that the improvement of the combustibility and the granulation strength is sufficient. This is because the flammability decreases and the combustibility deteriorates.
  • FIG. 5 shows the results of examining the granulated strength of the pseudo particles when the powder coke combined with the high carbon dust is used and the sintering strength when the sintering is performed thereafter.
  • FIG. 5 also shows the results of examining the granulation strength and the sintering strength of the pseudo particles when high carbon dust is housed inside the pseudo particles.
  • the granulation strength and sintering strength were estimated based on the following estimation formulas (Equation 1 and Equation 2).
  • strength of pseudo particles (N), ⁇ : degree of liquid fullness ( ⁇ ), S: powder surface area (m 2 ), ⁇ : porosity of pseudo particles ( ⁇ ), ⁇ : surface of water Tension (N / m), ⁇ : contact angle with water (°), d: pseudo particle size (m)
  • ⁇ t tensile strength (MPa)
  • ⁇ 0 substrate strength (MPa)
  • P porosity ( ⁇ )
  • c constant ( ⁇ )
  • the granulation strength of the pseudo particles was remarkably improved.
  • the reason for this is considered to be that wettability is greatly improved by covering the hydrophobic carbonaceous material.
  • the sintering strength of the pseudo particles is also greatly improved. This reason is considered to be caused by a decrease in the porosity. That is, according to the present invention, when an appropriate amount of high carbon dust is used in combination, fine high carbon dust penetrates into the voids of ordinary powder coke, and as a result, generation of voids (destructive origin) generated after carbon firing is suppressed. This is thought to be due to this.
  • FIG. 6 the results of examining the burning rate of the pseudo particles coated with the powdered coke and powdered limestone combined with the high carbon dust and the pseudo particles equipped with the high carbon dust according to the conventional method are shown. It shows by the relationship with the compounding rate of the high carbon dust (ultra-fine carbonaceous material) in pseudo particles.
  • the total amount of carbon (solid fuel powder raw material) in the pseudo particles was constant at 5 mass%.
  • the combustion rate rather decreased as the blending ratio of high carbon dust increased.
  • the combustion rate is greatly increased as the blending ratio of the high carbon dust is increased.
  • the blending ratio of high carbon dust in the pseudo particles is 0.25 mass% or more, that is, the blending ratio of high carbon dust in the total carbon (solid fuel powder raw material).
  • the blending ratio of high carbon dust out of the total carbon (solid fuel powder raw material) exceeds 40 mass%, the width of the combustion melting zone is expanded, resulting in an adverse effect of increasing the pressure loss in the sintered layer. Therefore, in the present invention, the blending ratio (combination ratio) of high carbon dust in the solid fuel powder material is limited to a range of 5 to 40 mass%.
  • the high carbon dust preferably has a size of 50 ⁇ m or less and a C concentration of 50 mass% or more. This is because when the size of the high carbon dust exceeds 50 ⁇ m, the powder coke that is externally packed does not close-pack and the coverage on the particle surface tends to decrease. In addition, the suitable minimum of the magnitude
  • the size of the high carbon dust is defined as a circle-equivalent diameter when the high carbon dust is spherical, and as a sieve diameter when the high carbon dust is non-spherical.
  • the high carbon dust is at least one selected from the group consisting of CDQ dust collection powder, dust collection powder during iron powder production, and dust collection powder in a storage tank, and the C concentration is adjusted to 50 mass% or more. It is preferable that Table 1 shows examples of components of CDQ dust collection powder, dust collection powder during iron powder production, and dust collection powder in the storage tank.
  • FIG. 7 shows the results of examining the suitable external granulation time of the agenda in which high carbon dust according to the present invention is used together with the pseudo coke and powder limestone externally coated with the high carbon dust according to the conventional method, Shown in relation to sintering productivity.
  • the preferred exterior granulation time of the conventional pseudo particles was around 60 seconds, whereas the preferred exterior granulation time of the pseudo particles according to the present invention was about 20 to 40 seconds. The time was reduced to about 1/2.
  • the productivity of the drum mixer can be improved by reducing the exterior time in the exterior processing.
  • a CF melt can be selectively generated on the surface of the raw material for sintering, and a sintered ore can be produced efficiently.
  • FIG. 8 (a) and FIG. 9 (a) show pseudo particles in which ultra fine powder and highly reactive carbonaceous material (high carbon dust) are provided according to the conventional method, and ultra fine powder and highly reactive carbonaceous material (high carbon dust) according to the present invention.
  • the cross-sectional images of pseudo particles are shown in comparison. 8B and 9B are enlarged views of the surface layer portion of each cross section.
  • FIG. 8B and FIG. 9B in the pseudo particles according to the conventional method, high carbon dust is scattered inside, whereas in the pseudo particles according to the present invention, the high particle is high.
  • Carbon dust exists in the form of entering the gaps of the powder coke in the outer layer of the particles.
  • the granulation strength and sintering strength as described above can be improved, the combustion rate can be increased, and the outer granulation time can be shortened.
  • a marked improvement in productivity can be achieved.
  • a transport device for example, a belt conveyor, a screw conveyor
  • Etc. a transport device
  • the use of a belt conveyor increases the frequency of failure of a motor or a roller that supplies driving force to the belt. Therefore, it is possible to feed the limestone powder raw material 4 and the solid fuel powder raw material 5 from the outside of the discharge port without inserting a belt conveyor into the drum mixer 1 and increasing the conveying speed.
  • the screw conveyor does not need to be equipped with a large number of rollers and has a simple structure. Therefore, even if it is inserted into the drum mixer 1, it can hardly be broken and can be operated stably. If the screw conveyor is inserted into the drum mixer 1, the tip position can be adjusted and the limestone powder raw material 4 and the solid fuel powder raw material 5 can be added to predetermined positions. In that case, since the impact is relaxed (only the impact of natural fall), the collapse of the pseudo particles can be prevented. Further, the collapse of the limestone powder raw material 4 and the solid fuel powder raw material 5 can be prevented, and the particle diameter adjusted in advance can be maintained. Accordingly, it is preferable to use a screw conveyor as the conveying means.
  • the average particle diameter of the limestone powder raw material 4 used for the exterior treatment is preferably 250 ⁇ m to 5.0 mm, and the average particle diameter of the solid fuel powder raw material 5 is preferably 250 ⁇ m to 2.5 mm.
  • the average particle diameter of the limestone powder raw material 4 exceeds 5.0 mm and the average particle diameter of the solid fuel powder raw material 5 exceeds 2.5 mm, the coarse particles of the limestone powder raw material 4 and the solid fuel powder raw material 5 Therefore, it becomes difficult to uniformly coat the surface of the pseudo particle in a short time.
  • the average particle size is less than 250 ⁇ m, the fine particles of the limestone powder raw material 4 and the solid fuel powder raw material 5 increase and intrude through gaps that inevitably exist in the pseudo particles, and also enter the limestone powder.
  • the raw material 4 and the solid fuel-based powder raw material 5 are mixed into the sintering raw material.
  • the blending ratios of the solid fuel powder raw material and the limestone powder raw material with respect to the entire sintering raw material are respectively 3.0 to 6.0 mass% for the solid fuel powder raw material and 6.0 to 12% for the limestone powder raw material. It is preferable to set it to about 0 mass%. More preferably, they are in the range of solid fuel powder raw material: 3.5 to 5.0 mass%, limestone powder raw material: 6.5 to 10.0 mass%.
  • the exterior time is preferably about 10 to 50 seconds. More preferably, it is in the range of 20 to 40 seconds.
  • Example 1 As shown in FIG. 2, the iron ore 2 and the SiO 2 -containing raw material 3 were charged into the drum mixer 1 from the charging port and granulated. In addition, as the SiO 2 -containing raw material 3, silica stone or nickel slag was used. In the drum mixer 1, the iron ore 2 and the SiO 2 -containing raw material 3 are granulated into pseudo particles, and the limestone is at a position where the residence time until the pseudo particles reach the discharge port of the drum mixer 1 is 40 seconds.
  • Comparative Example 1 the iron ore 2 and the SiO 2 -containing raw material 3 are charged into the drum mixer 1 from the charging port and granulated, and the pseudo particles reach the discharge port of the drum mixer 1 as in the invention example.
  • the limestone powder raw material 4 has a particle size of 1.9 mm: limestone: 10 mass% and the solid fuel powder raw material 5 has a particle size of 1.9 mm of powder coke: 5 mass% did. Therefore, the exterior time is 80 seconds.
  • Comparative Example 2 a raw material for sintering was manufactured under the same conditions as Comparative Example 1 except that the exterior time was 40 seconds.
  • Sintering raw materials for the inventive examples and comparative examples 1 and 2 were sintered. As a result, a sintered ore having sufficient strength was obtained with the sintering raw materials of the inventive example and comparative example 1. This indicates that the CF melt was generated on the surface of the raw material for sintering.
  • the sinter produced from the raw material for sintering of Comparative Example 2 was inferior in strength to the sintered ore using the raw material for sintering of Comparative Example 1. This indicates that the limestone powder raw material 4 and the solid fuel powder raw material 5 could not be uniformly coated on the surface of the pseudo particles, so that the generation of CF melt was uneven.
  • the exterior time can be shortened, and further, the sintered raw material having sufficient strength can be obtained by sintering the raw material for sintering.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

Provided is a method for producing a starting material for sintering, wherein it is possible to improve productivity compared to conventional methods by effectively using high-carbon dust during the process in which the surfaces of preliminary particles are being covered with a solid-fuel-based powder starting material. When the surfaces of the preliminary particles are being covered with a solid-fuel-based powder starting material, a solid-fuel-based powder starting material containing 5 to 40 mass% of high-carbon dust is used as the solid-fuel-based powder starting material.

Description

焼結用原料の製造方法Method for manufacturing raw materials for sintering
 本発明は、下方吸引式のドワイトロイド式焼結機を用いて焼結鉱を製造する際に使用する焼結用原料の製造方法に関するものである。 The present invention relates to a method for producing a raw material for sintering used when producing a sintered ore using a downward suction type dweroid type sintering machine.
 高炉に装入される焼結鉱は、一般的に次のような処理を経て製造される。
 まず、以下の(a)~(d)に大別される素材を、ドラムミキサーに装入し、さらに適量の水分を添加して混合し、造粒して、粒状の焼結用原料を製造する。
(a)鉄鉱石(鉱石、返鉱)
(b)珪石,蛇紋岩,ニッケルスラグ等からなるSiO含有原料
(c)石灰石等のCaOを含有する石灰石系粉原料
(d)粉コークス,無煙炭等の熱源となる固体燃料系粉原料
The sintered ore charged into the blast furnace is generally manufactured through the following treatment.
First, raw materials roughly divided into the following (a) to (d) are charged into a drum mixer, mixed with an appropriate amount of water, and granulated to produce a granular sintering raw material. To do.
(A) Iron ore (ore ore, return ore)
(B) SiO 2 -containing raw material comprising silica, serpentine, nickel slag, etc. (c) Limestone-based powder raw material containing CaO such as limestone (d) Solid fuel-based powder raw material serving as a heat source for powder coke, anthracite, etc.
 上記した(a)~(d)の素材を混合・造粒した造粒物粒子からなる焼結用原料は、ドワイトロイド式焼結機のパレット上に所定の厚さ(通常、500~700mm)になるように層状に積載される。次いで、パレット上に積載された焼結用原料層の上層部に分布する固体燃料系粉原料に着火し、着火後は下方に向けて空気を吸引しながら固体燃料系粉原料を燃焼させ、その燃焼熱によって焼結用原料を焼結させて焼結ケーキとする。その際、鉄鉱石に含まれるヘマタイトと石灰石系粉原料や鉄鉱石に含まれるCaOとが反応してカルシウムフェライト融液(以下、CF融液という)を生成し、そのCF融液が焼結用原料の結合に寄与する。この焼結ケーキは、破砕・整粒され、所定の粒径を有する焼結鉱となる。一方、所定の粒径に満たない焼結鉱は返鉱となり、焼結原料として再利用に供される。 The sintering raw material composed of the granulated particles obtained by mixing and granulating the materials (a) to (d) described above has a predetermined thickness (usually 500 to 700 mm) on the pallet of a dwy-toroid type sintering machine. Are stacked in layers. Next, the solid fuel powder material distributed in the upper part of the sintering raw material layer loaded on the pallet is ignited, and after ignition, the solid fuel powder material is burned while sucking air downward. The raw material for sintering is sintered with combustion heat to form a sintered cake. At that time, hematite contained in iron ore reacts with limestone powder raw material and CaO contained in iron ore to produce calcium ferrite melt (hereinafter referred to as CF melt), which CF melt is used for sintering. Contributes to the combination of raw materials. This sintered cake is crushed and sized to become a sintered ore having a predetermined particle size. On the other hand, the sintered ore that does not satisfy the predetermined particle size is returned to ore and reused as a sintering raw material.
 焼結用原料の焼結に際しては、下記の二つの課題がある。
i)焼結用原料の表面に固体燃料系粉原料を効果的に付着させてやれば、固体燃料系粉原料の燃焼性の改善が図れる。
ii)CF融液を焼結用原料の表面に選択的に生成させることによって、CF融液の機能を向上させることができれば、焼結鉱を効率良く製造できるだけでなく、焼結用原料に配合する各種素材の使用量を削減することができる。
 上記の課題を解決するために、固体燃料系粉原料やCF融液を焼結用原料の表面に選択的に生成させる技術が検討されている。
When sintering the raw material for sintering, there are the following two problems.
i) If the solid fuel powder raw material is effectively adhered to the surface of the sintering raw material, the combustibility of the solid fuel powder raw material can be improved.
ii) If the function of the CF melt can be improved by selectively generating the CF melt on the surface of the raw material for sintering, not only can the sintered ore be produced efficiently, but also blended into the raw material for sintering The amount of various materials used can be reduced.
In order to solve the above-mentioned problems, a technique for selectively generating a solid fuel-based powder raw material or a CF melt on the surface of a sintering raw material has been studied.
 たとえば、前者に関しては、特許文献1に、固体燃料系粉原料を除き、(a)鉄鉱石と(b)SiO含有原料と(c)石灰石系粉原料とを、ドラムミキサーの装入口から装入して造粒し、その造粒物粒子(以下、擬似粒子という)が排出口に到達するまでの滞留時間が10~120秒となる位置で固体燃料系粉原料を添加する技術が開示されている。
 この技術によって得られる焼結用原料では、鉄鉱石とSiO含有原料、石灰石系粉原料とが造粒された擬似粒子の表面に、固体燃料系粉原料を付着させることができる。これにより、固体燃料系粉原料が擬似粒子内に取り込まれず、擬似粒子表層で燃焼するため、燃焼性が大きく改善される他、固体燃料系粉原料である粉コークス、無煙炭などは、難造粒性であるため、これを除いて造粒することにより擬似粒子径を大きくすることが可能となった。
For example, regarding the former, Patent Document 1 describes that (a) iron ore, (b) SiO 2 -containing material, and (c) limestone powder material are loaded from the inlet of the drum mixer, except for the solid fuel powder material. A technique for adding a solid fuel-based powder raw material at a position where the residence time until the granulated particles (hereinafter referred to as pseudo particles) reach the outlet is 10 to 120 seconds is disclosed. ing.
In the raw material for sintering obtained by this technique, the solid fuel-based powder raw material can be attached to the surface of the pseudo particles obtained by granulating the iron ore, the SiO 2 -containing raw material, and the limestone-based powder raw material. As a result, the solid fuel-based powder raw material is not taken into the pseudo-particles and burns in the surface of the pseudo-particles, so that the flammability is greatly improved, and the solid fuel-based powder raw materials such as powder coke and anthracite Therefore, it is possible to increase the pseudo particle size by granulating except this.
 また、後者に関しては、特許文献2に、上記した(a)鉄鉱石と(b)SiO含有原料を、ドラムミキサーの装入口から装入して造粒し、造粒後の擬似粒子が排出口に到達するまでの滞留時間が10~90秒となる位置で、擬似粒子に対して、(c)石灰石系粉原料と(d)固体燃料系粉原料とを添加する技術が開示されている。
 この技術によって得られる焼結用原料では、鉄鉱石とSiO含有原料からなる擬似粒子の表面に、石灰石系粉原料と固体燃料系粉原料が付着している。したがって、かような焼結用原料を焼結すると、CF融液が焼結用原料の表面に選択的に生成され、カルシウムシリケートの生成が抑止される。
Regarding the latter, in Patent Document 2, the above-mentioned (a) iron ore and (b) SiO 2 -containing raw material are charged and granulated from the inlet of the drum mixer, and the pseudo particles after granulation are discharged. A technique is disclosed in which (c) a limestone powder raw material and (d) a solid fuel powder raw material are added to pseudo particles at a position where the residence time until reaching the outlet is 10 to 90 seconds. .
In the sintering raw material obtained by this technique, the limestone powder raw material and the solid fuel powder raw material are attached to the surface of the pseudo particles made of iron ore and the SiO 2 -containing raw material. Therefore, when such a raw material for sintering is sintered, a CF melt is selectively generated on the surface of the raw material for sintering, and the formation of calcium silicate is suppressed.
 しかしながら、このような技術であっても、近年のCO削減の要請から、固体燃料系粉原料である粉コークスを削減した場合には、粉コークス被覆量が減少して十分な効果が得られないことがあった。 However, even with such a technology, due to the recent demand for CO 2 reduction, when the amount of powder coke, which is a solid fuel-based powder raw material, is reduced, the amount of powder coke coating is reduced and a sufficient effect is obtained. There was nothing.
 焼結用原料の焼結に際しては、固体燃料系粉原料として、粉コークスや無煙炭などが利用される。
 一方、コークス製造時のコークス冷却方式には、湿式と、乾式(CDQと称している)とがあり、装置の特性上、いずれの装置を用いた場合でもかなりの量の微粉コークスが発生するが、かかる微粉コークスは久しく野積みされていた。
 しかしながら、資源の有効利用の観点からは、かかる微粉コークスを利用することが望ましい。
In sintering the raw material for sintering, powdered coke, anthracite, or the like is used as a solid fuel-based powder raw material.
On the other hand, the coke cooling method at the time of coke production includes a wet type and a dry type (referred to as CDQ). Due to the characteristics of the apparatus, a considerable amount of fine coke is generated when any apparatus is used. The fine coke has been piled up for a long time.
However, it is desirable to use such fine coke from the viewpoint of effective use of resources.
 そのため、例えば特許文献3において、コークス製造過程で発生する微粉コークスを、高炉装入の鉄源である焼結鉱の製造用燃料として利用する技術が提案された。つまり、焼結鉱を製造するには、粉状の鉄鉱石、石灰石等に熱源として粉状のコークスを混合し、該コークスの燃焼熱で塊成化するからである。
 上記特許文献3は、CDQで回収される微粉コークスに転炉ダスト、焼結ダスト等の微粉原料及び水を適切な割合で混練して、焼結鉱製造用燃料(以下、焼結用燃料という)として好ましい粒径にする技術である。これにより、乾燥状態にある微粉コークスを、粉塵発生を抑えつつ再利用できるようになると期待された。
For this reason, for example, Patent Document 3 proposes a technique of using finely ground coke generated in the coke production process as a fuel for producing sintered ore, which is an iron source charged in a blast furnace. That is, in order to produce a sintered ore, powdery coke as a heat source is mixed with powdered iron ore, limestone, etc., and agglomerated by the combustion heat of the coke.
The above-mentioned patent document 3 kneads fine powder raw materials such as converter dust, sintered dust and water in fine powder coke recovered by CDQ at an appropriate ratio, and is a fuel for manufacturing sintered ore (hereinafter referred to as a sintering fuel). ) As a preferred particle size. As a result, it was expected that fine coke in a dry state could be reused while suppressing generation of dust.
 しかしながら、上記のようにして製造された焼結用燃料は、個々の粒子としての強度が弱いため、他の焼結原料と一緒にドラムミキサーで混合する時に崩壊し、かかる焼結原料を焼結機のパレット上で充填層にすると、充填層中に微粉コークスが混在・偏在するようになる。そのため、この状態で点火して所謂「焼結操業」を行なうと、焼結機でムラ焼けが発生し、好ましい操業ができないという問題があった。 However, since the sintering fuel produced as described above has low strength as individual particles, it collapses when mixed with other sintering raw materials with a drum mixer, and the sintering raw materials are sintered. When a packed bed is formed on the machine pallet, fine coke is mixed and unevenly distributed in the packed bed. Therefore, when the so-called “sintering operation” is performed by igniting in this state, there is a problem that uneven burning occurs in the sintering machine and a preferable operation cannot be performed.
 また、CDQ発生の微粉コークスは、乾燥状態のためハンドリング時に粉塵が発生し、一方湿式消火装置で発生する微粉コークスは、湿潤状態であるため、乾燥工程を加えて再利用する必要があり、両者ともに、再利用のためには、ハンドリングや乾燥にコストが嵩む不利があった。
 そのため、湿式方式、乾式方式を問わず、コークス冷却において発生する微粉コークスは、特許文献4や特許文献5に記載のように、焼結用原料を構成する鉄鉱石などの積み山に散布して、焼結原料中に均一に分散させ、焼結機でムラ焼けが発生しないようにして使用することが行なわれていた。
In addition, since the fine powder coke generated by CDQ is in a dry state, dust is generated during handling. On the other hand, fine powder coke generated in a wet fire extinguisher is in a wet state, so it is necessary to reuse it after adding a drying process. In both cases, the cost of handling and drying is high for reuse.
Therefore, regardless of the wet method or the dry method, fine coke generated in coke cooling is sprayed on piles of iron ore that constitute the raw material for sintering, as described in Patent Document 4 and Patent Document 5. It has been practiced to disperse uniformly in the sintering raw material and use the sintering machine so that uneven burning does not occur.
 その他、特許文献6には、(a)鉄鉱石と(b)SiO含有原料とを、ドラムミキサーの装入口から装入して造粒し、造粒された擬似粒子に対し、(c)石灰石系粉原料と(d)固体燃料系粉原料を添加する際、(a)鉄鉱石と(b)SiO含有原料中へのコークス粉末の混入量を1.5mass%以下に止める技術が開示されている。
 このように、従来、微粉コークスは、その使用を中止するか、混入量を1.5mass%以下に止め、残余の部分は廃棄物利用として原料炭中へ混入させて再利用するなどが行なわれていた。
In addition, in Patent Document 6, (a) iron ore and (b) SiO 2 -containing raw material are charged from a charging port of a drum mixer and granulated. Disclosed is a technology that, when adding a limestone powder raw material and (d) a solid fuel powder raw material, the amount of coke powder mixed in (a) iron ore and (b) SiO 2 containing raw material is kept to 1.5 mass% or less. Has been.
In this way, conventionally, finely ground coke is stopped using or the amount of mixing is stopped to 1.5 mass% or less, and the remaining portion is reused by being mixed into raw coal as waste. It was.
特許第3794332号公報Japanese Patent No. 3794332 特許第3755452号公報Japanese Patent No. 3755452 特開昭61−291926号公報JP 61-291926 A 特開2000−169915号公報JP 2000-169915 A 特開2000−96154号公報JP 2000-96154 A 特許第3951825号公報Japanese Patent No. 39951825
 本発明は、上掲した特許文献1,2に開示された技術をさらに改良したもので、従来は焼結機でムラ焼けが発生するため廃棄物とされていた微粉コークスなどについて、焼結鉱製造時の固体燃料系粉原料(凝結材)としての再利用を可能ならしめたものである。 The present invention is a further improvement of the technologies disclosed in Patent Documents 1 and 2 listed above. Conventionally, fine coke that has been regarded as waste because of uneven burning in a sintering machine, It can be reused as a solid fuel powder material (condensation material) during production.
 すなわち、本発明は、鉄鉱石とSiO含有原料と石灰石系粉原料からなる造粒物である擬似粒子の表面に、固体燃料系粉原料を付着させる処理(以下、外装処理という)、あるいは、鉄鉱石とSiO含有原料との擬似粒子の表面に、石灰石系粉原料と固体燃料系粉原料を付着させる外装処理を行なうに当たって、微粉コークスなどを有効活用することにより、従来の知見とは逆に、生産性を向上させることができる焼結用原料の有利な製造方法を提供することを目的とする。 That is, the present invention is a treatment for attaching a solid fuel-based powder raw material (hereinafter referred to as an exterior treatment) to the surface of the pseudo particle that is a granulated product composed of iron ore, a SiO 2 -containing raw material, and a limestone powder raw material, In the exterior treatment of attaching limestone powder raw material and solid fuel powder raw material to the surface of pseudo particles of iron ore and SiO 2 -containing raw material, it is contrary to the conventional knowledge by effectively utilizing fine powder coke etc. Furthermore, it aims at providing the advantageous manufacturing method of the raw material for sintering which can improve productivity.
 さて、本発明者らは、固体燃料系粉原料、あるいは石灰石系粉原料と固体燃料系粉原料を擬似粒子表面に付着させるいわゆる外装処理を行なう際の生産性を向上させる技術について、鋭意検討を行った。
 その結果、CDQなどで発生する微粉コークスなどの高カーボンダストを、適正な割合で、従来の粉コークス、無煙炭などに代表される固体燃料系粉原料と共に併用して、擬似粒子に付着させるようにすれば、かえって生産性が向上するだけでなく、燃焼性および造粒強度が大幅に向上することを新たに見出した。
 なお、本発明によれば、上記したCDQなどで発生する微粉コークスのほか、C濃度が50mass%以上の微粉も使用可能であることが究明されたので、これらを総称して高カーボンダストと称する。
 本発明は、これらの知見に基づいてなされたものである。
Now, the present inventors have intensively studied a technology for improving productivity when performing so-called exterior treatment in which a solid fuel powder raw material, or a limestone powder raw material and a solid fuel powder raw material are attached to the surface of a pseudo particle. went.
As a result, high carbon dust such as fine coke generated in CDQ, etc., is used in combination with solid fuel-based powder raw materials represented by conventional powder coke and anthracite at an appropriate ratio so as to adhere to pseudo particles. In this way, it was newly found that not only productivity is improved but also combustibility and granulation strength are greatly improved.
In addition, according to the present invention, in addition to the fine powder coke generated in the above-described CDQ and the like, it was investigated that fine powder having a C concentration of 50 mass% or more can be used, and these are collectively referred to as high carbon dust. .
The present invention has been made based on these findings.
 すなわち、本発明の要旨構成は次のとおりである。
(1)鉄鉱石、SiO含有原料、石灰石系粉原料および固体燃料系粉原料からなる焼結原料を準備し、
 ドラムミキサーの装入口から鉄鉱石、SiO含有原料および石灰石系粉原料を装入し、造粒することにより擬似粒子を形成し、
 該擬似粒子に対して、固体燃料系粉原料を添加し、該ドラムミキサーから排出される間に該固体燃料系粉原料を該擬似粒子の表面に付着させ、
 該固体燃料系粉原料は、高カーボンダストを5~40mass%含有する、
 焼結用原料の製造方法。
That is, the gist configuration of the present invention is as follows.
(1) Prepare a sintering raw material consisting of iron ore, SiO 2 containing raw material, limestone powder raw material and solid fuel powder raw material,
From the drum mixer inlet, iron ore, SiO 2 containing raw material and limestone powder raw material are charged and granulated to form pseudo particles,
A solid fuel-based powder raw material is added to the pseudo particles, and the solid fuel-based powder raw material is attached to the surface of the pseudo particles while being discharged from the drum mixer,
The solid fuel-based powder raw material contains 5 to 40 mass% of high carbon dust.
A method for producing a raw material for sintering.
(2)鉄鉱石、SiO含有原料、石灰石系粉原料および固体燃料系粉原料からなる焼結原料を準備し、
 ドラムミキサーの装入口から鉄鉱石およびSiO含有原料を装入し、造粒することにより擬似粒子を形成し、
 該擬似粒子に対して、固体燃料系粉原料および石灰石系粉原料を添加し、該ドラムミキサーの排出口に至る間に該固体燃料系粉原料と該石灰石系粉原料を該擬似粒子の表面に付着させ、
 該固体燃料系粉原料は、高カーボンダストを5~40mass%含有する、
 焼結用原料の製造方法。
(2) preparing a sintering raw material comprising iron ore, SiO 2 -containing raw material, limestone powder raw material and solid fuel powder raw material,
The iron ore and the SiO 2 -containing raw material are charged from the drum mixer inlet and granulated to form pseudo particles,
A solid fuel powder raw material and a limestone powder raw material are added to the pseudo particles, and the solid fuel powder raw material and the limestone powder raw material are put on the surface of the pseudo particles while reaching the discharge port of the drum mixer. Attach
The solid fuel-based powder raw material contains 5 to 40 mass% of high carbon dust.
A method for producing a raw material for sintering.
(3)前記固体燃料系粉原料は、高カーボンダストを10~40mass%含有する(1)または(2)に記載の焼結用原料の製造方法。
(4)前記高カーボンダストは、50μm以下の大きさで、かつ、50mass%以上のC濃度を有する(1)または(2)に記載の焼結用原料の製造方法。
(3) The method for producing a sintering raw material according to (1) or (2), wherein the solid fuel-based powder raw material contains 10 to 40 mass% of high carbon dust.
(4) The method for manufacturing a raw material for sintering according to (1) or (2), wherein the high carbon dust has a size of 50 μm or less and a C concentration of 50 mass% or more.
(5)前記擬似粒子は、高カーボンダストを含有しないことを特徴とする(1)または(2)に記載の焼結用原料の製造方法。 (5) The method for producing a sintering raw material according to (1) or (2), wherein the pseudo particles do not contain high carbon dust.
(6)前記固体燃料系粉原料の添加が、その添加から前記ドラムミキサーからの排出に至る滞留時間が10~50秒となるように行われる(1)に記載の焼結用原料の製造方法。
(7)前記滞留時間が20~40秒である(6)に記載の焼結用原料の製造方法。
(8)前記固体燃料系粉原料および石灰石系粉原料の添加が、その添加から前記ドラムミキサーからの排出に至る滞留時間が10~50秒となるように行われる(2)に記載の焼結用原料の製造方法。
(9)前記滞留時間が20~40秒である(8)に記載の焼結用原料の製造方法。
(6) The method for producing a raw material for sintering according to (1), wherein the solid fuel-based powder raw material is added such that a residence time from the addition to discharge from the drum mixer is 10 to 50 seconds. .
(7) The method for producing a sintering raw material according to (6), wherein the residence time is 20 to 40 seconds.
(8) The sintering according to (2), wherein the solid fuel-based powder raw material and the limestone-based powder raw material are added so that a residence time from the addition to the discharge from the drum mixer is 10 to 50 seconds. For manufacturing raw materials.
(9) The method for producing a raw material for sintering according to (8), wherein the residence time is 20 to 40 seconds.
(10)前記高カーボンダストが、CDQ集塵粉、鉄粉製造時の集塵粉および貯骸槽の集塵粉からなるグループから選択された少なくとも一つであり、C濃度を50mass%以上に調整されたものである(1)または(2)に記載の焼結用原料の製造方法。
(11)前記固体燃料系粉原料が、250μm~2.5mmの平均粒径を有する(1)に記載の焼結用原料の製造方法。
(12)前記固体燃料系粉原料が、250μm~2.5mmの平均粒径を有し、前記石灰石系粉原料が、250μm~5.0mmの平均粒径を有する、(2)に記載の焼結用原料の製造方法。
(10) The high carbon dust is at least one selected from the group consisting of CDQ dust collection powder, dust collection powder during iron powder production, and dust collection powder in a storage tank, and the C concentration is 50 mass% or more. The method for producing a raw material for sintering according to (1) or (2), which is adjusted.
(11) The method for producing a sintering raw material according to (1), wherein the solid fuel-based powder raw material has an average particle diameter of 250 μm to 2.5 mm.
(12) The firing according to (2), wherein the solid fuel-based powder raw material has an average particle diameter of 250 μm to 2.5 mm, and the limestone powder raw material has an average particle diameter of 250 μm to 5.0 mm. A method for producing a ligation raw material.
 本発明によれば、高カーボンダストは、擬似粒子表面に外装されるため、擬似粒子径を大きく保つことができ、また、擬似粒子内に内装されないため、燃焼性が向上する。さらに、通常の固体燃料と併用することから、微粉である高カーボンダストの飛散などが抑制されハンドリングが容易となる。また、外装時、固体燃料空隙部分に高カーボンダストが充填される形で外装されるため、外装部分の強度も上昇し、その結果、擬似粒子の強度が向上し、また焼結機供給時の粉発生も軽減される。
 また、本発明によれば、擬似粒子径を大きくできるため、擬似粒子表面への外装時間も短くでき、内装化される状態を避けることができる。
 さらに、擬似粒子表面に、高カーボンダストを併用する固体燃料系粉原料と前記石灰石系粉原料を付着させることできるため、CFの生成が促進され、強度の弱いカルシウムシリケートの生成が抑止される。
 加えて、燃料としては、C濃度が50mass%以上であれば焼結用凝結材として使用可能であり、またC濃度が50mass%未満であっても、他のC濃度が50mass%以上の微粉と混合してC濃度を50mass%以上に調整してやれば、使用が可能となる。
According to the present invention, since the high carbon dust is packaged on the surface of the pseudo particle, the pseudo particle diameter can be kept large, and since it is not embedded in the pseudo particle, the combustibility is improved. Furthermore, since it is used in combination with ordinary solid fuel, scattering of high carbon dust, which is fine powder, is suppressed and handling becomes easy. In addition, since the exterior is filled with high carbon dust in the solid fuel voids during the exterior, the strength of the exterior also increases, and as a result, the strength of the pseudo particles is improved, and when the sintering machine is supplied Powder generation is also reduced.
In addition, according to the present invention, since the pseudo particle diameter can be increased, the exterior time on the surface of the pseudo particle can be shortened, and the state of being built can be avoided.
Furthermore, since the solid fuel powder material using high carbon dust and the limestone powder material can be attached to the surface of the pseudo particles, the generation of CF is promoted and the generation of calcium silicate having a low strength is suppressed.
In addition, as a fuel, if the C concentration is 50 mass% or more, it can be used as a coagulating material for sintering. Even if the C concentration is less than 50 mass%, other fine powder having a C concentration of 50 mass% or more can be used. If it is mixed and the C concentration is adjusted to 50 mass% or more, it can be used.
本発明を適用して焼結用原料を製造する際に使用して好適な焼結用原料の製造装置の例を示す模式図である。It is a schematic diagram which shows the example of the manufacturing apparatus of a suitable raw material for sintering used when applying this invention, and manufacturing the raw material for sintering. 本発明を適用して焼結用原料を製造する際に使用して好適な焼結用原料の製造装置の別例を示す模式図である。It is a schematic diagram which shows another example of the manufacturing apparatus of a suitable raw material for sintering used when manufacturing a raw material for sintering by applying this invention. 粉コークスの粒径と燃焼速度との関係を示す図である。It is a figure which shows the relationship between the particle size of a powder coke, and a combustion rate. 高カーボンダストを併用した粉コークスを外装した本発明に従う擬似粒子における高カーボンダストの配合率と、燃焼速度および層内最高到達温度との関係を示す図である。It is a figure which shows the relationship between the compounding rate of the high carbon dust in the pseudo | simulation particle | grains according to this invention which coat | covered the powder coke which used high carbon dust together, a combustion rate, and the highest ultimate temperature in a layer. 高カーボンダストを併用した粉コークスを外装した本発明に従う擬似粒子と、高カーボンダストを内装した従来の擬似粒子とで、造粒後の造粒強度および焼結後の焼結強度を比較して示す図である。Comparison of the granulated strength after granulation and the sintered strength after sintering between the pseudo particles according to the present invention in which powder coke combined with high carbon dust is used and the conventional pseudo particles with high carbon dust inside FIG. 高カーボンダストを併用した粉コークスおよび粉石灰石を外装した本発明に従う擬似粒子および高カーボンダストを内装した従来の擬似粒子の燃焼速度を比較して示す図である。It is a figure which compares and shows the burning speed of the pseudo | simulation particle | grains according to this invention which coat | covered the powder coke and powder limestone which used high carbon dust together, and the conventional pseudo particle | grains which comprised high carbon dust. 高カーボンダストを併用した粉コークスおよび粉石灰石を外装した本発明に従う擬似粒子および高カーボンダストを内装した従来の擬似粒子の好適外装造粒時間および焼結生産性を比較して示す図である。It is a figure which compares and compares the suitable exterior granulation time and sintering productivity of the pseudo | simulation particle | grains according to this invention which coat | covered the powder coke and powder limestone which used high carbon dust together, and the conventional pseudo particle | grains which comprised high carbon dust. 図8(a)は従来法に従い高カーボンダストを内装した擬似粒子の断面のイメージ図であり、図8(b)はその表層部拡大図である。FIG. 8A is an image view of a cross section of a pseudo particle in which high carbon dust is embedded according to a conventional method, and FIG. 8B is an enlarged view of the surface layer portion. 図9(a)は本発明に従う高カーボンダストを併用した粉コークスおよび粉石灰石を外装した擬似粒子の断面のイメージ図であり、図9(b)はその表層部拡大図である。FIG. 9A is an image view of a cross-section of a pseudo particle covering powdered coke and powdered limestone combined with high carbon dust according to the present invention, and FIG. 9B is an enlarged view of the surface layer portion.
 以下、本発明を具体的に説明する。
 図1,2に、本発明を適用して焼結用原料を製造する際に使用して好適な焼結用原料の製造装置の例を模式で示す。
 図1,2において、符号1はドラムミキサー、2は鉄鉱石、3はSiO含有原料、4は石灰石系粉原料、5は固体燃料系粉原料、そして6が焼結用原料である。
The present invention will be specifically described below.
1 and 2 schematically show an example of a sintering raw material manufacturing apparatus suitable for use in manufacturing a sintering raw material by applying the present invention.
1 and 2, reference numeral 1 is a drum mixer, 2 is iron ore, 3 is a SiO 2 -containing raw material, 4 is a limestone powder raw material, 5 is a solid fuel powder raw material, and 6 is a sintering raw material.
 図1は、鉄鉱石2、SiO含有原料3および石灰石系粉原料4を装入口からドラムミキサー1内に装入し、固体燃料系粉原料5をドラムミキサーの排出口に至るまでの間に添加する場合である。
 図2は、鉄鉱石2およびSiO含有原料3を装入口からドラムミキサー1内に装入し、石灰石系粉原料4と固体燃料系粉原料5をドラムミキサーの排出口に至るまでの間に添加する場合である。
FIG. 1 shows that iron ore 2, SiO 2 -containing raw material 3 and limestone powder raw material 4 are charged into the drum mixer 1 from the inlet and the solid fuel powder raw material 5 is discharged to the drum mixer outlet. It is a case where it adds.
FIG. 2 shows that the iron ore 2 and the SiO 2 -containing raw material 3 are charged into the drum mixer 1 from the charging port, and the limestone powder raw material 4 and the solid fuel-based powder raw material 5 are reached to the discharge port of the drum mixer. It is a case where it adds.
 以下、図1,2に示した焼結用原料の製造工程を、より具体的に説明する。
 図1の場合には、鉄鉱石2、SiO含有原料3および石灰石系粉原料4を装入口からドラムミキサー1内に装入して造粒を行なう。ドラムミキサー1内で造粒された鉄鉱石2とSiO含有原料3からなる擬似粒子は、排出口へ移動していく。
 そして、擬似粒子が排出口へ到達するまでの滞留時間(すなわち外装時間)が10~50秒の範囲となる下流側途中に設定した箇所で、固体燃料系粉原料5を添加する。
 その具体的な方法としては、たとえば下流側の排出口からドラムミキサー1内の長手方向に進退可能に配置したベルトコンベアあるいはスクリューコンベア等の先端位置を調整して固体燃料系粉原料5を添加することによって、外装時間を所定の範囲に維持することができる。なお、必要に応じて適量の水分を添加しても良い。その結果、擬似粒子が排出口に到達するまでの間に、擬似粒子の表面に固体燃料系粉原料5が均一に被覆される。
Hereinafter, the manufacturing process of the raw material for sintering shown in FIGS. 1 and 2 will be described more specifically.
In the case of FIG. 1, the iron ore 2, the SiO 2 -containing raw material 3 and the limestone-based powder raw material 4 are charged into the drum mixer 1 from the inlet and granulated. The pseudo particles made of the iron ore 2 and the SiO 2 -containing raw material 3 granulated in the drum mixer 1 move to the discharge port.
Then, the solid fuel-based powder raw material 5 is added at a position set in the middle of the downstream side where the residence time (that is, the exterior time) until the pseudo particles reach the discharge port is in the range of 10 to 50 seconds.
As a specific method, for example, the position of the front end of a belt conveyor or a screw conveyor arranged so as to be able to advance and retreat in the longitudinal direction in the drum mixer 1 from the downstream discharge port is adjusted and the solid fuel powder raw material 5 is added. Thus, the exterior time can be maintained within a predetermined range. An appropriate amount of water may be added as necessary. As a result, the solid fuel powder raw material 5 is uniformly coated on the surface of the pseudo particles until the pseudo particles reach the discharge port.
 図2の場合は、鉄鉱石2およびSiO含有原料3を装入口からドラムミキサー1内に装入して造粒を行なう。ドラムミキサー1内で造粒された鉄鉱石2とSiO含有原料3からなる擬似粒子は、排出口へ移動していく。
 そして、図1の場合と同様、擬似粒子が排出口へ到達するまでの滞留時間(すなわち外装時間)が10~50秒の範囲となる下流側途中に設定した箇所で、石灰石系粉原料4と固体燃料系粉原料5を添加する。その結果、擬似粒子が排出口に到達するまでの間に、擬似粒子の表面に石灰石系粉原料4と固体燃料系粉原料5が均一に被覆される。
In the case of FIG. 2, the iron ore 2 and the SiO 2 -containing raw material 3 are charged into the drum mixer 1 from the charging port and granulated. The pseudo particles made of the iron ore 2 and the SiO 2 -containing raw material 3 granulated in the drum mixer 1 move to the discharge port.
As in the case of FIG. 1, the limestone powder raw material 4 and the limestone-based powder raw material 4 are located at the downstream side where the residence time (that is, the exterior time) until the pseudo particles reach the outlet is in the range of 10 to 50 seconds. Solid fuel system powder raw material 5 is added. As a result, the limestone powder raw material 4 and the solid fuel powder raw material 5 are uniformly coated on the surface of the pseudo particles until the pseudo particles reach the discharge port.
 ところで、従来、外装処理に使用する固体燃料系粉原料5の平均粒径は、250μm~2.0mm程度であった。このように、従来使用されてきた固体燃料系粉原料の平均粒径は比較的大きかったこともあって、必ずしも強固な固体燃料系粉原料の外殻層を形成することができず、また燃焼速度も十分に満足のいく速度は得られなかった。 By the way, conventionally, the average particle diameter of the solid fuel-based powder raw material 5 used for the exterior treatment is about 250 μm to 2.0 mm. In this way, the average particle size of the solid fuel-based powder raw material that has been conventionally used is relatively large, and it is not always possible to form a strong outer shell layer of the solid fuel-based powder raw material. The speed was not sufficiently satisfactory.
 そこで、発明者らは、この問題を解消すべく種々検討を重ねた結果、従来は微細すぎるとして、その使用を見合わせていた高カーボンダストを、適正な割合で併用すると、燃焼性および造粒強度が大幅に向上し、その結果、生産性も格段に向上することが判明したのである。 Therefore, the inventors have conducted various studies to solve this problem, and as a result, if high carbon dust that has been forgotten to be used in the past is too fine, combined use at an appropriate ratio, combustibility and granulation strength. As a result, it has been found that productivity is greatly improved.
 図3に、粉コークスの粒径と燃焼帯移動速度(以下、単に燃焼速度という)との関係について調べた結果を示す。
 同図に示したとおり、粉コークスの粒径が小さくなればなるほど、粉コークスの比表面積は増大し、また雰囲気温度も高温になるため、燃焼速度は上昇する。
 従って、かような超微粉・高反応性炭材(高カーボンダスト)を適正な割合で併用することにより、燃焼速度の向上が期待できるわけである。
FIG. 3 shows the results of examining the relationship between the particle size of the powder coke and the combustion zone moving speed (hereinafter simply referred to as the combustion speed).
As shown in the figure, the smaller the particle size of the powder coke, the greater the specific surface area of the powder coke and the higher the ambient temperature, so the combustion rate increases.
Therefore, an improvement in the combustion rate can be expected by using such ultrafine powder and highly reactive carbon material (high carbon dust) in an appropriate ratio.
 次に、図4に、本発明に従い、高カーボンダストを併用した粉コークスを外装した擬似粒子の燃焼速度および層内最高到達温度に及ぼす影響について調べた結果を、擬似粒子における高カーボンダストの配合率との関係で示す。なお、高カーボンダストとしては篩下50μmの微粉を用いた。また、擬似粒子における全コークス量は5mass%の一定とした。
 同図に示したとおり、高カーボンダストを外装した本発明に従う擬似粒子では、高カーボンダストの配合率が0.25mass%以上、すなわち全カーボン(固体燃料系粉原料)のうち高カーボンダストの配合割合が5mass%以上になると燃焼速度は上昇し、それに伴って層内最高到達温度も上昇する。しかしながら、高カーボンダストの配合割合が2mass%(粉コークスに対する併用割合:40mass%)を超えると、層内最高到達温度は低下し始める。
Next, in FIG. 4, according to the present invention, the results of examining the influence on the burning rate and the maximum temperature reached in the layer of the pseudo particles coated with the powdered coke combined with the high carbon dust are shown. Shown in relation to rate. As the high carbon dust, fine powder having a sieve size of 50 μm was used. Further, the total coke amount in the pseudo particles was fixed at 5 mass%.
As shown in the figure, in the pseudo particles according to the present invention with high carbon dust sheathed, the mixing ratio of high carbon dust is 0.25 mass% or more, that is, the mixing ratio of high carbon dust out of all carbon (solid fuel powder raw material). When the ratio is 5 mass% or more, the combustion rate increases, and the maximum reachable temperature in the layer increases accordingly. However, when the blending ratio of the high carbon dust exceeds 2 mass% (combination ratio with respect to the powder coke: 40 mass%), the highest temperature reached in the layer starts to decrease.
 従って、本発明では、固体燃料系粉原料における高カーボンダストの配合割合(併用割合)は5~40mass%の範囲に限定した。というのは、固体燃料系粉原料において、高カーボンダストの配合率が5mass%に満たないと燃焼性や造粒強度の改善が十分とはいえず、一方40mass%を超えると層内最高到達温度が低下し、燃焼性が劣化するからである。 Therefore, in the present invention, the blending ratio (combination ratio) of the high carbon dust in the solid fuel powder raw material is limited to a range of 5 to 40 mass%. This is because, in the solid fuel-based powder raw material, if the blending ratio of the high carbon dust is less than 5 mass%, it cannot be said that the improvement of the combustibility and the granulation strength is sufficient. This is because the flammability decreases and the combustibility deteriorates.
 次に、図5に、本発明に従い、高カーボンダストを併用した粉コークスを外装した場合の擬似粒子の造粒強度と、その後に焼結を行った場合の焼結強度について調べた結果を示す。
 なお、図5には、比較のため、高カーボンダストを擬似粒子の内部に内装した場合の擬似粒子の造粒強度および焼結強度について調べた結果も併せて示す。
 また、造粒強度および焼結強度はそれぞれ、以下に示す推定式(数1、数2)に基づいて推定した。
Next, according to the present invention, FIG. 5 shows the results of examining the granulated strength of the pseudo particles when the powder coke combined with the high carbon dust is used and the sintering strength when the sintering is performed thereafter. .
For comparison, FIG. 5 also shows the results of examining the granulation strength and the sintering strength of the pseudo particles when high carbon dust is housed inside the pseudo particles.
The granulation strength and sintering strength were estimated based on the following estimation formulas (Equation 1 and Equation 2).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-I000002
 ここで、σ:擬似粒子の強度(N)、ψ:液体の充満度(−)、S:粉体の表面積(m)、ε:擬似粒子の空隙率(−)、γ:水の表面張力(N/m)、θ:水との接触角(°)、d:擬似粒子径(m)
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-I000002
Where σ: strength of pseudo particles (N), ψ: degree of liquid fullness (−), S: powder surface area (m 2 ), ε: porosity of pseudo particles (−), γ: surface of water Tension (N / m), θ: contact angle with water (°), d: pseudo particle size (m)
Figure JPOXMLDOC01-appb-M000003
 ここで、σ:引張強度(MPa)、σ:基質強度(MPa)、P:空隙率(−)、c:定数(−)
Figure JPOXMLDOC01-appb-M000003
Here, σ t : tensile strength (MPa), σ 0 : substrate strength (MPa), P: porosity (−), c: constant (−)
 同図に示したとおり、本発明に従い、高カーボンダストを外装した場合には、擬似粒子の造粒強度が格段に向上した。この理由は、疎水性の炭材が外装されることによって、濡れ性が大きく改善されたことによるものと考えられる。
 また、本発明に従った場合には、擬似粒子の焼結強度も格段に向上したが、この理由は、空隙率の低下に起因するものと考えられる。すなわち、本発明に従い、高カーボンダストを適量併用した場合には、通常の粉コークスの空隙に、微細な高カーボンダストが侵入し、その結果、カーボン焼成後に生じる空隙(破壊起点)の生成が抑制されたことによるものと考えられる。
As shown in the figure, when the high carbon dust was packaged according to the present invention, the granulation strength of the pseudo particles was remarkably improved. The reason for this is considered to be that wettability is greatly improved by covering the hydrophobic carbonaceous material.
In addition, when the present invention is followed, the sintering strength of the pseudo particles is also greatly improved. This reason is considered to be caused by a decrease in the porosity. That is, according to the present invention, when an appropriate amount of high carbon dust is used in combination, fine high carbon dust penetrates into the voids of ordinary powder coke, and as a result, generation of voids (destructive origin) generated after carbon firing is suppressed. This is thought to be due to this.
 そこで、次に、図6に、本発明に従い、高カーボンダストを併用した粉コークスおよび粉石灰石を外装した擬似粒子と、従来法に従い高カーボンダストを内装した擬似粒子の燃焼速度について調べた結果を、擬似粒子における高カーボンダスト(超微粉炭材)の配合率との関係で示す。なお、擬似粒子における全カーボン(固体燃料系粉原料)量は5mass%の一定とした。
 同図に示したとおり、高カーボンダストを内装した従来の擬似粒子では、高カーボンダストの配合率が高くなるに伴って燃焼速度はむしろ低下していった。
 これに対し、高カーボンダストを外装した本発明に従う擬似粒子の場合は、高カーボンダストの配合率が高くなるに従って燃焼速度は大きく上昇している。
Therefore, next, in FIG. 6, according to the present invention, the results of examining the burning rate of the pseudo particles coated with the powdered coke and powdered limestone combined with the high carbon dust and the pseudo particles equipped with the high carbon dust according to the conventional method are shown. It shows by the relationship with the compounding rate of the high carbon dust (ultra-fine carbonaceous material) in pseudo particles. The total amount of carbon (solid fuel powder raw material) in the pseudo particles was constant at 5 mass%.
As shown in the figure, in the conventional quasi-particles with high carbon dust, the combustion rate rather decreased as the blending ratio of high carbon dust increased.
On the other hand, in the case of the pseudo particles according to the present invention in which the high carbon dust is packaged, the combustion rate is greatly increased as the blending ratio of the high carbon dust is increased.
 図6の結果によれば、擬似粒子(全カーボン量:5mass%)における高カーボンダストの配合率が0.25mass%以上、すなわち全カーボン(固体燃料系粉原料)のうち高カーボンダストの配合割合が5mass%以上になると燃焼速度の向上が著しい。しかしながら、全カーボン(固体燃料系粉原料)のうち高カーボンダストの配合率が40mass%を超えると燃焼溶融帯の幅が拡大し、焼結層内における圧損が増加する弊害が生じる。
 そこで、本発明では、固体燃料系粉原料における高カーボンダストの配合割合(併用割合)は5~40mass%の範囲に限定した。
According to the results of FIG. 6, the blending ratio of high carbon dust in the pseudo particles (total carbon amount: 5 mass%) is 0.25 mass% or more, that is, the blending ratio of high carbon dust in the total carbon (solid fuel powder raw material). When it becomes 5 mass% or more, the improvement of a combustion rate is remarkable. However, when the blending ratio of high carbon dust out of the total carbon (solid fuel powder raw material) exceeds 40 mass%, the width of the combustion melting zone is expanded, resulting in an adverse effect of increasing the pressure loss in the sintered layer.
Therefore, in the present invention, the blending ratio (combination ratio) of high carbon dust in the solid fuel powder material is limited to a range of 5 to 40 mass%.
 また、本発明において、高カーボンダストは、大きさが50μm以下でかつ、C濃度が50mass%以上であることが好ましい。というのは、高カーボンダストの大きさが50μmを超えると、外装される粉コークスと最密充填せず、粒子表面での被覆性が低下する傾向があるからである。なお、高カーボンダストの大きさの好適下限は10μmである。
 一方、高カーボンダストC濃度が50mass%に満たないと、燃焼熱が小さく、さらに共存するスラグ成分・灰分により、粉コークスの燃焼性が阻害されるという不利が生じる。
 ここに、高カーボンダストの大きさとは、高カーボンダストが球状の場合には円相当径、一方非球形の場合には、篩い目径と定義する。
 前記高カーボンダストとしては、CDQ集塵粉、鉄粉製造時の集塵粉および貯骸槽の集塵粉からなるグループから選択された少なくとも一つであり、C濃度が50mass%以上に調整されたものであるのが好ましい。CDQ集塵粉、鉄粉製造時の集塵粉および貯骸槽の集塵粉の成分例を表1に示す。
Figure JPOXMLDOC01-appb-T000004
In the present invention, the high carbon dust preferably has a size of 50 μm or less and a C concentration of 50 mass% or more. This is because when the size of the high carbon dust exceeds 50 μm, the powder coke that is externally packed does not close-pack and the coverage on the particle surface tends to decrease. In addition, the suitable minimum of the magnitude | size of high carbon dust is 10 micrometers.
On the other hand, if the high carbon dust C concentration is less than 50 mass%, there is a disadvantage that the combustion heat is small and the coexistence of slag components and ash content inhibits the combustibility of the powder coke.
Here, the size of the high carbon dust is defined as a circle-equivalent diameter when the high carbon dust is spherical, and as a sieve diameter when the high carbon dust is non-spherical.
The high carbon dust is at least one selected from the group consisting of CDQ dust collection powder, dust collection powder during iron powder production, and dust collection powder in a storage tank, and the C concentration is adjusted to 50 mass% or more. It is preferable that Table 1 shows examples of components of CDQ dust collection powder, dust collection powder during iron powder production, and dust collection powder in the storage tank.
Figure JPOXMLDOC01-appb-T000004
 次に、図7に、本発明に従う高カーボンダストを併用した粉コークスおよび粉石灰石を外装した擬似粒子と、従来法に従い高カーボンダストを内装した議事の好適外装造粒時間について調べた結果を、焼結生産性との関係で示す。
 同図に示したとおり、従来の擬似粒子の好適外装造粒時間が60秒前後であったのに対し、本発明に従う擬似粒子の好適外装造粒時間は20~40秒程度と、外装造粒時間を約1/2まで短縮することができた。
 このようにして外装処理における外装時間を短縮することによって、ドラムミキサーの生産性を向上することができる。しかも、得られた焼結用原料を焼結すると、CF融液を焼結用原料の表面に選択的に生成させて、焼結鉱を効率良く製造することもできる。
Next, FIG. 7 shows the results of examining the suitable external granulation time of the agenda in which high carbon dust according to the present invention is used together with the pseudo coke and powder limestone externally coated with the high carbon dust according to the conventional method, Shown in relation to sintering productivity.
As shown in the figure, the preferred exterior granulation time of the conventional pseudo particles was around 60 seconds, whereas the preferred exterior granulation time of the pseudo particles according to the present invention was about 20 to 40 seconds. The time was reduced to about 1/2.
Thus, the productivity of the drum mixer can be improved by reducing the exterior time in the exterior processing. Moreover, when the obtained raw material for sintering is sintered, a CF melt can be selectively generated on the surface of the raw material for sintering, and a sintered ore can be produced efficiently.
 図8(a)および図9(a)に、従来法に従い超微粉・高反応性炭材(高カーボンダスト)を内装した擬似粒子および本発明に従い超微粉・高反応性炭材(高カーボンダスト)を併用した粉コークスおよび粉石灰石を外装した擬似粒子の断面のイメージを比較して示す。また、図8(b)および図9(b)は、各断面の表層部を拡大して示したものである。
 図8(b)と図9(b)を比較すれば明らかなように、従来法に従う擬似粒子では、高カーボンダストが内部に点在しているのに対し、本発明に従う擬似粒子では、高カーボンダストが粒子の外層で粉コークスの間隙に侵入する形で存在している。これにより、上述したような造粒強度および焼結強度の向上、燃焼速度の上昇、外装造粒時間の短縮化が図れ、その結果、生産性の格段の向上が達成されるのである。
FIG. 8 (a) and FIG. 9 (a) show pseudo particles in which ultra fine powder and highly reactive carbonaceous material (high carbon dust) are provided according to the conventional method, and ultra fine powder and highly reactive carbonaceous material (high carbon dust) according to the present invention. ) In combination with powder coke and powdered limestone, the cross-sectional images of pseudo particles are shown in comparison. 8B and 9B are enlarged views of the surface layer portion of each cross section.
As is clear from a comparison between FIG. 8B and FIG. 9B, in the pseudo particles according to the conventional method, high carbon dust is scattered inside, whereas in the pseudo particles according to the present invention, the high particle is high. Carbon dust exists in the form of entering the gaps of the powder coke in the outer layer of the particles. As a result, the granulation strength and sintering strength as described above can be improved, the combustion rate can be increased, and the outer granulation time can be shortened. As a result, a marked improvement in productivity can be achieved.
 なお、前掲図1,2に示したところにおいて、所定の外装時間を確保する位置に石灰石系粉原料4と固体燃料系粉原料5を搬送するためには、搬送装置(たとえばベルトコンベア,スクリューコンベア等)をドラムミキサー1内に挿入しなければならない。しかしながら、ドラムミキサー1内は多量の粉塵が浮遊しているので、ベルトコンベアを使用すると、ベルトに駆動力を供給するモーターやローラーの故障頻度が高まる。
 そこで、ベルトコンベアをドラムミキサー1内に挿入せず、搬送速度を増速して、排出口の外側から石灰石系粉原料4と固体燃料系粉原料5を投入することも可能である。この方法を採用すると、石灰石系粉原料4と固体燃料系粉原料5が擬似粒子に添加される際に、自然落下の衝撃のみならず搬送速度に起因して水平方向の衝撃が加わる。従って、擬似粒子が崩壊しやすくなり、擬似粒子の内部に石灰石系粉原料4と固体燃料系粉原料5が混入する。
1 and 2, in order to transport the limestone powder raw material 4 and the solid fuel powder raw material 5 to a position where a predetermined exterior time is secured, a transport device (for example, a belt conveyor, a screw conveyor) Etc.) must be inserted into the drum mixer 1. However, since a large amount of dust is floating in the drum mixer 1, the use of a belt conveyor increases the frequency of failure of a motor or a roller that supplies driving force to the belt.
Therefore, it is possible to feed the limestone powder raw material 4 and the solid fuel powder raw material 5 from the outside of the discharge port without inserting a belt conveyor into the drum mixer 1 and increasing the conveying speed. When this method is employed, when the limestone powder raw material 4 and the solid fuel powder raw material 5 are added to the pseudo particles, not only the impact of natural fall but also the horizontal impact is applied due to the conveying speed. Accordingly, the pseudo particles are likely to collapse, and the limestone powder raw material 4 and the solid fuel powder raw material 5 are mixed inside the pseudo particles.
 スクリューコンベアは、多数のローラーを設置する必要がなく、構造が単純であるため、ドラムミキサー1内に挿入しても故障し難く、安定して稼動できる。スクリューコンベアをドラムミキサー1内に挿入すれば、その先端位置を調整して所定の位置に石灰石系粉原料4、固体燃料系粉原料5を添加することが可能である。その場合は、衝撃が緩和(自然落下の衝撃のみ)されるので、擬似粒子の崩壊を防止できる。また、石灰石系粉原料4や固体燃料系粉原料5の崩壊も防止でき、予め調整した粒径を維持できる。従って、搬送手段としてはスクリューコンベアを使用するのが好ましい。 The screw conveyor does not need to be equipped with a large number of rollers and has a simple structure. Therefore, even if it is inserted into the drum mixer 1, it can hardly be broken and can be operated stably. If the screw conveyor is inserted into the drum mixer 1, the tip position can be adjusted and the limestone powder raw material 4 and the solid fuel powder raw material 5 can be added to predetermined positions. In that case, since the impact is relaxed (only the impact of natural fall), the collapse of the pseudo particles can be prevented. Further, the collapse of the limestone powder raw material 4 and the solid fuel powder raw material 5 can be prevented, and the particle diameter adjusted in advance can be maintained. Accordingly, it is preferable to use a screw conveyor as the conveying means.
 また、外装処理に使用する石灰石系粉原料4の平均粒径は250μm~5.0mm、固体燃料系粉原料5の平均粒径は250μm~2.5mmとするのが好ましい。石灰石系粉原料4の平均粒径が5.0mmを超え、固体燃料系粉原料5の平均粒径が2.5mmを超えると、石灰石系粉原料4や固体燃料系粉原料5の粗大な粒子が増加するので、擬似粒子の表面に、短時間で均一に被覆するのは困難になる。一方、平均粒径が250μm未満では、石灰石系粉原料4や固体燃料系粉原料5の微細な粒子が増加し、擬似粒子に不可避的に存在する隙間から侵入して、内部にも石灰石系粉原料4や固体燃料系粉原料5が混入した焼結用原料となる。そのような焼結用原料を焼結すると、CF融液を焼結用原料の表面に選択的に生成させる効果は得られない。
 なお、焼結用原料全体に対する固体燃料系粉原料および石灰石系粉原料の配合割合はそれぞれ、固体燃料系粉原料:3.0~6.0mass%、石灰石系粉原料:6.0~12.0mass%程度とすることが好ましい。さらに好ましくは固体燃料系粉原料:3.5~5.0mass%、石灰石系粉原料:6.5~10.0mass%の範囲である。
The average particle diameter of the limestone powder raw material 4 used for the exterior treatment is preferably 250 μm to 5.0 mm, and the average particle diameter of the solid fuel powder raw material 5 is preferably 250 μm to 2.5 mm. When the average particle diameter of the limestone powder raw material 4 exceeds 5.0 mm and the average particle diameter of the solid fuel powder raw material 5 exceeds 2.5 mm, the coarse particles of the limestone powder raw material 4 and the solid fuel powder raw material 5 Therefore, it becomes difficult to uniformly coat the surface of the pseudo particle in a short time. On the other hand, if the average particle size is less than 250 μm, the fine particles of the limestone powder raw material 4 and the solid fuel powder raw material 5 increase and intrude through gaps that inevitably exist in the pseudo particles, and also enter the limestone powder. The raw material 4 and the solid fuel-based powder raw material 5 are mixed into the sintering raw material. When such a sintering material is sintered, the effect of selectively generating the CF melt on the surface of the sintering material cannot be obtained.
The blending ratios of the solid fuel powder raw material and the limestone powder raw material with respect to the entire sintering raw material are respectively 3.0 to 6.0 mass% for the solid fuel powder raw material and 6.0 to 12% for the limestone powder raw material. It is preferable to set it to about 0 mass%. More preferably, they are in the range of solid fuel powder raw material: 3.5 to 5.0 mass%, limestone powder raw material: 6.5 to 10.0 mass%.
 さらに、外装時間が10秒未満では、擬似粒子の表面を均一に被覆できなくなる。外装時間が50秒を超えると、石灰石系粉原料4,固体燃料系粉原料5を添加した後で擬似粒子が崩壊して再度造粒されるので、石灰石系粉原料4,固体燃料系粉原料5が擬似粒子の内部に混入する。その結果、擬似粒子の表面を均一に被覆できなくなるばかりでなく、内部にも石灰石系粉原料4や固体燃料系粉原料5が混入した焼結用原料となる。従って、外装時間は10~50秒程度とするのが好ましい。より好ましくは20~40秒の範囲である。 Furthermore, if the exterior time is less than 10 seconds, the surface of the pseudo particles cannot be uniformly coated. If the exterior time exceeds 50 seconds, the limestone powder raw material 4, the solid fuel powder raw material 4, since the pseudo particles collapse and granulate again after adding the limestone powder raw material 4 and the solid fuel powder raw material 5. 5 is mixed inside the pseudo particle. As a result, not only the surface of the pseudo particles cannot be uniformly coated, but also the sintering raw material in which the limestone powder raw material 4 and the solid fuel powder raw material 5 are mixed. Therefore, the exterior time is preferably about 10 to 50 seconds. More preferably, it is in the range of 20 to 40 seconds.
実施例1
 図2に示したように、鉄鉱石2およびSiO含有原料3を装入口からドラムミキサー1に装入して造粒した。なお、SiO含有原料3としては、珪石あるいはニッケルスラグを使用した。ドラムミキサー1内で、鉄鉱石2とSiO含有原料3が造粒されて擬似粒子となり、その擬似粒子がドラムミキサー1の排出口に到達するまでの滞留時間が40秒となる位置で、石灰石系粉原料4として平均粒径:0.9mmの石灰石:10mass%と、固体燃料系粉原料5として平均粒径:0.9mmの粉コークス:4mass%、平均粒径:50μmの高カーボンダスト:1mass%(全コークスに対する併用割合:20%)とを添加した。また、具体的な添加方法は、排出口からドラムミキサー1内の長手方向に進退可能に配置したスクリューコンベアの先端位置を調整して、擬似粒子が排出口に到達するまでの滞留時間が40秒となる位置に石灰石系粉原料4,固体燃料系粉原料5を添加した。したがって外装時間は40秒である。
 これを発明例とする。
Example 1
As shown in FIG. 2, the iron ore 2 and the SiO 2 -containing raw material 3 were charged into the drum mixer 1 from the charging port and granulated. In addition, as the SiO 2 -containing raw material 3, silica stone or nickel slag was used. In the drum mixer 1, the iron ore 2 and the SiO 2 -containing raw material 3 are granulated into pseudo particles, and the limestone is at a position where the residence time until the pseudo particles reach the discharge port of the drum mixer 1 is 40 seconds. Limestone with an average particle diameter of 0.9 mm: 10 mass% as the system powder raw material 4 and high coke dust with an average particle diameter of 0.9 mm as the solid fuel system powder raw material 5: 4 mass% and an average particle diameter of 50 μm: 1 mass% (combination ratio to all coke: 20%) was added. Moreover, the specific addition method adjusts the front-end | tip position of the screw conveyor arrange | positioned so that it can advance / retreat to the longitudinal direction in the drum mixer 1 from a discharge port, and the residence time until a pseudo particle reaches a discharge port is 40 seconds. The limestone powder raw material 4 and the solid fuel powder raw material 5 were added to the position. Therefore, the exterior time is 40 seconds.
This is an invention example.
 一方、比較例1として、発明例と同様、鉄鉱石2およびSiO含有原料3を装入口からドラムミキサー1に装入して造粒し、擬似粒子がドラムミキサー1の排出口に到達するまでの滞留時間が80秒となる位置で、石灰石系粉原料4として粒径:1.9mmの石灰石:10mass%および固体燃料系粉原料5として粒径:1.9mmの粉コークス:5mass%を添加した。したがって外装時間は80秒である。 On the other hand, as Comparative Example 1, the iron ore 2 and the SiO 2 -containing raw material 3 are charged into the drum mixer 1 from the charging port and granulated, and the pseudo particles reach the discharge port of the drum mixer 1 as in the invention example. In the position where the residence time of the limestone becomes 80 seconds, the limestone powder raw material 4 has a particle size of 1.9 mm: limestone: 10 mass% and the solid fuel powder raw material 5 has a particle size of 1.9 mm of powder coke: 5 mass% did. Therefore, the exterior time is 80 seconds.
 また、比較例2として、外装時間を40秒とする他は、比較例1と同じ条件で焼結用原料を製造した。 Further, as Comparative Example 2, a raw material for sintering was manufactured under the same conditions as Comparative Example 1 except that the exterior time was 40 seconds.
 発明例および比較例1,2の焼結用原料を焼結したところ、発明例と比較例1の焼結用原料では、十分な強度を有する焼結鉱が得られた。これは、CF融液が焼結用原料の表面に生成されたことを示している。 Sintering raw materials for the inventive examples and comparative examples 1 and 2 were sintered. As a result, a sintered ore having sufficient strength was obtained with the sintering raw materials of the inventive example and comparative example 1. This indicates that the CF melt was generated on the surface of the raw material for sintering.
 しかしながら、比較例2の焼結用原料から製造した焼結鉱は、発明例や比較例1の焼結用原料を用いた焼結鉱に比べて、強度が劣っていた。これは、擬似粒子の表面に石灰石系粉原料4と固体燃料系粉原料5を均一に被覆できなかったために、CF融液の生成にムラが生じたことを示している。 However, the sinter produced from the raw material for sintering of Comparative Example 2 was inferior in strength to the sintered ore using the raw material for sintering of Comparative Example 1. This indicates that the limestone powder raw material 4 and the solid fuel powder raw material 5 could not be uniformly coated on the surface of the pseudo particles, so that the generation of CF melt was uneven.
 つまり、本発明によれば、焼結用原料を製造する際に外装時間を短縮でき、しかもその焼結用原料を焼結することによって、十分な強度を有する焼結鉱を得ることができる。 That is, according to the present invention, when the raw material for sintering is manufactured, the exterior time can be shortened, and further, the sintered raw material having sufficient strength can be obtained by sintering the raw material for sintering.
 1 ドラムミキサー
 2 鉄鉱石
 3 SiO含有原料
 4 石灰石系粉原料
 5 固体燃料系粉原料
 6 焼結用原料
1 a drum mixer 2 ore 3 SiO 2 containing feedstock 4 limestone based flour raw material 5 solid fuel based flour material 6 sintering raw material

Claims (12)

  1.  鉄鉱石、SiO含有原料、石灰石系粉原料および固体燃料系粉原料からなる焼結原料を準備し、
     ドラムミキサーの装入口から鉄鉱石、SiO含有原料および石灰石系粉原料を装入し、造粒することにより擬似粒子を形成し、
     該擬似粒子に対して、固体燃料系粉原料を添加し、該ドラムミキサーから排出される間に該固体燃料系粉原料を該擬似粒子の表面に付着させ、
     該固体燃料系粉原料は、高カーボンダストを5~40mass%含有する、
     焼結用原料の製造方法。
    Prepare a sintering raw material consisting of iron ore, SiO 2 containing raw material, limestone powder raw material and solid fuel powder raw material,
    From the drum mixer inlet, iron ore, SiO 2 containing raw material and limestone powder raw material are charged and granulated to form pseudo particles,
    A solid fuel-based powder raw material is added to the pseudo particles, and the solid fuel-based powder raw material is attached to the surface of the pseudo particles while being discharged from the drum mixer,
    The solid fuel-based powder raw material contains 5 to 40 mass% of high carbon dust.
    A method for producing a raw material for sintering.
  2.  鉄鉱石、SiO含有原料、石灰石系粉原料および固体燃料系粉原料からなる焼結原料を準備し、
     ドラムミキサーの装入口から鉄鉱石およびSiO含有原料を装入し、造粒することにより擬似粒子を形成し、
     該擬似粒子に対して、固体燃料系粉原料および石灰石系粉原料を添加し、該ドラムミキサーの排出口に至る間に該固体燃料系粉原料と該石灰石系粉原料を該擬似粒子の表面に付着させ、
     該固体燃料系粉原料は、高カーボンダストを5~40mass%含有する、
     焼結用原料の製造方法。
    Prepare a sintering raw material consisting of iron ore, SiO 2 containing raw material, limestone powder raw material and solid fuel powder raw material,
    The iron ore and the SiO 2 -containing raw material are charged from the drum mixer inlet and granulated to form pseudo particles,
    A solid fuel powder raw material and a limestone powder raw material are added to the pseudo particles, and the solid fuel powder raw material and the limestone powder raw material are put on the surface of the pseudo particles while reaching the discharge port of the drum mixer. Attach
    The solid fuel-based powder raw material contains 5 to 40 mass% of high carbon dust.
    A method for producing a raw material for sintering.
  3.  前記固体燃料系粉原料は、高カーボンダストを10~40mass%含有する請求項1または2に記載の焼結用原料の製造方法。 The method for producing a sintering raw material according to claim 1 or 2, wherein the solid fuel-based powder raw material contains 10 to 40 mass% of high carbon dust.
  4.  前記高カーボンダストは、50μm以下の大きさで、かつ、50mass%以上のC濃度を有する請求項1または2に記載の焼結用原料の製造方法。 The method for producing a raw material for sintering according to claim 1 or 2, wherein the high carbon dust has a size of 50 µm or less and a C concentration of 50 mass% or more.
  5.  前記擬似粒子は、高カーボンダストを含有しないことを特徴とする請求項1または2に記載の焼結用原料の製造方法。 The method for producing a raw material for sintering according to claim 1 or 2, wherein the pseudo particles do not contain high carbon dust.
  6.  前記固体燃料系粉原料の添加が、その添加から前記ドラムミキサーからの排出に至る滞留時間が10~50秒となるように行われる請求項1に記載の焼結用原料の製造方法。 2. The method for producing a sintering raw material according to claim 1, wherein the solid fuel-based powder raw material is added such that a residence time from the addition to discharge from the drum mixer is 10 to 50 seconds.
  7.  前記滞留時間が20~40秒である請求項6に記載の焼結用原料の製造方法。 The method for producing a raw material for sintering according to claim 6, wherein the residence time is 20 to 40 seconds.
  8.  前記固体燃料系粉原料および石灰石系粉原料の添加が、その添加から前記ドラムミキサーからの排出に至る滞留時間が10~50秒となるように行われる請求項2に記載の焼結用原料の製造方法。 The sintering raw material according to claim 2, wherein the addition of the solid fuel powder raw material and the limestone powder raw material is performed such that a residence time from the addition to the discharge from the drum mixer is 10 to 50 seconds. Production method.
  9.  前記滞留時間が20~40秒である請求項8に記載の焼結用原料の製造方法。 The method for producing a raw material for sintering according to claim 8, wherein the residence time is 20 to 40 seconds.
  10.  前記高カーボンダストが、CDQ集塵粉、鉄粉製造時の集塵粉および貯骸槽の集塵粉からなるグループから選択された少なくとも一つであり、C濃度を50mass%以上に調整されたものである請求項1または2に記載の焼結用原料の製造方法。 The high carbon dust is at least one selected from the group consisting of CDQ dust collection powder, dust collection powder during iron powder production, and dust collection powder in a storage tank, and the C concentration is adjusted to 50 mass% or more. The method for producing a raw material for sintering according to claim 1 or 2, wherein
  11.  前記固体燃料系粉原料が、250μm~2.5mmの平均粒径を有する請求項1に記載の焼結用原料の製造方法。 The method for producing a raw material for sintering according to claim 1, wherein the solid fuel-based powder raw material has an average particle diameter of 250 µm to 2.5 mm.
  12.  前記固体燃料系粉原料が、250μm~2.5mmの平均粒径を有し、
     前記石灰石系粉原料が、250μm~5.0mmの平均粒径を有する、
     請求項2に記載の焼結用原料の製造方法。
    The solid fuel-based powder raw material has an average particle diameter of 250 μm to 2.5 mm;
    The limestone powder raw material has an average particle diameter of 250 μm to 5.0 mm,
    The manufacturing method of the raw material for sintering of Claim 2.
PCT/JP2011/067722 2010-07-30 2011-07-27 Method for producing starting material for sintering WO2012015065A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201180037599.0A CN103052724B (en) 2010-07-30 2011-07-27 The manufacture method of raw material for sintering

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010172842 2010-07-30
JP2010-172842 2010-07-30
JP2011-154754 2011-07-13
JP2011154754 2011-07-13

Publications (1)

Publication Number Publication Date
WO2012015065A1 true WO2012015065A1 (en) 2012-02-02

Family

ID=45530260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/067722 WO2012015065A1 (en) 2010-07-30 2011-07-27 Method for producing starting material for sintering

Country Status (3)

Country Link
JP (1) JP5051317B1 (en)
CN (1) CN103052724B (en)
WO (1) WO2012015065A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111500855A (en) * 2020-04-15 2020-08-07 山西太钢不锈钢股份有限公司 Method for preparing sintered ore by using CDQ powder and sintered ore prepared by same
EP4286546A1 (en) * 2023-02-23 2023-12-06 Tata Steel IJmuiden B.V. Method for the manufacturing of sinter granules

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5871107B1 (en) * 2015-03-18 2016-03-01 Jfeスチール株式会社 Sintered ore continuous manufacturing method and sintered ore manufacturing equipment line
WO2018123750A1 (en) * 2016-12-28 2018-07-05 Jfeスチール株式会社 Sintered ore manufacturing method
BR112019021450B1 (en) * 2017-04-17 2023-03-21 Jfe Steel Corporation METHOD TO PRODUCE SINTERED ORE

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000192153A (en) * 1998-12-25 2000-07-11 Nkk Corp Sintered ore and production thereof, and operation of blast furnace
JP2000248309A (en) * 1999-03-02 2000-09-12 Nkk Corp Production of calcium-ferrite for refining molten iron
JP2004190045A (en) * 2002-12-06 2004-07-08 Jfe Steel Kk Method for manufacturing sintering material
JP2004204332A (en) * 2002-12-26 2004-07-22 Jfe Steel Kk Method for producing sintering material
JP2006063375A (en) * 2004-08-26 2006-03-09 Jfe Steel Kk Method for manufacturing raw material to be sintered
JP2008095177A (en) * 2006-09-11 2008-04-24 Nippon Steel Corp Method for producing carbon-containing non-calcined pellet for blast furnace
JP2009185356A (en) * 2008-02-07 2009-08-20 Kobe Steel Ltd Method for producing sintered ore

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3760639B2 (en) * 1998-09-22 2006-03-29 Jfeスチール株式会社 Method of blending ultrafine coke into sintering material
JP3794332B2 (en) * 2001-09-12 2006-07-05 Jfeスチール株式会社 Granulation method of sintering raw material
ATE484601T1 (en) * 2005-05-10 2010-10-15 Nippon Steel Corp METHOD FOR PRETREATING RAW MATERIALS FOR SINTING

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000192153A (en) * 1998-12-25 2000-07-11 Nkk Corp Sintered ore and production thereof, and operation of blast furnace
JP2000248309A (en) * 1999-03-02 2000-09-12 Nkk Corp Production of calcium-ferrite for refining molten iron
JP2004190045A (en) * 2002-12-06 2004-07-08 Jfe Steel Kk Method for manufacturing sintering material
JP2004204332A (en) * 2002-12-26 2004-07-22 Jfe Steel Kk Method for producing sintering material
JP2006063375A (en) * 2004-08-26 2006-03-09 Jfe Steel Kk Method for manufacturing raw material to be sintered
JP2008095177A (en) * 2006-09-11 2008-04-24 Nippon Steel Corp Method for producing carbon-containing non-calcined pellet for blast furnace
JP2009185356A (en) * 2008-02-07 2009-08-20 Kobe Steel Ltd Method for producing sintered ore

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111500855A (en) * 2020-04-15 2020-08-07 山西太钢不锈钢股份有限公司 Method for preparing sintered ore by using CDQ powder and sintered ore prepared by same
EP4286546A1 (en) * 2023-02-23 2023-12-06 Tata Steel IJmuiden B.V. Method for the manufacturing of sinter granules

Also Published As

Publication number Publication date
JP5051317B1 (en) 2012-10-17
CN103052724A (en) 2013-04-17
JP2013036049A (en) 2013-02-21
CN103052724B (en) 2016-01-06

Similar Documents

Publication Publication Date Title
WO2012015065A1 (en) Method for producing starting material for sintering
JP4840524B2 (en) Method for manufacturing raw materials for sintering
JP5375742B2 (en) Granulation method of sintering raw material
JP5146572B1 (en) Method for manufacturing raw materials for sintering
JP5146573B1 (en) Method for manufacturing raw materials for sintering
JP5821362B2 (en) Method for manufacturing raw materials for sintering
KR102085054B1 (en) Method for producing sintered ore
JP4261672B2 (en) Granulation method of sintering raw material
JP4087982B2 (en) Granulation method for raw materials for sintering with excellent flammability
JP2014201763A (en) Method for producing granulation raw material for sintering
JP6307997B2 (en) Pretreatment method of sintering raw materials
JP2004204332A (en) Method for producing sintering material
JP2006063375A (en) Method for manufacturing raw material to be sintered
JP5167641B2 (en) Method for producing sintered ore
WO2004055224A1 (en) Process for producing sintering feedstock and apparatus therefor
JP6885386B2 (en) Manufacturing method of carbon material interior particles and manufacturing method of carbon material interior sintered ore
JP4317316B2 (en) Pretreatment method of sintering raw materials
JP6809446B2 (en) Manufacturing method of carbon material interior particles and manufacturing method of carbon material interior sintered ore
JP2004197141A (en) Method and device for pseudo granulation of raw material for sintering
KR101677409B1 (en) Method and equipment for hot compacting iron recycling by-product emitted from coal-based iron making process
JP2000290734A (en) Pretreatment of sintering raw material
JP5983949B2 (en) Method for producing granulated raw material for sintering
JP2005248271A (en) Method for granulating sintering raw material
JP2020094248A (en) Manufacturing method of carbonaceous material inner package particle, and manufacturing method of carbonaceous material inner package sintered ore
JP2003113424A (en) Method and apparatus for granulating sintering raw material

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180037599.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11812651

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11812651

Country of ref document: EP

Kind code of ref document: A1