JP2000192153A - Sintered ore and production thereof, and operation of blast furnace - Google Patents

Sintered ore and production thereof, and operation of blast furnace

Info

Publication number
JP2000192153A
JP2000192153A JP10369818A JP36981898A JP2000192153A JP 2000192153 A JP2000192153 A JP 2000192153A JP 10369818 A JP10369818 A JP 10369818A JP 36981898 A JP36981898 A JP 36981898A JP 2000192153 A JP2000192153 A JP 2000192153A
Authority
JP
Japan
Prior art keywords
blast furnace
solid fuel
coke
sintered ore
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10369818A
Other languages
Japanese (ja)
Other versions
JP3731361B2 (en
Inventor
Noboru Sakamoto
登 坂本
Tatsuro Ariyama
達郎 有山
Hidetoshi Noda
英俊 野田
Koichi Ichikawa
孝一 市川
Tomoo Kamoshita
友男 鴨志田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP36981898A priority Critical patent/JP3731361B2/en
Publication of JP2000192153A publication Critical patent/JP2000192153A/en
Application granted granted Critical
Publication of JP3731361B2 publication Critical patent/JP3731361B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a sintered ore and a producing method thereof, with which the calorific power of generating gas in a blast furnace can be controlled without depending on the fuel ratio in the blast furnace, and an operating method of the blast furnace. SOLUTION: SiO2 content in a blending raw material is adjusted to <=6 wt.% and a prescribed quantity of solid fuel (A) adjusted to 1-10 mm grain diameter is mixed into the blending raw material to make a granulated material. A prescribed quantity of solid fuel (B) adjusted to <=5 mm grain diameter is mixed into this granulated material and granulated to make pseudo-grain coated with the solid fuel (B). This pseudo-grain is sintered with an endless-moving grate type sintering machine to obtain the sintered ore having 20% to <90% pre-reducing ratio. The calorific power of the blast furnace gas is controlled by controlling the pre-reducing ratio of the sintered ore charged in the blast furnace to 20% to <90%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高炉原料として使
用される焼結鉱およびその製造方法、ならびに高炉操業
方法に関する。
The present invention relates to a sinter used as a raw material for a blast furnace, a method for producing the same, and a method for operating a blast furnace.

【0002】[0002]

【従来の技術】従来から高炉原料として、粉鉄鉱石、媒
溶材、および粉コークス等を混合し、造粒した後、焼結
することにより得られる焼結鉱が用いられている。
2. Description of the Related Art Conventionally, as a raw material for a blast furnace, a sintered ore obtained by mixing fine iron ore, a solvent medium, coke fine and the like, granulating the mixture, and then sintering the mixture is used.

【0003】このような焼結鉱に関して、従来、原料配
合や造粒工程を調整して通気性を改善することや、擬似
粒子の表面に粉コークスを付着させて燃焼性を良好にす
ること、配合原料や擬似粒子の構造を調整して燃料効率
を高めること等、種々の試みがなされている。
[0003] With respect to such a sintered ore, conventionally, the raw material mixing and the granulation process have been adjusted to improve the air permeability, and to improve the flammability by adhering coke breeze to the surface of the pseudo particle. Various attempts have been made to adjust the structure of the blended raw materials and pseudo particles to increase the fuel efficiency.

【0004】例えば、特公平08−9739号公報に
は、高炉に直接装入できない粗粒の粉コークスを高炉燃
料として使用するために、粗粒粉コークスを核として内
在させた焼成塊成鉱の製造方法が開示されている。
[0004] For example, Japanese Patent Publication No. 08-9739 discloses a coagulated agglomerate containing coarse-grained coke as a core in order to use coarse-grained coke that cannot be directly charged into a blast furnace as a blast-furnace fuel. A manufacturing method is disclosed.

【0005】この技術は、粉鉄鉱石に媒溶材と粉コーク
スを配合して混合・造粒して、粗粒粉コークスを核とし
て内在させた生ペレットを作り、この生ペレットに粉コ
ークスを被覆し、得られた生ペレットを無端移動グレー
ト式焼結炉で焼成することにより焼成塊成鉱を製造す
る。生ペレットの核として内在させる粗粒粉コークスに
は塊コークス製造過程で発生する粉コークスのうち粒径
が1〜3mmの小粒コークスを使用する。生ペレットの
焼成過程では、核の粗粒粉コークスは燃焼することなく
残り、この塊成鉱を高炉に装入すると塊成鉱が高炉内で
還元、溶融され、粗粒粉コークスが燃焼するので、その
分に見合った塊コークス原単位を低減できる。すなわ
ち、塊成鉱の原料に対する粗粒粉コークスの配合割合を
10wt.%とすれば、高炉の塊コークス原単位を約1
0%低減することができる。
[0005] This technique is to mix a raw material ore and a coke breeze into iron ore fines, mix and granulate them to produce raw pellets with coarse-grained coke as a core, and coat the raw pellets with coke breeze. Then, the obtained raw pellets are fired in an endless moving grate type sintering furnace to produce a fired agglomerate. Coarse-grain coke having a particle size of 1 to 3 mm is used as the coarse-grained coke to be included as the core of the raw pellets in the coke breeze generated in the lump coke production process. In the process of firing the raw pellets, the coarse-grained coke of the core remains without burning, and when this agglomerate is charged into the blast furnace, the agglomerate is reduced and melted in the blast furnace, and the coarse-grained coke burns. Therefore, it is possible to reduce the coke basic unit corresponding to the amount. That is, the mixing ratio of coarse-grained coke to the raw material of the agglomerate ore was 10 wt. %, The basic unit of coke in the blast furnace is about 1
0% can be reduced.

【0006】また、焼結鉱の性状は高炉操業に直接影響
を及ぼすため、焼結鉱の性状を制御することにより高炉
操業を制御することも試みられている。例えば、特開平
04−210432号公報には、粉鉱石に5〜20w
t.%の粉コークス・無煙炭を配合造粒して内層とし、
また、粉鉱石、副原科および2〜5wt.%の粉コーク
ス・無煙炭を混合コーティングして外層とし、このよう
にして2層構造の擬似粒子を形成し、この擬似粒子を焼
結原料の一部として混合・造粒したのち焼結機で焼結し
て半還元焼結鉱を製造する方法が開示されている。この
場合、焼結過程で擬似粒子の外層から生成する融液と内
層の粉コークスや無煙炭中の固形炭素との直接還元によ
り焼結鉱の一部が還元される。
Since the properties of the sinter have a direct effect on the operation of the blast furnace, attempts have been made to control the operation of the blast furnace by controlling the properties of the sinter. For example, Japanese Unexamined Patent Application Publication No. 04-210432 discloses that a fine ore has 5 to 20 watts.
t. % Coke breeze and anthracite to form an inner layer,
In addition, fine ore, subprimal family and 2-5 wt. % Of coke breeze and anthracite to form an outer layer, thus forming pseudo-particles having a two-layer structure. The pseudo-particles are mixed and granulated as a part of a sintering material, and then fired by a sintering machine. A method for producing a semi-reduced sintered ore is disclosed. In this case, part of the sintered ore is reduced by direct reduction of the melt generated from the outer layer of the pseudo-particles in the sintering process and the solid carbon in the inner layer of coke breeze or anthracite.

【0007】また、この公報には、他の態様として粉コ
ークス・無煙炭を予め擬似粒子化し、この擬似粒子にA
を2.0wt.%以上含む粉鉱石や副原料等で
コーティングして2層擬似粒子とし、この2層擬似粒子
をその他の主原料、副原料、スケール、粉コークス、無
煙炭とともに1次ミキサー、2次ミキサーで混合・造粒
して焼結機に装入する方法も開示されている。
In this publication, as another embodiment, coke breeze and anthracite are preliminarily converted into pseudo particles,
l 2 O 3 at 2.0 wt. % Or more and coated with fine ore or auxiliary raw material to form two-layer pseudo-particles. The two-layer pseudo-particles are mixed with other main raw materials, auxiliary raw materials, scale, coke breeze, and anthracite by a primary mixer and a secondary mixer. A method of granulating and charging the sintering machine is also disclosed.

【0008】いずれの擬似粒子形態であっても、焼結遇
程で生成する融液が内層の粉コークス・無煙炭中の固形
炭素により直接還元される際に吸熱反応が起こり、この
ため通常発生する焼結ベッド下層部の熱遇剰が防止さ
れ、焼結ベッドの通気性が良くなるので焼結生産率や焼
結鉱品質が改善される。一方、高炉で使用した場合に
は、高炉の燃料比、出銑比が改善される。
Regardless of the quasi-particle form, an endothermic reaction occurs when the melt produced during the sintering process is directly reduced by the solid carbon in the inner layer of coke breeze and anthracite, and thus, usually occurs. The heat of the lower part of the sintering bed is prevented, and the permeability of the sintering bed is improved, so that the sintering production rate and sinter quality are improved. On the other hand, when used in a blast furnace, the fuel ratio and tapping ratio of the blast furnace are improved.

【0009】ところで、従来の高炉操業では、高炉発生
ガスの発熱量(潜熱)は主に燃料比と相関があり、一般
には燃料比が高ければ高炉発生ガスの発熱量も高く、ま
た、燃料比が低ければ高炉発生ガスの発熱量も低くな
る。しかし、高炉発生ガスを製鉄所内で加熱炉等の燃料
として使用する場合、高炉の燃料比が変動しても高炉発
生ガスの発熱量は変動しないことが望ましい。さらに
は、高炉の燃料比を一定に維持したまま高炉発生ガスの
発熱量を高くする等、高炉の燃料比と無関係に高炉発生
ガスの発熱量を制御できる技術があれば、さらに好まし
い。
By the way, in the conventional blast furnace operation, the calorific value (latent heat) of the blast furnace generated gas is mainly correlated with the fuel ratio. In general, the higher the fuel ratio, the higher the calorific value of the blast furnace generated gas. Is lower, the calorific value of the blast furnace generated gas is also lower. However, when the blast furnace generated gas is used as a fuel for a heating furnace or the like in an ironworks, it is desirable that the calorific value of the blast furnace generated gas does not change even if the fuel ratio of the blast furnace changes. Further, it is more preferable that there is a technique capable of controlling the calorific value of the blast furnace generated gas independently of the blast furnace fuel ratio, such as increasing the calorific value of the blast furnace generated gas while maintaining the fuel ratio of the blast furnace constant.

【0010】また最近、CO削滅が社会的ニーズであ
り、そのため、鉄鋼業においても高炉操業の燃料比の低
減、すなわち高炉発生ガス量の低減が求められている。
しかし、製鉄所内で高炉発生ガスを燃料として使用する
観点からすれば、燃料比の低減は高炉発生ガスの発熱量
低下に繋がるので好ましくない。したがって、この場合
も高炉の燃料比と無関係に高炉発生ガスの発熱量を制御
する技術が必要になる。
Recently, the elimination of CO 2 is a social need, and therefore, the steel industry is also required to reduce the fuel ratio of blast furnace operation, that is, to reduce the amount of gas generated from the blast furnace.
However, from the viewpoint of using the blast-furnace generated gas as a fuel in an ironworks, reducing the fuel ratio is not preferable because it leads to a decrease in the calorific value of the blast-furnace generated gas. Therefore, also in this case, a technique for controlling the calorific value of the blast furnace generated gas is required regardless of the fuel ratio of the blast furnace.

【0011】このように、高炉の燃料比と無関係に高炉
発生ガスの発熱量を制御するためには、焼結鉱の性状を
制御することが考えられるが、このようなことを考慮し
た技術は未だ提案されていない。すなわち、上記特公平
08−9739号公報に開示された技術では、単に高炉
の塊コークスの原単位を低減するにすぎず、また、特開
平04−210432号公報に開示された技術は、高炉
の燃料比を低減させて高炉出銑比を向上させるものにす
ぎない。
As described above, in order to control the calorific value of the gas generated from the blast furnace regardless of the fuel ratio of the blast furnace, it is conceivable to control the properties of the sintered ore. Not yet proposed. That is, the technique disclosed in Japanese Patent Publication No. 08-9739 merely reduces the basic unit of lump coke in a blast furnace, and the technique disclosed in Japanese Patent Application Laid-Open No. It merely reduces the fuel ratio and improves the blast furnace tapping ratio.

【0012】[0012]

【発明が解決しようとする課題】本発明はかかる事情に
鑑みてなされたものであって、高炉の燃料比に依存せず
に高炉発生ガスの発熱量を制御することができる焼結鉱
およびその製造方法、ならびに高炉操業方法を提供する
ことを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a sintered ore capable of controlling a calorific value of a gas generated from a blast furnace without depending on a fuel ratio of the blast furnace. An object of the present invention is to provide a manufacturing method and a blast furnace operating method.

【0013】[0013]

【課題を解決するための手段】本発明者らは、高炉の燃
料比に依存せずに高炉発生ガスの発熱量を制御するため
に、総括物質熱収支を基にしたリスト線図を種々検討し
た結果、高炉へ装入する焼結鉱の予備還元率を変化させ
ることにより、高炉の燃料比に依存せずに高炉発生ガス
の発熱量を制御することができることを見出した。
In order to control the calorific value of the gas generated from the blast furnace without depending on the fuel ratio of the blast furnace, the present inventors have studied various wrist diagrams based on the overall material heat balance. As a result, it has been found that the calorific value of the gas generated from the blast furnace can be controlled independently of the fuel ratio of the blast furnace by changing the preliminary reduction ratio of the sinter charged in the blast furnace.

【0014】この総括物質熱収支を基にしたリスト線図
の検討の結果、例えば、高炉へ装入する焼結鉱の予備還
元率を20%以上30%未満(酸化鉄の還元前の状態を
Fe とした時のFeOまでの予備還元状態)とす
れば、高炉の燃料比を一定にしたまま高炉発生ガスの発
熱量を焼結鉱の予備還元率にほぼ比例して変化させるこ
とが可能であり、また、高炉へ装入する焼結鉱の予備還
元率を30%以上90%未満とすれば、高炉発生ガスの
発熱量を一定に維持したまま燃料比を変化させることが
可能であると推定された。
[0014] Wrist diagram based on the overall material heat balance
As a result of the investigation, for example, the preliminary return of sinter
20% or more and less than 30% (the state before iron oxide reduction)
Fe 2O3Pre-reduced state up to FeO)
If the fuel ratio of the blast furnace is kept constant,
The amount of heat can be varied almost in proportion to the sinter
It is also possible to make a preliminary return of the sinter to be charged to the blast furnace.
If the source rate is 30% or more and less than 90%, the blast furnace generated gas
It is possible to change the fuel ratio while keeping the calorific value constant.
It was presumed possible.

【0015】このように、高炉の燃料比に依存せずに高
炉発生ガスの発熱量を制御するためには、焼結鉱の予備
還元率を20%から90%未満の広範囲で自由にコント
ロール可能な製造方法が必要である。
As described above, in order to control the calorific value of the gas generated from the blast furnace without depending on the fuel ratio of the blast furnace, the preliminary reduction rate of the sintered ore can be freely controlled in a wide range from 20% to less than 90%. A simple manufacturing method is required.

【0016】しかしながら、上記特開平04−2104
32号公報に開示された技術の半還元焼結鉱の製造方法
には以下の問題点があって、焼結鉱の予備還元率を20
%から90%未満の広範囲で自由にコントロールするこ
とができない。すなわち、この公報に記載された半還元
焼結鉱の製造方法では、擬似粒子が2層構造であって内
層に直接還元用の粉コークス・無煙炭を配置するもの
の、外層に燃料用の粉コークス・無煙炭を配合する際
に、燃料の粉コークス・無煙炭が粉鉱石や副原科と混合
した状態で配合されるため、燃焼性が悪く、その結果予
備還元率のコントロール性も悪い。また、予備還元率を
20%以上90%未満の広い範囲で制御するには、目標
還元率に応じた粉コークス・無煙炭の量を定める必要が
あるが、この技術には粉コークス・無煙炭の量と達成還
元率の関係が明示されていないため、予備還元率の制御
性を有するとは言えない。
However, Japanese Patent Application Laid-Open No.
The method for producing a semi-reduced sinter of the technology disclosed in Japanese Patent Publication No. 32 has the following problems.
% To less than 90% cannot be freely controlled. That is, in the method for producing a semi-reduced sintered ore described in this publication, although the pseudo particles have a two-layer structure and the coke fine and anthracite for reduction are directly disposed in the inner layer, the coke fine for fuel in the outer layer is provided. When blending anthracite, coke breeze and anthracite of the fuel are blended in a state of being mixed with fine ore and subgenaceae, so that the flammability is poor and, as a result, the controllability of the preliminary reduction rate is also poor. In addition, in order to control the preliminary reduction rate in a wide range from 20% to less than 90%, it is necessary to determine the amount of coke breeze and anthracite according to the target reduction rate. Since the relationship between the reduction rate and the achieved reduction rate is not specified, it cannot be said that it has controllability of the preliminary reduction rate.

【0017】また、予備還元率が20%以上30%未満
では焼結鉱中の酸化鉄はFeOの状態まで還元される
が、粉鉱石中のSiO含有量が高いと(1)式の反応
が生じて低融点・難還元性のファイヤライトが生成し易
くなるため、高炉での被還元性が悪化し、リスト線図で
規定されるシャフト効率(FeO〜Fe還元平衡への到
達度)が悪化する。その結果、炉頂ガス潜熱は上昇する
ものの燃料比も上昇するといった問題を引き起こす。 2FeO+SiO(脈石)→2FeO・SiO(ファイヤライト)…(1 )
When the preliminary reduction rate is 20% or more and less than 30%, the iron oxide in the sintered ore is reduced to the state of FeO, but when the content of SiO 2 in the fine ore is high, the reaction of the formula (1) is performed. Is generated, and low-melting-point, low-reducibility firelite is easily generated, so that the reducibility in the blast furnace deteriorates, and the shaft efficiency (the degree of reaching the FeO-Fe reduction equilibrium) specified by the wrist diagram is reduced. Getting worse. As a result, there arises a problem that although the top gas latent heat increases, the fuel ratio also increases. 2FeO + SiO 2 (gangue) → 2FeO · SiO 2 (firelite) ... (1)

【0018】また、上記特公平08−9739号公報に
記載されている焼成塊成鉱の製造方法は、組粒コークス
を核として内在させた生ペレットを作り、この生ペレッ
トに粉コークスを被覆し、得られた生ペレットを無端移
動グレート式焼結炉で焼成する製造方法であるが、成品
焼結鉱の内部に未燃焼の粗粒粉コークスを残し、この未
燃焼のコークスを高炉内で燃焼させることにより高炉で
の塊コークスの量を減らすことを期待している。したが
って、成品焼結鉱中に粉コークスが多量に残るため、成
品焼結鉱の強度が低下したり、焼結機後段にある破砕・
冷却工程で発火してコンベアを焼損する等の問題があ
る。また、結果として成品焼結鉱が予備還元されている
としても組粒コークスの粒径や量および生ペレットを被
覆するための粉コークスの粒径や量といった予備還元率
の制御方法および達成し得る予備還元率が不明である。
Further, in the method for producing a calcined agglomerate described in Japanese Patent Publication No. 08-9739, a raw pellet containing granulated coke as a core is produced, and the raw pellet is coated with coke powder. This is a production method in which the obtained raw pellets are fired in an endless moving great sintering furnace, but unburned coarse-grained coke is left inside the product sintered ore, and the unburned coke is burned in a blast furnace. It is hoped that this will reduce the amount of lump coke in the blast furnace. Therefore, a large amount of coke breeze remains in the product sinter, and the strength of the product sinter decreases, and the crushing /
There is a problem that the conveyor burns due to ignition in the cooling process. Further, even if the product sinter is preliminarily reduced, a method for controlling the pre-reduction rate such as the particle size and amount of the granulated coke and the particle size and amount of the coke flour for coating the raw pellets can be achieved. Preliminary reduction rate is unknown.

【0019】このようなことから、本発明者らは、焼結
鉱の予備還元率を20%から90%の広範囲で自由にコ
ントロール可能な製造方法を検討した結果、核、内層、
最外層の3層構造からなる擬似粒子において、燃料であ
る微粉コークスを最外層に配合することで粉コークスの
燃焼効率を高め、核として配合される粗粒粉コークスと
の量比を適切に定めることにより到達還元率が制御さ
れ、さらに、これにより到達還元率の制御性が格段に高
まることを見出した。
From these facts, the present inventors have studied a production method capable of freely controlling the preliminary reduction ratio of the sintered ore in a wide range from 20% to 90%.
In the pseudo-particles having a three-layer structure of the outermost layer, the fine powder coke as a fuel is blended in the outermost layer to increase the combustion efficiency of the fine coke, and the amount ratio to the coarse-grained powder coke blended as a core is appropriately determined. Thus, it has been found that the attained reduction rate is controlled, and thereby, the controllability of the attained reduction rate is significantly improved.

【0020】本発明はこのような知見に基づいてなされ
たものであり、第1発明は、無端移動グレート式焼結機
で焼成して得られる焼結鉱であって、前記焼成過程で還
元率が20%以上30%未満の範囲に予備還元されてい
ることを特徴とする焼結鉱を提供する。
The present invention has been made based on such findings, and the first invention is a sintered ore obtained by firing with an endless moving grate type sintering machine, wherein a reduction rate is reduced in the firing step. Has been pre-reduced to a range of 20% or more and less than 30%.

【0021】第2発明は、無端移動グレート式焼結機で
焼成して得られる焼結鉱であって、前記焼成過程で還元
率が30%以上90%未満の範囲に予備還元されている
ことを特徴とする焼結鉱を提供する。還元率のより好ま
しい範囲は70%以下である。
According to a second aspect of the present invention, there is provided a sintered ore obtained by sintering with an endless moving grate type sintering machine, wherein the sinter is preliminarily reduced in a range of 30% or more and less than 90% in the sintering process. The present invention provides a sintered ore characterized by the following. A more preferable range of the reduction ratio is 70% or less.

【0022】第3発明は、無端移動グレート式焼結機で
焼成する焼結鉱の製造方法であって、少なくとも、配合
原料中のSiO含有量を6wt.%以下に調整する工
程と、前記配合原料に粒子径が1mm〜10mmに調整
された固体燃料(A)を所定量混合して造粒物とする1
次造粒工程と、前記造粒物に粒子径が5mm以下に調整
された固体燃料(B)の所定量を混合して造粒し、固体
燃料(B)により被覆された擬似粒子とする2次造粒工
程とを備えたことを特徴とする焼結鉱の製造方法を提供
する。
The third invention is a method for producing a sintered ore which is fired by an endless moving grate type sintering machine, wherein at least the SiO 2 content in the compounding raw material is 6 wt. % And a predetermined amount of a solid fuel (A) having a particle diameter adjusted to 1 mm to 10 mm mixed with the blended raw material to form a granulated product.
In the next granulation step, a predetermined amount of the solid fuel (B) whose particle diameter has been adjusted to 5 mm or less is mixed with the granulated product and granulated to obtain pseudo particles coated with the solid fuel (B) 2 A method for producing a sintered ore, comprising the following granulation step:

【0023】第4発明は、第3発明において、混合原料
1tに対する囲体燃料(A)と固体燃料(B)の重量の
和の割合が4.5wt.%〜30.0wt.%で、か
つ、固体燃料(A)と固体燃料(B)の重量の比(A)
/(B)の値を0.8以上とすることを特徴とする焼結
鉱の製造方法を提供する。
In a fourth aspect based on the third aspect, the ratio of the sum of the weights of the enclosure fuel (A) and the solid fuel (B) to 1 t of the mixed raw material is 4.5 wt. % To 30.0 wt. % And the weight ratio (A) between the solid fuel (A) and the solid fuel (B)
A method for producing a sintered ore, wherein the value of / (B) is 0.8 or more.

【0024】第5発明は、第3発明において、成品焼結
鉱1tに対する固体燃料(A)と固体燃料(B)の重量
の和が50kg/t以上で、かつ、固体燃料(A)と固
体燃料(B)の重量の比(A)/(B)の値を0.8以
上となるように固体燃料の配合量を調整することを特徴
とする焼結鉱の製造方法を提供する。
According to a fifth aspect, in the third aspect, the sum of the weights of the solid fuel (A) and the solid fuel (B) with respect to 1 t of the product sintered ore is 50 kg / t or more, and the solid fuel (A) and the solid fuel A method for producing a sintered ore, characterized in that the blending amount of a solid fuel is adjusted so that the value of the weight ratio (A) / (B) of the fuel (B) becomes 0.8 or more.

【0025】第6発明は、無端移動グレート式焼結機で
焼成して得られる焼結鉱を高炉に装入して高炉操業を行
う高炉操業方法であって、装入する焼結鉱の焼成過程で
の予備還元率を20%以上90%未満の間で制御して、
高炉ガスの発熱量を制御することを特徴とする高炉操業
方法を提供する。
A sixth invention is a blast furnace operating method in which a sinter obtained by firing in an endless moving great type sintering machine is charged into a blast furnace to operate the blast furnace, and the sintering of the charged ore is performed. The preliminary reduction rate in the process is controlled between 20% and less than 90%,
A method for operating a blast furnace characterized by controlling the calorific value of blast furnace gas.

【0026】なお、既存の還元塊成鉱は主に電気炉原料
であって、還元率は95%以上と高く、電気炉では溶解
だけが行われて還元はされない。その製造プロセスは例
えばシャフト炉タイプではミドレックスプロセス、Hy
l−IIIプロセス、またロータリーキルンタイプではS
L/RNプロセス等である。しかし、これらのプロセス
の生産量は焼結プロセス等に比べると相対的に低いう
え、成品塊成鉱の強度等も低いものであって高炉原料に
は適さない。
The existing reduced agglomerate is mainly a raw material for an electric furnace, and its reduction rate is as high as 95% or more. In an electric furnace, only melting is performed and no reduction is performed. The manufacturing process is, for example, Midrex process for shaft furnace type, Hy
l-III process and S for rotary kiln type
L / RN process and the like. However, the production amount of these processes is relatively low as compared with the sintering process and the like, and the strength and the like of the product agglomerate are low, so that they are not suitable for blast furnace raw materials.

【0027】本発明では、高炉の高炉発生ガスの発熱量
を燃料比と無関係に制御することを目的としており、高
炉装入原料の予備還元率を変化させようとする場合に
は、通常の焼結鉱或いはペレット並みの生産率、成品強
度、粒度、被還元性等の物理的、冶金的性状が維持され
ることが必要である。しかし、高炉で最終還元が行われ
るので予備還元率も95%以上である必要はない。
The purpose of the present invention is to control the calorific value of the gas generated from the blast furnace in the blast furnace independently of the fuel ratio. In order to change the pre-reduction rate of the raw material charged in the blast furnace, ordinary firing is required. It is necessary to maintain physical and metallurgical properties such as production rate, product strength, particle size, reducibility, etc. comparable to those of condensate or pellets. However, since the final reduction is performed in the blast furnace, the preliminary reduction rate does not need to be 95% or more.

【0028】[0028]

【発明の実施の形態】以下、本発明について具体的に説
明する。まず、本発明者らが物質総括熱収支を基にした
リスト線図から理論的に得た推察、すなわち、高炉装入
原料の予備還元率を変化させることにより、高炉の燃料
比と無関係に高炉発生ガスの発熱量を制御し得るとの推
察について、図面に基づいて説明する。図1は高炉内部
のガス温度分布を示すグラフ、図2は酸化鉄の還元平衡
と実際の炉内ガス組成と酸化鉄酸化度の関係を示すグラ
フである。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described specifically. First, the inventors theoretically obtained from a list diagram based on the overall heat balance of the substance, that is, by changing the pre-reduction rate of the blast furnace charge, the blast furnace was independent of the fuel ratio of the blast furnace. The assumption that the calorific value of the generated gas can be controlled will be described with reference to the drawings. FIG. 1 is a graph showing the gas temperature distribution inside the blast furnace, and FIG. 2 is a graph showing the relationship between the reduction equilibrium of iron oxide, the actual gas composition in the furnace, and the degree of iron oxide oxidation.

【0029】図1では、高炉内部のガス温度は炉頂部で
約150〜200℃、羽口先で2000〜2400℃で
ある。また、シャフト部にはいわゆる熱保存帯と称する
ほぼ1000℃一定の温度領域が存在する。この熱保存
帯では酸化鉄はFeO〜Fe還元平衡から僅かにずれた
ガス組成および還元段階で存在する。
In FIG. 1, the gas temperature inside the blast furnace is about 150 to 200 ° C. at the top of the furnace and 2000 to 2400 ° C. at the tuyere. Further, the shaft portion has a so-called heat preservation zone, which is a constant temperature region of approximately 1000 ° C. In this heat preservation zone, iron oxide is present in the gas composition and reduction stage slightly deviating from the FeO-Fe reduction equilibrium.

【0030】図2において、上段の横軸は高炉のガスの
酸化度(換言すれば、炭素原子に対する酸素原子比O/
C)である。ガスの酸化度は高炉下部でガス組成がCO
のみの場合は1であり、ガスが酸化鉄を還元しながら上
部に移行して最終的に全量CO(+N)となった場
合は2である。この結果はガス中にHおよびHOが
含有されても還元平衡図に多少の変化が現れる以外は基
本的な考え方は同じである。一方、縦軸は鉄原子に対す
る酸素原子比(O/Fe)を示す。最も酸化度の高いF
の酸化度は1.5であり、Feでは1.
33、FeOでは1.05である。
In FIG. 2, the horizontal axis at the top is the oxidation degree of the gas in the blast furnace (in other words, the oxygen atom ratio O /
C). The degree of oxidation of the gas is such that the gas composition is CO
The value is 1 when only the gas is used, and 2 when the gas moves upward while reducing the iron oxide and finally reaches the total amount of CO 2 (+ N 2 ). The result is basically the same as that of the gas except that H 2 and H 2 O are contained in the gas, except that a slight change appears in the reduction equilibrium diagram. On the other hand, the vertical axis indicates the oxygen atom ratio to the iron atom (O / Fe). F with the highest degree of oxidation
The degree of oxidation of e 2 O 3 is 1.5 and that of Fe 3 O 4 is 1.
33 and 1.05 for FeO.

【0031】図2の下段は酸化鉄のCOによる還元平衡
図である。横軸は上述と同様ガスの酸化度を表し、縦軸
は還元平衡温度を表す。図1より熱保存帯の温度を10
00℃とした場合、図2の下段よりこの温度におけるF
e〜FeO還元平衡時のガス酸化度(O/C)が求めら
れる。鉱石(FeO)の酸化度が1.05であるから図
2の上段のW点が求まる。
The lower part of FIG. 2 is an equilibrium diagram of the reduction of iron oxide by CO. The horizontal axis represents the degree of oxidation of the gas as described above, and the vertical axis represents the reduction equilibrium temperature. According to FIG.
When the temperature is set to 00 ° C., the F at this temperature is lower than the lower stage in FIG.
The degree of gas oxidation (O / C) at the time of e-FeO reduction equilibrium is determined. Since the degree of oxidation of ore (FeO) is 1.05, the point W in the upper part of FIG. 2 is obtained.

【0032】一方、酸化度1.5の鉱石を炉頂より装入
した場合、直線P−P(以下操作線と称す)に沿っ
て鉱石の酸化度およびガスの酸化度が変化する。高炉の
燃料比はこの直線の勾配(C/Fe)で決定される。高
炉の操業が理想的に行われ、還元平衡に到達している場
合には、この直線はW点に接しており燃料比は最小値を
とるが、実際の高炉では酸化鉄の還元は平衡よりずれる
ため操作線はW点を通らず、例えばP点を通る。ここ
で直線P−Wと直線P−Pの長さの比(P
W)/(P−P)は高炉の還元乎衡到達度を表し、
シャフト効率と称されるものである。通常、高炉のシャ
フト効率は0.90〜0.95程度である。
On the other hand, when charged from the furnace top ore oxidation degree 1.5, (hereinafter referred to as operating line) linearly P T -P B oxidation degree of oxidation degree and gas ore varies along the. The fuel ratio of the blast furnace is determined by the gradient (C / Fe) of this straight line. When the operation of the blast furnace is ideally performed and the reduction equilibrium has been reached, this straight line is in contact with the point W and the fuel ratio takes the minimum value. shift for operation line without passing through the point W, for example through P 1 point. Here, the ratio of the length of the straight line P 0 -W to the length of the straight line P 0 -P 1 (P 0-
W) / (P 0 −P 1 ) represents the reduction degree of the blast furnace,
This is called shaft efficiency. Usually, the shaft efficiency of a blast furnace is about 0.90 to 0.95.

【0033】高炉原料として本発明の予備還元焼結鉱を
使用した場合、高炉装入時の酸化鉄の酸化度は1.5よ
り低いから、図2のPに代わってPT”になる。これ
により、ガス組成(酸化度)も低下し、その結果Bガス
発熱量が上昇する。ただし、この場合は直線P−P
の勾配は変化しないので燃料比は原則的には変化しな
い。
When the pre-reduced sintered ore of the present invention is used as a blast furnace raw material, the oxidation degree of iron oxide at the time of charging the blast furnace is lower than 1.5, so that PT becomes PT instead of PT in FIG. . Thus, the gas composition (oxidation degree) is also reduced, resulting B gas heating value is increased. However, in this case linearly P T -P B
Does not change, so the fuel ratio does not change in principle.

【0034】また、予備還元率が30%を超える場合
は、W点の縦座標は1.05より低いW’点に移行す
る。シャフト効率一定と仮定すると、操作線はシャフト
効率(P −P/P−W’)が一定となるP1’
を通ることになり、その結果操作線の勾配は小さくなり
燃料比は低下する。ただし、この場合はガスの酸化度の
低下はないので高炉発生ガス発熱量は変化しないと推察
される。
When the preliminary reduction rate exceeds 30%
Shifts to point W 'where the ordinate of point W is lower than 1.05
You. Assuming constant shaft efficiency, the operating line is the shaft
Efficiency (P 0−P1/ P0-W ') is constant1 'point
And as a result, the slope of the operation line becomes smaller.
The fuel ratio drops. However, in this case, the degree of oxidation of the gas
It is estimated that the calorific value of gas generated from the blast furnace does not change because there is no decrease
Is done.

【0035】すなわち、予備還元率が30%未満(Fe
O還元段階まで)ではその予備還元率に応じて高炉発生
ガスの酸化度が低下し、その結果高炉発生ガスの発熱量
が向上する。ただし、高炉の燃料比低減、その結果とし
ての炭酸ガス発生量の削減はできない。しかし、高炉発
生ガスを製鉄所内で加熱炉等の燃料として使用する場
合、高炉発生ガスの発熱量が向上するため製鉄所の総エ
ネルギー消費量を削減することが可能となる。なお予備
還元率が20%未満では高炉発生ガス発熱量の上昇効果
が少ない。
That is, the pre-reduction rate is less than 30% (Fe
In the O reduction stage), the degree of oxidation of the blast furnace generated gas decreases according to the preliminary reduction rate, and as a result, the calorific value of the blast furnace generated gas increases. However, it is not possible to reduce the fuel ratio of the blast furnace, and consequently the amount of carbon dioxide generated. However, when the blast furnace generated gas is used as a fuel for a heating furnace or the like in a steelworks, the calorific value of the blast furnace generated gas is improved, so that the total energy consumption of the steelworks can be reduced. If the preliminary reduction rate is less than 20%, the effect of increasing the calorific value of the gas generated from the blast furnace is small.

【0036】一方、予備還元率が30%以上(FeOと
一部金属鉄が存在する還元段階)では予備還元率に応じ
高炉の燃料比の低減、およびその結果として炭酸ガス発
生量の削減が可能となる。すなわち、一貫製鉄所のエネ
ルギー多消費部門である高炉のエネルギー消費量を削減
し、以て炭酸ガス発生量を抑制する効果が期待される。
但しこの場合は高炉発生ガスの酸化度低下(発熱量の上
昇)は期待できない。したがって、本発明では、焼結過
程での予備還元率を20%以上30%未満、または30
%以上90%未満としている。本発明では焼結鉱の予備
還元率を90%未満とするが、その理由は、通常の焼結
機では予備還元率を90%以上とするのは困難であり、
また達成されたとしてもヤードで保管する際に再酸化す
るなどの問題があるためである。なお、固体燃料の割合
を適度なものとする観点からは、予備還元率が70%以
下が好ましい。
On the other hand, when the pre-reduction rate is 30% or more (reduction stage in which FeO and some metallic iron are present), the fuel ratio of the blast furnace can be reduced according to the pre-reduction rate, and as a result, the amount of carbon dioxide generated can be reduced. Becomes In other words, the effect of reducing the energy consumption of the blast furnace, which is the energy intensive section of the integrated steelworks, and thereby suppressing the amount of generated carbon dioxide is expected.
However, in this case, a decrease in the degree of oxidation of the blast furnace generated gas (an increase in the calorific value) cannot be expected. Therefore, in the present invention, the preliminary reduction rate in the sintering process is not less than 20% and less than 30%, or 30%.
% Or more and less than 90%. In the present invention, the pre-reduction rate of the sintered ore is set to less than 90%, because it is difficult to make the pre-reduction rate to 90% or more with a normal sintering machine.
Even if achieved, there is a problem such as reoxidation when stored in the yard. From the viewpoint of making the proportion of the solid fuel appropriate, the preliminary reduction rate is preferably 70% or less.

【0037】本発明は、このように、焼結鉱の焼結過程
において予備還元率20%以上90%未満の間で制御
し、高炉に装入することにより、高炉の燃料比にかかわ
らず、高炉ガスの発熱量を制御可能にするものである。
このような焼結鉱は、具体的には、核、内層、最外層の
3層構造からなる擬似粒子を用い、核として配合された
粗粒粉コークスが、焼結過程で内層から生成する融液を
還元することにより予備還元される。また、燃料である
微粉コークスを最外層に配合することで粉コークスの燃
焼効率を高め、核として配合される粗粒粉コークスとの
量比を適切に定めることにより到達還元率が制御され、
さらに、これにより到達還元率の制御性が格段に高ま
る。
According to the present invention, by controlling the preliminary reduction ratio between 20% and less than 90% and charging the blast furnace in the sintering process of the sinter, regardless of the fuel ratio of the blast furnace, This makes it possible to control the calorific value of the blast furnace gas.
Specifically, such a sinter uses pseudo-particles having a three-layer structure of a core, an inner layer, and an outermost layer, and coarse coke blended as a nucleus is generated from the inner layer during the sintering process. It is preliminarily reduced by reducing the liquid. In addition, the combustion efficiency of the fine coke is increased by blending fine coke as the fuel in the outermost layer, and the ultimate reduction rate is controlled by appropriately determining the ratio of the coarse coke to be blended as the core,
Furthermore, the controllability of the attained reduction rate is thereby greatly improved.

【0038】以下、このような焼結鉱の製造方法につい
て説明する。図3は本発明を実施するためのプロセスフ
ローを示す工程図である。図3において、1は通常の焼
結原料ホッパ、2は返鉱ホッパ、3は媒溶剤ホッパ、4
は粗粒粉コークスホッパである。5は1次ドラムミキ
サ、6はディスクペレタイザ、7は微粉コークスホッ
パ、10はシャトルコンベア、11は無端移動グレート
式焼成炉、12は点火炉である。
Hereinafter, a method for producing such a sintered ore will be described. FIG. 3 is a process chart showing a process flow for carrying out the present invention. In FIG. 3, 1 is a normal sintering raw material hopper, 2 is a return hopper, 3 is a solvent hopper, 4
Is a coarse-grained coke hopper. 5 is a primary drum mixer, 6 is a disc pelletizer, 7 is a fine coke hopper, 10 is a shuttle conveyor, 11 is an endless moving grate type firing furnace, and 12 is an ignition furnace.

【0039】以上の設備において、各ホッパから焼結原
料、媒溶剤および粗粒粉コークスを所定量切り出しドラ
ムミキサ5に供給し、水を添加しながら混合する。つづ
いて、前記混合原料をディスクペレタイザ6に供給し、
水を添加しながら造粒する。この時、粗粒粉コークスを
核とした生ペレットが形成される。次に、ディスクペレ
タイザ6で造粒した生ペレットを2次ドラムミキサ8に
供給し、水および粉コークスホッパ7から切り出した粉
コークスを添加しながら混合する。この混合により、表
面に粉コークスが被覆された粒径が2〜20mmの擬似
粒子ができる。粉コークス被覆の擬似粒子をシャトルコ
ンベア10を介して焼成炉11に装入し、点火炉12で
装入原料層表面に点火、下向きに空気を吸引して焼成す
る。なお、原料条件に応じ1次ドラムミキサ5で造粒が
充分行われる場合は、ディスクペレタイザー6による造
粒工程を省略しても良い。
In the above facilities, a predetermined amount of a sintering raw material, a solvent medium, and coarse-grained coke are cut out from each hopper, supplied to the drum mixer 5, and mixed while adding water. Subsequently, the mixed raw material is supplied to a disc pelletizer 6,
Granulate while adding water. At this time, raw pellets having coarse-grained coke as a core are formed. Next, the raw pellets granulated by the disk pelletizer 6 are supplied to the secondary drum mixer 8 and mixed while adding water and coke breeze cut out from the coke breeze hopper 7. By this mixing, pseudo-particles having a particle size of 2 to 20 mm, the surface of which is coated with coke breeze, are produced. The pseudo-particles coated with coke breeze are charged into a firing furnace 11 via a shuttle conveyor 10, ignited on the surface of a charged material layer by an ignition furnace 12, and fired by sucking air downward. In addition, when granulation is sufficiently performed by the primary drum mixer 5 according to the raw material conditions, the granulation step by the disk pelletizer 6 may be omitted.

【0040】図4は、本発明の製造遇程で得られる3層
構造の擬似粒子の断面図である。13は擬似粒子の核を
形成する粗粒粉コークス、14は粉鉱石、返鉱、媒溶剤
の混合物から形成される内層、15は微粉コークスから
なる最外層である。なお、一般には複数銘柄の粉鉱石と
雑鉄源と副原料との混合物を新原料と呼び、新原料に返
鉱を加えたものを配合原料と呼ぶ。副原料には媒溶剤お
よび生石灰等のバインダーが含まれる。また、配合原料
に固体燃料を加えたものを混合原料と呼ぶ。
FIG. 4 is a cross-sectional view of a pseudo-particle having a three-layer structure obtained in the production process of the present invention. 13 is a coarse-grained coke which forms the nucleus of pseudo-particles, 14 is an inner layer formed from a mixture of fine ore, ore return, and a solvent medium, and 15 is an outermost layer made of fine-grained coke. In general, a mixture of a plurality of brands of fine ore, a source of miscellaneous iron, and an auxiliary material is referred to as a new raw material, and a mixture of the new raw material and returned minerals is referred to as a blended raw material. The auxiliary materials include a solvent such as a solvent and quick lime. Further, a mixture of the blended raw material and the solid fuel is referred to as a mixed raw material.

【0041】本発明では、配合原料中のSiO含有量
を6wt.%以下に調整する。これは、配合原料中に6
wt.%を超えるSiOが含有されていると焼成過程
で上記(1)式に示す反応により多量のファイヤライト
が生成するが、このファイヤライトは高炉内で1000
℃以下の塊伏帯では難還元性を示して還元停滞を引き起
こし、また、1000℃以上の軟化・溶融帯では多量の
低融点スラグを発生して軟化・溶融帯の溶け落ち性伏を
悪化させ、高炉燃料比低減の障害となるからである。
In the present invention, the content of SiO 2 in the compounding raw material is set to 6 wt. Adjust to less than%. This is because 6
wt. % Of SiO 2 , a large amount of firelite is generated by the reaction shown in the above formula (1) during the firing process.
In the lump zone below 100 ° C, it shows poor reducibility, causing reduction stagnation, and in the softening / melting zone above 1000 ° C, a large amount of low melting point slag is generated to worsen the burn-through yield of the softening / melting zone. This is an obstacle to the reduction of the blast furnace fuel ratio.

【0042】媒溶剤としては、通常生石灰が望ましい
が、消石灰、ベントナイトの他、微粉末スラグ、ポルト
ランドセメント等でも良い。
As the medium solvent, usually quick lime is desirable, but in addition to slaked lime and bentonite, fine powder slag, portland cement and the like may be used.

【0043】固体燃料としては、組粒および微粒の粉コ
ークスのほか無煙炭、石炭、チャー、石油コークス等で
も代替が可能である。ここでは、便宜上粉コークスを例
として説明する。
As the solid fuel, anthracite, coal, char, petroleum coke and the like can be used in addition to the coke batter and the fine coke. Here, coke breeze will be described as an example for convenience.

【0044】粗粒の粉コークスは、1次ミキサーによる
混合・造粒過程で核として機能し、粗粒粉コークスの周
りに原科の粉鉱石や媒溶剤が付着し造粒される。また、
焼結過程では擬似粒子の内部より還元を起こさせ、かつ
還元組織の再酸化を抑制する。そのため、粗粒粉コーク
ス粒径は1mm以上10mm未満、望ましくは3〜8m
mが効果的である。粒径が1mm以下では造粒工程で核
として機能せず、粗粒粉コークスを核としてその周囲に
焼結原料が付着した造粒物が形成されにくい。したがっ
て、本発明が意図するような擬似粒子内部からの還元も
不十分になる。また、10mm以上では焼結後の成品塊
成鉱中に炭材が多量に残りグレートの後の破砕、冷却工
程で発火しコンベヤーの焼損や、成晶塊成鉱強度の低下
等を引き起こす。
The coarse-grained coke functions as a nucleus in the mixing / granulating process by the primary mixer, and the coarse ore or the medium solvent adheres around the coarse-grained coke to be granulated. Also,
In the sintering process, reduction is caused from inside the pseudo particles, and reoxidation of the reduced structure is suppressed. Therefore, the coarse powder coke particle size is 1 mm or more and less than 10 mm, preferably 3 to 8 m.
m is effective. If the particle size is 1 mm or less, it does not function as a nucleus in the granulation step, and it is difficult to form a granulated product having coarse powder coke as a nucleus and a sintering raw material adhered to the periphery. Therefore, the reduction from the inside of the pseudo particle as intended by the present invention is also insufficient. On the other hand, if it is 10 mm or more, a large amount of carbon material remains in the sintered product agglomerate after sintering, and ignites in the crushing and cooling steps after the great, causing burnout of the conveyor and a reduction in the strength of the crystalline agglomerate.

【0045】被覆用の微粉コークスは焼成に必要な熱量
を供給するための燃料である。燃焼効率を高めるために
擬似粒子表層部に微粉コークスを被覆する。その際に擬
似粒子表層部に均一かつ強固な被覆層を形成することが
重要である。また、微粉コークス量の変化が発熱量に直
接反映されるため熱量コントロール性に優れる。粉コー
クス粒径は小さい程良く、上限は5mm、望ましくは1
mm以下とすることが望ましい。
[0045] The fine coke for coating is a fuel for supplying the calorie required for firing. In order to increase the combustion efficiency, the fine particle coke is coated on the surface layer of the pseudo particle. At that time, it is important to form a uniform and strong coating layer on the surface layer of the pseudo particle. Further, since the change in the amount of fine coke is directly reflected in the calorific value, the calorie controllability is excellent. The smaller the coke breeze particle size, the better, the upper limit is 5 mm, preferably 1
mm or less.

【0046】また、目標とする予備還元率を達成するた
めには、混合原料中の粉コークスの割合を所定の値に設
定する必要がある。予備還元率と混合原料中の粉コーク
スの割合との相関は、製造所毎の諸条件によって異なる
ので、それぞれの製造所毎で求めればよい。例えば、予
備還元率の目標値を20%以上30%未満の範囲に設定
する場合、混合原料中の粉コークスの割合を4.5w
t.%から8.5wt.%の範囲で変化させて予備還元
率と混合原料中の粉コークスの割合との相関を求め、そ
の相関に基づいて混合原料中の粉コークスの割合を決定
する。
In order to achieve the target preliminary reduction rate, it is necessary to set the ratio of coke breeze in the mixed raw material to a predetermined value. The correlation between the pre-reduction ratio and the ratio of coke breeze in the mixed raw material differs depending on various conditions at each factory, and may be determined for each factory. For example, when the target value of the preliminary reduction rate is set in a range of 20% or more and less than 30%, the ratio of coke breeze in the mixed raw material is set to 4.5 w.
t. % To 8.5 wt. %, The correlation between the preliminary reduction rate and the ratio of coke breeze in the mixed raw material is determined, and the ratio of coke breeze in the mixed raw material is determined based on the correlation.

【0047】なお、混合原料中の粉コークスの割合が
4.5wt.%未満では成品焼結鉱中のFeO含有量が
10〜15wt.%程度にしかならず、高炉発生ガス発
熱量の向上には殆ど効果がない。一方、粉コークス量が
8.5wt.%超では高炉発生ガス発熱量は飽和してし
まう。
The coke breeze ratio in the mixed raw material was 4.5 wt. %, The FeO content in the product sintered ore is 10 to 15 wt. %, Which has little effect on improving the calorific value of the gas generated from the blast furnace. On the other hand, the amount of coke breeze was 8.5 wt. %, The calorific value of the gas generated from the blast furnace is saturated.

【0048】同様に、予備還元率を30%以上90%未
満の範囲に設定する場合は、混合原料中の固体燃料の割
合を8.5wt.%から30wt.%の範囲で変化させ
て相関を求めればよい。粉コークスの割合が30.0w
t.%を超えると粉コークスの燃焼時間が著しく長くな
るため焼結鉱の生産率が悪化したり、焼結ベッドヘの供
給熱量が週乗になってベッド内での融体生成量が著しく
増える結果、ベッドの通気性が悪化する。
Similarly, when the pre-reduction rate is set in the range of 30% or more and less than 90%, the ratio of the solid fuel in the mixed raw material is 8.5 wt. % To 30 wt. The correlation may be obtained by changing the correlation in the range of%. The ratio of coke breeze is 30.0w
t. %, The combustion time of the coke breeze becomes extremely long, so that the production rate of the sintered ore deteriorates, and the amount of heat supplied to the sintering bed increases weekly, resulting in a remarkable increase in the amount of melt produced in the bed. Bed permeability deteriorates.

【0049】添加する粉コークス量は、前述のように、
混合原科に対する割合であるコークス比で表してもよ
く、また、焼結生産量1トン当たりのコークス原単位で
表してもよい。以下の関係式を利用して、コークス比と
コークス原単位の間で換算が可能である。 コークス原単位(kg/t)={コークス比(%)×
(新原料使用量(kg/t)+返鉱使用量(kg/
t))}/(新原料使用量(kg/t)×焼結歩留
(%))×1000
The amount of coke breeze to be added is, as described above,
It may be expressed by a coke ratio which is a ratio to the mixed raw material, or may be expressed by a unit of coke per ton of sintering production. Using the following relational expression, conversion between the coke ratio and the coke intensity can be performed. Coke basic unit (kg / t) = {Coke ratio (%) ×
(Use of new raw materials (kg / t) + return of ore (kg / t)
t))} / (new material usage (kg / t) × sintering yield (%)) × 1000

【0050】一般的な焼結機の焼結歩留は約91.0
%、新原料使用量は1110kg/t、返鉱使用量は2
00kg/tであるので、コークス比4.5%はコーク
ス原単位58kg/tに換算される。
The sintering yield of a general sintering machine is about 91.0.
%, New raw material usage is 1110 kg / t, returned ore usage is 2
Since it is 00 kg / t, the coke ratio of 4.5% is converted to a coke basic unit of 58 kg / t.

【0051】したがって、同様に上記の範囲でコークス
原単位を変化させて予備還元率とコークス原単位の相関
を求め、目標とする予備還元率に対するコークス原単位
を定めることができる。
Therefore, similarly, the correlation between the preliminary reduction rate and the coke basic unit is obtained by changing the coke basic unit within the above range, and the coke basic unit for the target preliminary reduction rate can be determined.

【0052】また、予備還元率の範囲がいずれであって
も、固体燃料中の内装(核)用粗粒粉コークス量と外装
(被覆)用微粉コークス量の割合(内外装比率=内装量
/外装量)を0.8以上とすることが好ましい。固体燃
料の内外装比率が0.8以下では擬似粒子内部から還元
する還元能力が不足する。また、核として配合する粉コ
ークスが少なくなる分、外装比率が高くなるため前記の
場合と同様に燃焼熱が過剰となり生産率が低下する。
Also, regardless of the range of the pre-reduction ratio, the ratio of the amount of coarse coke for the interior (nucleus) and the amount of fine coke for the exterior (coating) in the solid fuel (internal / exterior ratio = interior / interior amount / It is preferable to set the amount of exterior to 0.8 or more. If the ratio of the interior and exterior of the solid fuel is 0.8 or less, the reduction ability for reducing from inside the pseudo particle is insufficient. In addition, as the amount of coke breeze mixed as the core decreases, the exterior ratio increases, so that the combustion heat becomes excessive and the production rate decreases as in the case described above.

【0053】[0053]

【実施例】以下、本発明の実施例について説明する。 (実施例1)本発明を実施するに際し、図3に示した造
粒工程にしたがって擬似粒子を製造し、この擬似粒子を
試験鍋で焼成する方法で、本発明の予備還元率到達度お
よび予備還元率の制御性を確認した。なお、説明の便宜
上、予備還元率が30%未満(FeOまでの還元)の焼
結鉱をL型焼結鉱、また、予備還元率が30%以上90
%未満の焼結鉱をH型焼結鉱とに区別し、この実施例1
ではL型焼結鉱について、また、後述する実施例2では
H型焼結鉱について説明する。
Embodiments of the present invention will be described below. (Example 1) In practicing the present invention, pseudo particles were produced according to the granulation process shown in FIG. 3, and the pseudo particles were fired in a test pan. The controllability of the reduction rate was confirmed. For convenience of explanation, a sintered ore having a preliminary reduction rate of less than 30% (reduction to FeO) is an L-type sintered ore, and a preliminary reduction rate of 30% to 90%.
% Of sintered ore is classified into H-type sintered ore.
In the following, an L-type sintered ore will be described, and in Example 2 described later, an H-type sintered ore will be described.

【0054】本実施例では、L型焼結鉱を試験鍋で焼成
するに当たり、使用した配合原料の化学組成および粒度
を表1に示した。配合原料中のSiO含有量は4.6
3wt.%とした。なお、この配合原科には返鉱が15
wt.%とバインダーとして生石灰が2.5wt.%配
合されている。また、固体燃料は、内装(核)用に粒径
3〜5mmの粗粒粉コークスと外装(被覆)用に粒径3
mm以下に調整した微粉コークスを使用した。
In this example, Table 1 shows the chemical composition and particle size of the raw materials used for firing the L-type sintered ore in the test pot. SiO 2 content in the compounding raw material is 4.6
3 wt. %. It should be noted that there are 15 returned minerals
wt. % And 2.5% by weight of quicklime as a binder. %. The solid fuel has a coarse particle coke having a particle size of 3 to 5 mm for the interior (core) and a particle size of 3 to 5 mm for the exterior (coating).
Fine coke adjusted to not more than mm was used.

【0055】まず、配合原料と所定量の粗粒粉コークス
とに適当量の水分を添加しながら1次ドラムミキサ(内
径4.4m、有効長さ15m)で混合・造粒した。つづ
いて、1次ドラムミキサの造粒物を2次ドラムミキサ
(内径5.0m、有効長さ18m)に供給し、必要に応
じて加えるべき残りの水分と、また、所定量の微粉コー
クスとを添加して混合し造粒した。これよりコークス添
加量が4.5wt.%未満では予備還元率に改善が見ら
れないこと、内外装比率が0.8未満では同一粉コーク
ス添加量でも予備還元率の改善効果が少ないことが明ら
かである。
First, a primary drum mixer (inner diameter 4.4 m, effective length 15 m) was mixed and granulated while adding an appropriate amount of water to the blended raw material and a predetermined amount of coarse-grained coke. Subsequently, the granulated material of the primary drum mixer is supplied to a secondary drum mixer (inner diameter 5.0 m, effective length 18 m), and the remaining water to be added as necessary and a predetermined amount of fine coke are added. And mixed and granulated. From this, the coke addition amount was 4.5 wt. It is clear that no improvement is seen in the preliminary reduction ratio when the ratio is less than 0.8% and that the improvement effect of the preliminary reduction ratio is small even with the same coke powder addition amount when the interior / exterior ratio is less than 0.8.

【0056】擬似粒子は表2に示したように、固体燃料
を配合原料の4.5wt.%〜8.5wt.%の範囲で
変化させてL1〜L5の5種類製造した。なお、固体燃
料中の内装(核)用粗粒粉コークスと外装(被覆)用微
粉コークスの割合(内外装比率=内装量/外装量)は、
0.8以上1.4以下の範囲で適宜変化させた。
As shown in Table 2, the pseudo particles were prepared by mixing solid fuel with 4.5 wt. % To 8.5 wt. %, And five kinds of L1 to L5 were produced. The ratio of the interior (core) coarse-grained powder coke and the exterior (coating) fine-grained coke in the solid fuel (inside / outside ratio = interior amount / exterior amount)
It was appropriately changed in the range of 0.8 or more and 1.4 or less.

【0057】また、比較例として固体燃料を配合原料の
4.5wt.%以下としたL6および固体燃料の内外装
比率を0.8未満としたL7も併せて製造した。
As a comparative example, a solid fuel was mixed with 4.5 wt. %, And L7, in which the internal / external ratio of the solid fuel was less than 0.8, was also manufactured.

【0058】製造した擬似粒子L1〜L7は、いずれも
2次ドラムミキサ出口の粒径が2〜20mmで中心に粗
粒粉コークスの核を有し、最外装が微粉コークスで被覆
された3層構造の擬似粒子であった。なお、表1に示し
た粒度の焼結原科は微粉原科が少ないので1次ドラムミ
キサだけで造粒が充分可能であるため、ディスクペレタ
イザによる造粒工程を省略した。
Each of the produced pseudo particles L1 to L7 has a particle diameter at the outlet of the secondary drum mixer of 2 to 20 mm, has a core of coarse-grained coke at the center, and has a three-layer structure in which the outermost coat is coated with fine-grained coke. Were pseudo particles. In addition, since the sintering raw materials having the particle sizes shown in Table 1 have few fine powder raw materials, granulation can be sufficiently performed only by the primary drum mixer. Therefore, the granulating step using a disk pelletizer was omitted.

【0059】次に、擬似粒子L1〜L7を試験鍋にて焼
成し、それぞれJIS法で予備還元率を測定した。予備
還元率の測定結果は表2に示したとおりである。なお、
試験鍋による焼成条件は、ポット径が300mmφ、原
料深さが450mm、吸引負圧が1000mmAq、点
火時間が90秒であった。
Next, the pseudo particles L1 to L7 were fired in a test pan, and the preliminary reduction ratio was measured by the JIS method. The measurement results of the preliminary reduction ratio are as shown in Table 2. In addition,
The firing conditions using the test pot were as follows: pot diameter was 300 mmφ, raw material depth was 450 mm, suction negative pressure was 1000 mmAq, and ignition time was 90 seconds.

【0060】図5は、L1〜L7の予備還元率測定結果
を固体燃料の量(コークス添加量)に対してプロットし
たグラフである。図5から、L型焼結鉱では粉コークス
添加量が4.5wt.%〜8.5wt.%の範囲で予備
還元率は、ほぼ20%〜30%となり粉コークス添加量
と予備還元率が概略比例関係にあることが確認された。
また、固体燃料の内外装比率が0.8以上であれぱ固体
燃料の量と予備還元率の相関性が向上する、すなわち、
予備還元率の制御性が向上することも確認された。
FIG. 5 is a graph in which the measurement results of the preliminary reduction rates of L1 to L7 are plotted against the amount of solid fuel (the amount of coke added). From FIG. 5, it is found that the amount of coke breeze added is 4.5 wt. % To 8.5 wt. %, The pre-reduction ratio was approximately 20% to 30%, and it was confirmed that the amount of coke breeze and the pre-reduction ratio were in a roughly proportional relationship.
Also, if the interior and exterior ratio of the solid fuel is 0.8 or more, the correlation between the amount of the solid fuel and the preliminary reduction rate is improved, that is,
It was also confirmed that the controllability of the preliminary reduction rate was improved.

【0061】[0061]

【表1】 [Table 1]

【0062】[0062]

【表2】 [Table 2]

【0063】(実施例2)本実施例ではH型焼結鉱につ
いて説明する。使用した配合原科の化学組成および粒度
を表3に示した。配合原料中のSiO含有量は3.9
3wt.%とした。なお、この配合原料には返鉱が15
wt.%とバインダーとして生石灰が2.5wt.%配
合されている。また、固体燃料は、内装(核)用に粒径
5〜8mmの組粒コークスと外装(被覆)用に粒径1m
m以下に調整した微粉コークスを使用した。
Embodiment 2 In this embodiment, an H-type sintered ore will be described. Table 3 shows the chemical composition and particle size of the compounding ingredients used. SiO 2 content in the compounding raw material is 3.9
3 wt. %. It should be noted that this compounding raw material has
wt. % And 2.5% by weight of quicklime as a binder. %. The solid fuel has a particle size of 5 to 8 mm for interior (core) and a particle size of 1 m for exterior (coating).
m or less fine coke was used.

【0064】まず、配合原科と粗粒粉コークスとに適当
量の水分を添加しながら1次ドラムミキサ(内径4.4
m、有効長さ15m)で混合・造粒した。さらに、1次
ドラムミキサの造粒物をディスクペレタイザ(直径7.
5m、深さ0.5m)で造粒した。これは、表3に示し
た粒度の配合原料は微粉原料が多く、1次ドラムミキサ
だけでは造粒が不十分であるので、ディスクペレタイザ
による造粒工程を加えたためである。
First, a primary drum mixer (with an inner diameter of 4.4) was added while adding an appropriate amount of water to the blended material and the coarse-grained coke.
m, effective length 15 m). Further, the granulated material of the primary drum mixer is transferred to a disk pelletizer (diameter 7.
(5 m, depth 0.5 m). This is because the compounding raw materials having the particle sizes shown in Table 3 are mainly composed of fine powders, and the granulation is not sufficient with the primary drum mixer alone. Therefore, a granulating step using a disk pelletizer is added.

【0065】ディスクペレタイザーの造粒物を2次ドラ
ムミキサ(内径5.0m、有効長さ18m)に供給し、
必要に応じて加えるべき残りの水分と、粒径1mm以下
に調整された微粉コークスとを添加して混合し造粒し
た。
The granules of the disc pelletizer are supplied to a secondary drum mixer (inner diameter 5.0 m, effective length 18 m),
The remaining water to be added as needed and fine powder coke adjusted to a particle size of 1 mm or less were added, mixed and granulated.

【0066】擬似粒子は表4に示したように、固体燃料
を配合原料の8.5wt.%〜30.0wt.%の範囲
で変化させてH1〜H6の6種類製造した。なお、固体
燃料中の内装(核)用粗粒粉コークスと外装(被覆)用
微粉コークスの割合(内外装比率=内装量/外装量)
は、1.0以上2.5以下の範囲で適宜変化させた。
As shown in Table 4, the pseudo particles were prepared by mixing the solid fuel with 8.5 wt. % To 30.0 wt. %, And six kinds of H1 to H6 were produced. The ratio of coarse-grained coke for interior (core) and fine-grained coke for exterior (coating) in solid fuel (internal / exterior ratio = interior volume / exterior volume)
Was appropriately changed in the range of 1.0 to 2.5.

【0067】また、比較例として固体燃料を配合原科の
30.0wt.%以上としたH7および固体燃料の内外
装比率を0.8未満としたH8も併せて製造した。製造
された擬似粒子は、L型の場合と同様に、いずれも3層
構造の擬似粒子であった。
As a comparative example, 30.0 wt. % And H8 with an internal / external ratio of the solid fuel of less than 0.8 were also manufactured. All of the produced pseudo particles were pseudo particles having a three-layer structure, as in the case of the L-type.

【0068】次に、擬似粒子H1〜H8を試験鍋で焼成
し、予備還元率をJIS法で測定した。その結果を表4
に示した。なお、試験鍋による焼成条件はL型の場合と
同じである。
Next, the pseudo particles H1 to H8 were fired in a test pot, and the preliminary reduction ratio was measured by the JIS method. Table 4 shows the results.
It was shown to. The firing conditions using the test pan are the same as those for the L-type.

【0069】図6は、焼結鉱H1〜H8の予備還元率測
定結果を固体燃料の量(コークス添加量)に対してプロ
ットしたグラフである。図6から、H型焼結鉱では粉コ
ークス添加量が8.5wt.%〜30.0wt.%の範
囲で予備還元率は、ほぼ30%〜90%となり粉コーク
ス添加量と予備還元率が概略比例関係にあることが確認
された。
FIG. 6 is a graph plotting the results of the preliminary reduction ratios of the sintered ores H1 to H8 with respect to the amount of solid fuel (the amount of coke added). As shown in FIG. 6, in the H-type sintered ore, the coke breeze addition amount was 8.5 wt. % To 30.0 wt. %, The pre-reduction rate was approximately 30% to 90%, and it was confirmed that the amount of coke breeze and the pre-reduction rate were in a roughly proportional relationship.

【0070】また、H型焼結鉱の場合にも、固体燃料の
内外装比率が0.8以上であれば予備還元率の制御性が
向上することも確認された。
Also, in the case of H-type sintered ore, it was confirmed that the controllability of the preliminary reduction rate was improved if the ratio of the solid fuel to the interior and exterior was 0.8 or more.

【0071】[0071]

【表3】 [Table 3]

【0072】[0072]

【表4】 [Table 4]

【0073】なお、上記実施例1および実施例2では試
験鍋による焼成であるため、固体燃料の割合を配合原料
に対して4.5wt.%〜8.5wt.%および8.5
wt.%〜30.0wt.%としたが、実際の焼結機で
焼成した場合の固体燃料原単位を前述した方法で求める
と、概略それぞれ56〜106kg/t成品焼結、およ
び106〜373kg/t成品焼結となる。ただし、固
体燃料の割合が30.0wt.%は実際の焼結鉱製造プ
ロセスを考慮すると高すぎるため、還元率が30%以上
90%未満の範囲内では、還元率70%以下が好まし
い。
In the above Examples 1 and 2, since the firing was performed in a test pan, the ratio of the solid fuel was 4.5 wt. % To 8.5 wt. % And 8.5
wt. % To 30.0 wt. However, when the solid fuel consumption rate when fired by an actual sintering machine is determined by the above-described method, it is approximately 56 to 106 kg / t product sintering and 106 to 373 kg / t product sintering, respectively. However, when the ratio of the solid fuel is 30.0 wt. % Is too high in consideration of the actual sinter production process, so that the reduction rate is preferably 70% or less when the reduction rate is in the range of 30% or more and less than 90%.

【0074】また、記載しなかったが実施例1および実
施例2では、その他高炉原料として焼結鉱が維持すべき
条件についても満足できるものであった。
Although not described, in Examples 1 and 2, other conditions for maintaining the sintered ore as the raw material for the blast furnace were satisfactory.

【0075】[0075]

【発明の効果】本発明によれば、焼結鉱の予備還元率を
20%以上30%未満とすることにより、高炉の燃料比
を一定に維持したまま高炉発生ガスの発熱量を変化させ
得る。また、焼結鉱の予備還元率を30%以上90%未
満とすることにより、高炉発生ガスの発熱量を一定に維
持したまま燃料比を変化させ得る。したがって、高炉の
燃料比に依存せず、高炉発生ガスの発熱量を制御するこ
とができる。また、本発明によれば、予備還元率の制御
性に優れた焼結鉱の製造方法が得られる。本発明の製造
方法によって得られた予備還元焼結鉱は還元率が20%
〜30%の範囲でも、焼結過程でファイヤライトの生成
が抑制されるので、焼結性の悪化、および、高炉での被
還元性の悪化がない。また、成品焼結鉱中に未燃焼の粉
コークスが残らず、成晶焼結鉱の強度低下および破砕・
冷却工程での発火によるコンベヤ焼損という問題もな
い。
According to the present invention, the calorific value of the gas generated from the blast furnace can be changed while maintaining the fuel ratio of the blast furnace constant by setting the preliminary reduction rate of the sinter to be at least 20% and less than 30%. . Further, by setting the preliminary reduction rate of the sinter to be 30% or more and less than 90%, the fuel ratio can be changed while maintaining the calorific value of the blast furnace generated gas constant. Therefore, the calorific value of the blast furnace generated gas can be controlled without depending on the fuel ratio of the blast furnace. Further, according to the present invention, a method for producing a sintered ore having excellent controllability of the preliminary reduction rate can be obtained. The pre-reduced sintered ore obtained by the production method of the present invention has a reduction rate of 20%.
Even in the range of 3030%, generation of firelite in the sintering process is suppressed, so that there is no deterioration in sinterability and no reduction in reducibility in a blast furnace. Also, no unburned coke powder remains in the product sinter, which reduces the strength of
There is no problem of conveyor burnout due to ignition in the cooling process.

【図面の簡単な説明】[Brief description of the drawings]

【図1】高炉内のガス温度分布の図。FIG. 1 is a diagram of a gas temperature distribution in a blast furnace.

【図2】酸化鉄の還元平衡と高炉内ガス酸化度と酸化鉄
酸化度の関係を示す図。
FIG. 2 is a diagram showing the relationship between the reduction equilibrium of iron oxide, the degree of oxidation of gas in a blast furnace, and the degree of oxidation of iron oxide.

【図3】本発明の焼結鉱の製造方法におけるプロセスフ
ローを示す工程図。
FIG. 3 is a process chart showing a process flow in the method for producing a sintered ore of the present invention.

【図4】本発明によって得られた3層構造の擬似粒子の
断面図。
FIG. 4 is a cross-sectional view of a pseudo particle having a three-layer structure obtained by the present invention.

【図5】本発明の実施例1における固体燃料割合(コー
クス添加量)と予備還元率との関係を示すグラフ。
FIG. 5 is a graph showing a relationship between a solid fuel ratio (coke addition amount) and a preliminary reduction ratio in Example 1 of the present invention.

【図6】本発明の実施例2における固体燃料割合(コー
クス添加量)と予備還元率との関係を示すグラフ。
FIG. 6 is a graph showing a relationship between a solid fuel ratio (coke addition amount) and a preliminary reduction ratio in Example 2 of the present invention.

【符号の説明】[Explanation of symbols]

1……焼結原料ホッパ 2……返鉱ホッパ 3……媒溶剤ホッパ 4……粗粒粉コークスホッパ 5……1次ドラムミキサ 6……ディスクペレタイザ 7……微粉コークスホッパ 10……シャトルコンベア 11……無端移動グレート式焼成炉 12……点火炉 DESCRIPTION OF SYMBOLS 1 ... Sintering raw material hopper 2 ... Remineralized hopper 3 ... Medium solvent hopper 4 ... Coarse powder coke hopper 5 ... Primary drum mixer 6 ... Disc pelletizer 7 ... Fine powder coke hopper 10 ... Shuttle conveyor 11 ... Endless moving great firing furnace 12 ... Ignition furnace

───────────────────────────────────────────────────── フロントページの続き (72)発明者 野田 英俊 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 市川 孝一 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 鴨志田 友男 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 Fターム(参考) 4K001 AA10 BA01 CA16 CA35 CA39 GA02 GA10  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hidetoshi Noda 1-1-2 Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd. (72) Koichi Ichikawa 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Sun (72) Inventor Tomoo Kamoshida 1-2-1 Marunouchi, Chiyoda-ku, Tokyo F-term (reference) 4K001 AA10 BA01 CA16 CA35 CA39 GA02 GA10

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 無端移動グレート式焼結機で焼成して得
られる焼結鉱であって、焼成過程で還元率が20%以上
30%未満の範囲に予備還元されていることを特徴とす
る焼結鉱。
1. A sintered ore obtained by sintering with an endless moving grate type sintering machine, wherein the sinter is preliminarily reduced to a reduction ratio of 20% or more and less than 30% in a sintering process. Sinter.
【請求項2】 無端移動グレート式焼結機で焼成して得
られる焼結鉱であって、焼成過程で還元率が30%以上
90%未満の範囲に予備還元されていることを特徴とす
る焼結鉱。
2. A sintered ore obtained by calcining with an endless moving grate type sintering machine, wherein the ore is preliminarily reduced to a range of 30% or more and less than 90% in a firing process. Sinter.
【請求項3】 無端移動グレート式焼結機で焼成する焼
結鉱の製造方法であって、少なくとも、配合原料中のS
iO含有量を6wt.%以下に調整する工程と、前記
配合原料に粒子径が1mm〜10mmに調整された固体
燃料(A)を所定量混合して造粒物とする1次造粒工程
と、前記造粒物に粒子径が5mm以下に調整された固体
燃料(B)の所定量を混合して造粒し、固体燃料(B)
により被覆された擬似粒子とする2次造粒工程とを備え
たことを特徴とする焼結鉱の製造方法。
3. A method for producing a sintered ore which is fired by an endless moving great type sintering machine, wherein at least S
iO 2 content of 6 wt. %, A primary granulation step of mixing a predetermined amount of the solid fuel (A) having a particle diameter adjusted to 1 mm to 10 mm with the compounded raw material to form a granulated product, A predetermined amount of the solid fuel (B) whose particle diameter has been adjusted to 5 mm or less is mixed and granulated, and the solid fuel (B) is mixed.
And a secondary granulation step of forming pseudo-particles coated with sintering.
【請求項4】 混合原料1tに対する囲体燃料(A)と
固体燃料(B)の重量の和の割合が4.5wt.%〜3
0.0wt.%で、かつ、固体燃料(A)と固体燃料
(B)の重量の比(A)/(B)の値を0.8以上とす
ることを特徴とする請求項3に記載の焼結鉱の製造方
法。
4. The ratio of the sum of the weight of the enclosure fuel (A) and the weight of the solid fuel (B) to 1 t of the mixed raw material is 4.5 wt. % -3
0.0 wt. 4. The sintered ore according to claim 3, wherein the value of the weight ratio (A) / (B) of the solid fuel (A) and the solid fuel (B) is 0.8 or more. 5. Manufacturing method.
【請求項5】成品焼結鉱1tに対する固体燃料(A)と
固体燃料(B)の重量の和が50kg/t以上で、か
つ、固体燃料(A)と固体燃料(B)の重量の比(A)
/(B)の値を0.8以上となるように固体燃料の配合
量を調整することを特徴とする請求項3に記載の焼結鉱
の製造方法。
5. The sum of the weights of the solid fuel (A) and the solid fuel (B) per 1 ton of the product sintered ore is 50 kg / t or more, and the weight ratio of the solid fuel (A) and the solid fuel (B). (A)
The method for producing a sintered ore according to claim 3, wherein the blending amount of the solid fuel is adjusted so that the value of / (B) becomes 0.8 or more.
【請求項6】 無端移動グレート式焼結機で焼成して得
られる焼結鉱を高炉に装入して高炉操業を行う高炉操業
方法であって、装入する焼結鉱の焼成過程での予備還元
率を20%以上90%未満の間で制御して、高炉ガスの
発熱量を制御することを特徴とする高炉操業方法。
6. A method for operating a blast furnace by charging a sintered ore obtained by firing with an endless moving grate type sintering machine into a blast furnace, the method comprising: A method for operating a blast furnace, characterized in that the calorific value of the blast furnace gas is controlled by controlling the preliminary reduction rate between 20% and less than 90%.
JP36981898A 1998-12-25 1998-12-25 Method for producing sintered ore Expired - Fee Related JP3731361B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36981898A JP3731361B2 (en) 1998-12-25 1998-12-25 Method for producing sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36981898A JP3731361B2 (en) 1998-12-25 1998-12-25 Method for producing sintered ore

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005229831A Division JP4529838B2 (en) 2005-08-08 2005-08-08 Sinter ore and blast furnace operation method

Publications (2)

Publication Number Publication Date
JP2000192153A true JP2000192153A (en) 2000-07-11
JP3731361B2 JP3731361B2 (en) 2006-01-05

Family

ID=18495395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36981898A Expired - Fee Related JP3731361B2 (en) 1998-12-25 1998-12-25 Method for producing sintered ore

Country Status (1)

Country Link
JP (1) JP3731361B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007052776A1 (en) 2005-10-31 2007-05-10 Jfe Steel Corporation Process for producing sintered ore and sintering machine
WO2007063603A1 (en) * 2005-12-02 2007-06-07 Kyouzai Kogyo Co., Ltd. Method of granulating sintering raw material and process for producing sintered ore
KR100821076B1 (en) * 2001-11-02 2008-04-08 주식회사 포스코 A method of iron ore sintering using anthracite and coke as fuel
WO2012015066A1 (en) * 2010-07-30 2012-02-02 Jfeスチール株式会社 Method for producing starting material for sintering
WO2012015067A1 (en) * 2010-07-30 2012-02-02 Jfeスチール株式会社 Method for producing starting material for sintering
WO2012015063A1 (en) * 2010-07-30 2012-02-02 Jfeスチール株式会社 Method for producing starting material for sintering
WO2012015065A1 (en) * 2010-07-30 2012-02-02 Jfeスチール株式会社 Method for producing starting material for sintering
EP2829619A4 (en) * 2012-03-22 2015-05-27 Jfe Steel Corp Method for adjusting precursor powder for sintering, and precursor powder for sintering
JP2018044209A (en) * 2016-09-14 2018-03-22 新日鐵住金株式会社 Granulation method of raw material for sintering and granulation device
JP2019116684A (en) * 2017-12-26 2019-07-18 Jfeスチール株式会社 Manufacturing method of carbonaceous material inner package particle, and manufacturing method of carbonaceous material inner package sintered ore
CN114350936A (en) * 2021-12-15 2022-04-15 包头钢铁(集团)有限责任公司 Method for reducing sintering solid fuel consumption by controlling fuel granularity

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100821076B1 (en) * 2001-11-02 2008-04-08 주식회사 포스코 A method of iron ore sintering using anthracite and coke as fuel
WO2007052776A1 (en) 2005-10-31 2007-05-10 Jfe Steel Corporation Process for producing sintered ore and sintering machine
EP1956101A1 (en) * 2005-10-31 2008-08-13 JFE Steel Corporation Process for producing sintered ore and sintering machine
EP1956101A4 (en) * 2005-10-31 2009-12-02 Jfe Steel Corp Process for producing sintered ore and sintering machine
WO2007063603A1 (en) * 2005-12-02 2007-06-07 Kyouzai Kogyo Co., Ltd. Method of granulating sintering raw material and process for producing sintered ore
US7875097B2 (en) 2005-12-02 2011-01-25 Kyouzai Kogyo Co., Ltd. Method of granulating raw material for sintering, and method of manufacturing sintered iron ore
KR101018931B1 (en) 2005-12-02 2011-03-02 교오자이 고오교오 가부시끼가이샤 Method of granulating sintering raw material and process for producing sintered ore
JP5021492B2 (en) * 2005-12-02 2012-09-05 協材興業株式会社 Method for granulating sintered raw material and method for producing sintered ore
WO2012015065A1 (en) * 2010-07-30 2012-02-02 Jfeスチール株式会社 Method for producing starting material for sintering
WO2012015063A1 (en) * 2010-07-30 2012-02-02 Jfeスチール株式会社 Method for producing starting material for sintering
WO2012015067A1 (en) * 2010-07-30 2012-02-02 Jfeスチール株式会社 Method for producing starting material for sintering
WO2012015066A1 (en) * 2010-07-30 2012-02-02 Jfeスチール株式会社 Method for producing starting material for sintering
JP2013036049A (en) * 2010-07-30 2013-02-21 Jfe Steel Corp Method of producing raw material for sintering
JP2013036048A (en) * 2010-07-30 2013-02-21 Jfe Steel Corp Method of producing raw material for sintering
JP2013036050A (en) * 2010-07-30 2013-02-21 Jfe Steel Corp Method of producing raw material for sintering
CN103038368A (en) * 2010-07-30 2013-04-10 杰富意钢铁株式会社 Method for producing starting material for sintering
CN103038368B (en) * 2010-07-30 2014-10-15 杰富意钢铁株式会社 Method for producing starting material for sintering
EP2829619A4 (en) * 2012-03-22 2015-05-27 Jfe Steel Corp Method for adjusting precursor powder for sintering, and precursor powder for sintering
JP2018044209A (en) * 2016-09-14 2018-03-22 新日鐵住金株式会社 Granulation method of raw material for sintering and granulation device
JP2019116684A (en) * 2017-12-26 2019-07-18 Jfeスチール株式会社 Manufacturing method of carbonaceous material inner package particle, and manufacturing method of carbonaceous material inner package sintered ore
CN114350936A (en) * 2021-12-15 2022-04-15 包头钢铁(集团)有限责任公司 Method for reducing sintering solid fuel consumption by controlling fuel granularity

Also Published As

Publication number Publication date
JP3731361B2 (en) 2006-01-05

Similar Documents

Publication Publication Date Title
JP2004285399A (en) Method for producing granular metallic iron
US20110024681A1 (en) Titanium oxide-containing agglomerate for producing granular metallic iron
JP3731361B2 (en) Method for producing sintered ore
JP3900721B2 (en) Manufacturing method of high quality low SiO2 sintered ore
JP4529838B2 (en) Sinter ore and blast furnace operation method
JP3879408B2 (en) Method for producing sintered ore and sintered ore
JP2009019224A (en) Method for manufacturing sintered ore
JP3395554B2 (en) Sinter production method
JP2001348623A (en) METHOD FOR PRODUCING HIGH QUALITY AND LOW SiO2 SINTERED ORE FOR BLAST FURNACE
JP4085493B2 (en) Manufacturing method of high quality sintered ore
JP2002129247A (en) High grade sintered agglomerate for iron manufacturing and method for manufacturing the same
JP2003129141A (en) Sintered ore for blast furnace and manufacturing method therefor
JP2001294945A (en) METHOD FOR PRODUCING HIGH QUALITY AND LOW SiO2 SINTERED ORE FOR BLAST FURNACE
JP3829516B2 (en) Blast furnace operation method
JP2001262241A (en) Method for producing sintered ore containing carbon
JP3014556B2 (en) Blast furnace operation method
JP4816119B2 (en) Method for producing sintered ore
JP2008088533A (en) Method for manufacturing sintered ore
JP2001348622A (en) METHOD FOR PRODUCING HIGH QUALITY AND LOW SiO2 SINTERED ORE FOR BLAST FURNACE
JP2002226904A (en) Method for operating blast furnace
JP3864506B2 (en) Semi-reduced iron agglomerate, method for producing the same, and method for producing pig iron
JP5971482B2 (en) Agglomerate production method
JP2004225147A (en) Method for manufacturing sintered ore for blast furnace
JP2000290709A (en) Method for charging raw material into blast furnace
JPH034609B2 (en)

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051003

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101021

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101021

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121021

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121021

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131021

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees