JP3395554B2 - Sinter production method - Google Patents

Sinter production method

Info

Publication number
JP3395554B2
JP3395554B2 JP34939496A JP34939496A JP3395554B2 JP 3395554 B2 JP3395554 B2 JP 3395554B2 JP 34939496 A JP34939496 A JP 34939496A JP 34939496 A JP34939496 A JP 34939496A JP 3395554 B2 JP3395554 B2 JP 3395554B2
Authority
JP
Japan
Prior art keywords
iron ore
dolomite
sintering
weight
raw materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP34939496A
Other languages
Japanese (ja)
Other versions
JPH10195549A (en
Inventor
雅彦 星
尊三 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP34939496A priority Critical patent/JP3395554B2/en
Publication of JPH10195549A publication Critical patent/JPH10195549A/en
Application granted granted Critical
Publication of JP3395554B2 publication Critical patent/JP3395554B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、CaO 成分を6〜
12重量%含む焼結鉱の製造において、結晶水含有量の高
い鉄鉱石を多量に使用して、耐還元粉化性の良好な焼結
鉱を高い成品歩留で製造する方法に関する。
FIELD OF THE INVENTION The present invention contains 6 to 5 CaO components.
The present invention relates to a method for producing a sintered ore having a high reduction of pulverization resistance with a high product yield by using a large amount of iron ore having a high water content of crystallization in the production of a sintered ore containing 12% by weight.

【0002】[0002]

【従来の技術】高炉に装入される焼結鉱の一般的な製造
工程は次のとおりである。まず、粉鉄鉱石、粉コーク
ス、石灰石等の焼結原料に適量の水分を添加しながら混
合造粒機によって造粒する。この造粒処理によって擬似
粒子化された焼結原料を、焼結機のパレットに装入、充
填する。そして、焼結原料充填層の上部から下部に向か
って空気を吸引しつつ、充填層の上部に点火し、原料中
の粉コークスを上部から順次燃焼させて焼結原料を焼成
する。焼成後は、パレットを傾転して焼成物(焼結ケー
キと称する)を取り出し、破砕、冷却した後、一定粒度
以上の焼結鉱を高炉装入原料として供する。ここで、一
定粒度未満の焼成物は返鉱として再び焼結原料に戻され
る。
2. Description of the Related Art A general process for producing a sintered ore charged into a blast furnace is as follows. First, granulation is performed by a mixing granulator while adding an appropriate amount of water to a sintering raw material such as powdered iron ore, powdered coke, and limestone. The sintering raw material that has been made into pseudo particles by this granulation process is charged and filled in a pallet of a sintering machine. Then, while sucking air from the upper part to the lower part of the sintering raw material packed bed, the upper part of the packed bed is ignited and the coke powder in the raw material is sequentially burned from the upper part to sinter the sintering raw material. After firing, the pallet is tilted to take out a fired product (referred to as a sintered cake), which is crushed and cooled, and then sinter having a certain grain size or more is provided as a blast furnace charging raw material. Here, the calcined product having a particle size smaller than a certain size is returned to the sintering raw material as return ore.

【0003】ここで、高炉に装入される焼結鉱は、一般
的な高炉操業上の理由からCaO成分6〜12重量%(以
下、「重量%」を単に「%」と記載する)の焼結鉱が望
まれる。これは、CaO成分が6%未満では、焼結過程に
おいて融液の生成量が不十分であり強度の低い焼結鉱と
なるためである。このような強度の低い焼結鉱は、高炉
炉内の上部で荷下がりによる応力を受けた際、大量の粉
を発生し、高炉の通気性を悪化させる。さらに高炉操業
は、塩基度すなわちCaO/SiO2比率一定のもとで操業する
必要があるが、CaO成分が6%未満ではこれに伴ってSiO
2成分を減らす必要があり、高炉でのスラグ量が減少し
過ぎてしまい、高炉での脱S(硫黄)能力が低下する。
また、CaO成分が12%を超えると、高炉スラグに含まれ
るSiO2量を増加させる必要から、高炉でのスラグ量が過
剰となり、高炉炉内の通気性を悪化させ、高炉の生産性
が低下する。
Here, the sinter charged into the blast furnace contains 6 to 12% by weight of CaO component (hereinafter, "% by weight" will be simply referred to as "%") for reasons of general blast furnace operation. Sintered ore is desired. This is because if the content of CaO is less than 6%, the amount of melt generated in the sintering process is insufficient and the sintered ore becomes low in strength. Such a low-strength sinter produces a large amount of powder when subjected to stress due to unloading in the upper part of the blast furnace and deteriorates the air permeability of the blast furnace. Furthermore, blast furnace operation needs to be carried out under the condition of a basicity, that is, a constant CaO / SiO 2 ratio, but if the CaO content is less than 6%, the SiO
It is necessary to reduce the two components, the amount of slag in the blast furnace decreases too much, and the de-S (sulfur) capacity in the blast furnace decreases.
Also, if the CaO content exceeds 12%, the amount of SiO 2 contained in the blast furnace slag must be increased, so the amount of slag in the blast furnace becomes excessive, which deteriorates the air permeability in the blast furnace and reduces the productivity of the blast furnace. To do.

【0004】近年、良質の塊鉱石が枯渇してきたため、
高炉装入原料に占める焼結鉱の比率(以下、これを「焼
結比」と記載する)を高める高炉操業方法が一般的にな
ってきた。そのため、従来よりも優れた品質の焼結鉱が
求められる傾向にある。しかしながら、良質な鉄鉱石の
枯渇は焼結原料である粉鉄鉱石においても塊鉱石と同様
であり、結晶水含有量が5.0 %以上の鉄品位の低い劣質
な鉄鉱石(以下、これを「高結晶水鉄鉱石」と記載す
る)を使用する比率が高くなる傾向にある。
In recent years, since high-quality lump ores have been depleted,
Blast furnace operating methods for increasing the ratio of sintered ore to the blast furnace charging raw material (hereinafter referred to as "sintering ratio") have become common. Therefore, there is a tendency that a sinter having higher quality than before is required. However, depletion of high-quality iron ore is similar to that of lump ore in powdered iron ore, which is a raw material for sintering, and poor quality iron ore with a low water content of 5.0% or more of crystal water (hereinafter referred to as “high There is a tendency that the ratio of using "crystal water iron ore") becomes high.

【0005】焼結原料中に占める高結晶水鉄鉱石の割合
が高くなると、焼結鉱の還元粉化性と強度が悪化し、こ
のような焼結鉱を高炉に使用すると高炉炉内の通気性を
悪化させるという問題を生じる。
When the proportion of highly crystalline hydrous iron ore in the sintering raw material becomes high, the reduction powdering property and strength of the sinter deteriorate, and when such a sinter is used in a blast furnace, the ventilation in the blast furnace becomes difficult. It causes a problem of worsening sex.

【0006】高結晶水鉄鉱石の割合が高くなると、焼結
鉱の還元粉化性と強度が悪化するのは、つぎの2つの理
由によるものである。
[0006] When the proportion of highly crystalline hydrous iron ore increases, the reduction powdering property and strength of the sintered ore deteriorates for the following two reasons.

【0007】焼結鉱製造過程の焼成段階において、高
結晶水鉄鉱石に含まれる結晶水が、粉コークスの燃焼熱
によって脱水反応を起こす。この脱水反応にともなう結
晶水の体積膨張が鉄鉱石に微細な気孔や亀裂を発生させ
るため、鉄鉱石の反応面積が著しく増大し、鉄鉱石中の
Fe2O3と融液の反応である焼結化反応が過剰に進行し易
い状態になる。しかし、充填層全体でみると、融液の流
動性が悪化し充填層全体に融液が移動しないため、焼結
化反応が不十分となる。その結果、焼結鉱の強度と成品
歩留が悪化する。
[0007] In the firing stage of the sinter production process, the water of crystallization contained in the high crystal water iron ore causes a dehydration reaction due to the combustion heat of the powder coke. The volume expansion of water of crystallization accompanying this dehydration reaction causes fine pores and cracks in the iron ore, which significantly increases the reaction area of the iron ore.
The sintering reaction, which is a reaction between Fe 2 O 3 and the melt, is likely to proceed excessively. However, when viewed as the whole packed bed, the fluidity of the melt is deteriorated and the melt does not move to the whole packed bed, so that the sintering reaction becomes insufficient. As a result, the strength of the sintered ore and the product yield deteriorate.

【0008】鉄鉱石に発生した微細な気孔や亀裂は、
焼結鉱中に残留するため、還元ガスと焼結鉱の接触が容
易な状態になる。その結果、高炉内の400〜600℃の温度
域における還元雰囲気で粉化し易く、現在の品質管理項
目の1つである還元粉化指数(RDI:550℃、30分の
還元雰囲気で保持した焼結鉱をドラム中で900回転後の
粒径2.83mm以下の重量割合、日本鉄鋼協会共同研究会製
銑部会法)が悪化する。従来、これを解決する方法とし
て、焼結原料に添加する粉コークスの配合量を増加する
ことによって焼結化反応に必要な熱量を補い、融液の流
動性と量の確保を図って対応している。しかしながら、
この方法ではエネルギー消費量の増加や過剰な熱量の投
入によって充填層内部に不均一焼成が発生し、原料充填
層の通気性悪化を招き、結果として生産性が悪化すると
いう問題がある。
The fine pores and cracks generated in the iron ore are
Since it remains in the sinter, the reducing gas and the sinter can easily come into contact with each other. As a result, the blast furnace is easily pulverized in the reducing atmosphere in the temperature range of 400 to 600 ° C., and the reducing pulverization index (RDI: 550 ° C., which is one of the current quality control items, is maintained in the reducing atmosphere for 30 minutes. After 900 rotations of the sinter in the drum, the weight ratio of the grain size is 2.83 mm or less, the Iron and Steel Institute Joint Research Group, Ironmaking Group Method) deteriorates. Conventionally, as a method to solve this, by increasing the amount of powdered coke added to the sintering raw material, the amount of heat required for the sintering reaction is supplemented, and the flowability and amount of the melt are ensured. ing. However,
In this method, there is a problem in that the increase in energy consumption and the input of an excessive amount of heat cause non-uniform firing inside the packed bed, which deteriorates the air permeability of the raw material packed bed, resulting in poor productivity.

【0009】特開昭57-79129号公報には、高結晶水鉄鉱
石である粗粒リモナイト質鉄鉱石に微量のAl2O3 を含有
するSiO2粘土質物質と、MgO-SiO2含有粘土質物質のう
ち、1種または2種以上を5〜15%加えて混合破砕する
ことによって、粉コークスの配合量を変えることなく焼
成する方法が開示されている。これは、MgO-SiO2含有粘
土質物質をリモナイト質鉄鉱石の表面に被覆することに
より、リモナイト質鉄鉱石と石灰石との反応を調整する
方法である。しかし、この方法には以下の問題がある。
Japanese Unexamined Patent Publication (Kokai) No. 57-79129 discloses an SiO 2 clay material containing a trace amount of Al 2 O 3 in a coarse-grained limonite iron ore, which is a highly crystalline hydroiron ore, and an MgO-SiO 2 containing clay. Disclosed is a method in which 5 to 15% of one or more of the quality substances are added and mixed and crushed, and the mixture is calcined without changing the blending amount of the powder coke. This is a method of adjusting the reaction between the limonitic iron ore and the limestone by coating the surface of the limonitic iron ore with the MgO-SiO 2 -containing clayey substance. However, this method has the following problems.

【0010】MgO-SiO2含有粘土質物質を使用するた
め、焼結鉱に含まれるスラグ成分の増加による高炉スラ
グ量の増加を招き、高炉での焼結比を高めることができ
ない。
Since the MgO-SiO 2 -containing clayey substance is used, the amount of blast furnace slag increases due to an increase in the slag component contained in the sinter, and the sintering ratio in the blast furnace cannot be increased.

【0011】リモナイト鉱石にMgO-SiO2含有粘土質物
質を被覆するには、これらを混合破砕する必要がある。
そのため、粗粒鉄鉱石であるリモナイト質鉄鉱石も少な
からず破砕され、焼結原料粒径の低下を招く。これは、
結果として焼結鉱製造過程での充填層の通気性悪化によ
る生産性と歩留の悪化を招く。
In order to coat the limonite ore with the MgO-SiO 2 -containing clayey material, it is necessary to mix and crush them.
Therefore, limonite iron ore, which is a coarse-grained iron ore, is also crushed to some extent, and the particle size of the sintering raw material is reduced. this is,
As a result, the productivity and the yield are deteriorated due to the deterioration of the air permeability of the packed bed in the manufacturing process of the sinter.

【0012】[0012]

【発明が解決しようとする課題】本発明の目的は、CaO
成分を6〜12%含む焼結鉱を製造するに際し、結晶水含
有量が5.0%以上の鉄鉱石を多量に使用して、良好な耐
還元粉化性を有する焼結鉱を高い成品歩留で製造する方
法を提供することにある。
The object of the present invention is to provide CaO.
When producing a sinter containing 6 to 12% of components, a large amount of iron ore with a water content of crystallization of 5.0% or more is used to produce a sinter having a good reduction pulverization resistance and a high product yield. It is to provide a method of manufacturing.

【0013】[0013]

【課題を解決するための手段】本発明者らは、高結晶水
鉄鉱石とドロマイトを使用する方法について研究を重
ね、高結晶水鉄鉱石と特定の粒度構成をもつドロマイ
トを所定比率配合する、特定の粒度構成をもつ高結晶
水鉄鉱石を使用する、高結晶水鉄鉱石を含む焼結原料
を撹拌羽根を内蔵した混合機で混合する、ことにより耐
還元粉化性の良好な焼結鉱を高い成品歩留で製造できる
ことの知見を得た。
[Means for Solving the Problems] The inventors of the present invention have conducted extensive research on a method of using highly crystalline hydrous iron ore and dolomite, and blending highly crystalline hydrous iron ore and dolomite having a specific particle size composition in a predetermined ratio. Sintered ore with good reduction pulverization resistance by mixing the sintering raw material containing highly crystalline hydrous iron ore with a specific grain size composition with a mixer with a built-in stirring blade. We obtained the knowledge that can be manufactured with high product yield.

【0014】本発明は、これらの知見に基づき完成さ
れ、その要旨は、下記の焼結鉱の製造方法にある。
The present invention has been completed based on these findings, and its gist resides in the following method for producing a sintered ore.

【0015】CaO 成分が6〜12重量%の焼結鉱の製造に
おいて、5.0 %以上の結晶水を含む鉄鉱石を全焼結原料
に対して20重量%以上配合し、かつ粒径0.25〜1.0 mmの
粒子の比率が30%以上のドロマイトを全焼結原料に対し
て0.5〜25%配合し、その配合原料を混合造粒した後、
焼成する焼結鉱の製造方法。
In the production of a sinter having a CaO content of 6 to 12% by weight, iron ore containing 5.0% or more of water of crystallization is blended in an amount of 20% by weight or more with respect to the entire sintering raw material, and a particle size is 0.25 to 1.0 mm. Dolomite having a particle ratio of 30% or more is mixed with 0.5 to 25% with respect to all sintering raw materials, and after the mixed raw materials are mixed and granulated,
A method for producing a sintered ore that is fired.

【0016】上記5.0 %以上の結晶水を含む鉄鉱石は、
粒径5mm以下の粒子が80%以上で、かつ粒径1mm以上の
粒子が45%以上の粒度をもつことが望ましい。また、上
記5.0%以上の結晶水を含む鉄鉱石とドロマイトを予め
混合造粒した後、他の焼結原料と混合または混合造粒
し、焼成することが望ましい。さらに、上記の焼結原料
の混合造粒は、撹拌羽根を内蔵した混合機によって行う
ことが望ましい。
The iron ore containing above 5.0% of crystal water is
It is desirable that particles having a particle size of 5 mm or less have a particle size of 80% or more and particles having a particle size of 1 mm or more have a particle size of 45% or more. Further, it is desirable to mix and granulate the iron ore containing 5.0% or more of water of crystallization and dolomite in advance, and then mix or mix granulate with other sintering raw materials and then calcinate. Furthermore, it is desirable that the above-mentioned mixing and granulation of the sintering raw material be performed by a mixer having a built-in stirring blade.

【0017】本発明方法において、粒子の大きさを表す
「mm」とは、篩目の代表径を意味する。例えば、粒径
0.25mm 以下の粒子とは篩目が 0.25mm の篩でふるった
ときの篩下を意味し、粒径0.25〜1.0 mmの粒子とは篩目
が1mmの篩でふるったときの篩下であって、0.25mmの篩
上に残った粒子を意味する。
In the method of the present invention, "mm" representing the size of the particles means the representative diameter of the sieve mesh. For example, particle size
Particles with a size of 0.25 mm or less mean the size under the screen when the size of the screen is 0.25 mm, and particles with a size of 0.25 to 1.0 mm are those under the size of the screen with the size of 1 mm. Means the particles left on the 0.25 mm sieve.

【0018】[0018]

【発明の実施の形態】本発明の焼結鉱の製造は、高結晶
水鉄鉱石を全焼結原料に対して20%以上配合し、かつ粒
度0.25〜1.0 mmの比率が30%以上のドロマイトを全焼結
原料に対して0.5〜25%配合し、この配合原料を混合造
粒した後、焼成することによって行われる。
BEST MODE FOR CARRYING OUT THE INVENTION Sintered ore according to the present invention is produced by mixing dolomite with 20% or more of highly crystalline hydrous iron ore in the total sintering raw material and having a particle size ratio of 0.25 to 1.0 mm of 30% or more. It is carried out by mixing 0.5 to 25% with respect to all the sintering raw materials, mixing and granulating the mixed raw materials, and then firing.

【0019】以下、上記のように規定した項目ごとに説
明する。
Each item defined as above will be described below.

【0020】1.鉄鉱石の結晶水含有量について:図1
は、焼結原料中に占める高結晶水鉄鉱石配合割合と焼結
鉱成品歩留との関係を示す図である。同図は公知であ
り、これから5%の結晶水を含む鉄鉱石を20%以上使用
すると、焼結鉱の成品歩留が低下することがわかる。こ
の歩留の低下は、以下の理由によるものである。
1. Crystal water content of iron ore: Fig. 1
FIG. 4 is a diagram showing a relationship between a mixing ratio of highly crystalline hydroiron ore in a sintering raw material and a yield of a sintered mineral product. This figure is publicly known, and it can be seen from this that if 20% or more of iron ore containing 5% crystallization water is used, the product yield of the sintered ore decreases. This decrease in yield is due to the following reasons.

【0021】焼結過程での鉄鉱石から結晶水が脱水する
反応により、鉄鉱石に微細な気孔や亀裂が生成し、鉄鉱
石の反応面積が著しく増大し、鉄鉱石中のFe2O3と融液
の反応である焼結化反応が過剰に進行し易い状態にな
る。しかし、充填層全体でみると、融液の流動性が悪化
し充填層全体に融液が移動しないため、焼結化反応が不
十分となる。したがって、本発明においては、高結晶水
鉄鉱石の配合量を全焼結原料の20%以上とした。また、
配合の上限を制限する必要はないが、副原料との関係で
高結晶水鉄鉱石は55%以下とするのが望ましい。
Due to the reaction of dehydration of water of crystallization from the iron ore in the sintering process, fine pores and cracks are formed in the iron ore, the reaction area of the iron ore is remarkably increased, and Fe 2 O 3 in the iron ore is increased. The sintering reaction, which is a reaction of the melt, is likely to proceed excessively. However, when viewed as the whole packed bed, the fluidity of the melt is deteriorated and the melt does not move to the whole packed bed, so that the sintering reaction becomes insufficient. Therefore, in the present invention, the compounding amount of the high crystal hydrous iron ore is set to 20% or more of the total sintering raw material. Also,
It is not necessary to limit the upper limit of the blending, but it is desirable that the content of highly crystalline hydrous iron ore is 55% or less in relation to the auxiliary raw material.

【0022】本発明において、高結晶水鉄鉱石の粒度構
成を「粒径5mm以下の粒子が80%以上で、かつ粒径1mm
以上が45%以上とするのが望ましい」としたのは次の理
由による。
In the present invention, the grain size composition of the high crystal hydrous iron ore is defined as "80% or more of particles having a particle size of 5 mm or less and having a particle size of 1 mm".
It is desirable that the above is 45% or more. "

【0023】焼結原料を焼結機のパレットに装入・充填
すると、粒度偏析によって粒径の大きな粒子はパレット
の中、下層部に集中する。そのため、高結晶水鉄鉱石中
の粒径5mm以上の粒子が20%を超えて含まれると、これ
らの大部分がパレットの中、下層部に集中してしまう。
その結果、この部位に流動性の低い融液が多量に発生
し、充填層の通気を阻害して生産性を低下させる。ま
た、粒径1mm以上の粒子が45%未満では、粒径の小さい
ものが多く含まれており、焼成時の脱水反応による気孔
や亀裂の発生にともなう反応面積の増加が少なく、本発
明方法の効果が得られない。
When the sintering raw material is charged and filled in the pallet of the sintering machine, the particles having a large particle size are concentrated in the lower layer of the pallet due to the particle size segregation. Therefore, if more than 20% of particles having a particle size of 5 mm or more are contained in the high crystal hydrous iron ore, most of these particles concentrate in the lower layer of the pallet.
As a result, a large amount of melt having low fluidity is generated in this portion, which obstructs the ventilation of the packed bed and reduces productivity. Further, if the content of particles having a particle size of 1 mm or more is less than 45%, many of the particles having a small particle size are included, and the increase in the reaction area due to the generation of pores and cracks due to the dehydration reaction at the time of firing is small. No effect.

【0024】ここで、高結晶水鉄鉱石としては、SF.
ローブリバー、SF.ヤンディークーディナー、SF.
マラマンバ等があげられる。
Here, as the high crystal water iron ore, SF.
Robb River, SF. Yandy Coup Dinner, SF.
Mara Mamba etc. can be mentioned.

【0025】2.ドロマイトについて:本発明者らは、
鉄鉱石中の結晶水と融液との関係、即ち焼結化反応にお
けるMgO 成分の機能について研究を行った。
2. About Dolomite: The inventors
The relationship between the water of crystallization in the iron ore and the melt, that is, the function of the MgO component in the sintering reaction was investigated.

【0026】図2は、鉄鉱石中の結晶水含有量と焼結鉱
の製造過程において生成する融液の流動性指数との関係
を示す図である。同図は、10%までの結晶水を含む鉄鉱
石を用いて、焼結鉱のCaO 成分を一定として(CaO+MgO)
成分を変化させて焼成したときの融液の流動性を調べた
結果である。同図から、鉄鉱石中の結晶水が5%以上に
なると、MgO 成分が多くなるほど融液の流動性が良くな
ることがわかる。これは、MgO 成分が、高結晶水鉄鉱石
中のFe2O3 成分とCaO成分との過剰な焼結化反応の進行
を抑制するためである。
FIG. 2 is a graph showing the relationship between the water content of crystallization in iron ore and the fluidity index of the melt produced in the process of producing sinter. In the figure, the iron ore containing up to 10% of water of crystallization was used, and the CaO content of the sintered ore was kept constant (CaO + MgO).
It is the result of investigating the fluidity of the melt when the components were changed and fired. From the figure, it can be seen that when the water of crystallization in the iron ore is 5% or more, the fluidity of the melt improves as the MgO content increases. This is because the MgO component suppresses the progress of the excessive sintering reaction between the Fe 2 O 3 component and the CaO component in the highly crystalline hydrous iron ore.

【0027】これから、CaO とMgO を主要成分とするド
ロマイトを使用すれば、高結晶水鉄鉱石のように焼結過
程において微細な気孔や亀裂が発生し、反応面積が増加
する鉄鉱石の過剰な焼結化反応の進行を抑制することが
できると考えた。
From the above, when dolomite containing CaO and MgO as the main components is used, fine pores and cracks are generated in the sintering process as in the case of highly crystalline hydroiron ore, and the reaction area increases. It was thought that the progress of the sintering reaction could be suppressed.

【0028】ドロマイトの配合量を全焼結原料の25%以
下としたのは、製造する焼結鉱のCaO 成分を6〜12%と
するためである。ドロマイトの配合量が25%を超えると
焼結鉱のCaO 成分は12%を超え、高炉操業に支障をきた
すからである。
The blending amount of dolomite was set to 25% or less of the total sintering raw material so that the CaO component of the sinter to be produced was 6 to 12%. This is because if the content of dolomite exceeds 25%, the CaO content of the sinter exceeds 12%, which interferes with blast furnace operation.

【0029】ドロマイトの粒度構成を粒径0.25〜1.0 mm
の粒子を30%以上含むこととしたのは、ドロマイトを高
結晶水鉄鉱石と混合造粒したとき、焼結原料中のドロマ
イトの分散性を高めて高結晶水鉄鉱石の過剰な焼結化反
応の進行を抑制するためである。粒径が0.25mm未満、ま
たは1.0 mmを超えると上記の効果が得られない。したが
って、粒径が0.25〜1.0 mmの粒子であれば、100 %であ
ってもよい。また、ドロマイトと高結晶水鉄鉱石との混
合造粒を別系統で行うと、ドロマイトを選択的に高結晶
水鉄鉱石と付着させることができ、過剰な焼結化反応の
進行を抑制する効果が高まる。
The particle size composition of dolomite is 0.25 to 1.0 mm.
The content of 30% or more of the particles of dolomite is that when dolomite is mixed and granulated with high crystal water iron ore, the dispersibility of the dolomite in the sintering raw material is increased and excessive sintering of high crystal water iron ore is performed. This is to suppress the progress of the reaction. If the particle size is less than 0.25 mm or more than 1.0 mm, the above effect cannot be obtained. Therefore, if the particle size is 0.25 to 1.0 mm, it may be 100%. In addition, when the mixed granulation of dolomite and high crystal water iron ore is performed in a different system, dolomite can be selectively attached to the high crystal water iron ore, and the effect of suppressing the progress of the excessive sintering reaction can be achieved. Will increase.

【0030】図3は、焼結原料の混合造粒工程を示す図
である。
FIG. 3 is a diagram showing a step of mixing and granulating sintering raw materials.

【0031】の工程は、全原料をドラムミキサーで混
合した後、注水して造粒する、の工程は、全原料を攪
拌羽根内蔵ミキサーで注水して混合した後、ドラムミキ
サーで造粒する、の工程は、A、B二系統の原料をそ
れぞれドラムミキサーで混合した後、注水して造粒し、
それぞれを混合する、の工程は、A系統の原料をドラ
ムミキサーで注水して混合した後、ドラムミキサーで造
粒し、B系統の原料をドラムミキサーで混合し、A、B
原料をドラムミキサーで注水して造粒する、の工程
は、A系統の原料を攪拌羽根内蔵ミキサーで注水して混
合した後、ドラムミキサーで造粒し、B系統の原料をド
ラムミキサーで混合した後、注水して造粒し、それぞれ
を混合する、の工程は、A系統の原料を攪拌羽根内蔵
ミキサーで注水して混合した後、ドラムミキサーで造粒
し、B系統の原料をドラムミキサーで混合し、A、B原
料をドラムミキサーで注水して造粒する。
In the step (1), after mixing all the raw materials with a drum mixer, water is poured and granulated. In the step (1), all the raw materials are poured with a mixer having a stirring blade and mixed, and then granulated with a drum mixer. In the process of, after mixing the two raw materials of A and B with a drum mixer respectively, water is poured and granulated,
In the process of mixing each, the A-system raw materials are poured and mixed by a drum mixer, then granulated by the drum mixer, and the B-system raw materials are mixed by the drum mixer, and A and B are mixed.
In the step of injecting the raw material with a drum mixer to granulate, the raw material of system A is poured with a mixer with a stirring blade to mix, then granulated with a drum mixer, and the raw material of system B is mixed with a drum mixer. After that, in the process of pouring water to granulate and mixing each, the raw materials of system A are mixed with water by a mixer with a stirring blade, then granulated with a drum mixer, and the raw materials of system B are mixed with a drum mixer. Mix and granulate by pouring A and B raw materials with a drum mixer.

【0032】工程よりも工程、工程よりも工程
、または工程よりも工程の方が工程が煩雑になる
が、成品歩留および成品品質がよくなる。
Although the process becomes more complicated than the process, the process more than the process, or the process more than the process, the product yield and the product quality are improved.

【0033】3.混合造粒について:本発明方法におい
て使用する撹拌羽根を内蔵した混合機とは、円筒形パン
内に撹拌を目的とする羽根が設置され、パンと羽根との
双方が回転運動する混合機であり、代表例としてはアイ
リッヒミキサー(商品名)と呼ばれるものがある。この
タイプの混合機は、羽根の回転速度が1rpm 以上で、被
混合物に対して圧密作用がないために十分な均一混合が
可能である。従って、この型の混合機で焼結原料の撹拌
混合を行えば、高結晶水鉄鉱石を破砕することなく、ド
ロマイトを原料中に均一に分散することができる。これ
により、高結晶水鉄鉱石に対するドロマイトの効果を十
分に活用することができ、耐還元粉化性の良好な焼結鉱
を高い歩留で製造できる。また、撹拌羽根を内蔵した混
合機を使用して焼結原料を混合した後に、さらに1〜3
台の転動型造粒機(ドラムミキサーとも称する)を使用
して造粒を行ってもよい。
3. Regarding mixing and granulation: A mixer with a built-in stirring blade used in the method of the present invention is a mixer in which a blade for the purpose of stirring is installed in a cylindrical pan, and both the pan and the blade are rotationally moved. As a typical example, there is one called an Erich mixer (trade name). In this type of mixer, the rotation speed of the blades is 1 rpm or more, and since there is no compaction action on the material to be mixed, sufficient uniform mixing is possible. Therefore, by stirring and mixing the sintering raw materials with this type of mixer, dolomite can be uniformly dispersed in the raw materials without crushing the highly crystalline hydrous iron ore. This makes it possible to fully utilize the effect of dolomite on the high-crystal hydrous iron ore, and it is possible to manufacture a sinter having good resistance to reduction pulverization with a high yield. In addition, after mixing the sintering raw materials using a mixer with a built-in stirring blade,
Granulation may be performed using a rolling tumbling granulator (also referred to as a drum mixer).

【0034】[0034]

【実施例】【Example】

(実施例1)焼結原料は、表1に示す化学成分および粒
度構成をもつ鉄鉱石と副原料を用意し、表2および表3
に示す配合割合で配合した。焼成試験は、内径 300mmの
円筒形のポットに焼結原料を装入し、層高 500mm、空塔
風速 15.0 Nm3/ (m2・min)の一定条件で行った。空塔風
速を一定とした理由は、焼成時間を一定とするためであ
る。つまり、焼結過程のヒートパターンを一定として、
焼結鉱の歩留と品質を評価した。なお、点火条件は液化
石油ガス(LPG) 90 リットル/分で2分間とし、焼
成終了は排ガス温度最高到達点(BTP)後 90 秒とし
た。
(Example 1) As sintering raw materials, iron ore having the chemical composition and grain size constitution shown in Table 1 and auxiliary raw materials were prepared, and Tables 2 and 3 were used.
It was compounded in the compounding ratio shown in. The firing test was carried out by charging a sintering raw material into a cylindrical pot having an inner diameter of 300 mm, a bed height of 500 mm, and a superficial air velocity of 15.0 Nm 3 / (m 2 · min). The reason why the superficial air velocity is constant is that the firing time is constant. In other words, keeping the heat pattern of the sintering process constant,
The yield and quality of sinter were evaluated. The ignition condition was 90 liters / minute of liquefied petroleum gas (LPG) for 2 minutes, and the firing was completed 90 seconds after the maximum exhaust gas temperature reached (BTP).

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【表2】 [Table 2]

【0037】[0037]

【表3】 [Table 3]

【0038】混合造粒のために使用したミキサーは、攪
拌羽根内蔵ミキサー(アイリッヒミキサー)とドラムミ
キサーであり、それらの仕様を表4に示した。
The mixers used for the mixing and granulation were a mixer equipped with stirring blades (Erich mixer) and a drum mixer, and their specifications are shown in Table 4.

【0039】[0039]

【表4】 [Table 4]

【0040】得られた焼結鉱の成品歩留と還元粉化性を
調査し、結果を表5に示した。
The product yield and reduction powderability of the obtained sinter were investigated, and the results are shown in Table 5.

【0041】[0041]

【表5】 [Table 5]

【0042】表5から次のことがわかる。The following can be seen from Table 5.

【0043】試験No.3〜8 は、高結晶水鉄鉱石を全焼結
原料に対して20〜55%配合し、かつ粒径0.25〜1.0 mmの
比率が55 %のドロマイトを全焼結原料に対して10%配
合し、焼結鉱のCaO 成分10.0%とした本発明の方法によ
るものである。これより、成品歩留は79.5〜85.4%、還
元粉化性は41.0〜38.6と良好である。
In Test Nos. 3 to 8, high crystal hydrous iron ore was blended in an amount of 20 to 55% with respect to all the sintering raw materials, and dolomite having a particle size of 0.25 to 1.0 mm and a ratio of 55% was added to all the sintering raw materials. 10%, and the CaO component of the sinter is 10.0%, according to the method of the present invention. As a result, the product yield was 79.5 to 85.4% and the reduction powderability was 41.0 to 38.6.

【0044】これに対して、従来例の試験No.1 はドロ
マイトを配合していないため焼結鉱の成品歩留77.6%、
還元粉化性43.9%と悪い。比較例の試験No.2は成品歩留
85.3%、還元粉化性36.3%と良好であるが、高結晶水鉄
鉱石の配合量が10%と少ないため、鉄品位の低い劣質な
鉄鉱石である高結晶水鉄鉱石を多量に使用する技術とは
いえない。
On the other hand, the test No. 1 of the conventional example does not contain dolomite, and the product yield of the sintered ore is 77.6%.
Poor reduction powderability of 43.9%. Test No. 2 of the comparative example is the product yield
85.3% and reduction powderability 36.3% are good, but since the amount of high crystal water iron ore is as small as 10%, a large amount of high crystal water iron ore, which is an inferior iron ore with low iron grade, is used. Not a technology.

【0045】試験No.6、10〜12は、高結晶水鉄鉱石を全
焼結原料に対して30%配合し、かつ粒径0.25〜1.0 mmの
比率が32〜93%のドロマイトを全焼結原料に対して10%
配合し、焼結鉱のCaO成分10.0%とした本発明の方法に
よるものである。これより、成品歩留は81.7〜86.3%、
還元粉化性は39.0〜35.8%と良好である。
In Test Nos. 6 and 10 to 12, dolomite having a high crystallite iron ore content of 30% with respect to the total sintering raw material and a particle size of 0.25 to 1.0 mm in the ratio of 32 to 93% was used as the total sintering raw material. Against 10%
This is due to the method of the present invention in which the content of CaO in the sinter is 10.0%. From this, the product yield is 81.7-86.3%,
The reduction powderability is as good as 39.0 to 35.8%.

【0046】これに対して、比較例の試験No.9は粒径
0.25〜1.0mmの比率が28%のドロマイトを配合している
ため、成品歩留78.6%、還元粉化性41.8%と悪い。
On the other hand, the test No. 9 of the comparative example has a particle size.
Dolomite with a ratio of 0.25 to 1.0 mm of 28% is mixed, resulting in a poor product yield of 78.6% and reduced powderability of 41.8%.

【0047】試験No.6、13〜16は、高結晶水鉄鉱石を全
焼結原料に対して30%配合し、かつ粒径0.25〜1.0 mmの
比率が55%のドロマイトを全焼結原料に対して0.5〜25
%配合し、焼結鉱のCaO成分10.0〜11.8%とした本発明
の方法によるものである。これより、成品歩留は80.4〜
85.5%、還元粉化性は39.8〜36.3%と良好である。
In Test Nos. 6 and 13 to 16, high-crystal hydrous iron ore was blended in an amount of 30% with respect to all the sintering raw materials, and dolomite having a particle size of 0.25 to 1.0 mm and a ratio of 55% was added to all the sintering raw materials. 0.5 to 25
%, And the CaO component of the sinter is set to 10.0 to 11.8% by the method of the present invention. From this, the product yield is 80.4-
85.5%, reduction powderability is good with 39.8-36.3%.

【0048】これに対して、比較例の試験No.17は、ド
ロマイトを全焼結原料に対して40%と過剰に配合したた
め、成品歩留は85.4%、還元粉化性は35.7%と良好であ
るが、焼結鉱のCaO成分が18.4%と適正範囲を超えてし
まう。
On the other hand, in the test No. 17 of the comparative example, since the dolomite was blended in an excessive amount of 40% with respect to all the sintering raw materials, the product yield was 85.4% and the reduction powderability was 35.7%. However, the CaO content of the sinter is 18.4%, which exceeds the proper range.

【0049】試験No.4〜8、10〜16は、粒径5mm以下の
比率が80%以上で、かつ粒径1mm以上の比率が45%以上
の高結晶水鉄鉱石を全焼結原料に対して20〜55%配合
し、さらに粒径0.25〜1.0mmの比率が32〜93%のドロマ
イトを全焼結原料に対して0.5〜25%配合し、焼結鉱のC
aO 成分を10.0〜11.8%とした本発明の方法によるもの
である。これより、成品歩留は80.4〜86.3%、還元粉化
性は40.1〜35.7%と良好である。
Test Nos. 4 to 8 and 10 to 16 were made of high crystal hydrous iron ore having a particle size of 5 mm or less in a ratio of 80% or more and a particle size of 1 mm or more in a ratio of 45% or more to all sintering raw materials. 20 to 55%, and dolomite having a particle size of 0.25 to 1.0 mm and a ratio of 32 to 93% is mixed with 0.5 to 25% of all the sintering raw materials.
This is due to the method of the present invention in which the aO component is 10.0 to 11.8%. As a result, the product yield was 80.4 to 86.3%, and the reduction powderability was 40.1 to 35.7%.

【0050】これに対して試験No.3は、粒径5mm以下の
比率が95%以上で、かつ粒径1mm以上の比率が35%以上
の高結晶水鉄鉱石を配合したため、成品歩留は79.5%、
還元粉化性は41.0%である。
On the other hand, in Test No. 3, since the proportion of highly crystallized water iron ore having a particle size of 5 mm or less in a ratio of 95% or more and the particle size of 1 mm or more in a ratio of 35% or more, the product yield is high. 79.5%,
The reduction powderability is 41.0%.

【0051】(実施例2)高結晶水鉄鉱石と通常の鉄鉱
石とを図3の工程およびに示すように2系統に分割
して混合造粒し、高結晶水鉄鉱石にはドロマイトを配合
する試験を行った。原料の配合および分割は、表6の配
合18および配合19とした。なお、混合造粒方法以外の試
験方法は、実施例1と同様である。それらの試験結果を
表7に示す。
Example 2 A high crystal water iron ore and a normal iron ore are divided into two systems as shown in the step of FIG. 3 and mixed and granulated, and the high crystal water iron ore is mixed with dolomite. The test was done. The blending and division of the raw materials were blending 18 and blending 19 in Table 6. The test method other than the mixed granulation method is the same as in Example 1. The test results are shown in Table 7.

【0052】[0052]

【表6】 [Table 6]

【0053】[0053]

【表7】 [Table 7]

【0054】試験No.19 は分割原料をドラムミキサーを
用いて工程で混合、造粒したもの。試験No.20 は高結
晶水鉄鉱石とドロマイトを含む分割原料Aをドラムミキ
サーを用いて混合、造粒し、高結晶水鉄鉱石を含まない
分割原料Bをドラムミキサーで混合し、両者を合わせて
ドラムミキサーで造粒した(工程)本発明の方法によ
るものである。これより、試験No.19および20の成品歩
留はそれぞれ85.4、86.6%、還元粉化性36.7、35.8%と
良好である。
Test No. 19 was obtained by mixing and granulating divided raw materials in a process using a drum mixer. Test No. 20 was to mix and granulate the divided raw material A containing high crystal water iron ore and dolomite with a drum mixer, and to mix the divided raw material B containing no high crystal water iron ore with a drum mixer, and combine both. Granulated by a drum mixer (step) by the method of the present invention. As a result, the product yields of Test Nos. 19 and 20 were 85.4 and 86.6%, respectively, and the reduction powderability was 36.7 and 35.8%, respectively.

【0055】これに対して、従来例の試験No.1は、ドロ
マイトを配合せず、かつ原料を分割せずにドラムミキサ
ーを用いて工程で混合、造粒したものであり、試験N
o.18はドロマイトを配合せず、分割原料をドラムミキサ
ーを用いて工程で混合、造粒したものである。これよ
り、試験No.1および18の成品歩留はそれぞれ77.6、78.6
%、還元粉化性43.9、42.8%と悪い。
On the other hand, Test No. 1 of the conventional example is one in which dolomite was not blended and the raw materials were mixed and granulated in a process using a drum mixer without dividing the raw materials.
o.18 is a mixture of granulated raw materials without mixing dolomite and granulated in a process using a drum mixer. From this, the product yields of test Nos. 1 and 18 are 77.6 and 78.6, respectively.
%, And reduction powderability is 43.9 and 42.8%, which are poor.

【0056】(実施例3)高結晶水鉄鉱石とドロマイト
を含む焼結原料を、図3の工程、およびに示すよ
うに撹拌羽根を内蔵した混合機によって混合造粒する試
験を行った。原料の配合および分割は、表2の配合6お
よび表6の配合19とした。なお、造粒方法以外の試験方
法は、実施例1と同様である。それらの試験結果を前記
表7に併せて示す。
(Example 3) A test was carried out in which a sintering raw material containing highly crystalline hydrous iron ore and dolomite was mixed and granulated by a mixer having a stirring blade as shown in the step of FIG. The raw materials were compounded and divided into compound 6 in Table 2 and compound 19 in Table 6. The test method other than the granulation method is the same as in Example 1. The test results are also shown in Table 7 above.

【0057】試験No.22は、原料を分割せずに撹拌羽根
を内蔵したミキサーで混合した後、ドラムミキサーで混
合造粒したもの(工程)。試験No.23は、高結晶水鉄
鉱石とドロマイトを含む分割原料Aを撹拌羽根を内蔵し
たミキサーで混合した後、ドラムミキサーで造粒し、高
結晶水鉄鉱石とドロマイトを含まない分割原料Bをドラ
ムミキサーで混合、造粒したもの(工程)。試験No.2
4は、高結晶水鉄鉱石とドロマイトを含む分割原料Aを
撹拌羽根を内蔵したミキサーで混合した後、ドラムミキ
サーで造粒し、高結晶水鉄鉱石とドロマイトを含まない
分割原料Bをドラムミキサーで混合し、両者を合わせて
ドラムミキサーで造粒したもの(工程)であり、いず
れも本発明の方法によるものである。これより、試験N
o.22〜24の成品歩留は86.0〜88.3%、還元粉化性は36.3
〜34.4%と良好である。
Test No. 22 was prepared by mixing the raw materials without dividing them with a mixer having a stirring blade and then granulating them with a drum mixer (process). Test No. 23 is a divided raw material B containing no high crystalline water iron ore and dolomite after mixing the divided raw material A containing high crystalline water iron ore and dolomite with a mixer having a stirring blade and granulated with a drum mixer. Mixing and granulating with a drum mixer (process). Test No. 2
4 is divided raw material A containing high crystal water iron ore and dolomite with a mixer having a built-in stirring blade, and then granulated with a drum mixer, and divided raw material B containing high crystal water iron ore and dolomite is not mixed with a drum mixer. And the granules were mixed with each other and granulated with a drum mixer (step), both of which were produced by the method of the present invention. From now on, test N
o.22-24 product yield is 86.0-88.3%, reducing powderability is 36.3
It is as good as ~ 34.4%.

【0058】これに対して、従来例の試験No.21は、ド
ロマイトを配合せず、かつ原料を分割せずに撹拌羽根を
内蔵したミキサーで混合した後、ドラムミキサーで造粒
したものであるため、成品歩留79.1%、還元粉化性は4
2.4%と悪い。
On the other hand, Test No. 21 of the conventional example is one in which dolomite was not compounded and the raw materials were not divided but mixed by a mixer having a stirring blade and then granulated by a drum mixer. Therefore, the product yield is 79.1% and the reduction powderability is 4
2.4% is bad.

【0059】[0059]

【発明の効果】本発明方法によれば、従来使用量を増や
すことができなかった結晶水含有量の高い鉄鉱石を多量
に使用して、粉コークスを増量することなく耐還元粉化
性の良好な高炉装入用焼結鉱を高い成品歩留で製造する
ことができる。これにより、良質鉄鉱石の枯渇に十分対
応することができる。
EFFECTS OF THE INVENTION According to the method of the present invention, a large amount of iron ore having a high water content of crystallization, which has not been able to be used in a conventional amount, is used in a large amount, and the reduction pulverization resistance can be improved without increasing the amount of coke powder. Good blast furnace charging sinter can be produced with a high product yield. This makes it possible to sufficiently deal with the depletion of high-quality iron ore.

【図面の簡単な説明】[Brief description of drawings]

【図1】焼結原料中に占める高結晶水鉄鉱石配合割合と
焼結鉱成品歩留との関係を示す図である。
FIG. 1 is a diagram showing a relationship between a mixing ratio of highly crystalline hydroiron ore in a sintering raw material and a yield of a sintered mineral product.

【図2】鉄鉱石中の結晶水含有量と融液流動性との関係
を示す図である。
FIG. 2 is a diagram showing the relationship between the water content of crystallization in iron ore and the melt fluidity.

【図3】実施例に用いた焼結原料の混合・造粒のフロー
を示す図である。
FIG. 3 is a diagram showing a flow of mixing and granulation of sintering raw materials used in Examples.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】CaO 成分が6〜12重量%の焼結鉱の製造に
おいて、5.0 重量%以上の結晶水を含む鉄鉱石を全焼結
原料に対して20重量%以上配合し、かつ粒径0.25〜1.0
mmの粒子の比率が30重量%以上のドロマイトを全焼結原
料に対して0.5〜25重量%配合し、その配合原料を混合
造粒した後、焼成することを特徴とする焼結鉱の製造方
法。
1. In the production of a sinter having a CaO content of 6 to 12% by weight, iron ore containing 5.0% by weight or more of water of crystallization is blended in an amount of 20% by weight or more with respect to all the sintering raw materials, and a grain size of 0.25. ~ 1.0
A method for producing a sintered ore characterized in that dolomite having a ratio of mm particles of 30% by weight or more is blended with 0.5 to 25% by weight with respect to all sintering raw materials, and the blended raw materials are mixed and granulated, followed by firing. .
【請求項2】上記5.0 重量%以上の結晶水を含む鉄鉱石
は、粒径5mm以下の粒子の比率が80重量%以上で、かつ
粒径1mm以上の粒子が45重量%以上であることを特徴と
する請求項1に記載の焼結鉱の製造方法。
2. The iron ore containing 5.0% by weight or more of water of crystallization has a proportion of particles having a particle size of 5 mm or less of 80% by weight and particles having a particle size of 1 mm or more of 45% by weight or more. The method for producing a sintered ore according to claim 1, which is characterized in that.
【請求項3】上記5.0重量%以上の結晶水を含む鉄鉱石
とドロマイトを予め混合造粒した後、他の焼結原料と混
合または混合造粒し、焼成することを特徴とする請求項
1に記載の焼結鉱の製造方法。
3. The iron ore containing 5.0% by weight or more of water of crystallization and dolomite are mixed and granulated in advance, and then mixed or mixed granulated with another sintering raw material and fired. The method for producing a sintered ore according to.
【請求項4】上記5.0重量%以上の結晶水を含む鉄鉱石
とドロマイトを予め混合造粒する方法は、撹拌羽根を内
蔵した混合機によって行うことを特徴とする請求項
記載の焼結鉱の製造方法。
4. The sintering according to claim 3 , wherein the method of preliminarily mixing and granulating the iron ore containing 5.0% by weight or more of water of crystallization and dolomite is performed by a mixer having a built-in stirring blade. Method of producing ore.
JP34939496A 1996-12-27 1996-12-27 Sinter production method Expired - Lifetime JP3395554B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34939496A JP3395554B2 (en) 1996-12-27 1996-12-27 Sinter production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34939496A JP3395554B2 (en) 1996-12-27 1996-12-27 Sinter production method

Publications (2)

Publication Number Publication Date
JPH10195549A JPH10195549A (en) 1998-07-28
JP3395554B2 true JP3395554B2 (en) 2003-04-14

Family

ID=18403461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34939496A Expired - Lifetime JP3395554B2 (en) 1996-12-27 1996-12-27 Sinter production method

Country Status (1)

Country Link
JP (1) JP3395554B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4567908B2 (en) * 2001-04-18 2010-10-27 新日本製鐵株式会社 Treatment method of hard-granulated iron ore powder
JP2005307253A (en) * 2004-04-20 2005-11-04 Jfe Steel Kk Method for producing sintered ore
JP4982993B2 (en) * 2005-10-03 2012-07-25 Jfeスチール株式会社 Method for producing sintered ore
JP2007100150A (en) * 2005-10-03 2007-04-19 Jfe Steel Kk Method for producing sintered ore
JP5074043B2 (en) * 2007-01-11 2012-11-14 株式会社神戸製鋼所 Method for producing sintered ore
JP5126580B2 (en) * 2007-08-10 2013-01-23 新日鐵住金株式会社 Method for producing sintered ore

Also Published As

Publication number Publication date
JPH10195549A (en) 1998-07-28

Similar Documents

Publication Publication Date Title
CN106636627B (en) A method of producing clinker and oxide pellet
JP3395554B2 (en) Sinter production method
Kawaguchi et al. Summarized achievements of the Porous Meso-mosaic Texture Sinter research project
JP2000192153A (en) Sintered ore and production thereof, and operation of blast furnace
JP3736500B2 (en) Method for producing sintered ore
JPH02228428A (en) Charging material for blast furnace and its production
JP3376621B2 (en) Method for producing low CaO sintered ore
JPH10265858A (en) Production of high quality sintered ore
TWI550100B (en) Process for the manufacture of ferrochrome
JP2009019224A (en) Method for manufacturing sintered ore
JP3397091B2 (en) Sinter production method
JPH05263155A (en) Production of sintered or pelletized ore as blast-furnace material using lime cake
JP2001348623A (en) METHOD FOR PRODUCING HIGH QUALITY AND LOW SiO2 SINTERED ORE FOR BLAST FURNACE
JP2002129247A (en) High grade sintered agglomerate for iron manufacturing and method for manufacturing the same
JPH0543953A (en) Pre-treating method in manufacture of agglomerate
JP2002371322A (en) Method for manufacturing sintered ore
JP2003313614A (en) Method for manufacturing sintered ore with little slag
JP2953308B2 (en) Sinter production method
JP3252646B2 (en) Sinter production method
JP5126580B2 (en) Method for producing sintered ore
JP7424339B2 (en) Raw material particles for producing agglomerates, method for producing raw material particles for producing agglomerates, agglomerates, method for producing agglomerates, and method for producing reduced iron
JP3709001B2 (en) Non-fired agglomerated ore for iron making and method of using the same
JPH05339653A (en) Pretreatment of sintered ore raw material and sintered ore raw material for iron making
JP2004225147A (en) Method for manufacturing sintered ore for blast furnace
JP2009114485A (en) Method for manufacturing sintered ore

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090207

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100207

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100207

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110207

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120207

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120207

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130207

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130207

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130207

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140207

Year of fee payment: 11

EXPY Cancellation because of completion of term