JP3709001B2 - Non-fired agglomerated ore for iron making and method of using the same - Google Patents

Non-fired agglomerated ore for iron making and method of using the same Download PDF

Info

Publication number
JP3709001B2
JP3709001B2 JP34755295A JP34755295A JP3709001B2 JP 3709001 B2 JP3709001 B2 JP 3709001B2 JP 34755295 A JP34755295 A JP 34755295A JP 34755295 A JP34755295 A JP 34755295A JP 3709001 B2 JP3709001 B2 JP 3709001B2
Authority
JP
Japan
Prior art keywords
ore
fine
core particles
reduction
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34755295A
Other languages
Japanese (ja)
Other versions
JPH09170033A (en
Inventor
正樹 矢野
隆 折本
守政 一田
正章 中山
俊治 高島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP34755295A priority Critical patent/JP3709001B2/en
Publication of JPH09170033A publication Critical patent/JPH09170033A/en
Application granted granted Critical
Publication of JP3709001B2 publication Critical patent/JP3709001B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、細粒焼結鉱を配合した製鉄用非焼成塊成鉱及びその使用方法に関する。
【0002】
【従来の技術】
製鉄用非焼成塊成鉱の代表例として、セメント等の水硬性結合剤をバインダーに用いたコールドペレットが挙げられる。このようなコールドペレットは通常砂鉄等の鉄鉱石を原料として製造し、そのうち粒径の比較的大きな塊状の粒子を図1に示すように核粒子1として採用し、外周層2として粉鉱石、炭材、及び副原料を混合したものをパンペレタイザーで核粒子1に肉付けして造粒した2重構造になる。一方、コールドペレットの搬送強度を保持しようとすれば、バインダーを増やせば良いが、コスト的な観点から、ミニマム配合となっているのが現状である。そこで、この強度保持のために、ある程度の強度を持った粒子を核粒子1として挿入している。一般的には、焼結配合原料として好ましくない砂鉄等の鉱石の塊状粒子を核粒子1として使用している。
【0003】
この場合、外周層2は粉鉱石、高炉灰、炭材等の混合物で形成されているのに対し、核粒子1は単一の粒子である場合が多く、また、鉱石自体がポーラスではないために気孔率が低いことから、還元ガスを通し難い。また、核粒子1が存在する非焼成塊成鉱の中心部は、還元ガスとの接触点であるペレット表面から最も距離が離れており、従って、還元ガスが最も到達し難い部位である。すなわち、通常、非焼成塊成鉱を還元ガスで還元する場合、還元は、非焼成塊成鉱と還元ガスが直接接触している表層から開始し、内部へと次第に進行してゆく。このため、還元は外周層2の方が進行が早く、還元率は高くなるが、中心部は還元ガスが到達し難く、極端な場合、直接還元により還元が進行する。もし、中心部の核粒子1として、砂鉄等の鉱石の単一粒子を使用する場合には、還元ガスが粒子中心部を通過することはない。その結果、還元ガスは非焼成塊成鉱中心部の核粒子1によりブロックされることになり、中心部は最も還元が遅れることとなる。
【0004】
そこで、非焼成塊成鉱全体の還元効率を上げるには、還元が最も遅れるペレット中心部の還元効率を改善する必要がある。この点に対して、既に、特開昭52−119403号公報や特開昭62−192596号公報のように、全体の製造過程や配合を調整し、品質の改善を試みているものがある。しかし、いずれも非焼成塊成鉱の外周層の還元効率は改善できても、直接的にペレット中心部の還元効率を向上させる手段とはなっていない。また、これらの技術は製造工程の改善を伴うので、コスト的に負担が大きい。
【0005】
一方、細粒焼結鉱は高炉や焼結工場でも発生し、従来は簡単な造粒処置を講じた後に焼結工場へと送り返して、新たに焼結原料として使用していた。細粒焼結鉱は元来、焼結工場で焼結鉱を製造した際、あるいは、焼結工場で製造された焼結鉱を輸送したとき、また、高炉の庫下粉として発生したものである。しかしながら、この細粒焼結鉱を焼結工場で新たに焼結鉱配合原料として使用した場合には、焼結工場の生産歩留が非常に低くなるという問題がある(通常15%は細粒焼結鉱として焼結工場に返される)。
【0006】
また、高炉で細粒焼結鉱を使用しようとしても、細粒焼結鉱自体の粒度が細かいために、高炉炉内に装入した場合、鉱石層の空隙率を著しく低下させることになり、従って、粒径5mm以下の細粒焼結鉱はなかなか使用できないのが現状である。一部の高炉では庫下粉の再篩を実施して、5mm以下の粉から5〜2mmといった比較的粒度の大きなものを取出し、高炉に装入している。しかし、装入可能量には限度があり、発生した細粒焼結鉱を全量消化することはできない。
【0007】
【発明が解決しようとする課題】
従来の技術は、比較的有利に対応可能な非焼成塊成鉱の外周層の還元効率を改善する方法が主であり、還元が最も遅れる中心部の還元効率を改善する方法はない。本発明は、還元が最も遅れるペレット中心部の還元効率を改善することにより、非焼成塊成鉱の還元効率の改善を図ることを目的とする。また、細粒焼結鉱を高炉で消化可能にすることを目的とする。
【0008】
【課題を解決するための手段】
本発明は、上記の課題を解決するために、以下の点に配慮したものである。すなわち、(1)粒径が5〜20mmの非焼成塊成鉱の中心部に粒径3mm以下の気孔率の高い焼結鉱を核粒子として使用することにした。これにより、還元ガスが非焼成塊成鉱の中心部まで通過可能となって、非焼成塊成鉱全体の還元効率が向上する。さらに、()細粒焼結鉱を造粒することにより、高炉では使用困難な粒径mm以下の細粒焼結鉱を問題なく高炉で使用可能とする。
【0009】
従って、本発明の製鉄用非焼成塊成鉱は、粒径mm以下の細粒焼結鉱を核粒子とし、この核粒子を取り巻く外周層を、鉄原料炭材を含有するダスト、及びセメントからなるバインダーの3種混合物で構成した、粒径5〜20mmの造粒物である。そして、このような特徴を有する本発明の製鉄用非焼成塊成鉱を高炉または転炉の装入原料として使用する。
【0010】
本発明では、砂鉄などの鉱石に代えて、多孔質で気孔率の高い焼結鉱を核粒子として採用することにより、非焼成塊成鉱の中心部に還元ガスが流れ易くし、中心部の還元率を向上させる。前述の通り、中心部の還元率は最も低いので、この部位の還元効率の改善はペレット全体の還元率改善に繋がる。また、多くの場合高炉では篩い落として使用することがない粒径mm以下の細粒焼結鉱を粒径5mm超の粒子に造粒するため、高炉での使用が可能になる
【0011】
【実施例】
以下、実施例に基づいて本発明をさらに詳細に説明する。
【0012】
表1にペレットの配合を示す。ベースは従来の配合で、砂鉄を核粒子に使用したもの、配合1は核粒子に粒径3mm以下の細粒焼結鉱を使用したもの、配合2は核粒子に粒径5mm以下の細粒焼結鉱を使用したものであり、いずれも篩分けて粒径5〜20mmの造粒物を試験に使用した。
【0013】
【表1】

Figure 0003709001
【0014】
図2に核粒子に従来の砂鉄を使用したベースのペレット(図中○印)と核粒子に焼結鉱を使用した配合1と配合2のペレット(図中■は配合1、▲は配合2のペレット)を示す。各ペレットは1000℃でCO/CO2 =50%/50%の混合ガスと平衡させ、28%の還元率が得られるように事前に予備処理を施した。COガス30%、N2 ガス70%の混合ガスを7℃/minの割合で昇温し、各ペレットの予備還元を行った。図2にその結果を示す。
【0015】
図2により、還元ガスによるペレットの還元率を各温度で比較すると、ベースのペレットに比べ、焼結鉱を核粒子に採用した配合1、配合2のペレットの方が還元率が高いことが確認できる。特に、粒径3mm以下の細粒焼結鉱を核粒子として配合した配合1のペレットは、1200℃以上ではベースのペレットに比べ、還元率において5%以上の差がみられる。また、粒径5mm以下の細粒焼結鉱を核粒子として配合した配合2のペレットでも還元率が改善していることがわかる。
【0016】
次に、高炉での使用試験においても顕著な改善がみられた。すなわち、表2に示す高炉Aはベル炉、高炉Bはベルレス炉であり、両者ともに同じ燃料比レベルで操業した。両高炉共に高炉装入原料に占めるベースのペレットの配合率は5wt%とした。表2に粒径3mm以下の細粒焼結鉱を核粒子として使用した配合1のペレットを使用した場合とベースのペレットを使用した場合の操業緒元を示す。配合1のペレットでは両高炉共に塊状帯での間接還元率がベースのペレットの場合よりも向上し、ηCOが上昇した。また、還元率改善により熱レベルに余裕ができ、燃料比も低下した。しかも、配合1のペレットには細粒焼結鉱が含まれているので、細粒焼結鉱を高炉で消費できたことになる。
【0017】
【表2】
Figure 0003709001
【0018】
【発明の効果】
本発明の製鉄用非焼成塊成鉱は、従来の非焼成塊成鉱に比べて、飛躍的に被還元性状が改善される。また、高炉で細粒焼結鉱を使用可能とする。
【図面の簡単な説明】
【図1】製鉄用非焼成塊成鉱の構造を示す図である。
【図2】還元ガスによりペレットを還元したときの温度と間接還元率との関係を示す図である。
【符号の説明】
1 核粒子
2 外周層[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-fired agglomerated ore for iron making blended with fine-grained sintered ore and a method for using the same.
[0002]
[Prior art]
A typical example of the non-fired agglomerated ore for iron making is a cold pellet using a hydraulic binder such as cement as a binder. Such cold pellets are usually manufactured using iron ore such as iron sand as a raw material, of which massive particles having a relatively large particle diameter are adopted as core particles 1 as shown in FIG. The mixture of the material and the auxiliary material is made into a double structure by granulating the core particle 1 with a pan pelletizer. On the other hand, in order to maintain the conveying strength of the cold pellets, the binder may be increased. However, from the viewpoint of cost, the present condition is that the composition is minimum. Therefore, in order to maintain this strength, particles having a certain degree of strength are inserted as the core particles 1. Generally, lump particles of ore such as iron sand which is not preferable as a sintering compounding raw material are used as the core particles 1.
[0003]
In this case, the outer peripheral layer 2 is formed of a mixture of fine ore, blast furnace ash, charcoal, etc., whereas the core particle 1 is often a single particle, and the ore itself is not porous. Since the porosity is low, it is difficult to pass the reducing gas. Moreover, the center part of the non-baking agglomerated mineral in which the core particles 1 are present is the farthest distance from the pellet surface, which is the contact point with the reducing gas, and is therefore the part where the reducing gas is most difficult to reach. That is, usually, when reducing the uncalcined agglomerated mineral with a reducing gas, the reduction starts from the surface layer in which the uncalcined agglomerated mineral and the reducing gas are in direct contact and gradually progresses to the inside. For this reason, the reduction proceeds faster in the outer peripheral layer 2 and the reduction rate becomes higher, but the reducing gas does not easily reach the central portion, and in an extreme case, the reduction proceeds by direct reduction. If a single particle of ore such as iron sand is used as the core particle 1 in the central part, the reducing gas does not pass through the particle central part. As a result, the reducing gas is blocked by the core particles 1 in the center portion of the unfired agglomerated mineral, and the reduction in the center portion is delayed most.
[0004]
Thus, in order to increase the reduction efficiency of the entire unfired agglomerated ore, it is necessary to improve the reduction efficiency of the pellet center where the reduction is most delayed. On the other hand, there have already been attempts to improve quality by adjusting the whole manufacturing process and blending as disclosed in JP-A-52-119403 and JP-A-62-192596. However, even though the reduction efficiency of the outer peripheral layer of the non-fired agglomerated mineral can be improved, it is not a means for directly improving the reduction efficiency of the pellet center. Moreover, since these techniques involve improvement of the manufacturing process, the burden is high in cost.
[0005]
On the other hand, fine-grained sintered ore is also generated in blast furnaces and sintering factories. Conventionally, after taking a simple granulation treatment, it is sent back to the sintering factories and newly used as a sintering raw material. Fine-grained sinter was originally generated when sinter was produced in a sinter plant, or when sinter produced in a sinter plant was transported, or as blast furnace powder. is there. However, when this fine-grained sintered ore is newly used as a raw material for sinter ore blending at a sintering plant, there is a problem that the production yield of the sintering plant becomes very low (usually 15% is fine-grained). Returned to sinter plant as sinter).
[0006]
Also, even when trying to use fine-grained sinter in the blast furnace, because the fine-grained sinter itself is fine, when inserted in the blast furnace furnace, the porosity of the ore layer will be significantly reduced, Therefore, at present, it is difficult to use fine-grained sintered ore with a particle size of 5 mm or less. In some blast furnaces, re-sieving of the under-floor powder is carried out, and a relatively large particle size of 5 to 2 mm is taken out from the powder of 5 mm or less and charged into the blast furnace. However, there is a limit to the amount that can be charged, and the generated fine-grained sinter cannot be digested in its entirety.
[0007]
[Problems to be solved by the invention]
The conventional technique is mainly a method for improving the reduction efficiency of the outer peripheral layer of the non-calcined agglomerate that can be handled relatively advantageously, and there is no method for improving the reduction efficiency of the central portion where the reduction is most delayed. An object of the present invention is to improve the reduction efficiency of a non-fired agglomerated ore by improving the reduction efficiency of the pellet center where the reduction is most delayed. Further, the fine particle sintered ore and an object thereof is to enable digestion with blast furnace.
[0008]
[Means for Solving the Problems]
The present invention considers the following two points in order to solve the above problems. That is, (1) particle size was higher following porosity particle diameter 3mm sintered ore in that you use as core particles in the center of the non-calcined mass Naruko of 5 to 20 mm. Thereby , reducing gas can pass to the center part of a non-baking agglomerated mineral, and the reduction efficiency of the whole non-baking agglomerated mineral improves. Furthermore, ( 2 ) by granulating fine-grained sintered ore, fine-grained ore having a particle diameter of 3 mm or less, which is difficult to use in a blast furnace, can be used in the blast furnace without any problems.
[0009]
Therefore, the non-fired agglomerated ore for iron making of the present invention uses fine sintered ore having a particle size of 3 mm or less as core particles, and the outer peripheral layer surrounding the core particles is made of dust containing iron raw materials and carbonaceous materials, and It was composed of three mixtures of binder composed of cement, a granulated product having a particle diameter 5 to 20 mm. Its to uses steel for non-calcined mass Naruko of the present invention having such characteristics as charging a raw material for blast furnace or converter.
[0010]
In the present invention, instead of ore such as iron sand, porous and high-porosity sintered ore is adopted as the core particles, so that the reducing gas can easily flow into the center of the unfired agglomerated ore. Improve the reduction rate. As described above, since the reduction rate in the central portion is the lowest, the improvement in the reduction efficiency at this portion leads to the improvement in the reduction rate of the whole pellet. In addition, in many cases, fine sintered ore having a particle size of 3 mm or less, which is not used as a sieve in a blast furnace, is granulated into particles having a particle size exceeding 5 mm, so that it can be used in a blast furnace.
【Example】
Hereinafter, the present invention will be described in more detail based on examples.
[0012]
Table 1 shows the blending of the pellets. The base is a conventional blend, using iron sand as core particles, Formula 1 using fine sinter with a particle size of 3 mm or less for the core particles, Formula 2 using fine particles with a particle size of 5 mm or less for the core particles Sintered ore was used, and all of them were sieved and a granulated product having a particle size of 5 to 20 mm was used for the test.
[0013]
[Table 1]
Figure 0003709001
[0014]
Fig. 2 shows pellets based on conventional sand iron as core particles (marked with a circle in the figure) and blends 1 and 2 using sintered ore as the core particles (■ in the figure is compound 1 and ▲ is compound 2) Pellets). Each pellet was equilibrated with a mixed gas of CO / CO 2 = 50% / 50% at 1000 ° C. and pretreated in advance so as to obtain a reduction rate of 28%. A mixed gas of 30% CO gas and 70% N 2 gas was heated at a rate of 7 ° C./min to perform preliminary reduction of each pellet. The results are shown in FIG.
[0015]
According to Fig. 2, when the reduction rate of pellets with reducing gas is compared at each temperature, it is confirmed that the pellets of compound 1 and compound 2 using sintered ore as the core particles have a higher reduction rate than the base pellets. it can. In particular, pellets of Formulation 1 in which fine sintered ore having a particle diameter of 3 mm or less is blended as core particles show a difference of 5% or more in reduction rate at 1200 ° C. or higher compared to the base pellet. Moreover, it turns out that the reduction rate is improving also with the pellet of the mixing | blending 2 which mix | blended the fine grain sintered ore with a particle size of 5 mm or less as a core particle.
[0016]
Next, a remarkable improvement was also observed in the use test in the blast furnace. That is, the blast furnace A shown in Table 2 was a bell furnace, and the blast furnace B was a bellless furnace, both of which operated at the same fuel ratio level. In both blast furnaces, the blending ratio of the base pellets in the blast furnace charge was 5 wt%. Table 2 shows the operating conditions in the case of using the pellets of Formula 1 using fine sinter having a particle diameter of 3 mm or less as the core particles and in the case of using the base pellets. In the pellets of Formulation 1, the indirect reduction rate in the massive band was improved in both blast furnaces compared to the case of the base pellets, and ηCO was increased. In addition, the improvement of the reduction rate allowed the heat level to be surpassed and the fuel ratio also decreased. And since the pellet of the mixing | blending 1 contains the fine grain sintered ore, the fine grain sintered ore could be consumed in the blast furnace.
[0017]
[Table 2]
Figure 0003709001
[0018]
【The invention's effect】
The non-calcined agglomerated ore for iron making according to the present invention is remarkably improved in reducible properties as compared with the conventional non-calcined agglomerated ore. In addition, fine sinter can be used in the blast furnace.
[Brief description of the drawings]
FIG. 1 is a diagram showing the structure of an unfired agglomerated ore for iron making.
FIG. 2 is a graph showing the relationship between temperature and indirect reduction rate when pellets are reduced with reducing gas.
[Explanation of symbols]
1 Core particle 2 Outer layer

Claims (2)

粒径mm以下の細粒焼結鉱を核粒子とし、核粒子を取り巻く外周層を、鉄原料炭材を含有するダスト、及びセメントからなるバインダーの混合物で構成した粒径が5〜2 0mmの造粒物であることを特徴とする製鉄用非焼成塊成鉱。The following fine sintered ore particle size 3 mm and core particles, a peripheral layer surrounding the core particles, dust containing iron raw material and carbonaceous material, and the particle size constituted of a mixture of a binder consisting of cement 5 to 2 A non-fired agglomerated ore for iron making, which is a granulated product of 0 mm . 請求項に記載の製鉄用非焼成塊成鉱を高炉の装入原料として使用することを特徴とする製鉄用非焼成塊成鉱の使用方法。Using steel for non-calcined mass Naruko, characterized by the use of steel for non-calcined mass Naruko according as charging a raw material of high furnace to claim 1.
JP34755295A 1995-12-18 1995-12-18 Non-fired agglomerated ore for iron making and method of using the same Expired - Fee Related JP3709001B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34755295A JP3709001B2 (en) 1995-12-18 1995-12-18 Non-fired agglomerated ore for iron making and method of using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34755295A JP3709001B2 (en) 1995-12-18 1995-12-18 Non-fired agglomerated ore for iron making and method of using the same

Publications (2)

Publication Number Publication Date
JPH09170033A JPH09170033A (en) 1997-06-30
JP3709001B2 true JP3709001B2 (en) 2005-10-19

Family

ID=18391006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34755295A Expired - Fee Related JP3709001B2 (en) 1995-12-18 1995-12-18 Non-fired agglomerated ore for iron making and method of using the same

Country Status (1)

Country Link
JP (1) JP3709001B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101552144B1 (en) 2013-08-05 2015-09-18 주식회사 포스코 Blending material and method for manufacturing sintered ore

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5131058B2 (en) * 2008-07-02 2013-01-30 Jfeスチール株式会社 Iron-containing dust agglomerate and hot metal production method
CN111910073B (en) * 2020-08-21 2021-07-27 中南大学 Method for producing low-dust particle emission granules based on high-proportion micro-fine particle materials

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101552144B1 (en) 2013-08-05 2015-09-18 주식회사 포스코 Blending material and method for manufacturing sintered ore

Also Published As

Publication number Publication date
JPH09170033A (en) 1997-06-30

Similar Documents

Publication Publication Date Title
JP2008214715A (en) Method for manufacturing nonfired agglomerated ore for iron manufacture
TWI396749B (en) Producing method of reduced iron
CN101289697B (en) Blast furnace ironmaking raw material and method for preparing same
JP5168802B2 (en) Method for producing sintered ore
JP2006265569A (en) Method for producing sintered ore and pseudo-grain for producing sintered ore
JP3709001B2 (en) Non-fired agglomerated ore for iron making and method of using the same
JP2704673B2 (en) Method for producing semi-reduced sintered ore
JP3900721B2 (en) Manufacturing method of high quality low SiO2 sintered ore
JP4786022B2 (en) Method for producing sintered ore
JP6326074B2 (en) Carbon material interior ore and method for producing the same
JP2003301205A (en) Method for charging blast furnace material
JP2002241853A (en) Non-burning agglomerate for blast furnace
JP3395554B2 (en) Sinter production method
JP2003096521A (en) Sintered ore blended with high alumina iron ore, and production method therefor
JPS63219534A (en) Manufacture of self-fluxing pellet
JPS6280230A (en) Unfired high-titanium pellet
JPH05339652A (en) Preliminary pelletization method for production of sintered ore made by using pisolite ore as main raw material and its pseudo particle structure
JPS5926651B2 (en) Method for manufacturing non-calcined agglomerate ore
JP4379097B2 (en) Pseudoparticles for sintering and method for producing the same
JP2001262241A (en) Method for producing sintered ore containing carbon
JP7424339B2 (en) Raw material particles for producing agglomerates, method for producing raw material particles for producing agglomerates, agglomerates, method for producing agglomerates, and method for producing reduced iron
JPS63149336A (en) Production of burnt agglomerated ore
JPH05339653A (en) Pretreatment of sintered ore raw material and sintered ore raw material for iron making
JP3945323B2 (en) Granulation method of sintering raw material
JPS6221055B2 (en)

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050805

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090812

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090812

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100812

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100812

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110812

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120812

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130812

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130812

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130812

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130812

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130812

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees