JPS63219534A - Manufacture of self-fluxing pellet - Google Patents

Manufacture of self-fluxing pellet

Info

Publication number
JPS63219534A
JPS63219534A JP5353987A JP5353987A JPS63219534A JP S63219534 A JPS63219534 A JP S63219534A JP 5353987 A JP5353987 A JP 5353987A JP 5353987 A JP5353987 A JP 5353987A JP S63219534 A JPS63219534 A JP S63219534A
Authority
JP
Japan
Prior art keywords
pellets
raw material
cao
weight ratio
mgo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5353987A
Other languages
Japanese (ja)
Other versions
JPH044377B2 (en
Inventor
Takefumi Saito
斉藤 武文
Takeshi Sugiyama
健 杉山
Akiji Shirouchi
城内 章治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP5353987A priority Critical patent/JPS63219534A/en
Publication of JPS63219534A publication Critical patent/JPS63219534A/en
Publication of JPH044377B2 publication Critical patent/JPH044377B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To attain the prevention of reduction delay, the inhibition of deteriora tion in collapsing strength, and the prevention of the occurrence of structural change on burning in the titled pellet, by regulating the weight ratio of CaO/ SiO2, etc., in a raw material in which CaO, etc., of a specific grain-size region are blended with iron-ore fines to the prescribed values, and by subjecting the above raw material to pelletizing and then to heating and burning. CONSTITUTION:Dolomite as an auxiliary material which contains CaO and MgO and in which grains of 44-1,000mum grain size comprise >=80wt.% is blended with iron-ore fines so as to be formed into a raw material for pellets. After silica and limestone are blended with the above raw material so that weight ratio of CaO to SiO2 and weight ratio of MgO to SiO2 are regulated to >=1.2 and >=0.5, respectively, the resulting raw material is pelletized to be formed into green pellets. Subsequently, the green pellets are heated and burnt at the prescribed temp. so as to be formed into self-fluxing pellets. Moreover, it is desirable that the green pellets are heated and burnt at about 1,220-1,320 deg.C to regulate the volume of the pores with >=about 10mum diameter to >=about 0.01cm<3>/g.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、高炉の鉄原料として優れた被還元性を備え
た自溶性ペレットの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing self-fusing pellets having excellent reducibility as an iron raw material for blast furnaces.

(従来の技術) 自溶性ペレットの製造工程では、従来、そのペレット原
料が均一に分散して焼成工程で鉄鉱石や脈石成分が速や
かに反応し焼結するように、また、造粒効率や強度が高
くなるようにするために、粒度44ル以下の微粉が70
〜30重量%に達するまでペレット原料を微粉砕し、こ
れを造粒して生ベレットとしている。
(Prior art) In the manufacturing process of self-fusing pellets, conventional techniques have been used to ensure that the pellet raw materials are uniformly dispersed and that the iron ore and gangue components quickly react and sinter in the sintering process, as well as to improve granulation efficiency. In order to increase the strength, fine powder with a particle size of 44 l or less is
The pellet raw material is finely pulverized until it reaches ~30% by weight, and this is granulated to form raw pellets.

このような生ペレットを加熱焼成して自溶性ペレットを
製造する焼成工程では、このペレットは溶融スラグを作
り高強度を示す、しかし、一方では気孔率を低下させ、
1100℃以上の高温の還元雰囲気下においては、ペレ
ットの外殻金属鉄の緻密化、ならびにペレットの内部で
のスラグの液相生成が容易となる。このため、気孔が閉
塞し、このペレットに還元停滞を生じて被還元性が低下
するという不都合がある。
In the firing process in which such raw pellets are heated and fired to produce self-fusing pellets, the pellets create molten slag and exhibit high strength, but on the other hand, the porosity decreases,
In a reducing atmosphere at a high temperature of 1100° C. or higher, the outer shell metallic iron of the pellet becomes densified and the liquid phase of slag is easily generated inside the pellet. As a result, the pores become clogged, causing reduction stagnation in the pellets and reducing reducibility.

このため、高炉においては、上記被還元性が低下した自
溶性ペレットはその内部へのガス拡散が妨害され、ペレ
ット表面にしみ出したFeOとコークスとの直接還元が
上昇することになる。従って、コークス消費量が増大す
るなど高炉操業上好ましくない事態を惹起する。
Therefore, in the blast furnace, gas diffusion into the self-fusing pellets with reduced reducibility is hindered, and the direct reduction of coke and FeO seeping out onto the pellet surface increases. Therefore, unfavorable situations occur in terms of blast furnace operation, such as an increase in coke consumption.

そこで、上記還元停滞を防止して優れた被還元性を得る
ため、従来種々の自溶性ペレットの製造方法が提案され
ている。
Therefore, in order to prevent the above-mentioned reduction stagnation and obtain excellent reducibility, various methods for producing self-soluble pellets have been proposed.

即ち、第1従来例として、この出願人の出願に係る特公
昭61−11300号公報に示すものがある。この構成
では、ペレット原料にペレットの被還元性向上用のMg
Oを含有する副原料、例えば撮攬岩を粒度44終以下に
微粉砕して配合してあり、これを原料とした生ベレット
の焼成工程において生成されるスラグの融点を高め、こ
れによって自溶性ペレットの気孔の閉塞を防止している
That is, as a first prior art example, there is one shown in Japanese Patent Publication No. 11300/1983 filed by the present applicant. In this configuration, Mg is added to the pellet raw material to improve the reducibility of the pellets.
It is blended with O-containing auxiliary raw materials, such as tatsuki rock, which is finely pulverized to a particle size of 44 or less, which increases the melting point of the slag produced in the firing process of raw pellets using this as a raw material, thereby increasing self-soluble properties. This prevents the pores of the pellet from being blocked.

また、第2従来例として、特公昭56−11291号公
報に示すものがある。この構成によれば、ベレット原料
に粒度が0.1+ug〜3■腸の粗粉の可燃物質、例え
ば石炭やコークスプリーズを混合しておき、生ペレット
の焼成工程で上記可燃物質を燃焼させるヒとにより溶融
スラグで閉塞されないような大径の気孔をベレット内部
に形成している。
Further, as a second conventional example, there is one shown in Japanese Patent Publication No. 56-11291. According to this configuration, a combustible substance having a particle size of 0.1+ug to 3μ intestine coarse powder, such as coal or coke please, is mixed with the pellet raw material, and a heat source is used to burn the combustible substance in the process of burning the raw pellets. This creates large-diameter pores inside the pellet that are not blocked by molten slag.

(発明が解決しようとする問題点) しかし、上記第1従来例では、mm岩を粒度44勝以下
に微粉砕して使用しているため、その粉砕工程が複雑に
なり、その粉砕コストが高くなるという不都合がある。
(Problems to be Solved by the Invention) However, in the first conventional example, the millimeter rock is finely pulverized to a particle size of 44 mm or less, which makes the pulverization process complicated and the pulverization cost high. There is an inconvenience that this happens.

第2従来例では、大径の気孔が形成されるために、自溶
性ペレットの圧潰強度が太きく低下すると共に、可燃性
物質の燃焼によりペレットの組織が変化するという不都
合を生じる。
In the second conventional example, since large-diameter pores are formed, the crushing strength of the self-fusing pellets is greatly reduced, and the structure of the pellets changes due to combustion of the flammable substance.

(発明の目的) この発明は、上記のような事情に注目してなされたもの
で、自溶性ペレットの還元停滞を防止して優れた被還元
性を得る場合に、MgOを含有する副原料の粉砕工程を
簡単にしてその粉砕コストを低減できるようにし、かつ
、自溶性ペレットの圧潰強度の低下を抑制すると共にペ
レットの組織が変化しないようにすることを目的とする
(Objective of the Invention) This invention was made in view of the above-mentioned circumstances, and is aimed at preventing reduction stagnation of self-soluble pellets and obtaining excellent reducibility by using an auxiliary raw material containing MgO. The purpose of the present invention is to simplify the pulverization process to reduce the pulverization cost, to suppress a decrease in the crushing strength of self-soluble pellets, and to prevent the structure of the pellets from changing.

(発明の構成) 上記目的を達成するためのこの発明の特徴とするところ
は、鉄鉱石の微粉に、44p〜1000μの粒度範囲の
粒子を80重量%以上有するCaOおよびMgOを含有
する副原料を配合し、次に、この配合された原料をCa
O/S i02重量比が1.2以上、およびMgO/5
i02重量比が0.5以上となるように調整し、かつ、
この調整された原料を造粒して生ペレットを成形し、こ
の生ベレットを所定の温度で加熱焼成することにある。
(Structure of the Invention) A feature of the present invention for achieving the above object is that an auxiliary material containing CaO and MgO having 80% by weight or more of particles in the particle size range of 44p to 1000μ is added to fine iron ore powder. Then, this blended raw material is mixed with Ca.
O/S i02 weight ratio is 1.2 or more, and MgO/5
Adjust the i02 weight ratio to be 0.5 or more, and
The method involves granulating the adjusted raw material to form green pellets, and heating and baking the green pellets at a predetermined temperature.

(実施例) 以下、この発明の詳細な説明する。(Example) The present invention will be described in detail below.

先ず、鉄鉱石の微粉に、44鉢〜1000ルの粒度範囲
の粒子を80重量%以上有するCaO及びMgOを含有
する副原料たるドロマイトを配合してベレット原料とす
る。この場合、上記ドロマイトは、前記第1従来例で示
すような粒度が44路以下の微粉よりも粒度が大きい粗
粉としであるため、このドロマイトの粉砕工程は簡単に
なり、その粉砕コストを低減できる。
First, dolomite, which is an auxiliary raw material containing CaO and MgO, and which has particles in the particle size range of 44 to 1000 l in an amount of 80% by weight or more, is mixed with iron ore fine powder to obtain a pellet raw material. In this case, the dolomite is a coarse powder whose particle size is larger than the fine powder whose particle size is 44 or less as shown in the first conventional example, so the process of crushing this dolomite is simplified and the crushing cost is reduced. can.

次に、上記のように配合されたベレット原料に粒度が4
4p以下の粒子を70重量%以上含有する珪石や石灰石
を配合してCab/5i02重量比が1.2以上でMg
O/5i(h重量比が0.5以上となるように調整する
。そして、この調整されたベレット原料を造粒して生ペ
レットを成形する。
Next, a particle size of 4 was added to the pellet raw material blended as above.
By blending silica stone or limestone containing 70% by weight or more of particles of 4p or less, the Cab/5i02 weight ratio is 1.2 or more and Mg
The O/5i (h weight ratio is adjusted to be 0.5 or more. Then, this adjusted pellet raw material is granulated to form green pellets.

次に、上記生ペレットを1220℃〜1320℃の温度
範囲で加熱焼成し、これによって自溶性ペレットを得る
。この場合、上記粗粉のドロマイトは焼成工程で滓化さ
れる。これによって、ペレットの内部に大径の気孔が形
成されると共に、この気孔の周囲には高融点スラグの組
織が形成される。この結果、焼成工程でスラグの溶融に
より気孔が閉塞されることは防止される。このため、高
温で還元停滞が生じることのない優れた被還元性を有す
る自溶性ペレットを得ることができる。
Next, the raw pellets are heated and calcined in a temperature range of 1220° C. to 1320° C., thereby obtaining self-soluble pellets. In this case, the coarse dolomite powder is turned into slag during the firing process. As a result, large-diameter pores are formed inside the pellet, and a high-melting-point slag structure is formed around the pores. As a result, the pores are prevented from being blocked due to melting of the slag during the firing process. Therefore, self-soluble pellets having excellent reducibility without reduction stagnation at high temperatures can be obtained.

また、上記大径の気孔の周囲は高融点スラブのため、ペ
レットの圧潰強度の低下が抑制される。
Furthermore, since the large-diameter pores are surrounded by a high-melting-point slab, the crushing strength of the pellets is suppressed from decreasing.

更に、この気孔の形成には、第2従来例のようにいない
ため、ペレットの組織が変化することは防止される。
Furthermore, since these pores are not formed as in the second conventional example, changes in the structure of the pellet are prevented.

なお、上記実施例では、MgOを含有する副原料をドロ
マイトとしたが、これは、CaOおよびMgOを含有し
5i02と反応して塩基性スラグを形成する鉱物でもよ
く、その中で特に炭酸塩となっている鉱物が好ましい。
In the above example, dolomite was used as an auxiliary raw material containing MgO, but it may also be a mineral that contains CaO and MgO and reacts with 5i02 to form basic slag. Preferably, minerals with

(具体的実施例) 本発明者らは、本発明方法の効果を確認するため、次の
実験を行った。
(Specific Examples) The present inventors conducted the following experiment in order to confirm the effects of the method of the present invention.

下記第1表に、実験に用いたペレット原料およびその副
原料の化学組成を示す。
Table 1 below shows the chemical composition of the pellet raw material and its auxiliary raw materials used in the experiment.

第1表 ペレット原料の化学組成(%)上記ペレット原
料とその副原料を所定の粒度に粉砕後、所望のCaO/
SiO2重量比、MgO/5i02重量比となるように
混合して調整する。この際、ドロマイトの粒度を44J
L以下(従来例のドロマイトに相当)、44g〜 10
0ル、 1001L〜500ル、 500終〜1000
 g、および1000 #L〜1500勝の5水準に設
定してあり、これら各水準のドロマイトは各粒度範囲を
それぞれ80重量%以上含有するものである。
Table 1 Chemical composition of pellet raw materials (%) After pulverizing the above pellet raw materials and their auxiliary raw materials to a predetermined particle size, the desired CaO/
They are mixed and adjusted so that the SiO2 weight ratio and MgO/5i02 weight ratio are achieved. At this time, the particle size of dolomite was changed to 44J.
L or less (equivalent to conventional dolomite), 44g ~ 10
0 ru, 1001L ~ 500 ru, 500 end ~ 1000
There are five levels of dolomite, from 1000 #L to 1500 pieces, and each level of dolomite contains 80% by weight or more of each particle size range.

次に、上記のように調整されたペレット原料を造粒して
得た生ペレットを1250℃および、1275℃の一定
酸素分圧下で加熱焼成した。下記第2表に1250℃で
加熱焼成した焼成ペレットの化学組成を示す。
Next, the raw pellets obtained by granulating the pellet raw material prepared as described above were heated and calcined at a constant oxygen partial pressure of 1250°C and 1275°C. Table 2 below shows the chemical composition of the fired pellets heated and fired at 1250°C.

(以下余白) また、上記焼成ペレットのドロマイト粒度と気孔率およ
び、高温還元率との関係をそれぞれ第1図及び第2図に
示す、なお、上記高温還元率とは、上記焼成ペレットを
Go/ C(h = 80/ 40の還元雰囲気下90
0℃でウスタイ) (Fed)まで予備還元し1次に、
これを試料として還元温度1250℃、還元ガスGO/
 N2 =30770で2時間還元試験を行った場合の
還元率である。
(Space below) In addition, the relationships between the dolomite particle size, porosity, and high-temperature reduction rate of the above-mentioned fired pellets are shown in Figures 1 and 2, respectively.The above-mentioned high-temperature reduction rate refers to C (h = 80/90 in a reducing atmosphere of 40
Preliminary reduction to (Fed) at 0°C,
Using this as a sample, the reduction temperature was 1250℃, and the reducing gas GO/
This is the reduction rate when a 2-hour reduction test was conducted at N2 = 30770.

第1図及び第2図から明らかなように、従来のペレット
に較べ本発明のペレットは、1250.127σ℃のい
ずれの焼成温度においても気孔率が増加し、それに伴っ
て還元率が変化することがわかる。
As is clear from FIGS. 1 and 2, compared to conventional pellets, the pellets of the present invention have an increased porosity at any firing temperature of 1250.127σ°C, and the reduction rate changes accordingly. I understand.

即ち、ドロマイトの滓化によって気孔率が増加するもの
と推定され、ドロマイト粒度により高い気孔率および、
還元率が得られる最適な粒度範囲が存在することがわか
る。その粒度範囲は、焼成温度が1250℃の場合は4
4μ〜500棒、1275℃の場合は 100終〜10
00μである。これらの粒度よりドロマイト粒度がさら
に粗くなると、ドロマイトの滓化が悪化するため気孔率
、還元率は逆に低下することがわかる。
In other words, it is assumed that the porosity increases due to the slag formation of dolomite, and the porosity increases due to the dolomite particle size.
It can be seen that there is an optimal particle size range that provides a good reduction rate. The particle size range is 4 when the firing temperature is 1250℃.
4μ~500 bar, 100~10 at 1275℃
00μ. It can be seen that when the dolomite particle size becomes coarser than these particle sizes, the slag formation of dolomite worsens, and the porosity and reduction rate conversely decrease.

次に、水銀圧入式ポロシメーターにより測定した焼成ペ
レットの気孔径分布の一例を第3図に示す。
Next, FIG. 3 shows an example of the pore size distribution of the fired pellets measured using a mercury intrusion porosimeter.

第3図から明らかなように、直径10JL以上の気孔の
体積を0.01c■3 /g以上に調整すれば、ドロマ
イト粒度が44g以下の従来のペレットよりも高い還元
率を得られることがわかる。
As is clear from Figure 3, if the volume of pores with a diameter of 10JL or more is adjusted to 0.01c3/g or more, a higher reduction rate can be obtained than the conventional pellets with a dolomite particle size of 44g or less. .

また、ドロマイト粒度と、焼成ペレットの圧潰強度との
関係を第4図に示す、第4図によれば、本発明のペレッ
トは従来のペレットにより圧潰強度が低下することがわ
かる。しかし、この本発明のペレットは300Kg/P
程度の強度を有しているため高炉操業上何ら支障はない
Furthermore, the relationship between dolomite particle size and crushing strength of fired pellets is shown in FIG. 4. According to FIG. 4, it can be seen that the crushing strength of the pellets of the present invention is lower than that of conventional pellets. However, the pellets of this invention are 300Kg/P.
Since it has a certain level of strength, there is no problem in blast furnace operation.

以上の結果により、粒度範囲を44ル〜1000 gと
すれば、焼成温度によって気孔率、高温還元率が従来の
ペレットに比べて向上することがわかる。
From the above results, it can be seen that when the particle size range is 44 l to 1000 g, the porosity and high temperature reduction rate are improved compared to conventional pellets depending on the firing temperature.

次に、ドロマイト粒度を1001L〜500JL一定の
もトチCaO/5i023i量比、8ヨt1.  Mg
O/5i02重量比を変化させた場合について説明する
Next, the dolomite particle size was set to 1001L to 500JL at a constant Motochi CaO/5i023i amount ratio of 8Yt1. Mg
A case where the O/5i02 weight ratio is changed will be explained.

焼成ペレットの高温還元率とCaO/Ji02重量比お
よびMgO/S i02重量比との関係を第5図および
第6図に示す、この場合、CaO/5i02 = 1.
26、MgO/5i02 = 0.58.5i02 =
 3.5%の一定条件となっている。
The relationship between the high temperature reduction rate of the fired pellets and the CaO/Ji02 weight ratio and MgO/Si02 weight ratio is shown in FIGS. 5 and 6. In this case, CaO/5i02 = 1.
26, MgO/5i02 = 0.58.5i02 =
It is a constant condition of 3.5%.

第5図および第6図の結果から明らかなように、125
0℃および1275℃という高温の焼成温度における還
元率はCaO/S i02重量比および、  MgO/
5402重量比の上昇に伴って増加しており、これによ
って高温での被還元性が改善されることがわかる。
As is clear from the results in Figures 5 and 6, 125
The reduction rate at high calcination temperatures of 0°C and 1275°C is determined by the CaO/Si02 weight ratio and the MgO/
It increases as the weight ratio of 5402 increases, indicating that the reducibility at high temperatures is improved.

なお、従来のペレットの高温での還元率(焼成温度12
50℃の場合78%、1275℃の場合71%)と比較
すると、  CaO/5iO2yiit量比を 1.2
以上、MgO/5i02重量比を0.5以上に混合調整
すれば高温性状の優れたペレットを得ることができる。
In addition, the reduction rate of conventional pellets at high temperature (calcination temperature 12
(78% at 50℃ and 71% at 1275℃), the CaO/5iO2yiit amount ratio was 1.2.
As described above, pellets with excellent high-temperature properties can be obtained by mixing and adjusting the MgO/5i02 weight ratio to 0.5 or more.

(発明の効果) この発明によれば、鉄鉱石の微粉に、44終〜1000
 uLの粒度範囲の粒子を80重量%以上有するCaO
およびMgOを含有する副原料を配合し、次に、この配
合された原料をCaO/5i02重量比が1.2以上、
オヨびMgO/S i02重量比が0.5以上となるよ
うに調整し、かつ、この調整された原料を造粒して生ペ
レットを成形し、この生ベレットを所定の温度で加熱焼
成するようにしたため、この焼成工程で上記副原料によ
り大径の気孔が形成されると共に、この気孔の周囲には
高融点スラグが形成される。このため、上記焼成工程で
スラブの溶融により気孔が閉塞されることは防止される
(Effect of the invention) According to this invention, iron ore fine powder contains 44 to 1000
CaO having 80% by weight or more of particles in the uL particle size range
and MgO-containing auxiliary raw materials, and then combine the blended raw materials with a CaO/5i02 weight ratio of 1.2 or more,
The weight ratio of MgO/Si02 is adjusted to be 0.5 or more, and the adjusted raw material is granulated to form raw pellets, and the raw pellets are heated and fired at a predetermined temperature. Therefore, in this firing process, large diameter pores are formed by the above-mentioned auxiliary raw materials, and high melting point slag is formed around the pores. Therefore, the pores are prevented from being blocked due to melting of the slab in the firing process.

よって、この発明の方法により製造された自溶性ペレッ
トには高温で還元停滞が生じることはなく、この結果、
優れた被還元性を得ることができる。
Therefore, the self-soluble pellets produced by the method of the present invention do not suffer from reduction stagnation at high temperatures, and as a result,
Excellent reducibility can be obtained.

上記の場合、副原料は第1従来例のように441L以下
の微粉ではなく、これにより粒度が大きい粗粉である。
In the above case, the auxiliary raw material is not a fine powder of 441 L or less as in the first conventional example, but a coarse powder with a large particle size.

よって、上記副原料を微粉砕する必要はなく、この副原
料の粉砕工程が簡単になると共に、その粉砕工程を減少
させることができる。
Therefore, there is no need to finely pulverize the auxiliary raw material, which simplifies the process of pulverizing the auxiliary raw material, and also reduces the number of pulverizing steps.

また、上記焼成工程における気孔の周囲には高融点のス
ラグが形成される。よって、ごの自溶性ペレットの圧潰
強度が低下することは抑制される。
In addition, high melting point slag is formed around the pores in the firing process. Therefore, the crushing strength of the self-soluble pellets is prevented from decreasing.

しかも、上記気孔の形成は、第2従来例のように可燃物
質の燃焼によるものではないため、燃焼によりペレット
の組織が変化することは防止される。
Furthermore, since the formation of the pores is not due to combustion of combustible substances as in the second conventional example, the structure of the pellet is prevented from changing due to combustion.

【図面の簡単な説明】[Brief explanation of the drawing]

図は、各実験で得られた自溶性ペレットの品質を示すグ
ラフで、第1図は気孔率とドロマイト粒度との関係、第
2図は還元率とドロマイト粒度との関係、第3図は気孔
体積と気孔径との関係、第4図は圧潰強度とドロマイト
粒度との関係、第5図は還元率と CaO/S 402
重量比との関係、第6図は還元率と MgO/5i(h
重量比との関係をそれぞれ示している。 第1図 YY:lマイト社友01) 第2図 ド′ロマイトηQ忙(μ→ 第3図 低)L徨(μ) ドロマイト(返&(lA> 第5図 第6図
The figures are graphs showing the quality of self-soluble pellets obtained in each experiment. Figure 1 is the relationship between porosity and dolomite particle size, Figure 2 is the relationship between reduction rate and dolomite particle size, and Figure 3 is the relationship between porosity and dolomite particle size. The relationship between volume and pore diameter, Figure 4 shows the relationship between crushing strength and dolomite particle size, and Figure 5 shows the relationship between reduction rate and CaO/S 402
Figure 6 shows the relationship between weight ratio and reduction rate and MgO/5i (h
The relationship with weight ratio is shown respectively. Fig. 1 YY: l Mite company friend 01) Fig. 2 Dolomite ηQ busy (μ→ Fig. 3 low) L (μ) Dolomite (reverse &(lA> Fig. 5 Fig. 6)

Claims (1)

【特許請求の範囲】 1、鉄鉱石の微粉に、44μ〜1000μの粒度範囲の
粒子を80重量%以上有するCaOおよびMgOを含有
する副原料を配合し、次に、この配合された原料をCa
O/SiO_2重量比が1.2以上、およびMgO/S
iO_2重量比が0.5以上となるように調整し、かつ
、この調整された原料を造粒して生ペレットを成形し、
この生ペレットを所定の温度で加熱焼成することを特徴
とする自溶性ペレットの製造方法。 2、生ペレットを1220℃〜1320℃の温度範囲で
加熱焼成して直径10μ以上の気孔の体積が0.01c
m^3/g以上となるようにすることを特徴とする特許
請求の範囲第1項に記載の自溶性ペレットの製造方法。
[Scope of Claims] 1. Sub-raw materials containing CaO and MgO having 80% by weight or more of particles in the particle size range of 44μ to 1000μ are blended into iron ore fine powder, and then this blended raw material is mixed with CaO and MgO.
O/SiO_2 weight ratio is 1.2 or more, and MgO/S
Adjust the iO_2 weight ratio to 0.5 or more, and granulate this adjusted raw material to form raw pellets,
A method for producing self-soluble pellets, which comprises heating and baking the raw pellets at a predetermined temperature. 2. The raw pellets are heated and calcined in a temperature range of 1220℃ to 1320℃ so that the volume of pores with a diameter of 10μ or more is 0.01c.
The method for producing self-soluble pellets according to claim 1, characterized in that the content is m^3/g or more.
JP5353987A 1987-03-09 1987-03-09 Manufacture of self-fluxing pellet Granted JPS63219534A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5353987A JPS63219534A (en) 1987-03-09 1987-03-09 Manufacture of self-fluxing pellet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5353987A JPS63219534A (en) 1987-03-09 1987-03-09 Manufacture of self-fluxing pellet

Publications (2)

Publication Number Publication Date
JPS63219534A true JPS63219534A (en) 1988-09-13
JPH044377B2 JPH044377B2 (en) 1992-01-28

Family

ID=12945607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5353987A Granted JPS63219534A (en) 1987-03-09 1987-03-09 Manufacture of self-fluxing pellet

Country Status (1)

Country Link
JP (1) JPS63219534A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5716341A (en) * 1993-06-29 1998-02-10 Saito; Yoshikuni Hub for syringe, connecting structure of hub, syringe, piston, needle assembly unit, connecting structure between needle assembly unit and syringe, syringe assembly and method of assembling syringe assembly
US5772687A (en) * 1993-03-12 1998-06-30 Saito; Yoshikuni Hub for syringe, connecting structure of hub, syringe, syringe assembly and method of assembling syringe assembly
WO2009081784A1 (en) * 2007-12-20 2009-07-02 Kabushiki Kaisha Kobe Seiko Sho Self-fluxing pellets for use in a blast furnce and process for the production of the same
CN108866325A (en) * 2017-07-14 2018-11-23 淮北益嘉益新材料科技有限公司 A method of improving magnesian flux bursting temperature of pellet ores
CN109097561A (en) * 2018-06-29 2018-12-28 首钢京唐钢铁联合有限责任公司 Method for producing low-silicon-melting-agent pellets by large-scale belt type roasting machine
WO2024069991A1 (en) * 2022-09-26 2024-04-04 株式会社神戸製鋼所 Method for producing iron ore pellets, and iron ore pellets
WO2024089903A1 (en) * 2022-10-27 2024-05-02 株式会社神戸製鋼所 Method for determining high temperature properties of iron ore pellets, method for producing iron ore pellets, and iron ore pellets
EP4289977A4 (en) * 2021-03-26 2024-08-07 Kobe Steel Ltd Pig iron production method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5772687A (en) * 1993-03-12 1998-06-30 Saito; Yoshikuni Hub for syringe, connecting structure of hub, syringe, syringe assembly and method of assembling syringe assembly
US5716341A (en) * 1993-06-29 1998-02-10 Saito; Yoshikuni Hub for syringe, connecting structure of hub, syringe, piston, needle assembly unit, connecting structure between needle assembly unit and syringe, syringe assembly and method of assembling syringe assembly
US5788672A (en) * 1993-06-29 1998-08-04 Saito; Yoshikuni Hub for syringe, connecting structure of hub, syringe, piston, needle assembly unit, connecting structure between needle assembly unit and syringe, syringe assembly and method of assembling syringe assembly
US5879339A (en) * 1993-06-29 1999-03-09 Saito; Yoshikuni Hub for syringe, connecting structure of hub, syringe, piston, needle assembly unit, connecting structure between needle assembly unit and syringe, syringe assembly and method of assembling syringe assembly
WO2009081784A1 (en) * 2007-12-20 2009-07-02 Kabushiki Kaisha Kobe Seiko Sho Self-fluxing pellets for use in a blast furnce and process for the production of the same
US8211204B2 (en) 2007-12-20 2012-07-03 Kobe Steel, Ltd. Self-fluxing pellets for blast furnace and method for manufacturing the same
KR101217392B1 (en) 2007-12-20 2012-12-31 가부시키가이샤 고베 세이코쇼 Self-fluxing pellets for use in a blast furnace and process for the production of the same
CN108866325A (en) * 2017-07-14 2018-11-23 淮北益嘉益新材料科技有限公司 A method of improving magnesian flux bursting temperature of pellet ores
CN109097561A (en) * 2018-06-29 2018-12-28 首钢京唐钢铁联合有限责任公司 Method for producing low-silicon-melting-agent pellets by large-scale belt type roasting machine
EP4289977A4 (en) * 2021-03-26 2024-08-07 Kobe Steel Ltd Pig iron production method
WO2024069991A1 (en) * 2022-09-26 2024-04-04 株式会社神戸製鋼所 Method for producing iron ore pellets, and iron ore pellets
WO2024089903A1 (en) * 2022-10-27 2024-05-02 株式会社神戸製鋼所 Method for determining high temperature properties of iron ore pellets, method for producing iron ore pellets, and iron ore pellets

Also Published As

Publication number Publication date
JPH044377B2 (en) 1992-01-28

Similar Documents

Publication Publication Date Title
WO2015005190A1 (en) Carbon material-containing granulated particles for manufacturing sintered ore, production method therefor, and production method for sintered ore
JPS63219534A (en) Manufacture of self-fluxing pellet
JP6460293B2 (en) Method for producing sintered ore
JP3731361B2 (en) Method for producing sintered ore
JPH08269584A (en) Production of sintered ore
WO2024069991A1 (en) Method for producing iron ore pellets, and iron ore pellets
JP3709001B2 (en) Non-fired agglomerated ore for iron making and method of using the same
JPH0310027A (en) Pretreatment of high goethite ore
JP2005097645A (en) Method of producing semi-reduced sintered ore
JPS63149336A (en) Production of burnt agglomerated ore
JPH05339653A (en) Pretreatment of sintered ore raw material and sintered ore raw material for iron making
WO2024089903A1 (en) Method for determining high temperature properties of iron ore pellets, method for producing iron ore pellets, and iron ore pellets
JP7424339B2 (en) Raw material particles for producing agglomerates, method for producing raw material particles for producing agglomerates, agglomerates, method for producing agglomerates, and method for producing reduced iron
JPH0583620B2 (en)
US4082540A (en) Material for sintering emitting a lesser amount of nitrogen oxide and a method for manufacturing the same
JPH0430442B2 (en)
JP2001348622A (en) METHOD FOR PRODUCING HIGH QUALITY AND LOW SiO2 SINTERED ORE FOR BLAST FURNACE
JPH03130326A (en) Production of sintered ore for blast furnace using high-goethite ore
JP2023033734A (en) Method for manufacturing fired iron ore pellet
JPS63149332A (en) Production of burnt agglomerated ore
JPS61266526A (en) Manufacture of sintered ore by high temperature firing fuel
JPH05320778A (en) Manufacture of burnt agglomerated ore
KR20200007146A (en) Method of manufacturing sintered ore
CN116981785A (en) Method for producing iron ore pellets
JPS60243232A (en) Iron ore briquette

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term