JPH0310027A - Pretreatment of high goethite ore - Google Patents
Pretreatment of high goethite oreInfo
- Publication number
- JPH0310027A JPH0310027A JP14280889A JP14280889A JPH0310027A JP H0310027 A JPH0310027 A JP H0310027A JP 14280889 A JP14280889 A JP 14280889A JP 14280889 A JP14280889 A JP 14280889A JP H0310027 A JPH0310027 A JP H0310027A
- Authority
- JP
- Japan
- Prior art keywords
- ore
- raw material
- goethite
- high goethite
- sintered
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052598 goethite Inorganic materials 0.000 title claims abstract description 56
- AEIXRCIKZIZYPM-UHFFFAOYSA-M hydroxy(oxo)iron Chemical compound [O][Fe]O AEIXRCIKZIZYPM-UHFFFAOYSA-M 0.000 title claims abstract description 55
- 239000002994 raw material Substances 0.000 claims abstract description 50
- 238000010438 heat treatment Methods 0.000 claims abstract description 27
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 10
- 238000000034 method Methods 0.000 claims description 20
- 238000005245 sintering Methods 0.000 claims description 19
- 238000001816 cooling Methods 0.000 claims description 11
- 239000011362 coarse particle Substances 0.000 claims description 6
- 238000002203 pretreatment Methods 0.000 claims description 4
- 238000007781 pre-processing Methods 0.000 claims 3
- 239000000571 coke Substances 0.000 abstract description 10
- 230000009467 reduction Effects 0.000 abstract description 7
- 238000000227 grinding Methods 0.000 abstract description 4
- 230000001603 reducing effect Effects 0.000 abstract description 3
- 239000008187 granular material Substances 0.000 abstract description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 65
- 229910052742 iron Inorganic materials 0.000 description 31
- 229910052595 hematite Inorganic materials 0.000 description 21
- 239000011019 hematite Substances 0.000 description 21
- LIKBJVNGSGBSGK-UHFFFAOYSA-N iron(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Fe+3].[Fe+3] LIKBJVNGSGBSGK-UHFFFAOYSA-N 0.000 description 21
- 238000002474 experimental method Methods 0.000 description 15
- 239000002245 particle Substances 0.000 description 15
- 239000000843 powder Substances 0.000 description 13
- 238000004519 manufacturing process Methods 0.000 description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 10
- 239000011148 porous material Substances 0.000 description 9
- 230000008569 process Effects 0.000 description 8
- 238000000280 densification Methods 0.000 description 7
- 239000000155 melt Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 239000007789 gas Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000000377 silicon dioxide Substances 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 235000019738 Limestone Nutrition 0.000 description 4
- 239000006028 limestone Substances 0.000 description 4
- 239000003575 carbonaceous material Substances 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 238000005469 granulation Methods 0.000 description 3
- 230000003179 granulation Effects 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 238000010298 pulverizing process Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 239000007771 core particle Substances 0.000 description 2
- 230000018044 dehydration Effects 0.000 description 2
- 238000006297 dehydration reaction Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000002893 slag Substances 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 description 1
- RHZUVFJBSILHOK-UHFFFAOYSA-N anthracen-1-ylmethanolate Chemical compound C1=CC=C2C=C3C(C[O-])=CC=CC3=CC2=C1 RHZUVFJBSILHOK-UHFFFAOYSA-N 0.000 description 1
- 239000003830 anthracite Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 238000009770 conventional sintering Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000010459 dolomite Substances 0.000 description 1
- 229910000514 dolomite Inorganic materials 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は尚炉用焼結鉱の原料として使用する高ゲーサイ
ト鉱石の事)1η処理法に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for treating high goethite ore (1η) used as a raw material for sintered ore for furnaces.
(従来の技術)
尚炉製銑法の主要原料である焼結鉱は、以ドのようにし
て製造されるのが一般的である。まず、約10mm以ド
の鉄鉱石粉に石灰石、ドロマイト、転炉滓などの含Ca
O副原料粉、珪石、蛇紋岩などの含S i 02副原料
およびコークス粉、無煙炭粉などの炭材、さらに適量の
水分を加えて混合、造粒する。つぎに、この擬似粒子化
した配合原料(擬似粒子)を火格子移動式の焼結機パレ
ット上に500m−前後の^さに充填し、この充填ベツ
ド表層部の炭材に点火し、下方に向けて空気を吸引しな
がらコークスを燃焼させてそのときに発生する燃焼熱に
よって配合原料を焼結し、焼結ケーキを製造する。この
焼結ケーキを破砕、整粒し、3〜51以上の粒子を成品
焼結鉱として高炉に装入する。(Prior Art) Sintered ore, which is the main raw material for the iron-making process, is generally produced as follows. First, iron ore powder with a size of about 10 mm or more contains Ca-containing materials such as limestone, dolomite, and converter slag.
O auxiliary raw material powder, SiO2-containing auxiliary raw materials such as silica stone and serpentine, carbon materials such as coke powder and anthracite powder, and an appropriate amount of water are added and mixed and granulated. Next, this mixed raw material (pseudo-particles) that has been made into pseudo-particles is packed onto a pallet of a sintering machine with a movable grate at a depth of around 500m, and the carbon material on the surface layer of the filled bed is ignited, and the charcoal material is ignited downward. The coke is combusted while sucking air toward the coke, and the combustion heat generated at that time sinteres the blended raw materials to produce a sintered cake. This sintered cake is crushed and sized, and the particles of 3 to 51 or more are charged into a blast furnace as finished sintered ore.
なお、高炉装入原料として不適な粉の焼結鉱は返鉱と呼
ばれ、焼結鉱の原料として戻される。Incidentally, powdered sintered ore that is unsuitable as a raw material for charging into a blast furnace is called return ore, and is returned as a raw material for sintered ore.
高炉を安定かつ直効率で撹業するには^品質の焼結鉱が
要求され、冷間強度、被還元性、耐還元粉化性などの品
質が厳しく管理されている。また、焼結鉱の製造コスト
の面から、歩留(成品焼結鉱/焼結ケーキ)の高いこと
が要望されている。In order to stir blast furnaces stably and with direct efficiency, high-quality sintered ore is required, and qualities such as cold strength, reducibility, and resistance to powdering due to reduction are strictly controlled. In addition, from the viewpoint of manufacturing cost of sintered ore, a high yield (finished sintered ore/sintered cake) is desired.
焼結鉱の原料鉱石は、従来磁鉄鉱(マグネタイト、Fe
pO−)と赤鉄鉱(ヘマタイト、Fe2O:+)を主体
としたものであったが、世界の良質鉄鉱石賦存状態等の
鉱石事情により次第にゲーサイト(Fe20z・H2O
)を多く含む褐鉄鉱の使用比率が増大してきている。The raw material ore for sintered ore is conventionally magnetite (magnetite, Fe).
pO-) and hematite (Fe2O:
) is increasing in use.
(発明が解決しようとする課題)
しかし、ゲーサイトはその化学式に示されるように結合
水を含有しており、特に結合水/ T 、 F e≧0
.03のようなゲーサイトを多く含む鉱石(高ゲーサイ
ト鉱石)は、これを焼結原料として多量に使用する場合
、結合水を除去するために所要熱量が増加するという問
題だけでな(、以下に説明するように歩留および生産性
の低下を引き起こす。(Problems to be Solved by the Invention) However, as shown in its chemical formula, goethite contains bound water, and in particular, bound water/T, Fe≧0
.. Ore containing a large amount of goethite (high goethite ore) such as No. 03 has the problem that when a large amount of it is used as a sintering raw material, the amount of heat required to remove bound water increases (see below). causes yield and productivity losses as described in .
高ゲーサイト鉱石は焼結過程の250〜500℃前後の
温度で結合水が分解・脱水し、かつ亀裂も発生して多孔
質なものに変わる。In high goethite ore, bound water decomposes and dehydrates at temperatures of around 250 to 500 degrees Celsius during the sintering process, and cracks also occur, turning the ore into a porous one.
焼結過程では、はぼ1200℃まで昇温するとCa O
とへマタイトが反応して粘性の低い融液が生成される。During the sintering process, when the temperature is raised to about 1200℃, CaO
and hematite react to form a low viscosity melt.
ここで、鉄鉱石が多孔質のと外には、その融液は直ちに
鉄鉱石中の気孔および亀裂の中へと侵入する。その際、
ヘマタイト粒子間は急速に分断されて一部は融液に溶は
込み(この現象を同化という)、かつ融液の侵入は速い
ために気孔および亀裂内にあった気体が融液中に取り残
される。したがって、これらが冷却された後の焼結鉱は
多量の粒状へマタイト粒子とスラグあるいはカルシュラ
ムフェライトとからなる少量の結合相、および多量の1
00〜1000 ミクロンの粗大気孔から構成されるよ
うになる。多量の粒状へマタイトと多量の粗大気孔の存
在によって耐還元粉化性が、多量の粗大気孔の存在によ
って強度、歩留が低下することになる。さらに、同化が
速いために焼結ベツド内の融液生成帯の空隙が急速に閉
塞され、通気性が悪化して(空気の通過が阻害されて)
コークスなどの炭材の燃焼が遅れ、生産性が低下する。Here, since the iron ore is porous, the melt immediately penetrates into the pores and cracks in the iron ore. that time,
Hematite particles are rapidly separated and some of them are dissolved into the melt (this phenomenon is called assimilation), and because the melt penetrates quickly, the gas in the pores and cracks is left behind in the melt. . Therefore, after they are cooled, the sintered ore contains a large amount of granular hematite particles, a small amount of binder phase consisting of slag or calslum ferrite, and a large amount of 1
It is composed of coarse pores of 00 to 1000 microns. The presence of a large amount of granular hematite and a large amount of coarse pores reduces resistance to reduction and pulverization, and the presence of a large amount of coarse pores reduces strength and yield. Furthermore, due to the rapid assimilation, the voids in the melt generation zone within the sintered bed are rapidly closed, resulting in poor permeability (air passage is obstructed).
The combustion of carbonaceous materials such as coke is delayed, reducing productivity.
以上のように、高ゲーサイト鉱石は焼結ベツド内で脱水
して多孔質化し、歩留、強度、還元性状を低下させる問
題を引き起こすため、使用量が増えてきているとはいえ
、まださほど多くはない。As mentioned above, high goethite ore dehydrates in the sintered bed and becomes porous, causing problems that reduce yield, strength, and reducing properties. There aren't many.
前述のような鉄鉱石事情に鑑みれば、高ゲーサイト鉱石
の効果的使用の開発の意義は大きい。In view of the iron ore situation mentioned above, the development of effective use of high goethite ore is of great significance.
特開昭59−197528号公報には、ゲーサイトを多
量に含有したリモナイト質鉱石の3輪−以上のものを破
砕して粒度xqすることにより融液生成の促進をはかり
、元鉱として脆弱な鉱石が残留するのを防止する方法が
開示されているが、粗粒の破砕は焼結原料の粒度低下に
よる生産性の低ドにつながるという問題がある。JP-A No. 59-197528 discloses that 3 or more rings of limonitic ore containing a large amount of goethite are crushed to reduce the particle size to xq, thereby promoting the production of melt, Although a method for preventing ore from remaining has been disclosed, there is a problem in that crushing coarse particles leads to a decrease in productivity due to a decrease in the particle size of the sintering raw material.
また、特開昭61−113729号公報には、m A
+20 、褐鉄鉱に高FeO鉱石および好ましくは、!
liMgo鉱石を加えて成分調整した予備混合造粒物を
焼結原料として使用することにより高A 1.0 。Furthermore, in Japanese Patent Application Laid-open No. 113729/1983, mA
+20, high FeO ores and preferably to limonite!
High A 1.0 is achieved by using premixed granules whose composition has been adjusted by adding liMgo ore as a sintering raw material.
成分含有の二次ヘマタイトの形成を抑制して耐還元粉化
性の向上をはかる方法が開示さ技ているが、予備造粒物
と他の原料との混合・造粒の際に予備造粒物が崩壊して
事前造粒効果が薄れるという問題がある。A method for improving resistance to reduction and pulverization by suppressing the formation of secondary hematite containing components has been disclosed. There is a problem that the material collapses and the pre-granulation effect is weakened.
このように、従来は高ゲーサイト鉱石から耐還元粉化性
が良い焼結鉱を歩留よく製造することは困難であった。As described above, it has conventionally been difficult to produce sintered ore with good reduction powdering resistance from high goethite ore with a good yield.
今後の鉱石事情を考えると高ゲーサイト鉱石の効果的使
用法の確立は重要な課題であり、本発明は高炉用焼結鉱
の原料として高ゲーサイト鉱石を使用する場合に、耐還
元粉化性の良い焼結鉱を歩留よく製造することのできる
事前処理法を提供する。Considering the future ore situation, establishing an effective method for using high goethite ore is an important issue. To provide a pretreatment method capable of producing sintered ore with good properties and good yield.
(課題を解決するための手y、)
本発明は、高ゲーサイト鉱石(結合水、l/ T 、
F e≧0.03)を高炉用焼結鉱の原料として使用す
るに際し、高ゲーサイト鉱石を1200°C以上の温度
゛rでド記〔1〕、〔2〕式で定まる時開tだけ加熱処
理してから焼結原料として使用する高ゲーサイト鉱石の
事前処理法である。(Means for Solving the Problems) The present invention is directed to high goethite ores (bound water, l/T,
When using Fe≧0.03) as a raw material for sintered ore for blast furnaces, high goethite ore is heated at a temperature of 1200°C or higher by the time t determined by equations [1] and [2]. This is a pre-treatment method for high goethite ore, which is heat-treated before being used as a sintering raw material.
1200≦T≦1400のとき
し≧ 5 −0.023(T −1200) (
+in) −■1400<Tのとき
し≧0.4 (IIIin) −
■ただし、゛I゛:加熱温度 (℃)
高ゲーサイト鉱石を篩分けし、粗粒部のみ加熱処理する
ことは好ましい。また、加熱処理した高ゲーサイト鉱石
は、冷却してから焼結原料として使用することもできる
し、冷却しないで焼結原料として使用することもできる
。When 1200≦T≦1400≧5 −0.023(T −1200) (
+in) -■1400<T time ≧0.4 (IIIin) -
(2) However, ゛I゛: Heating temperature (°C) It is preferable to sieve the high goethite ore and heat-treat only the coarse grain portion. Further, the heat-treated high goethite ore can be used as a sintering raw material after being cooled, or can be used as a sintering raw material without being cooled.
(作用) 以ドに本発明に至った経過について詳しく説明仁る。(effect) The process that led to the present invention will be explained in detail below.
融液が生成するまでに高ゲーサイト鉱石をm密化してお
けば鉄鉱石中への融液の侵入が阻止でき、同化現象を防
止し、粗大気孔を数多く有するために問題となる焼結体
の形成の抑制が可能となり、高ゲーサイト鉱石が通常の
へマタイト鉱石と同等に利用でさる。緻密化のための具
体的手段については、高ゲーサイト鉱石を走査電子顕微
鏡の中で加熱することにより、ゲーサイト部(すでに脱
水・分解によってヘマタイト粒子の多孔質体となってい
る)は1200℃から動き始め、緻密化していくことを
発見した。そこで、第1表に示す代表的な1lil+デ
一サイト鉱石八を選び、焼結原料の平均粒度の2〜3I
Ia+のものについて加熱温度と時間を変えて緻密化さ
せるための必要条件について調べた。水銀圧入法で測定
した100ミクロン以ドの気孔割合と加熱温度および時
間の関係(50個の平均)を第2図に示した。1200
℃以上で、かつ高温はど短時間にmff1化するのが明
瞭である。If the high goethite ore is densified before the melt is generated, the intrusion of the melt into the iron ore can be prevented, and the assimilation phenomenon can be prevented. This makes it possible to suppress the formation of hematite ore, allowing high goethite ore to be used in the same way as normal hematite ore. As for specific means for densification, by heating high goethite ore in a scanning electron microscope, the goethite part (which has already become a porous body of hematite particles due to dehydration and decomposition) is heated to 1200°C. I discovered that it starts to move and becomes more precise. Therefore, we selected the representative 1 lil + de-1 site ore shown in Table 1, and
The necessary conditions for densification of Ia+ were investigated by changing the heating temperature and time. Figure 2 shows the relationship between the proportion of pores of 100 microns or larger measured by mercury intrusion method, heating temperature, and time (average of 50 samples). 1200
It is clear that at temperatures above .degree. C. and high temperatures, mff1 occurs in a short period of time.
また、100ミクロン以下の気孔割合では亀裂部のII
k蜜化が評価できないので、収縮を総括して評価でトる
圧潰強度も測定し、結果を第3図に示す。In addition, with a pore ratio of 100 microns or less, II
Since it was not possible to evaluate k-densification, we also measured the crushing strength, which is a comprehensive evaluation of shrinkage, and the results are shown in Figure 3.
強度の高いほど緻密化が起こっている。第2.3図より
、温度の^いはと短時間にm密化することが明らかであ
る。The higher the strength, the more densification occurs. From Figure 2.3, it is clear that m-density occurs in a short time as the temperature increases.
輸入量の多い平均的性状の鉄鉱石である聚州産ヘマタイ
ト鉱石の加熱処理・したもの(加熱温度、時間を変えて
も1200℃以上であれば強度はほとんど変化しなかっ
た)および焼結鉱の2〜3mmについて同様に圧潰強度
を測定し、8kgという結果が得られた。この値以上に
なる加熱条件であれ、ば、通常の鉄鉱石と同じ以上の加
熱・脱水後の緻密度が保証できることになる。圧潰強度
が8kg以上となる最短時間と温度の関係をfpJ3図
の結果を基にプロットしたのが第4図である。なお、他
の高ゲーサイト鉱石B、C(第1表)でも同様の関係が
得られたので第4図に併記した。第4図の直線が本発明
において加熱時開を規定する■式である。ここでは14
00℃までの結果を示したが、上り高温でもよい、高温
はど処理時間は短くてよいが、1400°C以上ではき
わめて短時間となるため、実用的には1400℃の場合
と同じ条件でよい。それが■式である。なお、粒度を1
〜1011111に変えて試験してみたが、粒度が大き
いほど圧潰強度のレベルは高(なったものの、■式と同
じ関係が得られた。Heat-treated hematite ore from Juzhou, which is an iron ore with average properties that is imported in large quantities (even if the heating temperature and time were changed, the strength did not change much at 1200℃ or higher) and sintered ore. The crushing strength was similarly measured for 2 to 3 mm of the sample, and a result of 8 kg was obtained. If the heating conditions exceed this value, it can be guaranteed that the density after heating and dehydration is equal to or higher than that of ordinary iron ore. FIG. 4 is a plot of the relationship between temperature and the minimum time required for the crushing strength to be 8 kg or more based on the results of the fpJ3 diagram. Note that similar relationships were obtained for other high-goethite ores B and C (Table 1), so they are also shown in FIG. The straight line in FIG. 4 is the equation (2) that defines opening during heating in the present invention. here 14
Although we have shown the results up to 00°C, the treatment time at high temperatures may be short, but at temperatures above 1400°C it will take a very short time, so in practice it is recommended to use the same conditions as for 1400°C. good. That is the ■style. In addition, the particle size is 1
- 1011111 was tested, but the same relationship as formula (2) was obtained, although the larger the particle size, the higher the level of crushing strength.
焼結ベツド内の最高温度は1250〜1400℃が一般
的である。これは緻密化が起こる温度ではあるが、前述
のように、通常の化学組成では1200℃に到注すると
直ちに融液が生成して鉄鉱石中に侵入するため、m密化
に必要な時間を確保することができない。よって、融液
の存在しない状況ドで加熱し、緻密化する必要がある。The maximum temperature inside the sintered bed is generally 1250 to 1400°C. This is the temperature at which densification occurs, but as mentioned above, with a normal chemical composition, as soon as the temperature reaches 1200°C, melt is generated and penetrates into the iron ore, so the time required for densification is cannot be secured. Therefore, it is necessary to heat and densify the material in the absence of melt.
その最も確実な方法は、焼結工程の系外にて処理するこ
とである。The most reliable method is to treat it outside the sintering process.
焼結鉱の歩留、品質悪化の主原因となる 「粒状へマタ
イトと粗大気孔を主体とする構造」は鉄鉱石の粒度と関
連付けると、擬似粒子中で核粒子となる粗粒側がその問
題の構造を形成する。それは、既に知られているように
、微粉で構成される擬似粒子付着粉層で一挙に融液がで
き、その融液が核粒子の鉱石の中へ侵入していくからで
ある。そのため、高ゲーサイト鉱石を篩分けて粗粒部だ
けを(2)熱処理すれば、処理量は少なくて大きな効果
を得ることができる。粗粒の粒径としては、一般に核粒
子になると知られている1憾一以上のものを加熱処理す
るとよい。The main cause of the yield and quality deterioration of sintered ore is the structure consisting mainly of granular hematite and coarse pores. When related to the grain size of iron ore, it is found that the coarse grain side, which is the core grain in the pseudo-particles, is responsible for the problem. form a structure. This is because, as is already known, a molten liquid is formed all at once in the pseudo-particle adhering powder layer composed of fine powder, and the molten liquid penetrates into the ore of the core particles. Therefore, if high goethite ore is sieved and only the coarse particles are subjected to (2) heat treatment, a large effect can be obtained with a small amount of treatment. As for the particle size of the coarse particles, it is preferable to heat-treat one or more particles that are generally known to become core particles.
通常、鉄鉱石は常温のまま使用されている。したがって
、加熱処理した鉄鉱石を常温まで冷やして使用すること
は何ら問題ない、また、通常の焼結鉱製造工程で擬似粒
子の粒化を促進するために冷水に代えて水蒸気を使用し
て原料の温度をわざわざ上げることも行われている。加
熱処理後の熱い鉄鉱石を配合すれば、水蒸気を使用しな
くても原料の温度の上昇は可能となり、生産性、歩留に
対するlK11次効果を活かすことができる。Iron ore is usually used at room temperature. Therefore, there is no problem in using heat-treated iron ore after cooling it to room temperature, and in order to promote the granulation of pseudo-particles in the normal sinter production process, steam is used instead of cold water to produce raw materials. There are also efforts to raise the temperature. By blending hot iron ore after heat treatment, it is possible to raise the temperature of the raw material without using steam, and it is possible to take advantage of the lK11-order effect on productivity and yield.
なお、本発明法は高ゲーサイトの粉鉱石ばかりでなく、
塊状のものに適用して加熱処理後に10゛I以ドに粉砕
して焼結鉱用の原料として使用できる。The method of the present invention is applicable not only to high goethite powder ore, but also to
It can be used as a raw material for sintered ore by applying it to lumps and crushing it to 10°I or less after heat treatment.
第1図に本発明の事前処理工程を例示したが、高ゲーサ
イト鉱石1は流動層またはシャフト炉2、ロータリーキ
ルン3等を用いて加熱処理される。The pre-treatment process of the present invention is illustrated in FIG. 1, where high goethite ore 1 is heat-treated using a fluidized bed, shaft furnace 2, rotary kiln 3, or the like.
高ゲーサイト鉱石1は■、■のように全量加熱処理して
もよいが、■、■のように篩4によりたとえば+211
II11と一2mm、+1m−と−1m−に篩分けし、
篩上の粗粒のみ加熱処理し、篩下の微粒は直接焼結原料
として焼結製造工程に送ることも可能である。曲述のよ
うに、′問題となるのは脆弱な焼結鉱として残留する粗
粒であるので、粗粒部のみを加熱処理すれば処理量が少
なくて効果が大きくなる。High goethite ore 1 may be heat-treated in its entirety as shown in ■ and ■, but it can be heated to +211
Sieve into II11 and -2mm, +1m- and -1m-,
It is also possible to heat-process only the coarse particles on the sieve and send the fine particles under the sieve directly to the sintering manufacturing process as a sintering raw material. As mentioned above, the problem is the coarse grains that remain as brittle sintered ore, so if only the coarse grains are heat treated, the amount of treatment is small and the effect is large.
また、加熱処理した後の高ゲーサイト鉱石は冷却装置5
により冷却してから焼結原料として使用してもよいし、
冷却装置5を経ずに冷却なしで焼結原料として使用して
もよい。冷却する場合は、廃熱を回収し、加熱処理の熱
源として有効に利用するのが好ましい。また、冷却しな
い場合は、加熱処理の熱を利用して後続の工程において
温間造粒することができる。In addition, the high goethite ore after heat treatment is cooled by a cooling device 5.
It may be used as a sintering raw material after being cooled by
It may be used as a sintering raw material without cooling without passing through the cooling device 5. When cooling, it is preferable to recover waste heat and use it effectively as a heat source for heat treatment. In addition, in the case of not cooling, warm granulation can be performed in a subsequent step using the heat of the heat treatment.
(実施例) 以ド、実施例により本発明の特徴を具体的に説明する。(Example) Hereinafter, the features of the present invention will be specifically explained with reference to Examples.
実施例1
0−タリーキルンで加熱処理した例を示す4代表的な高
ゲーサイト鉱石を使用したが、その化学組成を第1表に
、ロータリーキルンの操業条件をm2表に示す。同表中
の実験■でコークス粉を使用しているのは、バーナーの
都市がス量の低減と原料温度の上昇を狙ったものである
。ここで処理した高ゲーサイト鉱石を常温まで冷却し、
焼結鉱を製造したときの結果を第3表に示す。輸入鉄鉱
石の平均的性状を有する豪州産へマタイト鉱石で焼結鉱
を製造した基準原料アに比べて、未加熱処理の高ゲーサ
イト鉱石を使用した基準原料イは歩留、生産率、品質共
に大幅に悪化している。これに対して、加熱処理した鉱
石を使用すると、全量代替(実験■鉱石)でも一部代替
(実験■鉱石、実験■鉱石yでも歩留、生産率、品質共
に改善され、ヘマタイト鉱石のときと同じかそれ以上の
^成績を得た。また、結合水の離脱によってコークス原
単位も歩留向上以上に低減した。さらに、通気性も改善
されて歩留増加以上に生産率が増大した。Example 1 Four typical high goethite ores were used, showing an example of heat treatment in an 0-tary kiln.The chemical composition thereof is shown in Table 1, and the operating conditions of the rotary kiln are shown in Table m2. The purpose of using coke powder in experiment (■) in the same table is that the city of the burner aims to reduce the amount of carbon dioxide and increase the temperature of the raw material. The high goethite ore processed here is cooled to room temperature,
Table 3 shows the results when producing sintered ore. Compared to standard raw material A, which made sintered ore from Australian hematite ore, which has average properties of imported iron ore, standard raw material A, which uses unheated high-quality goethite ore, has lower yield, production rate, and quality. Both have deteriorated significantly. On the other hand, when heat-treated ore is used, the yield, production rate, and quality are improved both in full substitution (experiment ■ ore) and partial substitution (experiment ■ ore, experiment ■ ore y), and compared to the case of hematite ore. The same or better results were obtained.Also, due to the removal of bound water, the coke consumption rate was reduced more than the improvement in yield.Furthermore, air permeability was improved, and the production rate increased more than the increase in yield.
第1表 鉄鉱石の成分
第2表 ロータリーキルン揉業条件
第3表 焼結鉱製造結果
備考−1基準原料ア中鉄鉱石全量を実験■で処理した鉱
石と置換本2基準原料ア中鉄鉱石の30%を実験■で処
理した鉱石と置換本3基準原料ア中鉄鉱石の50%を実
験■で処理した鉱石と置換(1)基準原料ア中鉄鉱石;
10mm東州産へマタイト鉱石基準原料イ中鉄鉱石
;−10+am未加熱高ゲーサイト鉱石A(2)配合原
料中返鉱;20%、コークス; 3.3%(3)目標値
:焼結鉱中5ioz=5.5%Cab/Sin、=1.
9(W!4整は石灰石粉と珪石粉で実施)
実施例2
次に、循環流動層で加熱処理した例を示す。加熱処理条
件を第4表に示すが、この場合は、温度の均一化および
その温度での滞留時間の制御は容易である。鉄鉱石の組
成は#S1表に示したものと同じである。ここで加熱処
理した尚ゲーサイト鉱石を常温*で冷却し、焼結鉱を製
造したときの結果をPjSS表に示す。短時間でも^温
で処理すると、実施例1と同様にヘマタイト鉱石使用時
以上の良好な成績が得られることが明瞭である。Table 1 Composition of iron ore Table 2 Rotary kiln processing conditions Table 3 Sintered ore production results Notes - 1 Replacement of the entire amount of standard raw material iron ore with the ore processed in experiment ■ Book 2 of standard raw material iron ore Replaced 30% with the ore processed in the experiment ■Replaced 50% of the 3 standard raw material iron ore with the ore processed in the experiment ■ (1) Standard raw material iron ore;
10mm Toshu hematite ore standard raw material iron ore; -10+am unheated high goethite ore A (2) mixed raw material return ore; 20%, coke; 3.3% (3) target value: sintered ore Medium 5ioz = 5.5% Cab/Sin, = 1.
9 (W!4 adjustment was carried out using limestone powder and silica powder) Example 2 Next, an example of heat treatment in a circulating fluidized bed will be shown. The heat treatment conditions are shown in Table 4, and in this case, it is easy to equalize the temperature and control the residence time at that temperature. The composition of the iron ore is the same as shown in Table #S1. The heat-treated goethite ore was cooled to room temperature* to produce sintered ore. The results are shown in the PjSS table. It is clear that when treated at ^ temperature even for a short time, as in Example 1, better results than when using hematite ore can be obtained.
in4表 循環流動層による加熱処理条件第5表 焼結
鉱製造結果
備考−1基準原料ア中鉄鉱石全量を実験■で処理した鉱
石と置換
本2基準原料ア中鉄鉱石の30%を実験■で処理した鉱
石と置換
(1)基準原料7中鉄鉱石; 10mm豪州産へマ
タイト鉱石
(2)配合原料中返鉱;25%、コークス; 3.1%
(3)目標値;焼結鉱中SiO□=5.4%Cab/5
in2=2.0(調整は石灰石粉と珪石粉で実施)
実施例3
^ゲーサイト鉱石の粗粒部を篩出してシャフト炉にて加
熱処理した例を示す。加熱処理条件を第6表に、加熱処
理した粗粒の高ゲーサイト鉱石を常温まで冷却して焼結
した結果を第7表に示す。in4 Table Heating treatment conditions using circulating fluidized bed Table 5 Sintered ore production results Notes - 1 Replaced the entire amount of standard raw material iron ore with the ore processed in the experiment ■ Book 2 Replaced 30% of the standard raw material iron ore with the experiment ■ (1) Standard raw material 7 medium iron ore; 10 mm Australian hematite ore (2) Mixed raw material medium return ore; 25%, coke; 3.1%
(3) Target value; SiO□ in sintered ore = 5.4% Cab/5
in2=2.0 (adjustment is carried out using limestone powder and silica powder) Example 3 An example is shown in which the coarse part of goethite ore was sieved and heat-treated in a shaft furnace. Table 6 shows the heat treatment conditions, and Table 7 shows the results of cooling and sintering the heat-treated coarse-grained high goethite ore to room temperature.
まず、ヘマタイト鉱石中の+3■と加熱処理した粗粒(
3〜10IllIa)の^ゲーサイト鉱石(実験■鉱石
)を置換したが、ヘマタイト鉱石100%の基準原料ア
よりも良好な結果となっている。また、加熱処理した1
〜5a+mの粗粒の^ゲーサイト鉱石と−11の加熱処
理しなかった^ゲーサイト鉱石を混合してヘマタイト鉱
石全量と置き換えても (実験■鉱石+粉)、ヘマタイ
ト鉱石100%の場合と同等の結果が得られた。これは
^ゲーサイト鉱石Aを未加熱で使用した基準原料イより
も着しく改善されているのが明瞭である。First, +3■ in hematite ore and heat-treated coarse particles (
3 to 10IllIa) was replaced with goethite ore (Experimental ■Ore), but the results were better than the standard raw material A of 100% hematite ore. In addition, heat-treated 1
Even if you mix ~5a+m coarse-grained goethite ore and -11 unheated goethite ore and replace the entire amount of hematite ore (experiment ■ ore + powder), it is equivalent to the case of 100% hematite ore. The results were obtained. It is clear that this is a significant improvement over standard raw material A, which uses unheated goethite ore A.
なお、実施例1〜3では熱源の熱風は都市ガスを空気に
て燃焼させて製造しているが、ここで都市ガスの代わり
に高炉ガス、献炉jス、コークス炉ガス、重油などの他
の燃料の使用も可能である。In Examples 1 to 3, the hot air as a heat source was produced by burning city gas with air, but here, instead of city gas, other materials such as blast furnace gas, carbon dioxide, coke oven gas, heavy oil, etc. were used. It is also possible to use other fuels.
また、常温の空気の代わりに処理鉱石の冷却で生成した
高温の空気を活用すれば、燃料の低減がはかれる。In addition, fuel consumption can be reduced by using high-temperature air generated by cooling processed ore instead of room-temperature air.
第7表
焼結鉱製造結果
第6表
ンヤ7F炉による加熱処理条件
備考;本1 基準原料ア中鉄鉱石の+31全量(重量比
率;20%)を実験■で処理した鉱石と置換
車2基準原料ア中鉄鉱石全量を実験■で処理した鉱石(
50%)および未加熱処理病ゲーサイト鉱石Aの−1一
部(50%)と置換
(1)基準原料7中鉄鉱石;−10+m豪州産ヘマタイ
ト鉱石(2)配合原料中返鉱; 15%、コークス;3
.5%(3)目標値;焼結鉱中S i 02 = 5.
5%CaO/5iO2=1.8(調整は石灰石粉と硅。Table 7 Sintered ore production results Table 6 Heat treatment conditions using a Nya 7F furnace Notes: Book 1 +31 total amount (weight ratio: 20%) of the standard raw material iron ore was replaced with the ore processed in the experiment ■ 2 Standards The entire amount of raw iron ore was processed in an experiment (
50%) and -1 part (50%) of unheated goethite ore A (1) Standard raw material 7 medium iron ore; -10+m Australian hematite ore (2) Mixed raw material medium return ore; 15% , coke; 3
.. 5% (3) Target value; S i 02 in sintered ore = 5.
5%CaO/5iO2=1.8 (adjusted with limestone powder and silica.
石粉で実施)
実施例4
高温の鉄鉱石を使用したときの結果を第8表に示す、現
状の設備では非常に^い温度の粉体の搬送は難しいので
、500〜600℃まで冷却して使用した。なお、造粒
機入口での温度は、途中の冷却もあり200〜300℃
となった。第3表と第8表を比較すると明らかなように
、高温の鉄鉱石を使用すると、通気性が改善されて生産
率は大さく向上した。Example 4 Table 8 shows the results when using high-temperature iron ore.Since it is difficult to transport powder at extremely high temperatures with the current equipment, it was cooled to 500-600℃. used. The temperature at the inlet of the granulator is 200-300℃, including cooling during the process.
It became. As is clear from a comparison of Tables 3 and 8, the use of hot iron ore improved air permeability and greatly increased production rates.
第8表
高温度の処理鉄鉱石使用時
の焼結鉱製造結果 本1
備考;車1焼結操業は処理鉱石の配合温度を除いて実施
例1と全く同じ
本2基準原料7中鉄鉱石の30%を
実験■で処理した鉱石と置換
車3基準原料ア中鉄鉱石の50%を
実験■で処理した鉱石と置換
(発明の効果)
本発明によれば、従来焼結原料として有効に利用するこ
とが困難であった高ゲーサイト鉱石を利用して、コーク
ス原単位を低くし、耐還元粉化性の良い焼結鉱を歩留よ
く製造することが可能となる。Table 8 Results of sintered ore production when using high-temperature processed iron ore Book 1 Note: Car 1 Sintering operation is exactly the same as Example 1 except for the blending temperature of processed ore Book 2 Standard raw material 7 Medium iron ore Replacement of 30% of the ore processed in the experiment ■ with the ore processed in the experiment ■ Replacement of 50% of the standard raw material iron ore with the ore processed in the experiment ■ (effects of the invention) According to the present invention, it can be effectively used as a conventional sintering raw material. By using high-goethite ore, which has been difficult to produce, it becomes possible to lower the coke consumption rate and produce sintered ore with good resistance to reduction and pulverization with a high yield.
第1図は本発明の事前処理工程を例示する図、第2図は
高ゲーサイト鉱石の気孔割合と加熱温度、時間との関係
を示す図、
第3図は高ゲーサイト鉱石の圧潰強度と加熱温度、時間
との関係を示す図、
fjIJ4図は緻密化のための熱処理条件を示す図であ
る。
1・・・高ゲーサイト鉱石、2・・・流動層またはシャ
フト炉、3・・・ロータリーキルン、4・・・篩、5・
・・冷却装置、6・・・補助燃料、7・・・空気、8・
・・高温空気。Figure 1 is a diagram illustrating the pretreatment process of the present invention, Figure 2 is a diagram showing the relationship between the pore ratio of high goethite ore, heating temperature, and time, and Figure 3 is a diagram showing the relationship between the crushing strength and heating temperature of high goethite ore. A diagram showing the relationship between heating temperature and time, Figure fjIJ4 is a diagram showing heat treatment conditions for densification. 1... High goethite ore, 2... Fluidized bed or shaft furnace, 3... Rotary kiln, 4... Sieve, 5...
...Cooling device, 6.Auxiliary fuel, 7.Air, 8.
・High temperature air.
Claims (4)
)を高炉用焼結鉱の原料として使用するに際し、高ゲー
サイト鉱石を1200℃以上の温度Tで下記〔1〕、〔
2〕式で定まる時間tだけ加熱処理してから焼結原料と
して使用する高ゲーサイト鉱石の事前処理法。 1200≦T≦1400のとき t≧5−0.023(T−1200)(min) …〔
1〕1400<Tのとき t≧0.4 (min)…〔2〕 ただし、T:加熱温度 (℃)(1) High goethite ore (bound water/T.Fe≧0.03
) as a raw material for sintered ore for blast furnaces, high goethite ore is heated to a temperature T of 1200°C or higher as described below [1], [
2] Pre-treatment method for high goethite ore, which is used as a sintering raw material after being heat-treated for a time t determined by the formula. When 1200≦T≦1400, t≧5-0.023 (T-1200) (min)...[
1] When 1400<T, t≧0.4 (min)…[2] Where, T: heating temperature (°C)
を篩分けし、粗粒部のみ加熱処理する高ゲーサイト鉱石
の事前処理法。(2) A method for pre-processing high goethite ore according to claim 1, in which the high goethite ore is sieved and only the coarse particles are heated.
した高ゲーサイト鉱石を冷却してから焼結原料として使
用する高ゲーサイト鉱石の事前処理法。(3) In the method according to claim 1 or 2, a method for pre-processing high goethite ore, which comprises cooling the heat-treated high goethite ore and then using it as a sintering raw material.
した高ゲーサイト鉱石を冷却しないで焼結原料として使
用する高ゲーサイト鉱石の事前処理法。(4) A method for pre-processing high goethite ore according to claim 1 or 2, wherein the heat-treated high goethite ore is used as a sintering raw material without being cooled.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1142808A JP2779647B2 (en) | 1989-06-05 | 1989-06-05 | ▲ High ▼ Pretreatment of goethite ore |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1142808A JP2779647B2 (en) | 1989-06-05 | 1989-06-05 | ▲ High ▼ Pretreatment of goethite ore |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0310027A true JPH0310027A (en) | 1991-01-17 |
JP2779647B2 JP2779647B2 (en) | 1998-07-23 |
Family
ID=15324119
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1142808A Expired - Lifetime JP2779647B2 (en) | 1989-06-05 | 1989-06-05 | ▲ High ▼ Pretreatment of goethite ore |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2779647B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1043246C (en) * | 1994-09-21 | 1999-05-05 | 川崎制铁株式会社 | Sintered ore mfg. method using high crystal water iron ore as raw material |
JP2009074107A (en) * | 2007-09-18 | 2009-04-09 | Nippon Steel Corp | Method for pretreating high crystal water iron ore |
JP2013237876A (en) * | 2012-05-11 | 2013-11-28 | Nippon Steel & Sumitomo Metal Corp | Method for producing sintered ore using fatty palm kernel shell coal |
JP2017072327A (en) * | 2015-10-08 | 2017-04-13 | 株式会社神戸製鋼所 | Design method for rotary kiln |
CN113736988A (en) * | 2021-09-28 | 2021-12-03 | 孙铁民 | Method for improving iron content of CID type iron ore in ancient river channel |
WO2023054588A1 (en) * | 2021-09-29 | 2023-04-06 | 日本製鉄株式会社 | Ironmaking method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6277426A (en) * | 1985-09-28 | 1987-04-09 | Kobe Steel Ltd | Method for removing water of crystallization from ore |
JPH03267321A (en) * | 1990-03-16 | 1991-11-28 | Nippon Steel Corp | Production of cold rolled steel sheet for deep drawing |
-
1989
- 1989-06-05 JP JP1142808A patent/JP2779647B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6277426A (en) * | 1985-09-28 | 1987-04-09 | Kobe Steel Ltd | Method for removing water of crystallization from ore |
JPH03267321A (en) * | 1990-03-16 | 1991-11-28 | Nippon Steel Corp | Production of cold rolled steel sheet for deep drawing |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1043246C (en) * | 1994-09-21 | 1999-05-05 | 川崎制铁株式会社 | Sintered ore mfg. method using high crystal water iron ore as raw material |
JP2009074107A (en) * | 2007-09-18 | 2009-04-09 | Nippon Steel Corp | Method for pretreating high crystal water iron ore |
JP2013237876A (en) * | 2012-05-11 | 2013-11-28 | Nippon Steel & Sumitomo Metal Corp | Method for producing sintered ore using fatty palm kernel shell coal |
JP2017072327A (en) * | 2015-10-08 | 2017-04-13 | 株式会社神戸製鋼所 | Design method for rotary kiln |
CN113736988A (en) * | 2021-09-28 | 2021-12-03 | 孙铁民 | Method for improving iron content of CID type iron ore in ancient river channel |
CN113736988B (en) * | 2021-09-28 | 2022-12-13 | 孙铁民 | Method for improving iron content of ancient river channel CID type iron ore |
WO2023054588A1 (en) * | 2021-09-29 | 2023-04-06 | 日本製鉄株式会社 | Ironmaking method |
TWI820935B (en) * | 2021-09-29 | 2023-11-01 | 日商日本製鐵股份有限公司 | Iron making method |
Also Published As
Publication number | Publication date |
---|---|
JP2779647B2 (en) | 1998-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6620850B2 (en) | Carbonaceous granulated particles for the production of sintered ore and method for producing the same | |
JPS61106728A (en) | Lump ore and its production | |
JP7119856B2 (en) | Method for smelting oxide ore | |
JP6288462B2 (en) | Carbonaceous material-containing granulated particles for manufacturing sintered ore, method for manufacturing the same, and method for manufacturing sintered ore | |
JP6460293B2 (en) | Method for producing sintered ore | |
JPH0310027A (en) | Pretreatment of high goethite ore | |
CN104334749A (en) | Method for manufacturing mixture of reduce iron and slag | |
CN113005284B (en) | Application method of titanium-containing sea sand in sinter production | |
JPS63219534A (en) | Manufacture of self-fluxing pellet | |
JP2002129247A (en) | High grade sintered agglomerate for iron manufacturing and method for manufacturing the same | |
JPH05339654A (en) | Pretreatment of sintered ore raw material and sintered ore raw material for iron making | |
JP7424339B2 (en) | Raw material particles for producing agglomerates, method for producing raw material particles for producing agglomerates, agglomerates, method for producing agglomerates, and method for producing reduced iron | |
WO2024069991A1 (en) | Method for producing iron ore pellets, and iron ore pellets | |
CN115700284B (en) | Method for preparing high-quality DRI by taking whole hematite powder as raw material | |
JPH0583620B2 (en) | ||
JP2000169916A (en) | High quality sintered ore and production thereof | |
JPH09272925A (en) | Production of sintered ore excellent in property at high temperature and cold strength | |
JPH03130326A (en) | Production of sintered ore for blast furnace using high-goethite ore | |
JPH0819486B2 (en) | Manufacturing method of sinter for blast furnace using high goethite ore as raw material | |
JP2001271121A (en) | Method for producing sintered ore for blast furnace | |
JPH11335713A (en) | Production of reduced iron briquette | |
KR101246331B1 (en) | APPARATUS FOR MANUFACTURING Fe-Cr | |
JP2000144265A (en) | Pre-treatment of iron ore pellet raw material | |
JP2003306723A (en) | Method for manufacturing sintered ore for blast furnace | |
KR101246330B1 (en) | METHOD FOR MANUFACTURING Fe-Cr |