JPH11335713A - Production of reduced iron briquette - Google Patents

Production of reduced iron briquette

Info

Publication number
JPH11335713A
JPH11335713A JP11077610A JP7761099A JPH11335713A JP H11335713 A JPH11335713 A JP H11335713A JP 11077610 A JP11077610 A JP 11077610A JP 7761099 A JP7761099 A JP 7761099A JP H11335713 A JPH11335713 A JP H11335713A
Authority
JP
Japan
Prior art keywords
agglomerate
iron oxide
iron
reduced iron
reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11077610A
Other languages
Japanese (ja)
Other versions
JP3020494B2 (en
Inventor
Koushiro Fuji
孝司朗 藤
Hidetoshi Tanaka
英年 田中
Takao Harada
孝夫 原田
Takeshi Sugiyama
健 杉山
Yoshimichi Takenaka
芳通 竹中
Kazuya Miyagawa
一也 宮川
Akiji Shirouchi
章治 城内
Haruhisa Iwakiri
治久 岩切
Makoto Nishimura
真 西村
Takao Umeki
隆夫 梅木
Sumuto Hashimoto
澄人 橋本
Teruhisa Uehara
輝久 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP11077610A priority Critical patent/JP3020494B2/en
Priority claimed from US09/275,017 external-priority patent/US6129777A/en
Publication of JPH11335713A publication Critical patent/JPH11335713A/en
Application granted granted Critical
Publication of JP3020494B2 publication Critical patent/JP3020494B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a reduced iron by which the reduced iron briquette having high average quality can be obtd in high productivity. SOLUTION: Iron oxide briquette containing carbonaceous material having almost 10-30 mm in the range of grain diameter, is laid on the furnace hearth of a shifting floor type heating furnace so that the laid density becomes <=1.4 kg/m<2> /mm, and thereafter, the iron oxide briquette is rapidly heated so that the surface temp. thereof becomes >=1200 deg.C within 1/3 of the staying time of this iron oxide briquette in the shifting floor type heating furnace. The, after making the reduced iron briquette by reducing until the metalloid ratio of the iron oxide briquette becomes >=85%, this reduced iron briquette is discharged from the moving floor type heating furnace.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、移動床型加熱炉を
用いて、炭材を含む酸化鉄塊成物を還元して還元鉄塊成
物を製造する技術分野に属するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention belongs to the technical field of producing reduced iron agglomerates by reducing iron oxide agglomerates containing a carbon material using a moving bed type heating furnace.

【0002】[0002]

【従来の技術】還元鉄の製造方法としては、ミドレック
ス法がよく知られている。このミドレックス法は、天然
ガスから変成した還元性ガスを羽口から吹き込み、シャ
フト炉中を上昇させることによって、炉内に充填された
鉄鉱石や酸化鉄ペレットを還元して還元鉄を得るもので
ある。しかしながら、この方法では燃料として天然ガス
を大量に供給する必要があり、その立地条件が限定され
てしまう。
2. Description of the Related Art As a method for producing reduced iron, the Midrex method is well known. In the Midrex method, reducing gas converted from natural gas is blown from the tuyere and raised in a shaft furnace to reduce iron ore and iron oxide pellets filled in the furnace to obtain reduced iron. It is. However, in this method, it is necessary to supply a large amount of natural gas as a fuel, and the location conditions are limited.

【0003】そこで、天然ガスに替えて比較的安価な石
炭を還元剤として使用することのできる還元鉄製造方法
が注目されている。例えば、米国特許第3443931 号や56
01631 号には、粉鉱石と炭材とを混合してペレット化
し、高温雰囲気下で加熱還元することにより還元鉄を製
造するプロセスが記載されている。この方法によれば、
還元剤が石炭ベースであることの他にも、粉鉱石を直接
使用できること、高速還元が可能であること、製品中の
炭素含有量を調整することができる等の利点を有してい
る。
[0003] Therefore, attention has been focused on a method for producing reduced iron that can use relatively inexpensive coal as a reducing agent instead of natural gas. For example, U.S. Pat.
No. 01631 describes a process for producing reduced iron by mixing and ore fines with a carbonaceous material, pelletizing them, and reducing them by heating under a high-temperature atmosphere. According to this method,
In addition to the fact that the reducing agent is based on coal, it has advantages such as the ability to directly use fine ore, high-speed reduction, and the ability to adjust the carbon content in the product.

【0004】これらの米国特許公報に記載された方法で
は、乾燥した酸化鉄塊成物を、回転炉床炉などの移動床
型加熱炉に装入し、炉内を移動する間に加熱し、炭材で
酸化鉄塊成物を還元している。
In the method described in these US Patent Publications, a dried iron oxide agglomerate is charged into a moving bed type heating furnace such as a rotary hearth furnace, and heated while moving in the furnace. Carbon oxides reduce iron oxide agglomerates.

【0005】[0005]

【発明が解決しようとする課題】炭材による酸化鉄塊成
物の還元は、伝熱作用上、塊成物の表面から進行する。
したがって、還元後半においては、塊成物の上面表層部
には金属鉄が析出しているが、温度が低い中心部または
下面部は還元反応が十分に進行しておらず、還元鉄の品
質が十分でない。また、回転炉床炉の温度調整は燃焼バ
ーナーまたは塊成物から発生する可燃性ガスの二次燃焼
によって行なわれるが、燃料原単位を低減するには、燃
料および塊成物から発生する可燃性ガスを炉の出口にお
いて完全燃焼に近づけることが必要である。ところが、
適度な還元雰囲気を保たないと、特に還元ゾーン後半部
にて塊成物が酸化性ガスに曝され、塊成物の表層部の金
属鉄が再酸化され製品品質が低下する。
The reduction of iron oxide agglomerates by the carbonaceous material proceeds from the surface of the agglomerates due to heat transfer.
Therefore, in the latter half of the reduction, metallic iron is deposited on the surface layer of the upper surface of the agglomerate, but the reduction reaction does not proceed sufficiently in the central part or lower part where the temperature is low, and the quality of the reduced iron decreases. not enough. In addition, the temperature control of the rotary hearth furnace is performed by the secondary combustion of the combustible gas generated from the combustion burner or the agglomerate. It is necessary that the gas approach the complete combustion at the furnace exit. However,
If an appropriate reducing atmosphere is not maintained, the agglomerates are exposed to the oxidizing gas, particularly in the latter half of the reduction zone, and the metallic iron on the surface layer of the agglomerates is re-oxidized, thereby deteriorating the product quality.

【0006】さらに、酸化鉄塊成物には、操業条件に適
した大きさがある。操業条件に適した大きさのものは還
元後高品位となるが、適した大きさよりも小さいものは
加熱過多で再酸化し、大きいものは加熱不足で還元不足
となる。また、塊成物の粒径にばらつきがあると、製品
全体として還元率・強度とも低下する。
Further, iron oxide agglomerates have a size suitable for operating conditions. Those having a size suitable for operating conditions have high quality after reduction, while those having a size smaller than the suitable size are reoxidized due to excessive heating, and those having a large size are insufficiently reduced due to insufficient heating. In addition, if the particle size of the agglomerates varies, both the reduction rate and the strength of the entire product decrease.

【0007】本発明の目的は、平均品質が高い還元鉄塊
成物を、高い生産性で得ることができる還元鉄の製造方
法を提供する。
An object of the present invention is to provide a method for producing reduced iron capable of obtaining reduced iron agglomerates having high average quality with high productivity.

【0008】[0008]

【課題を解決するための手段】本発明の還元鉄塊成物の
製造方法では、まず粒径がほぼ10〜30mmの範囲内である
炭材を含む酸化鉄塊成物を製造する。次いで、この炭材
を含む酸化鉄塊成物を、移動床型加熱炉の炉床上に、敷
き密度が1.4kg/m2/mm 以下になるように薄く敷く。その
後、この酸化鉄塊成物が移動床型加熱炉に滞留する時間
の三分の一以内の時間で、この酸化鉄塊成物の表面温度
が1200℃以上になるように、酸化鉄塊成物を急速に加熱
する。そして、この酸化鉄塊成物の金属化率が85%以上
になるまで還元して還元鉄塊成物とした後、この還元鉄
塊成物を移動床型加熱炉から排出する。
According to the method for producing reduced iron agglomerates of the present invention, first, iron oxide agglomerates containing a carbonaceous material having a particle size of approximately 10 to 30 mm are produced. Next, the iron oxide agglomerate containing the carbon material is thinly spread on the hearth of the moving bed type heating furnace so that the spread density becomes 1.4 kg / m 2 / mm or less. Thereafter, the iron oxide agglomerate is heated so that the surface temperature of the iron oxide agglomerate becomes 1200 ° C or more within one-third of the time the iron oxide agglomerate stays in the moving bed type heating furnace. Heat things quickly. Then, after reducing the iron oxide agglomerate to a reduced iron agglomerate until the metallization ratio becomes 85% or more, the reduced iron agglomerate is discharged from the moving bed type heating furnace.

【0009】炭材を含む酸化鉄塊成物を製造するステッ
プにおいては、酸化鉄塊成物の80%以上を目標粒径の±
2mm 以内に揃えるのが望ましい。また、使用する炭材の
軟化溶融時の最高流動度が0.8 以上とすることが望まし
い。
[0009] In the step of producing the iron oxide agglomerate containing the carbonaceous material, at least 80% of the iron oxide agglomerate is included in the target particle size ± 80%.
It is desirable to make it within 2mm. Further, it is desirable that the maximum fluidity of the carbon material used in softening and melting be 0.8 or more.

【0010】この炭材を含む酸化鉄塊成物を製造するス
テップにおいて製造した酸化鉄塊成物の見掛け密度が、
2.3g/cm3以上であることが望ましい。
The apparent density of the iron oxide agglomerate produced in the step of producing the iron oxide agglomerate containing the carbonaceous material is as follows:
Desirably, it is 2.3 g / cm 3 or more.

【0011】また、炭材を含む酸化鉄塊成物を還元する
ステップにおいては、酸化鉄塊成物から還元中に発生す
るCOガス量が発生ピーク時の四分の一未満に低下する前
に、酸化鉄塊成物を加熱するバーナーの排ガスの還元度
をFeまたはFeO 平衡に制御するのが望ましい。また、還
元後の還元鉄塊成物の見掛け密度を2g/cm3以上とするこ
とが望ましい。
[0011] In the step of reducing the iron oxide agglomerate containing carbonaceous material, the amount of CO gas generated during the reduction from the iron oxide agglomerate may be reduced to less than one-fourth of the generation peak. It is desirable to control the degree of reduction of the exhaust gas from the burner for heating the iron oxide agglomerate to Fe or FeO equilibrium. Further, it is desirable that the apparent density of the reduced iron agglomerate after reduction is 2 g / cm 3 or more.

【0012】[0012]

【発明の実施の形態】炉内の伝熱形態は、輻射熱が支配
的である。このため、炭材を含む酸化鉄塊成物を炉床上
に重なることなく敷くことが、均一加熱、生産性向上、
品質向上の点から重要である。このため、炉床上の敷き
密度を1.4kg/m2/mm 以下とすることが望ましい。ここ
で、敷き密度の単位中のkg/m2 は、炉床単位面積当たり
の酸化鉄塊成物の質量であり、敷き密度の単位中のmmは
酸化鉄塊成物の平均粒径を示している。
BEST MODE FOR CARRYING OUT THE INVENTION Radiation heat is dominant in the form of heat transfer in a furnace. For this reason, iron oxide agglomerates containing carbon material can be laid on the hearth without overlapping, thereby achieving uniform heating, improved productivity,
It is important from the point of quality improvement. For this reason, it is desirable that the floor density on the hearth be 1.4 kg / m 2 / mm or less. Here, kg / m 2 in the unit of the bedding density is the mass of iron oxide agglomerate per unit area of the hearth, and mm in the unit of the bedding density indicates the average particle size of the iron oxide agglomerate. ing.

【0013】また、図5に示すように、1200℃を超える
と還元度(CO/(CO+CO2) )(図では採取データで示す)
が急激に上昇するため、炉内に装入した酸化鉄塊成物
を、1200℃まで急速加熱させて塊成物の還元を促進させ
ることが重要である。このため、1200℃までの加熱時間
は短いほどよい。しかしながら、実操業の点からの制約
もあり、塊成物の表面温度を装入から炉内滞留時間の 1
/3以内の時間で1200℃まで加熱すればよい。
Further, as shown in FIG. 5, when the temperature exceeds 1200 ° C., the degree of reduction (CO / (CO + CO 2 )) (shown as collected data in the figure)
Therefore, it is important to rapidly heat the iron oxide agglomerate charged in the furnace to 1200 ° C. to promote the reduction of the agglomerate. Therefore, the shorter the heating time up to 1200 ° C., the better. However, there are restrictions from the point of actual operation, and the surface temperature of the
It is sufficient to heat to 1200 ° C within a time period of less than / 3.

【0014】還元中において、酸化鉄塊成物から発生す
るCOガス量が発生ピーク時の 1/4に低下した時点では、
酸化鉄塊成物の中心部は還元され表層部は金属鉄が析出
した状態となっている。このため、この時点でバーナー
の排ガスの還元度をFeまたはFeO 平衡に制御することに
よって、表層部の金属鉄の再酸化を防止するとともに表
層部の還元を促進できる。
During the reduction, when the amount of CO gas generated from the iron oxide agglomerate falls to 1/4 of the peak generation time,
The central part of the iron oxide agglomerate is reduced and the surface part is in a state where metallic iron is precipitated. For this reason, by controlling the degree of reduction of the exhaust gas of the burner to Fe or FeO equilibrium at this time, reoxidation of metallic iron on the surface layer can be prevented and reduction of the surface layer can be promoted.

【0015】高流動度の炭材は、軟化溶融時に成形を行
って、塊成物内部の酸化鉄同士の空隙部に炭材を充填す
ることにより、塊成物内の熱伝導率を向上することがで
きる。よって軟化溶融時の最高流動度が 0.8以上の炭材
を使用するのが望ましい。これにより、生産性を上げる
ために炉内ガス温度を上昇させても、炉内で塊成物表面
が溶融することがない。さらに、炭材を含む酸化鉄塊成
物は、加圧成形されるため、これによっても内部の空隙
部が減少して熱伝導率が向上する。酸化鉄塊成物の熱伝
導率の向上により、還元反応が速まり、結果として還元
鉄製造の生産性を向上させることができる。
The carbon material having a high fluidity is formed at the time of softening and melting to improve the thermal conductivity in the agglomerate by filling the voids between the iron oxides in the agglomerate with the carbon material. be able to. Therefore, it is desirable to use a carbon material with a maximum fluidity of 0.8 or more during softening and melting. Thus, even if the gas temperature in the furnace is increased to increase the productivity, the surface of the agglomerate does not melt in the furnace. Further, since the iron oxide agglomerate containing the carbon material is molded under pressure, the internal voids are also reduced and the thermal conductivity is improved. The improvement in the thermal conductivity of the iron oxide agglomerates speeds up the reduction reaction, thereby improving the productivity of the production of reduced iron.

【0016】また、炭材を含む酸化鉄塊成物の見掛け密
度を大きくすることにより、炉床単位面積当たりの酸化
鉄塊成物の質量が増え、結果として生産性が向上する。
したがって、酸化鉄塊成物の見掛け密度を2.3g/cm3以上
にするのが望ましい。
Also, by increasing the apparent density of the iron oxide agglomerate containing the carbonaceous material, the mass of the iron oxide agglomerate per unit area of the hearth increases, and as a result, the productivity is improved.
Therefore, it is desirable that the apparent density of the iron oxide agglomerate be 2.3 g / cm 3 or more.

【0017】還元鉄塊成物を溶解するに際して、還元鉄
塊成物の見掛け密度が、溶解炉中のスラグより大きい
と、還元鉄塊成物がスラグ上に浮かぶことがないので、
還元鉄塊成物の溶解が速くなる。したがって、還元後の
還元鉄塊成物の見掛け密度を、スラグの一般的な見掛け
密度以上である2g/cm3以上にするのが望ましい。
In dissolving the reduced iron agglomerate, if the apparent density of the reduced iron agglomerate is larger than the slag in the melting furnace, the reduced iron agglomerate does not float on the slag.
The dissolution of reduced iron agglomerates is faster. Therefore, it is desirable that the reduced iron agglomerates after reduction have an apparent density of 2 g / cm 3 or more, which is higher than the general apparent density of slag.

【0018】また、炭材を含む酸化鉄塊成物の粒径は、
均一であるほど炉床上に重なることなく敷くことができ
る。また、加熱過多や加熱過少による品質低下がなくな
り、均質な製品を得ることができる。したがって、炭材
を含む酸化鉄塊成物の80%以上が目標粒径の±2mm 以内
であるように、粒径を管理するのが望ましい。
The particle size of the iron oxide agglomerate containing carbon material is as follows:
The more uniform it can be laid without overlapping on the hearth. In addition, quality deterioration due to overheating or underheating is eliminated, and a homogeneous product can be obtained. Therefore, it is desirable to control the particle size so that 80% or more of the iron oxide agglomerate containing carbon material is within ± 2 mm of the target particle size.

【0019】この炭材を含んだ酸化鉄塊成物の造粒にお
いて、原料の加熱混合工程、加圧成形工程および脱ガス
工程で発生するガスを回収し、この回収ガスを還元用の
バーナの燃料として利用することで燃料原単位を低減す
ることができる。また、回収ガスを還元炉の還元末期に
吹き込むことで、還元鉄塊成物の再酸化を防止すること
ができる。
In the granulation of the iron oxide agglomerate containing the carbonaceous material, the gas generated in the heating and mixing step, the pressure forming step, and the degassing step of the raw material is recovered, and the recovered gas is used for a reducing burner. By using it as fuel, the fuel consumption rate can be reduced. In addition, by injecting the recovered gas into the final stage of reduction in the reduction furnace, reoxidation of the reduced iron agglomerates can be prevented.

【0020】還元ゾーンで炭材を含む酸化鉄塊成物から
発生するCO、H2等の可燃性ガスを被加熱物である酸化鉄
塊成物の近傍で効率良く燃焼させ、被加熱物への供給熱
源とすることで移動床型加熱炉への供給燃料を低減させ
ることができる。このため、2次燃焼用空気を供給して
可燃性ガスを燃焼させるのが望ましい。
In the reduction zone, combustible gases such as CO and H 2 generated from the iron oxide agglomerate containing the carbon material are efficiently burned in the vicinity of the iron oxide agglomerate to be heated to the heated object. By using the supply heat source, the fuel supply to the moving bed type heating furnace can be reduced. For this reason, it is desirable to supply the secondary combustion air to burn the combustible gas.

【0021】[0021]

【実施例】以下に、実施例を挙げて、本発明をさらに詳
細に説明する。
The present invention will be described in more detail with reference to the following examples.

【0022】実施例1 表1に示す成分の鉄鉱石(78.3%)と石炭(20.0%)
に、バインダー:1.7%を混合してなる酸化鉄塊成物を、
炉床上に敷き密度 1.0kg/m2/mmに敷き、生産性 100kg/m
2/hrで回転炉床炉を用いて還元した。その結果を図1に
示す。図中の比較例は敷き密度を 1.5kg/m2/mmに変更し
たものである。図1から明らかなように、塊成物の敷き
密度が 1.4kg/m2/mmを超えると金属化率の低下が見られ
る。還元鉄塊成物の品位を上げるには、層厚を1より小
さく、具体的には敷き密度を 1.4kg/m2/mm以下にするこ
とが望ましい。
Example 1 Iron ore (78.3%) and coal (20.0%) having the components shown in Table 1
In addition, binder: iron oxide agglomerate made by mixing 1.7%,
Spread on the hearth at a density of 1.0 kg / m 2 / mm, productivity 100 kg / m
Reduction was performed using a rotary hearth furnace at 2 / hr. The result is shown in FIG. In the comparative example in the figure, the spread density was changed to 1.5 kg / m 2 / mm. As is evident from FIG. 1, when the bedding density of the agglomerate exceeds 1.4 kg / m 2 / mm, a decrease in the metallization ratio is observed. In order to improve the quality of the reduced iron agglomerate, it is desirable that the layer thickness is smaller than 1 and, specifically, the spread density is 1.4 kg / m 2 / mm or less.

【0023】[0023]

【表1】 [Table 1]

【0024】実施例2 実施例1と同じ炭材を含む酸化鉄塊成物を炉床上に重な
らないように、敷き密度1.1kg/m2/mm 、生産性80kg/m2/
hrで回転炉床炉を用いて還元した。このときの塊成物の
大きさは、その80%が目標粒径±2mm に入るように調整
した。その結果、図2に示す品位の還元鉄塊成物を得
た。なお、比較例の敷き密度は 1.5〜1.75kg/m2/mmであ
る。図2から明らかなように、比較例は敷き密度が大き
いため、塊成物が重なっている部分の還元鉄塊成物の金
属化率が、本発明例に比較して30%程度低下している。
一方、本発明例は、金属化率も96%で安定した品質の還
元鉄塊成物が得られている。
Example 2 The iron oxide agglomerate containing the same carbonaceous material as in Example 1 was laid on the hearth so that the pile density was 1.1 kg / m 2 / mm and the productivity was 80 kg / m 2 /
Reduction was performed using a rotary hearth furnace at hr. The size of the agglomerates at this time was adjusted so that 80% of the agglomerates fell within the target particle size of ± 2 mm. As a result, a reduced iron agglomerate having the grade shown in FIG. 2 was obtained. The spread density of the comparative example is 1.5 to 1.75 kg / m 2 / mm. As is clear from FIG. 2, the metal density of the reduced iron agglomerate in the portion where the agglomerate overlaps is reduced by about 30% as compared with the example of the present invention because the comparative example has a high spread density. I have.
On the other hand, in the example of the present invention, a reduced iron agglomerate of stable quality with a metallization ratio of 96% was obtained.

【0025】また、このときの還元鉄塊成物の粒径と金
属化率との関係を図3に示す。図3に示すように、還元
鉄塊成物の粒径が13〜16mmに金属化率のピークがあり、
この粒径から外れると金属化率が低下する。この結果か
らでは、目標粒径±1.5mm に全て入れることが最善とな
るが、塊成物をパンペレタイザーで造粒し、ローラース
クリーンで分粒したのでは、この目標粒径±1.5mm を達
成するのは容易ではない。そこで、酸化鉄塊成物を加圧
成形することで、その80%を目標粒径±2mm に入れるこ
とができる。操業条件によって異なるが、通常、塊成物
の粒径は10〜30mmである。
FIG. 3 shows the relationship between the particle size of the reduced iron agglomerate and the metallization ratio at this time. As shown in FIG. 3, the reduced iron agglomerate has a peak of the metallization ratio at a particle size of 13 to 16 mm,
If the particle size is out of this range, the metallization ratio decreases. From this result, it is best to put all of the target particle size ± 1.5 mm, but if the agglomerate was granulated with a pan pelletizer and sieved with a roller screen, this target particle size ± 1.5 mm was achieved. It is not easy to do. Therefore, by pressing the iron oxide agglomerate, 80% of the iron oxide agglomerate can be set within the target particle size of ± 2 mm. Usually, the particle size of the agglomerates is 10 to 30 mm, depending on the operating conditions.

【0026】実施例3 実施例1と同じ炭材を含む酸化鉄塊成物を回転炉床炉に
装入し、雰囲気温度1300℃のもと 9分間で還元を行っ
た。このときの敷き密度は1.15kg/m2/mmである。燃焼ガ
スの酸化度〔(CO2+ H2O)/(CO+H2+CO2+H2O)〕は、前半を
1.0 、後半を 0〜1.0 の範囲で変化させた。また前半と
後半の切替え時間も 0〜8 分の間で変化させた。後半の
燃焼ガスの酸化度と金属化率との関係を図4に示す。
Example 3 An iron oxide agglomerate containing the same carbonaceous material as in Example 1 was charged into a rotary hearth furnace, and reduced at an ambient temperature of 1300 ° C. for 9 minutes. The spread density at this time is 1.15 kg / m 2 / mm. The oxidation degree of the combustion gas ((CO 2 + H 2 O) / (CO + H 2 + CO 2 + H 2 O))
1.0 and the latter half ranged from 0 to 1.0. The switching time between the first half and the second half was also varied between 0 and 8 minutes. FIG. 4 shows the relationship between the oxidation degree of the combustion gas in the latter half and the metallization ratio.

【0027】図4に示すように、燃焼ガスの還元度の低
下とともに、また低い酸化度に早く切り替えることで金
属化率は上昇する。後半の燃焼ガスの酸化度を0.53に 6
分以内に切り替えると金属化率85%以上、 4分以内に切
り替えると金属化率90%以上が得られるが、切替え時間
が 8分と遅い場合には、金属化率は85%未満である。ま
た、切替え後の燃焼ガスの酸化度が 0であれば、切替え
時間が遅い 6分であっても金属化率は90%以上を確保で
きる。ちなみに、切替え時間が 4分の塊成物からのCO発
生量は発生ピーク時の80%、 6分では発生ピーク時の47
%、 8分では発生ピーク時の13%であった。したがっ
て、塊成物からのCO発生量が発生ピーク時の 1/4未満に
低下してから燃焼ガスの酸化度を低還元度に切り替えて
も金属化率の向上は望めない。
As shown in FIG. 4, as the degree of reduction of the combustion gas decreases, and by quickly switching to a lower degree of oxidation, the metallization ratio increases. Oxidation degree of combustion gas in the second half to 0.53 6
If it is switched within minutes, the metallization rate is 85% or more. If it is switched within 4 minutes, the metallization rate is 90% or more. However, if the switching time is as slow as 8 minutes, the metallization rate is less than 85%. If the oxidation degree of the combustion gas after switching is 0, the metallization ratio can be maintained at 90% or more even if the switching time is as slow as 6 minutes. By the way, the amount of CO generated from the agglomerates at a switching time of 4 minutes is 80% of the peak at the time of generation, and 47 minutes at the peak of generation at 6 minutes.
% At 8 minutes was 13% of the peak. Therefore, even if the amount of CO generated from the agglomerates is reduced to less than 1/4 of the peak at the time of generation peak, the metallization rate cannot be improved even if the oxidation degree of the combustion gas is switched to a low reduction degree.

【0028】実施例4 実施例1と同じ炭材を含む酸化鉄塊成物を、重ならない
ように敷き密度1.04kg/m2/mmで回転炉床炉に装入し還元
を行った。このときの還元条件の一部と還元鉄塊成物の
品位を表2に示す。ここに示すバーナーの排ガスの還元
度は Fe2O3平衡である。この還元は、バーナーの排ガス
の還元度をFeまたは FeO平衡に制御しなくても高金属化
率が得られる操業条件が存在することを示している。こ
れは以下のように推測される。すなわち、図5に示すよ
うに、炉内温度を上昇させるにつれ塊成物温度も上昇
し、ソルーションロス反応が活性化して、CO/(CO+CO2)
値が上昇している。CO/(CO+CO2) 値はバーナー排ガスの
還元度を示し、この値がFeとFeOの境界線から離れるほ
ど、還元ポテンシャルは向上する。よって、この高温操
業により塊成物の周辺は還元性の非常に高い雰囲気とな
り、バーナーの排ガスの還元度による影響が低下するも
のと推測される。
Example 4 The same iron oxide agglomerate containing the same carbon material as in Example 1 was spread at a density of 1.04 kg / m 2 / mm in a rotary hearth furnace so as not to overlap, and reduced. Table 2 shows some of the reduction conditions and the grade of the reduced iron agglomerates. The burner exhaust gas reduction shown here is Fe 2 O 3 equilibrium. This reduction indicates that there are operating conditions under which a high metallization ratio can be obtained without controlling the degree of reduction of the burner exhaust gas to Fe or FeO equilibrium. This is assumed as follows. That is, as shown in FIG. 5, as the temperature in the furnace is increased, the temperature of the agglomerate is also increased, so that the solution loss reaction is activated and CO / (CO + CO 2 )
The value is rising. The CO / (CO + CO 2 ) value indicates the degree of reduction of the burner exhaust gas. The farther this value is from the boundary between Fe and FeO, the higher the reduction potential. Therefore, it is presumed that the atmosphere around the agglomerate becomes very highly reducing due to the high-temperature operation, and the influence of the degree of reduction of the exhaust gas from the burner is reduced.

【0029】[0029]

【表2】 [Table 2]

【0030】実施例5 図6に流動度が異なる5種類の炭材A、C、E、H、I
を用いた塊成物を1300℃の雰囲気温度で加熱した際の加
熱時間と塊成物中心温度との関係を示す。図6に示すよ
うに、高流動性の炭材 (炭材H、I) が低流動性の炭材
(炭材A、C)に比較して1300℃に到達するまでの時間
が短い。また、還元反応は約 800℃から始まることか
ら、昇温過程の温度履歴も重要であり、高流動性の炭材
を用いた場合、塊成物内部の昇温も速い。なお、この還
元過程における塊成物の断面組織の観察から、高流動性
の炭材を使用した際は、酸化鉄粒子の固体炭素質による
連結構造が形成されることが確認された。このことか
ら、軟化溶融時の最高流動度が0.8 以上の炭材を使用す
るのが望ましい。
Example 5 FIG. 6 shows five types of carbon materials A, C, E, H and I having different flow rates.
1 shows the relationship between the heating time and the central temperature of the agglomerate when the agglomerate was heated at an ambient temperature of 1300 ° C. As shown in FIG. 6, the high-flow carbonaceous materials (charcoal materials H and I)
The time required to reach 1300 ° C. is shorter than that of (carbon materials A and C). In addition, since the reduction reaction starts at about 800 ° C, the temperature history of the heating process is also important, and the temperature inside the agglomerate is fast when a highly fluid carbon material is used. From the observation of the cross-sectional structure of the agglomerate during the reduction process, it was confirmed that when a highly fluid carbonaceous material was used, a connection structure of solid carbonaceous iron oxide particles was formed. For this reason, it is desirable to use a carbon material having a maximum fluidity of 0.8 or more during softening and melting.

【0031】実施例6 表1に示す鉄鉱石と粉砕石炭を、鉄鉱石78%、石炭22%
の割合で混合した後、450℃に加熱し、 39MPaの加圧力
で 2〜5cm3の塊成物を熱間成形した (熱間成形ブリケッ
ト) 。比較例として、同一混合比で鉄鉱石と粉砕石炭を
混合し、これにバインダーとしてベントナイトを 1%程
度添加し、造粒機で体積2cm3の塊成物に成形した (ペレ
ット) 。それぞれの見掛け密度を図7に示す。図7に示
すように、熱間成形塊成物の方が見掛け密度は40%高
い。
Example 6 Iron ore and pulverized coal shown in Table 1 were replaced with iron ore 78% and coal 22%
Then, the mixture was heated to 450 ° C., and 2 to 5 cm 3 of agglomerate was hot formed at a pressure of 39 MPa (hot formed briquette). As a comparative example, iron ore and pulverized coal were mixed at the same mixing ratio, and about 1% of bentonite was added as a binder to the mixture, and formed into an agglomerate having a volume of 2 cm 3 by a granulator (pellet). FIG. 7 shows the respective apparent densities. As shown in FIG. 7, the apparent density of the hot formed agglomerate is 40% higher.

【0032】次に、熱間成形した塊成物と造粒塊成物を
1300℃に保持した還元炉で還元試験を行なった。その結
果を図8に示す。図から明らかなように、同一体積では
塊成物の見掛け密度が大きくなるに従って還元時間が短
縮されている。したがって、塊成物の見掛け密度の向上
により生産性も向上する。熱間成形した塊成物還元後の
塊成物の見掛け密度を図9に示す。図に示すように、還
元前の塊成物の見掛け密度が大きくなると、これに比例
して還元後の塊成物の見掛け密度も大きくなる。また、
図9は、熱間成形塊成物に 500℃、30分の脱ガス処理を
行なうと還元工程での塊成物の膨れがなくなり、還元鉄
の見掛け密度が2g/cm3以上になることも示している
Next, the hot formed agglomerate and the granulated agglomerate are
A reduction test was performed in a reduction furnace maintained at 1300 ° C. FIG. 8 shows the result. As is clear from the figure, at the same volume, the reduction time is shortened as the apparent density of the agglomerate increases. Therefore, productivity is improved by improving the apparent density of agglomerates. FIG. 9 shows the apparent density of the hot formed agglomerate after reduction. As shown in the figure, as the apparent density of the agglomerate before reduction increases, the apparent density of the agglomerate after reduction increases in proportion to this. Also,
FIG. 9 shows that when the hot formed agglomerate is subjected to a degassing treatment at 500 ° C. for 30 minutes, the agglomerate does not swell in the reduction step, and the apparent density of the reduced iron may be 2 g / cm 3 or more. Shows

【0033】図10は見掛け密度1.6g/cm3と2.4g/cm3
還元鉄塊成物を坩堝で溶解した実験結果である。通常溶
融スラグ密度は2g/cm3程度であり、これよりも還元鉄塊
成物の見掛け密度が小さいと、図示のように塊成物がス
ラグ表面に浮かび溶解が遅れる。逆に還元鉄塊成物の見
掛け密度が大きいと、塊成物はスラグ中に沈み込み溶解
が促進される。試験の結果、塊成物の見掛け密度が1.6g
/cm3の場合、溶解速度は0.5kg/min で、見掛け密度が2.
4g/cm3の場合、溶解速度は2kg/min である。このように
還元鉄塊成物の見掛け密度を溶解炉中のスラグの見掛け
密度よりも大きくすることにより溶解速度は4倍に向上
している。
FIG. 10 shows the results of experiments in which reduced iron agglomerates having apparent densities of 1.6 g / cm 3 and 2.4 g / cm 3 were melted in a crucible. Normally, the molten slag density is about 2 g / cm 3 , and if the apparent density of the reduced iron agglomerate is lower than this, the agglomerate floats on the slag surface as shown in the figure to delay dissolution. Conversely, if the apparent density of the reduced iron agglomerates is large, the agglomerates sink into the slag to promote dissolution. As a result of test, apparent density of agglomerate is 1.6 g
For / cm 3, dissolution rate was 0.5 kg / min, an apparent density 2.
For 4 g / cm 3 , the dissolution rate is 2 kg / min. As described above, the melting rate is improved four times by making the apparent density of the reduced iron agglomerate larger than the apparent density of the slag in the melting furnace.

【0034】[0034]

【発明の効果】以上述べたところから明らかなように、
本発明によれば、粒径が±2mm の範囲内にそろい、かつ
見掛け密度が2.3g/cm3以上である炭材を含む酸化鉄塊成
物を敷き密度が1.4kg/m2/mm 以下になるように移動床型
加熱炉の炉床の上に薄く敷き、炭材を含む酸化鉄塊成物
が移動床型加熱炉に滞留する時間の三分の一以内の時間
で、表面温度が1200℃以上になるように急速に加熱して
金属化率が85%以上になるまで還元するため、平均品質
が高い還元鉄塊成物を、高い生産性で得ることができ
る。さらに、還元後の還元鉄塊成物の見掛け密度が2g/c
m3以上であるため、後工程の溶解時に還元鉄塊成物はス
ラグ中に沈み込み溶解が促進される。
As is apparent from the above description,
According to the present invention, an iron oxide agglomerate containing a carbonaceous material having a particle size within a range of ± 2 mm and an apparent density of 2.3 g / cm 3 or more is laid and the density is 1.4 kg / m 2 / mm or less. Lay thinly on the hearth of the moving bed type heating furnace so that the iron oxide agglomerate containing carbon material stays in the moving bed type heating furnace within one-third of the time, and the surface temperature becomes lower. Since it is rapidly heated to 1200 ° C. or more to reduce the metallization rate to 85% or more, reduced iron agglomerates having high average quality can be obtained with high productivity. Furthermore, the apparent density of reduced iron agglomerates after reduction is 2 g / c
Since it is m 3 or more, the reduced iron agglomerates sink into the slag at the time of dissolution in the subsequent step, and dissolution is promoted.

【図面の簡単な説明】[Brief description of the drawings]

【図1】塊成物の敷き密度と金属化率との関係を示す図
である。
FIG. 1 is a diagram showing the relationship between the bedding density of agglomerates and the metallization ratio.

【図2】実施例2における還元鉄塊成物の金属化率と比
較例との差を示す図である。
FIG. 2 is a graph showing the difference between the metallization ratio of reduced iron agglomerates in Example 2 and a comparative example.

【図3】還元鉄塊成物の粒径と金属化率との関係を示す
図である。
FIG. 3 is a graph showing the relationship between the particle size of reduced iron agglomerates and the metallization ratio.

【図4】実施例3における還元後半の燃焼ガスの還元度
と金属化率との関係を示す図である。
FIG. 4 is a diagram showing the relationship between the degree of reduction of the combustion gas in the latter half of the reduction and the metallization ratio in the third embodiment.

【図5】実施例4における塊成物の中心温度とガス酸化
度との関係を示す図である。
FIG. 5 is a view showing the relationship between the center temperature of agglomerates and the degree of gas oxidation in Example 4.

【図6】流動度が異なる5種類の炭材を用いた塊成物を
1300℃の雰囲気温度で加熱した際の加熱時間と塊成物中
心温度との関係を示す図である。
FIG. 6 shows an agglomerate using five types of carbon materials having different fluidities.
It is a figure which shows the relationship between the heating time at the time of heating at 1300 degreeC atmospheric temperature, and agglomerate center temperature.

【図7】本発明の熱間成形した塊成物 (熱間成形ブリケ
ット) と比較例の乾燥後の生塊成物 (ペレット) につい
ての見掛け密度の比較を示す図である。
FIG. 7 is a diagram showing a comparison of apparent densities of a hot-formed agglomerate (hot-formed briquette) of the present invention and a dried raw agglomerate (pellet) of a comparative example.

【図8】見掛け密度の大きさを変えた熱間成形塊成物と
造粒塊成物について、1300℃に保持した還元炉で行なっ
た還元試験結果を示す図である。
FIG. 8 is a diagram showing the results of a reduction test performed on a hot formed agglomerate and a granulated agglomerate having different apparent densities in a reduction furnace maintained at 1300 ° C.

【図9】還元前の塊成物の見掛け密度と還元鉄塊成物の
見掛け密度との関係を示す図である。
FIG. 9 is a diagram showing a relationship between an apparent density of an agglomerate before reduction and an apparent density of a reduced iron agglomerate.

【図10】見掛け密度1.6g/cm3と2.4g/cm3の還元鉄塊成物
を坩堝で溶解した実験結果を示す図である。
FIG. 10 is a view showing experimental results obtained by melting reduced iron agglomerates having apparent densities of 1.6 g / cm 3 and 2.4 g / cm 3 in a crucible.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 杉山 健 大阪府大阪市西区江戸堀1丁目6番14号 株式会社インダストリアルサービス・イン ターナショナル内 (72)発明者 竹中 芳通 兵庫県加古川市金沢町1番地 株式会社神 戸製鋼所加古川製鉄所内 (72)発明者 宮川 一也 兵庫県加古川市金沢町1番地 株式会社神 戸製鋼所加古川製鉄所内 (72)発明者 城内 章治 兵庫県加古川市金沢町1番地 株式会社神 戸製鋼所加古川製鉄所内 (72)発明者 岩切 治久 兵庫県加古川市金沢町1番地 株式会社神 戸製鋼所加古川製鉄所内 (72)発明者 西村 真 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内 (72)発明者 梅木 隆夫 兵庫県加古川市金沢町1番地 株式会社神 戸製鋼所加古川製鉄所内 (72)発明者 橋本 澄人 兵庫県加古川市金沢町1番地 株式会社神 戸製鋼所加古川製鉄所内 (72)発明者 上原 輝久 兵庫県加古川市金沢町1番地 株式会社神 戸製鋼所加古川製鉄所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Ken Sugiyama 1-6-14 Edobori, Nishi-ku, Osaka-shi, Osaka Industrial Service International Co., Ltd. (72) Inventor Yoshimichi Takenaka 1 Kanazawacho, Kakogawa-shi, Hyogo Address Kobe Steel Co., Ltd.Kakogawa Works (72) Inventor Kazuya Miyagawa 1 Kanazawacho, Kakogawa City, Hyogo Prefecture Kobe Steel Co., Ltd.Kakogawa Works 1 (72) Inventor Shoji Jouchi 1 Kanazawacho, Kakogawa City, Hyogo Prefecture Kobe Steel, Ltd.Kakogawa Works (72) Inventor Haruhisa Iwakiri 1 Kanazawacho, Kakogawa City, Hyogo Prefecture Kobe Steel Works, Kakogawa Works (72) Inventor Makoto Nishimura 1-5-5, Takatsukadai, Nishi-ku, Kobe City, Hyogo Prefecture No. 5 Kobe Steel, Ltd.Kobe Research Institute (72) Inventor Takao Umeki Hyogo 1 Kanazawa-cho, Kakogawa-shi Kobe Steel Works, Kakogawa Works (72) Inventor Sumito Hashimoto 1 Kanazawa-machi, Kakogawa-shi, Hyogo Prefecture Kobe Steel Works, Kakogawa Works (72) Inventor Teruhisa Uehara Kakogawa, Hyogo Prefecture 1 Kanazawa-cho, Kobe Kobe Steel Works Kakogawa Works

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 還元鉄塊成物の製造方法であって、粒径
が10〜30mmの範囲内である炭材を含む酸化鉄塊成物を、
移動床型加熱炉の炉床上に、敷き密度が1.4kg/m2/mm 以
下になるように敷き、この酸化鉄塊成物が移動床型加熱
炉に滞留する時間の三分の一以内の時間で、表面温度が
1200℃以上になるように加熱し、金属化率が85%以上に
なるまで還元することを特徴とする還元鉄塊成物の製造
方法。
1. A method for producing a reduced iron agglomerate, comprising the steps of: producing an iron oxide agglomerate containing a carbonaceous material having a particle size in a range of 10 to 30 mm;
On the moving bed type heating furnace hearth, spread it so that the spreading density is 1.4 kg / m 2 / mm or less, and the iron oxide agglomerate stays in the moving bed type heating furnace within one-third of the time. In time, the surface temperature
A method for producing reduced iron agglomerates, comprising heating to 1200 ° C. or more and reducing the metallization rate to 85% or more.
【請求項2】 上記炭材を含む酸化鉄塊成物の80%以上
が目標粒径の±2mm以内である請求項1に記載の還元鉄
塊成物の製造方法。
2. The method for producing a reduced iron agglomerate according to claim 1, wherein 80% or more of the iron oxide agglomerate containing the carbon material is within ± 2 mm of a target particle size.
【請求項3】 上記炭材を含む酸化鉄塊成物に使用する
炭材の軟化溶融時の最高流動度が 0.8以上である請求項
1または2に記載の還元鉄塊成物の製造方法。
3. The method for producing a reduced iron agglomerate according to claim 1, wherein the carbon material used in the iron oxide agglomerate containing the carbon material has a maximum fluidity of 0.8 or more during softening and melting.
【請求項4】 上記炭材を含む酸化鉄塊成物の還元中
に、この酸化鉄塊成物から発生するCOガス量が発生ピー
ク時の四分の一未満に低下する前に、この酸化鉄塊成物
を加熱するバーナーの排ガスの還元度をFeまたはFeO 平
行に制御する請求項1、2または3に記載の還元鉄塊成
物の製造方法。
4. During the reduction of the iron oxide agglomerate containing the carbonaceous material, the oxidation of the iron oxide agglomerate before the amount of CO gas generated from the iron oxide agglomerate falls to less than one-fourth of the generation peak. 4. The method for producing reduced iron agglomerates according to claim 1, wherein the degree of reduction of the exhaust gas of the burner for heating the iron agglomerates is controlled in parallel with Fe or FeO.
【請求項5】 上記炭材を含む酸化鉄塊成物の還元前の
見掛け密度が2.3g/cm3以上である請求項1、2、3また
は4に記載の還元鉄塊成物の製造方法。
5. The method for producing a reduced iron agglomerate according to claim 1, wherein the apparent density of the iron oxide agglomerate containing the carbonaceous material before reduction is 2.3 g / cm 3 or more. .
【請求項6】 上記炭材を含む酸化鉄塊成物を還元した
還元後の還元鉄塊成物の見掛け密度が2g/cm3以上である
請求項1、2、3、4または5に記載の還元鉄塊成物の
製造方法。
6. The reduced iron agglomerate obtained by reducing the iron oxide agglomerate containing the carbonaceous material has an apparent density of 2 g / cm 3 or more. For producing reduced iron agglomerates.
JP11077610A 1998-03-24 1999-03-23 Method for producing reduced iron agglomerates Expired - Lifetime JP3020494B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11077610A JP3020494B2 (en) 1998-03-24 1999-03-23 Method for producing reduced iron agglomerates

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP7603298 1998-03-24
JP10-76032 1998-03-24
JP11077610A JP3020494B2 (en) 1998-03-24 1999-03-23 Method for producing reduced iron agglomerates
US09/275,017 US6129777A (en) 1998-03-24 1999-03-24 Method of producing reduced iron agglomerates

Publications (2)

Publication Number Publication Date
JPH11335713A true JPH11335713A (en) 1999-12-07
JP3020494B2 JP3020494B2 (en) 2000-03-15

Family

ID=27302028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11077610A Expired - Lifetime JP3020494B2 (en) 1998-03-24 1999-03-23 Method for producing reduced iron agglomerates

Country Status (1)

Country Link
JP (1) JP3020494B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009035820A (en) * 2007-07-10 2009-02-19 Kobe Steel Ltd Carbon composite iron oxide agglomerate, method for producing the agglomerate, and method for producing reduced iron or metal iron
WO2011155417A1 (en) * 2010-06-07 2011-12-15 株式会社神戸製鋼所 Granular metal production method
JP2013087344A (en) * 2011-10-19 2013-05-13 Kobe Steel Ltd Method for producing reduced iron

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009035820A (en) * 2007-07-10 2009-02-19 Kobe Steel Ltd Carbon composite iron oxide agglomerate, method for producing the agglomerate, and method for producing reduced iron or metal iron
WO2011155417A1 (en) * 2010-06-07 2011-12-15 株式会社神戸製鋼所 Granular metal production method
JP2011256414A (en) * 2010-06-07 2011-12-22 Kobe Steel Ltd Granular metal production method
JP2013087344A (en) * 2011-10-19 2013-05-13 Kobe Steel Ltd Method for producing reduced iron

Also Published As

Publication number Publication date
JP3020494B2 (en) 2000-03-15

Similar Documents

Publication Publication Date Title
US6129777A (en) Method of producing reduced iron agglomerates
JP6620850B2 (en) Carbonaceous granulated particles for the production of sintered ore and method for producing the same
JP3004265B1 (en) Carbon material interior pellet and reduced iron production method
JP3009661B1 (en) Method for producing reduced iron pellets
JP2002030319A (en) Method for producing granular metallic iron
CN1327072A (en) Method and device for making metal iron
JP2004131753A (en) Method for producing slag containing titanium oxide
JP2001279313A (en) Method for producing molten metallic iron
JPH11172312A (en) Operation of movable hearth type furnace and movable hearth type furnace
JP6447429B2 (en) Nickel oxide ore smelting method
JP3043325B2 (en) Method for producing reduced iron pellets and reduced iron pellets produced by this method
JP3020494B2 (en) Method for producing reduced iron agglomerates
WO2014138401A1 (en) Methods and systems for reducing chromium containing raw material
JP2000192153A (en) Sintered ore and production thereof, and operation of blast furnace
JP6964692B2 (en) Method of manufacturing metallic iron
JP2018178219A (en) Method for smelting oxide ore
JP7119856B2 (en) Method for smelting oxide ore
JP2000034526A (en) Production of reduced iron pellet
CA2266301C (en) Method of producing reduced iron agglomerates
JP4214111B2 (en) Method for producing partially reduced iron and vertical shaft furnace for producing partially reduced iron
JP4379083B2 (en) Method for producing semi-reduced agglomerate
JP5608144B2 (en) Method for producing reduced iron
JP6436317B2 (en) Carbonaceous material-containing granulated particles for producing sintered ore and method for producing sintered ore using the same
JP2004315852A (en) Method for reducing metal oxide in rotary hearth type reduction furnace
JP3864506B2 (en) Semi-reduced iron agglomerate, method for producing the same, and method for producing pig iron

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19991207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080114

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120114

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130114

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130114

Year of fee payment: 13

EXPY Cancellation because of completion of term