JP4214111B2 - Method for producing partially reduced iron and vertical shaft furnace for producing partially reduced iron - Google Patents

Method for producing partially reduced iron and vertical shaft furnace for producing partially reduced iron Download PDF

Info

Publication number
JP4214111B2
JP4214111B2 JP2004373124A JP2004373124A JP4214111B2 JP 4214111 B2 JP4214111 B2 JP 4214111B2 JP 2004373124 A JP2004373124 A JP 2004373124A JP 2004373124 A JP2004373124 A JP 2004373124A JP 4214111 B2 JP4214111 B2 JP 4214111B2
Authority
JP
Japan
Prior art keywords
furnace
reduced iron
partially reduced
metal ceramic
vertical shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004373124A
Other languages
Japanese (ja)
Other versions
JP2006176853A (en
Inventor
誠章 内藤
正賢 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004373124A priority Critical patent/JP4214111B2/en
Publication of JP2006176853A publication Critical patent/JP2006176853A/en
Application granted granted Critical
Publication of JP4214111B2 publication Critical patent/JP4214111B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、縦型シャフト炉を用い、炉内に、還元材内装塊成鉱を含む移動層を形成し、該移動層の降下中に、還元材内装塊成鉱を加熱して部分的に還元し、冷却・排出し、溶鉱炉装入原料としての部分還元鉄ペレットを製造する方法、及び、そのための縦型シャフト炉に関するものである。   The present invention uses a vertical shaft furnace, forms a moving layer containing a reducing material-incorporated agglomerated mineral in the furnace, and partially heats the reducing material-incorporated agglomerated mineral while the moving layer descends. The present invention relates to a method of reducing, cooling and discharging, and producing partially reduced iron pellets as a blast furnace charging raw material, and a vertical shaft furnace therefor.

従来から、溶鉱炉で銑鉄を製造するための主な原料として、鉄鉱石と副原料を予備処理(焼結、焼成)した焼結鉱や、焼成ペレットが用いられている。しかし、高品位鉱が枯渇しつつある現状では、これまで使用されていなかった貧鉱や、新産地の鉄鉱石を、多種の銘柄に渡り使用しなければならない。   Conventionally, as a main raw material for producing pig iron in a blast furnace, sintered ore obtained by pretreatment (sintering and firing) of iron ore and auxiliary materials and fired pellets have been used. However, in the current situation where high-grade ore is being depleted, poor ore that has not been used until now and iron ore from new production areas must be used for various brands.

この場合、銘柄単味で用いる場合もあるし、各種銘柄を混合して用いる場合もあるが、これら鉄鉱石の特性は、産地にもより多種多様であり、従来の焼結技術や焼成技術に従って焼結鉱や焼成ペレットを製造しても、溶鉱炉内で期待どおりの還元挙動が得られない場合がある。   In this case, it may be used as a single brand, or may be used in combination with various brands, but the characteristics of these iron ores are more diverse depending on the production area, according to conventional sintering and firing techniques. Even if sintered ore and fired pellets are produced, the expected reduction behavior may not be obtained in the blast furnace.

こうした状況下で、高炉の生産性を高めた操業を指向する際には、高炉原料の一つとして部分還元鉄を用いた高炉操業が有効と考えられている。従来の還元鉄製造方法としては、還元ガスとして天然ガスを用いてシャフト炉内で焼成ペレット等を還元するMIDREX法やHyL法等が知られている(例えば、非特許文献1、参照)。   Under these circumstances, blast furnace operation using partially reduced iron as one of the blast furnace raw materials is considered to be effective when aiming for operation with improved blast furnace productivity. As a conventional method for producing reduced iron, a MIDREX method, a HyL method, or the like is known in which a natural gas is used as a reducing gas to reduce fired pellets and the like in a shaft furnace (for example, see Non-Patent Document 1).

しかし、これらの還元鉄製造方法を用いて、好ましくは還元率85〜90%程度の部分還元鉄を製造するためには、多量の天然ガスを必要とし、かつ、長時間の還元時間が必要であるため、高炉等の溶鉱炉用の原料の一つとして部分還元鉄を採用する場合に、銑鉄の製造コスト増加ならびに生産性低下などの課題があった。   However, in order to produce partially reduced iron having a reduction rate of about 85 to 90% using these reduced iron production methods, a large amount of natural gas is required and a long reduction time is required. For this reason, when partially reduced iron is adopted as one of raw materials for a blast furnace such as a blast furnace, there are problems such as an increase in production cost of pig iron and a decrease in productivity.

それ故、天然ガスを用いた上記還元鉄の製造方法に比べて、より安価で還元効率に優れた還元材を利用したプロセスにより、安価かつ高効率的で還元率85〜90%程度の部分還元鉄を製造する方法が望まれている。
第3版鉄鋼便覧 第II巻 製銑・製鋼 P329〜341、S54.10.15発行
Therefore, compared with the method for producing reduced iron using natural gas, the process using a reducing material that is cheaper and has excellent reduction efficiency is inexpensive, highly efficient, and has a reduction rate of about 85 to 90%. A method for producing iron is desired.
Third Edition Steel Handbook Volume II Steelmaking and Steelmaking P329-341, S54.10.15 issued

本発明は、上記鉄鉱石事情に鑑み、高炉等の溶鉱炉用の装入原料を安価かつ高効率で事前に部分還元する方法と、そのための縦型シャフト炉を提供することを目的とする。   In view of the above iron ore circumstances, an object of the present invention is to provide a method for partially reducing the raw material for a blast furnace such as a blast furnace in advance at low cost and high efficiency, and a vertical shaft furnace therefor.

具体的には、本発明は、縦型シャフト炉を用い、炉内に、還元材内装塊成鉱と加熱媒体からなる移動層を形成し、該移動層の降下中に、火炎輻射熱による直接加熱及び加熱媒体からの伝熱により還元材内装塊成鉱を部分的に迅速に加熱還元し、冷却・排出して、溶鉱炉装入原料とし好適な部分還元鉄を製造する方法、及び、そのための縦型シャフト炉を提供することを目的とする。   Specifically, the present invention uses a vertical shaft furnace, forms a moving bed composed of a reducing material-incorporated agglomerate and a heating medium in the furnace, and directly heats by flame radiant heat during the descent of the moving bed. And a method of producing partially reduced iron suitable as a blast furnace charging raw material by heating and reducing partially the reduced material interior agglomerated by heat transfer from the heating medium, cooling and discharging, and longitudinal An object is to provide a mold shaft furnace.

本発明者は、溶鉱炉装入原料として好適な部分還元鉄を製造することができないかとの発想の下で、還元材内装鉄鉱石の還元について鋭意研究調査した。図1に、その結果の一部を示す。   This inventor earnestly researched about the reduction | restoration of a reducing material interior iron ore on the idea that it could manufacture partially reduced iron suitable as a blast furnace charging raw material. FIG. 1 shows a part of the result.

図1は、1200℃の100%N2雰囲気中、及び、1200℃の80%N2−20%CO2雰囲気中で、粒径9.4mmの還元材内装ペレットを還元した時の該ペレットの重量変化割合(ΔW[g]/W0[g]、W0:還元材内装ペレットの重量)を示す図である。 FIG. 1 shows the pellets when reducing pellets having a particle diameter of 9.4 mm are reduced in a 100% N 2 atmosphere at 1200 ° C. and in an 80% N 2 -20% CO 2 atmosphere at 1200 ° C. It is a figure which shows a weight change rate ((DELTA) W [g] / W0 [g], W0: Weight of a reducing material interior pellet).

図1から、還元材内装ペレットの加熱還元開始10分未満において還元が急速に進行し、部分還元鉄が形成されていることが解かる。   It can be seen from FIG. 1 that the reduction rapidly proceeds and the partially reduced iron is formed in less than 10 minutes from the start of the heat reduction of the reducing material-incorporated pellets.

図2に、部分還元鉄の組織を示す。還元開始後10分以上を経過すると、再酸化する傾向が見られるが、図2に示す組織からも、還元材内塊成鉱を短時間で加熱還元して、高炉等の溶鉱炉用の装入原料として使用し得る部分還元鉄を製造できることが解かる。   FIG. 2 shows the structure of partially reduced iron. Although the tendency to re-oxidize is observed after 10 minutes or more after the start of reduction, from the structure shown in FIG. 2, the agglomerate in the reducing material is heated and reduced in a short time and charged for a blast furnace such as a blast furnace. It turns out that the partially reduced iron which can be used as a raw material can be manufactured.

本発明は、上記解明結果に基づくものであって、その要旨は以下のとおりである。   The present invention is based on the above elucidated results, and the gist thereof is as follows.

(1) 炉頂部の炉内中心に燃焼式加熱装置を備え、かつ、炉内下部に冷却装置を備える縦型シャフト炉で、還元材内装塊成鉱を部分的に還元して部分還元鉄を製造する部分還元鉄の製造方法において、
(a)炉頂部から、前記燃焼式加熱装置で発生した燃焼ガスにより予め加熱された還元材内装塊成鉱と金属セラミックス球を混合して装入して、炉内を降下する移動層を形成し、
(b)炉内上部の還元帯域にて、前記燃焼式加熱装置で発生した火炎輻射熱により還元材内装塊成鉱を直接加熱するとともに、前記金属セラミックス球からの伝熱により還元材内装塊成鉱を間接加熱し、還元して部分還元鉄を生成し、
(c)炉内下部の冷却帯域にて、部分還元鉄を、前記冷却装置で冷却するとともに、炉最下部から吹き込む冷却ガスで冷却し、
(d)炉底部から、部分還元鉄と金属セラミックス球を分離して排出する、
ことを特徴とする部分還元鉄の製造方法。
(1) In a vertical shaft furnace equipped with a combustion heating device at the center of the furnace at the top of the furnace and a cooling device at the bottom of the furnace, the reduced material-containing agglomerated mineral is partially reduced to produce partially reduced iron. In the method for producing partially reduced iron to be produced,
(A) From the top of the furnace, a reducing material-incorporated agglomerated mineral and metal ceramic spheres, which are preheated by the combustion gas generated by the combustion-type heating device, are mixed and charged to form a moving bed that descends in the furnace. And
(B) In the reduction zone at the top of the furnace, the reductant-incorporated agglomerate is directly heated by the flame radiant heat generated by the combustion-type heating device, and the reductant-inner agglomerate by heat transfer from the metal ceramic balls. Indirectly heated and reduced to produce partially reduced iron,
(C) In the cooling zone in the lower part of the furnace, the partially reduced iron is cooled by the cooling device, and is cooled by the cooling gas blown from the lowermost part of the furnace.
(D) Separated and discharged partially reduced iron and metal ceramic spheres from the furnace bottom,
A method for producing partially reduced iron, wherein

(2) 前記燃焼式加熱装置で発生した燃焼ガスにより1000℃以上に加熱し、炉頂部から装入することを特徴とする上記(1)記載の部分還元鉄の製造方法。   (2) The method for producing partially reduced iron according to (1), wherein the combustion gas generated by the combustion heating device is heated to 1000 ° C. or more and charged from the top of the furnace.

(3) 前記還元材内装塊成鉱を、前記燃焼式加熱装置で発生した燃焼ガスにより700℃以下に加熱し、炉頂部から装入することを特徴とする上記(1)又は(2)記載の部分還元鉄の製造方法。   (3) The said (1) or (2) description characterized by heating the said reducing material interior agglomerated mineral to 700 degrees C or less with the combustion gas which generate | occur | produced with the said combustion type heating apparatus, and is charged from a furnace top part. Of producing partially reduced iron.

(4) 前記還元帯域で、装入直後の移動層最上部を、前記燃焼式加熱装置で発生した火炎輻射熱により1200℃以上に加熱することを特徴とする上記(1)〜(3)のいずれかに記載の部分還元鉄の製造方法。   (4) In the reduction zone, the uppermost part of the moving bed immediately after charging is heated to 1200 ° C. or more by flame radiant heat generated by the combustion-type heating device. A method for producing partially reduced iron according to claim 1.

(5) 前記還元帯域において、移動層を700〜1300℃に維持することを特徴とする上記(1)〜(4)のいずれかに記載の部分還元鉄の製造方法。   (5) The method for producing partially reduced iron according to any one of (1) to (4) above, wherein the moving bed is maintained at 700 to 1300 ° C. in the reduction zone.

(6) 前記冷却帯域において、移動層を300℃以下に冷却することを特徴とする上記(1)〜(5)のいずれかに記載の部分還元鉄の製造方法。   (6) The method for producing partially reduced iron according to any one of (1) to (5), wherein the moving bed is cooled to 300 ° C. or lower in the cooling zone.

(7) 前記冷却装置が、冷却水循環型の冷却装置であることを特徴とする上記(1)〜(6)のいずれかに記載の部分還元鉄の製造方法。   (7) The method for producing partially reduced iron according to any one of (1) to (6), wherein the cooling device is a cooling water circulation type cooling device.

(8) 前記冷却ガスが、不活性ガスであることを特徴とする上記(1)〜(7)のいずれかに記載の部分還元鉄の製造方法。   (8) The method for producing partially reduced iron according to any one of (1) to (7), wherein the cooling gas is an inert gas.

(9) 前記炉底部から排出された金属セラミックス球を回収し、前記加熱装置で再加熱した後、炉頂部から再装入し、循環させることを特徴とする上記(1)〜(8)のいずれかに記載の部分還元鉄の製造方法。   (9) The metal ceramic spheres discharged from the furnace bottom are collected, reheated by the heating device, recharged from the furnace top, and circulated. The manufacturing method of the partially reduced iron in any one.

(10) 前記金属セラミックス球が、融点1300℃以上、比熱0.25kcal/kg・deg以上の金属セラミックス球、又は、熱伝導率1.8kcal/m・h・℃以上の金属セラミックス球であることを特徴とする上記(1)〜(9)のいずれかに記載の部分還元鉄の製造方法。   (10) The metal ceramic sphere is a metal ceramic sphere having a melting point of 1300 ° C. or higher and a specific heat of 0.25 kcal / kg · deg or higher, or a metal ceramic sphere having a thermal conductivity of 1.8 kcal / m · h · ° C. or higher. The method for producing partially reduced iron according to any one of (1) to (9) above.

(11) 前記金属セラミックス球が、アルミナ球であることを特徴とする上記(10)に記載の部分還元鉄の製造方法。   (11) The method for producing partially reduced iron according to (10), wherein the metal ceramic sphere is an alumina sphere.

(12) 炉頂部の炉内中心に燃焼式加熱装置を備え、かつ、炉内下部に冷却装置を備え、還元材内装塊成鉱を部分的に還元して部分還元鉄を製造する縦型シャフト炉であって、
(i)炉頂部に、予め加熱された還元材内塊成鉱および金属セラミックス球を混合して装入し、炉内を降下する移動層を形成する還元材内塊成鉱・金属セラミックス球混合装入装置を備え、
(ii)炉最下部に、炉内下部の冷却帯域に降下してくる部分還元鉄を前記冷却装置とともに冷却する冷却ガスを吹き込む羽口を備え、かつ、
(iii)炉底部に、部分還元鉄と金属セラミックス球を分離して排出する排出装置を備えることを特徴とする部分還元鉄製造用縦型シャフト炉。
(12) A vertical shaft that is provided with a combustion heating device at the center of the furnace at the top of the furnace and a cooling device at the lower part of the furnace, and that partially reduces the reduced material-containing agglomerated mineral to produce partially reduced iron A furnace,
(I) Mixing and charging pre-heated agglomerated minerals and metal ceramic balls into the top of the furnace to form a moving bed that descends in the furnace and mixing the agglomerated minerals and metal ceramic spheres in the reducing material Equipped with a charging device,
(Ii) provided at the bottom of the furnace with tuyere for blowing a cooling gas for cooling the partially reduced iron descending into the cooling zone at the bottom of the furnace together with the cooling device; and
(Iii) A vertical shaft furnace for producing partially reduced iron, comprising a discharge device for separating and discharging partially reduced iron and metal ceramic spheres at the bottom of the furnace.

(13) 前記燃焼式加熱装置で発生した燃焼ガスにより金属セラミックス球を1000℃以上に加熱することを特徴とする上記(12)に記載の部分還元鉄製造用縦型シャフト炉。   (13) The vertical shaft furnace for producing partially reduced iron according to (12), wherein the metal ceramic spheres are heated to 1000 ° C. or higher by the combustion gas generated by the combustion heating device.

(14) 前記燃焼式加熱装置で発生した燃焼ガスにより前記還元材内装塊成鉱を700℃以下に加熱することを特徴とする上記(12)又は(13)記載の部分還元鉄製造用縦型シャフト炉。   (14) The vertical type for producing partially reduced iron according to (12) or (13), wherein the reducing material-incorporated agglomerate is heated to 700 ° C. or less by combustion gas generated by the combustion-type heating device. Shaft furnace.

(15) 前記還元材内塊成鉱・金属セラミックス球混合装入装置において、還元材内塊成鉱装入部の開口径と金属セラミックス球装入部の開口径の相対比により、還元材内塊成鉱装入部及び金属セラミックス球装入部のそれぞれに供給される前記燃焼式加熱装置で発生した燃焼ガスの流量を調整することを特徴とする上記(12)〜(14)のいずれかに記載の部分還元鉄製造用縦型シャフト炉。   (15) In the reducing material agglomerated metal / metal ceramic sphere mixed charging device, the reducing material inner agglomerated mineral / metal ceramic sphere mixed charging device has an inner diameter of the reducing material depending on a relative ratio between an opening diameter of the reducing material inner agglomerated charging portion and an opening diameter of the metal ceramic sphere charging portion. Any one of the above (12) to (14), wherein the flow rate of the combustion gas generated by the combustion heating device supplied to each of the agglomerated charging portion and the metal ceramic ball charging portion is adjusted. A vertical shaft furnace for producing partially reduced iron as described in 1.

(16) 前記燃焼式加熱装置で発生した火炎輻射熱により前記還元帯域の装入直後の移動層最上部を1200℃以上に加熱することを特徴とする上記(12)〜(15)のいずれかに記載の部分還元鉄製造用縦型シャフト炉。   (16) Any one of the above (12) to (15), wherein the uppermost part of the moving bed immediately after the introduction of the reduction zone is heated to 1200 ° C. or more by flame radiant heat generated by the combustion heating device. A vertical shaft furnace for producing partially reduced iron as described.

(17) 前記還元帯域において、移動層を700〜1300℃に維持することを特徴とする上記(12)〜(16)のいずれかに記載の部分還元鉄製造用縦型シャフト炉。   (17) The vertical shaft furnace for producing partially reduced iron according to any one of (12) to (16) above, wherein the moving bed is maintained at 700 to 1300 ° C in the reduction zone.

(18) 前記冷却帯域において、移動層を300℃以下に冷却することを特徴とする上記(12)〜(17)のいずれかに記載の部分還元鉄製造用縦型シャフト炉。   (18) The vertical shaft furnace for producing partially reduced iron according to any one of (12) to (17), wherein the moving bed is cooled to 300 ° C. or lower in the cooling zone.

(19) 前記冷却装置が、冷却水循環型の冷却装置であることを特徴とする上記(12)〜(18)のいずれかに記載の部分還元鉄製造用縦型シャフト炉。   (19) The vertical shaft furnace for producing partially reduced iron according to any one of (12) to (18), wherein the cooling device is a cooling water circulation type cooling device.

(20) 前記冷却ガスが、不活性ガスであることを特徴とする上記(12)〜(19)のいずれかに記載の部分還元鉄製造用縦型シャフト炉。   (20) The vertical shaft furnace for producing partially reduced iron according to any one of (12) to (19), wherein the cooling gas is an inert gas.

(21) 前記冷却ガスが、還元材内装塊成鉱及び/又は金属セラミックス球の装入部の最上部から排出されるガスを冷却して一部再利用することを特徴とする上記(12)〜(20)のいずれかに記載の部分還元鉄製造用縦型シャフト炉。   (21) The above (12), wherein the cooling gas cools and partially recycles the gas discharged from the top of the charging material-incorporated agglomerated mineral and / or metal ceramic sphere charging portion. The vertical shaft furnace for partially reduced iron production according to any one of to (20).

(22) 前記炉底部から排出された金属セラミックス球を回収し、金属セラミックス球の装入部に循環する金属セラミックス球循環装置を備えることを特徴とする上記(12)〜(21)のいずれかに記載の部分還元鉄製造用縦型シャフト炉。   (22) Any of the above (12) to (21), further comprising a metal ceramic sphere circulation device that collects the metal ceramic sphere discharged from the furnace bottom and circulates the metal ceramic sphere to a charging portion of the metal ceramic sphere. A vertical shaft furnace for producing partially reduced iron as described in 1.

(23) 前記金属セラミックス球が、融点1300℃以上、比熱0.25kcal/kg・deg以上の金属セラミックス球、又は、熱伝導率1.8kcal/m・h・℃以上の金属セラミックス球であることを特徴とする上記(12)〜(22)のいずれかに記載の部分還元鉄製造用縦型シャフト炉。   (23) The metal ceramic sphere is a metal ceramic sphere having a melting point of 1300 ° C. or higher and a specific heat of 0.25 kcal / kg · deg or higher, or a metal ceramic sphere having a thermal conductivity of 1.8 kcal / m · h · ° C. or higher. The vertical shaft furnace for producing partially reduced iron according to any one of (12) to (22) above.

(24) 前記金属セラミックス球が、アルミナ球であることを特徴とする上記(23)に記載の部分還元鉄製造用縦型シャフト炉。   (24) The vertical shaft furnace for producing partially reduced iron according to (23), wherein the metal ceramic sphere is an alumina sphere.

本発明によれば、縦型シャフト炉を用い、還元材内装塊成鉱を部分的に迅速に還元して、高炉等の溶鉱炉用の装入原料として好適な部分還元鉄を、短時間で製造することができ、大幅な生産性の改善が可能となる。   According to the present invention, by using a vertical shaft furnace, partially reducing reduced material-containing agglomerated ore can be quickly produced to produce partially reduced iron suitable as a charging raw material for a blast furnace such as a blast furnace. Can be achieved, and the productivity can be greatly improved.

また、本発明の部分還元鉄製造方法においては、炭材内装でよく、天然ガスなどの高価ガスの使用割合を大幅に低減することが可能である。   Moreover, in the partially reduced iron manufacturing method of the present invention, the interior of the carbonaceous material may be used, and the usage rate of expensive gas such as natural gas can be greatly reduced.

図3に、本発明の一実施態様を模式的に示す。図3に示す縦型シャフト炉1は、炉頂部に、還元材内装塊成鉱の装入部5及び金属セラミックス球の装入部7からなる還元材内塊成鉱・金属セラミックス球混合装入装置と、炉頂部の炉内中心に、燃料3を空気で燃焼し、加熱燃焼ガスおよび火炎輻射熱を発生させる燃焼式加熱装置2を備えている。   FIG. 3 schematically shows an embodiment of the present invention. A vertical shaft furnace 1 shown in FIG. 3 has a reduced material agglomerated / metal ceramic sphere mixed charge comprising a reduced material interior agglomerated charge 5 and a metal ceramic sphere charge 7 at the top of the furnace. In the center of the furnace at the top of the furnace, there is provided a combustion heating device 2 for burning the fuel 3 with air and generating heated combustion gas and flame radiant heat.

還元材内装塊成鉱6は、通常の高炉等の溶鉱炉で使用される還元材(炭材あるいはコークス)と鉄鉱石原料を、通常のぺレット造粒等の塊成化方法や装置、例えば、造粒機4で、通常の粒径5〜20mm程度に造粒しペレット状にしたのものでもよいし、ブリケットマシンで成型しブリケット状にしたものでもよい。   The reduced material-incorporated agglomerate 6 is a reduction material (carbon material or coke) used in a blast furnace such as a normal blast furnace and an iron ore raw material, and an agglomeration method or apparatus such as normal pellet granulation, for example, The granulator 4 may be granulated to a normal particle size of about 5 to 20 mm and pelletized, or may be molded by a briquette machine into a briquette.

還元材内装塊成鉱6の粒径は、特に限定する必要はないが、還元性向上の点から、粒径9〜10mmが好ましい。   The particle diameter of the reducing material-incorporated agglomerated mineral 6 is not particularly limited, but a particle diameter of 9 to 10 mm is preferable from the viewpoint of improving reducibility.

還元材内装塊成鉱6及び金属セラミックス球8は、一旦、還元材内装塊成鉱の装入部5および金属セラミックス球の装入部7にそれぞれ収容され、燃焼式加熱装置2で発生した加熱燃焼ガスの供給により、それぞれ所定温度に予め加熱される。   The reducing material-incorporated agglomerated mineral 6 and the metal ceramic sphere 8 are once accommodated in the reducing material-incorporated agglomerated charging portion 5 and the metallic ceramic sphere charging portion 7, respectively, and are generated by the combustion heating device 2. Each is preheated to a predetermined temperature by supplying combustion gas.

その後、還元材内装塊成鉱6及び金属セラミックス球8は、混合状態で炉頂部の炉内を降下する移動層14の上層部に装入され、装入直後の移動層最上部は、燃焼式加熱装置2で発生した火炎輻射熱により直接加熱される。   Thereafter, the reducing material-incorporated agglomerate 6 and the metal ceramic spheres 8 are charged into the upper layer of the moving bed 14 descending in the furnace at the top of the furnace in a mixed state, and the uppermost part of the moving bed immediately after charging is a combustion type. It is directly heated by the flame radiant heat generated by the heating device 2.

予め加熱された金属セラミックス球8は、炉内上部の還元帯域15において伝熱により還元材内装塊成鉱6を加熱し、その内部での還元反応を促進させるための熱媒体として機能するが、その他、移動層14内で還元反応により生成した部分還元鉄18がスティッキング現象により固着しないように機能する。   The pre-heated metal ceramic sphere 8 functions as a heat medium for heating the reducing material-incorporated agglomerate 6 by heat transfer in the reduction zone 15 in the upper part of the furnace and promoting the reduction reaction therein. In addition, it functions so that the partially reduced iron 18 produced by the reduction reaction in the moving bed 14 does not stick due to the sticking phenomenon.

熱媒体として機能する金属セラミックス球は、伝熱で還元材内装塊成鉱を加熱するに足る熱的特性を備えるものであればよいが、特に、融点1300℃以上、比熱0.25kcal/kg・deg以上のもの、又は、熱伝導率1.8kcal/m・h・℃以上のものが好ましい。具体的には、例えば、アルミナ球が好ましい。   The metal ceramic sphere functioning as a heat medium may have any thermal characteristics sufficient to heat the reduced material-incorporated agglomerate by heat transfer, and in particular, has a melting point of 1300 ° C. or higher and a specific heat of 0.25 kcal / kg · Those having a thermal conductivity of 1.8 kcal / m · h · ° C. or higher are preferable. Specifically, for example, alumina spheres are preferable.

これらの機能を十分に発揮させるために、金属セラミックス球8は、還元材内装塊成鉱6の装入態様に併せ、移動層14に装入される。   In order to fully exhibit these functions, the metal ceramic spheres 8 are charged into the moving layer 14 in accordance with the charging mode of the reducing material interior agglomerate 6.

金属セラミックス球8の粒径は、移動層14内で金属セラミックス球8と還元材内装塊成鉱6を均一な混合状態にする必要があるので、該混合状態が移動層14の降下中も維持されるよう、還元材内装塊成鉱6の粒径や密度を考慮して、適宜決定する。   The particle size of the metal ceramic spheres 8 is required to make the metal ceramic spheres 8 and the reducing material-incorporated agglomerate 6 in a uniform mixed state in the moving layer 14, so that the mixed state is maintained even when the moving layer 14 is lowered. In consideration of the particle size and density of the reducing material-incorporated agglomerate 6, it is appropriately determined.

金属セラミックス球8の粒径は、特定の粒径に限定されないが、例えば、還元材内装塊成鉱6の粒径が9〜10mm程度の時、金属セラミックス球8の粒径は、5〜10mm程度が好ましい。   The particle size of the metal ceramic sphere 8 is not limited to a specific particle size. For example, when the particle size of the reducing material-containing agglomerated mineral 6 is about 9 to 10 mm, the particle size of the metal ceramic sphere 8 is 5 to 10 mm. The degree is preferred.

燃焼式加熱装置2に供給される燃料3は、気体燃料、液体燃料のいずれでもよく、空気と混合して燃焼式加熱装置2に送給された空気中の酸素により燃焼し、加熱燃焼ガス及び火炎輻射熱を発生させる。   The fuel 3 supplied to the combustion type heating device 2 may be either a gaseous fuel or a liquid fuel. The fuel 3 is mixed with air and combusted by oxygen in the air supplied to the combustion type heating device 2, and the heated combustion gas and Generates flame radiant heat.

また、この時、炉内の主に還元帯域15で、還元材内装塊成鉱6内部の還元反応で生成後、炉頂部に達した可燃性のCOガスも、余剰空気中の酸素により燃焼する。   At this time, the flammable CO gas that has reached the top of the furnace after being generated by the reduction reaction inside the reducing material interior agglomerate 6 mainly in the reduction zone 15 in the furnace is also burned by oxygen in the surplus air. .

金属セラミックス球の装入部7内に存在する金属セラミックス球8は、燃焼式加熱装置2で発生した加熱燃焼ガスにより、好ましくは1000〜1300℃に予め加熱して装入する。また、還元材内装塊成鉱の装入部5内に存在する還元材内装塊成鉱6は、燃焼式加熱装置2で発生した加熱燃焼ガスにより、還元反応を起こさない温度、好ましくは700℃以下に予め加熱して装入する。   The metal ceramic spheres 8 present in the metal ceramic sphere charging portion 7 are preferably preheated to 1000 to 1300 ° C. with the heated combustion gas generated by the combustion heating device 2. Further, the reducing material-incorporated agglomerated mineral 6 present in the charging portion 5 of the reducing material-incorporated agglomerated mineral is a temperature at which no reduction reaction is caused by the heated combustion gas generated in the combustion heating device 2, preferably 700 ° C. The following is preheated and charged.

金属セラミックス球8及び還元材内装塊成鉱6をそれぞれ加熱する温度は、例えば、還元材内塊成鉱・金属セラミックス球混合装入装置において、還元材内塊成鉱装入部5の開口径と金属セラミックス球装入部7の開口径の相対比により、燃焼ガスがそれぞれの装入部に供給する流量を変えることで所定温度に調整できる。   The temperature at which the metal ceramic spheres 8 and the reducing material interior agglomerated mineral 6 are heated is, for example, the opening diameter of the reducing material agglomerated charging portion 5 in the reducing material agglomerated mineral / metal ceramic sphere mixing charging device. And the relative ratio of the opening diameters of the metal ceramic ball charging portions 7 can be adjusted to a predetermined temperature by changing the flow rate of the combustion gas supplied to the respective charging portions.

さらに、本発明では、金属セラミックス球8及び還元材内装塊成鉱6を装入した直後、炉頂部に形成された移動層の最上部を、炉頂部中心に備えられた燃焼式加熱装置2で発生した火炎輻射熱によって、所定温度、好ましくは、1200℃以上に直接加熱する。   Furthermore, in the present invention, immediately after charging the metal ceramic spheres 8 and the reducing material-incorporated agglomerate 6, the uppermost part of the moving bed formed at the top of the furnace is the combustion type heating device 2 provided at the center of the furnace top. The generated flame radiant heat is directly heated to a predetermined temperature, preferably 1200 ° C. or higher.

これにより、炉内上部の還元帯域15における移動層14の温度を所定の温度範囲、好ましくは、700〜1300℃に維持することができ、火炎輻射熱による直接加熱及び金属セラミックス球8からの伝熱により、還元材内装塊成鉱6を十分に加熱し、その内部における還元反応を促進して、短時間で部分還元鉄18を生成することができる。   Thereby, the temperature of the moving bed 14 in the reduction zone 15 in the upper part of the furnace can be maintained within a predetermined temperature range, preferably 700 to 1300 ° C., and the direct heating by the flame radiant heat and the heat transfer from the metal ceramic sphere 8 are possible. Thus, the reduced-material-incorporated agglomerated mineral 6 can be sufficiently heated to promote the reduction reaction therein, and the partially reduced iron 18 can be generated in a short time.

そして、縦型シャフト炉1の下部には、冷却装置9、好ましくは、冷却水10を循環する冷却装置9が備えられている。また、炉最下部に設けた羽口11から炉内に冷却ガス(CO2、N2又はCO2/N2混合ガス等の不活性ガス)12、好ましくは非酸化性のN2ガスが吹き込まれる。 A cooling device 9, preferably a cooling device 9 that circulates the cooling water 10, is provided at the lower portion of the vertical shaft furnace 1. Also, cooling gas (inert gas such as CO 2 , N 2, or CO 2 / N 2 mixed gas) 12, preferably non-oxidizing N 2 gas, is blown into the furnace from a tuyere 11 provided at the bottom of the furnace. It is.

これにより、炉内下部の冷却帯域16における移動層の温度を300℃以下、好ましくは200℃程度に維持でき、金属セラミックス球8と炉内上部の還元帯域15で生成した部分還元鉄18からなる移動層14を冷却帯域16で十分に冷却し、部分還元鉄18がCO2等の酸化性ガスにより再酸化することを抑制できる。 Thereby, the temperature of the moving bed in the cooling zone 16 in the lower part of the furnace can be maintained at 300 ° C. or less, preferably about 200 ° C., and consists of the metal ceramic spheres 8 and the partially reduced iron 18 generated in the reducing zone 15 in the upper part of the furnace. It is possible to sufficiently cool the moving bed 14 in the cooling zone 16 and prevent the partially reduced iron 18 from being reoxidized by an oxidizing gas such as CO 2 .

なお、羽口11から炉内に吹き込まれた冷却ガス12は、冷却帯域16の移動層14を冷却し、さらに還元帯域15を上昇し、炉頂部に到達するまでに高温の金属セラミックス球8と還元材内装塊成鉱6との熱交換により加熱される。   The cooling gas 12 blown into the furnace from the tuyere 11 cools the moving bed 14 in the cooling zone 16, rises further in the reduction zone 15, and reaches the top of the furnace with the high-temperature metal ceramic spheres 8. It is heated by heat exchange with the reducing material interior agglomerate 6.

炉頂部に到達したガスは、さらに金属セラミックス球の装入部7及び還元材内装塊成鉱の装入部5を通過し、その保有熱は、金属セラミックス球8と還元材内装塊成鉱6をそれぞれ所要の温度に予熱するために使用される。そして、排ガス17、19は、金属セラミックス球の装入部7と還元材内装塊成鉱の装入部5の頂部から炉外に排出される。これらの排ガス17、19は、冷却して、冷却用の不活性ガス12として再利用してもよい。   The gas that has reached the top of the furnace further passes through the metal ceramic sphere charging section 7 and the reducing material-incorporated agglomerated charging section 5, and the heat retained by the metal ceramic sphere 8 and the reducing material-incorporating agglomerated mineral 6. Each is used to preheat to the required temperature. The exhaust gases 17 and 19 are discharged out of the furnace from the top portion of the charging portion 7 of the metal ceramic sphere and the charging portion 5 of the reducing material interior agglomerated ore. These exhaust gases 17 and 19 may be cooled and reused as the inert gas 12 for cooling.

また、本発明では、炉頂部に到達した冷却ガス12は、還元帯域15で生成したCOガス等の可燃性ガスを含有するため、可燃性ガスは炉頂部の中心に備えられた燃焼式加熱装置2を用いて供給される空気中の酸素により燃焼し、加熱燃焼ガスを生成し、還元材内装塊成鉱6及び金属セラミックス球8を所定温度に加熱するために有効利用される。   In the present invention, since the cooling gas 12 that has reached the top of the furnace contains a combustible gas such as CO gas generated in the reduction zone 15, the combustible gas is provided at the center of the top of the furnace. 2 is combusted by oxygen in the air supplied using 2 to generate heated combustion gas, and is effectively used to heat the reducing material-containing agglomerated mineral 6 and the metal ceramic sphere 8 to a predetermined temperature.

この場合、還元材内装塊成鉱及び金属セラミックス球の各装入部5、7からの排ガス19、17は、炉最下部の羽口11から冷却ガス12として吹き込んだ不活性ガス[例えば、CO2、N2又はCO2/N2混合ガス等]の一部と、還元帯域15で発生したCO/CO2混合ガス、及び、燃料3が燃焼式加熱装置2で空気中の酸素で燃焼して生成するCO2/N2混合ガスを加算したものとなる。 In this case, the exhaust gases 19 and 17 from the charging material interior agglomerates and metal ceramic sphere charging portions 5 and 7 are inert gas blown as the cooling gas 12 from the tuyere 11 at the bottom of the furnace [for example, CO 2 , N 2 or CO 2 / N 2 mixed gas, etc.], the CO / CO 2 mixed gas generated in the reduction zone 15, and the fuel 3 are combusted by oxygen in the air in the combustion heating device 2. This is the sum of the CO 2 / N 2 mixed gas produced in this way.

炉内上部の還元帯域15で還元された後、炉内下部の冷却帯域16で冷却された部分還元鉄18と、熱媒体としての金属セラミックス球8からなる移動層14は、炉内を降下して炉底部に達すると、排出装置13により縦型シャフト炉1から排出される。   After being reduced in the reduction zone 15 at the upper part of the furnace, the partially reduced iron 18 cooled in the cooling zone 16 at the lower part of the furnace and the metal ceramic spheres 8 as the heat medium descends in the furnace. When it reaches the bottom of the furnace, it is discharged from the vertical shaft furnace 1 by the discharge device 13.

この際、排出装置13は、金属セラミックス球8と部分還元鉄18を分離して排出し、部分還元鉄18は、高炉等の溶鉱炉用の原料として用いられる。   At this time, the discharge device 13 separates and discharges the metal ceramic spheres 8 and the partially reduced iron 18, and the partially reduced iron 18 is used as a raw material for a blast furnace such as a blast furnace.

一方、金属セラミックス球8は、分離して排出後、回収され、金属セラミックス球循環装置20により、炉頂部に設けられた金属セラミックス球の装入部7に循環され、再装入される。   On the other hand, the metal ceramic spheres 8 are separated and discharged, collected, and circulated by the metal ceramic sphere circulation device 20 to the metal ceramic sphere loading portion 7 provided at the top of the furnace and re-inserted.

以上、図3に従い、本発明の実施形態について説明した。   The embodiment of the present invention has been described with reference to FIG.

本発明によれば、還元ガスとして天然ガスを用いてシャフト炉内で焼成ペレット等を還元するMIDREX法やHyL法等の従来法に比べて、還元効率を向上させ、還元時間を大幅に短縮できるため、高炉等の溶鉱炉用の原料として、好ましくは還元率85〜90%程度の部分還元鉄を、高生産性かつ低コストで製造することが可能となる。   According to the present invention, the reduction efficiency can be improved and the reduction time can be greatly shortened as compared with conventional methods such as the MIDREX method and the HyL method in which natural gas is used as the reducing gas to reduce the calcined pellets in the shaft furnace. Therefore, it is possible to produce partially reduced iron having a reduction rate of about 85 to 90% as a raw material for a blast furnace such as a blast furnace at high productivity and at low cost.

次に、本発明の実施例について説明するが、実施例の条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。   Next, examples of the present invention will be described. The conditions of the examples are one example of conditions adopted for confirming the feasibility and effects of the present invention, and the present invention is limited to this one example of conditions. Is not to be done. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.

(実施例1)
還元材内装塊成鉱は、炭材内装ペレット中のC量が15%となるように還元材として炭材を配合し、造粒機で粒径9〜10mmの炭材内装ペレット(T.Fe=55%、C=15%)を製造した。
Example 1
Reduced material-incorporated agglomerated coal is blended with carbonaceous material as a reducing material so that the amount of carbon in the carbonized material-incorporated pellets is 15%, and a carbonaceous material-incorporated pellet (T. = 55%, C = 15%).

図3に示す竪型シャフト炉を用いて、炭材内装ペレット:1782kg/t-DRIと、予め加熱されたアルミナ球:1050kg/t-DRIを、それぞれの装入部から炉頂部に混合状態で装入し、部分還元鉄ペレットを製造した。   Using a vertical shaft furnace shown in FIG. 3, carbon material-incorporated pellets: 1782 kg / t-DRI and preheated alumina spheres: 1050 kg / t-DRI are mixed from the respective charging parts to the top of the furnace. The partially reduced iron pellet was manufactured by charging.

炉頂部の炉内中心に備えた燃焼式加熱装置を用いて、燃料ガスとしてプロパンガス:10Nm3/t-DRI、及び、炉頂に到達したガス中に含有するCOガスなどの可燃性ガスを、空気:950Nm3/t-DRIにより燃焼させ、約1207℃の燃焼ガスを生成させ、アルミナ球及び炭材内装ペレットのそれぞれの装入部に導入し、アルミナ球を1200℃に加熱し、炭材内装ペレットを685℃に予熱した。 Using a combustion-type heating device provided at the center of the furnace at the top of the furnace, propane gas: 10 Nm 3 / t-DRI as fuel gas, and a combustible gas such as CO gas contained in the gas reaching the top of the furnace , Air: Combusted by 950 Nm 3 / t-DRI, generating combustion gas of about 1207 ° C., introduced into each charging part of alumina sphere and charcoal interior pellets, heating the alumina sphere to 1200 ° C., The wood interior pellets were preheated to 685 ° C.

アルミナ球及び炭材内装ペレットの各装入部から排出されるCO2ガスは冷却し、羽口から吹き込む冷却ガスとして循環して使用した。 The CO 2 gas discharged from each charging portion of the alumina sphere and the carbon material-containing pellet was cooled and circulated as a cooling gas blown from the tuyere.

その結果、還元率:85〜90%、残留C2%の組成の部分還元鉄を製造できた。還元時間は、従来シャフト還元法で要する還元時間を1とした場合に、0.40程度にまで大幅に短縮でき、大幅な生産性の改善を達成できた。   As a result, it was possible to produce partially reduced iron having a composition of a reduction rate of 85 to 90% and a residual C2%. The reduction time can be greatly shortened to about 0.40 when the reduction time required in the conventional shaft reduction method is 1, and a significant improvement in productivity can be achieved.

また、アルミナ球装入部から排出された排ガス温度は701℃、炭材内装ペレット装入部からの排出された排ガス温度は102℃であり、これら排ガス中のCO及びCO2濃度から、ηco(=CO2/(CO+CO2))=100%であり、従来シャフト還元法の反応効率(ηco=40%)に比べて、反応効率も大幅に改善された。 The exhaust gas temperature discharged from the alumina sphere charging portion was 701 ° C., and the exhaust gas temperature discharged from the carbonaceous material interior pellet charging portion was 102 ° C. From the CO and CO 2 concentrations in these exhaust gases, ηco ( = CO 2 / (CO + CO 2 )) = 100%, and the reaction efficiency was greatly improved as compared with the reaction efficiency of the conventional shaft reduction method (ηco = 40%).

なお、還元時間及び反応効率の比較評価の基準に用いた従来シャフト還元法の結果は、MIDREX法により、天然ガスを改質した30%CO−50%H2−20%N2の還元ガスを用いて、900℃の還元ガス温度で、従来ペレット(内装C量=0%):1600kg/t-DRIを縦型シャフト炉に装入し、還元率:85〜90%の部分還元鉄を製造する場合の結果を用いた。 The result of the conventional shaft reduction method used as a standard for comparative evaluation of reduction time and reaction efficiency is the result of using 30% CO-50% H 2 -20% N 2 reducing gas modified by natural gas by the MIDREX method. Using conventional pellets (internal C content = 0%): 1600kg / t-DRI in a vertical shaft furnace at a reducing gas temperature of 900 ° C, producing partially reduced iron with a reduction rate of 85-90% The result was used.

(実施例2)
上記実施例1により製造した部分還元鉄を高炉に装入し、コークスなどの還元材の使用量の低減効果を確認した。
(Example 2)
The partially reduced iron produced in Example 1 was charged into a blast furnace, and the effect of reducing the amount of reducing material used, such as coke, was confirmed.

図4に、還元率85%の部分還元鉄を高炉原料として使用した場合のコークス比の低減量(部分還元鉄を使用しない高炉操業時のコークス装入量に対する低減量)を示す。高炉原料として部分還元鉄を100kg/t-pig使用した場合、高炉の還元材比を20kg/t程度低減することが可能であり、生産量5%の増大を達成できた。   FIG. 4 shows a reduction amount of the coke ratio when using partially reduced iron with a reduction rate of 85% as a blast furnace raw material (a reduction amount with respect to the amount of coke charged during blast furnace operation without using partially reduced iron). When 100 kg / t-pig of partially reduced iron was used as the blast furnace raw material, the reducing material ratio of the blast furnace could be reduced by about 20 kg / t, and an increase of 5% in production could be achieved.

このことから、本発明の部分還元鉄製造法は、生産性が高く、高価な天然ガス等の還元ガスが不要で、かつ安価な炭材を使用できるプロセスであり、また、還元によって製造された部分還元鉄は、溶鉱炉装入原料として好適なものであることが解かる。   From this, the partially reduced iron production method of the present invention is a process that is high in productivity, does not require a reducing gas such as expensive natural gas, and can use an inexpensive carbon material, and is produced by reduction. It can be seen that the partially reduced iron is suitable as a blast furnace charging material.

還元材内装鉄鉱石における還元反応の進行状況を示す図である。It is a figure which shows the advancing situation of the reductive reaction in a reducing material interior iron ore. 部分還元鉄の組織を示す図である。It is a figure which shows the structure | tissue of partially reduced iron. 本発明の一実施態様を模式的に示す図である。It is a figure which shows one embodiment of this invention typically. 本発明の部分還元鉄を高炉使用した場合の還元材比低減量を示す図である。It is a figure which shows the reducing material ratio reduction amount at the time of using the partially reduced iron of this invention for a blast furnace.

符号の説明Explanation of symbols

1 縦型シャフト炉
2 燃焼式加熱装置
3 燃料
4 造粒機
5 還元材内装塊成鉱の装入部
6 還元材内装塊成鉱
7 金属セラミックス球の装入部
8 金属セラミックス球
9 冷却装置
10 冷却水
11 羽口
12 冷却ガス
13 排出装置
14 移動層
15 還元帯域
16 冷却帯域
17 金属セラミックス球装入部からの排ガス
18 部分還元鉄
19 還元材内装塊鉱装入部からの排ガス
20 金属セラミックス球循環装置
DESCRIPTION OF SYMBOLS 1 Vertical shaft furnace 2 Combustion type heating device 3 Fuel 4 Granulator 5 Reducing material interior agglomeration charging section 6 Reducing material interior agglomeration 7 Metal ceramic sphere charging section 8 Metal ceramic sphere 9 Cooling device 10 Cooling water 11 Tuyere 12 Cooling gas 13 Discharge device 14 Moving bed 15 Reduction zone 16 Cooling zone 17 Exhaust gas from metal ceramic sphere charging portion 18 Partially reduced iron 19 Exhaust gas from reducing material interior lump ore charging portion 20 Metal ceramic sphere Circulator

Claims (24)

炉頂部の炉内中心に燃焼式加熱装置を備え、かつ、炉内下部に冷却装置を備える縦型シャフト炉で、還元材内装塊成鉱を部分的に還元して部分還元鉄を製造する部分還元鉄の製造方法において、
(a)炉頂部から、前記燃焼式加熱装置で発生した燃焼ガスにより予め加熱された還元材内装塊成鉱と金属セラミックス球を混合して装入して、炉内を降下する移動層を形成し、
(b)炉内上部の還元帯域にて、前記燃焼式加熱装置で発生した火炎輻射熱により還元材内装塊成鉱を直接加熱するとともに、前記金属セラミックス球からの伝熱により還元材内装塊成鉱を間接加熱し、還元して部分還元鉄を生成し、
(c)炉内下部の冷却帯域にて、部分還元鉄を、前記冷却装置で冷却するとともに、炉最下部から吹き込む冷却ガスで冷却し、
(d)炉底部から、部分還元鉄と金属セラミックス球を分離して排出する、
ことを特徴とする部分還元鉄の製造方法。
This is a vertical shaft furnace equipped with a combustion heating device at the center of the furnace at the top of the furnace and a cooling device at the bottom of the furnace. In the method for producing reduced iron,
(A) From the top of the furnace, a reducing material-incorporated agglomerated mineral and metal ceramic spheres, which are preheated by the combustion gas generated by the combustion-type heating device, are mixed and charged to form a moving bed that descends in the furnace. And
(B) In the reduction zone at the top of the furnace, the reductant-incorporated agglomerate is directly heated by the flame radiant heat generated by the combustion-type heating device, and the reductant-inner agglomerate by heat transfer from the metal ceramic balls. Indirectly heated and reduced to produce partially reduced iron,
(C) In the cooling zone in the lower part of the furnace, the partially reduced iron is cooled by the cooling device, and is cooled by the cooling gas blown from the lowermost part of the furnace.
(D) Separated and discharged partially reduced iron and metal ceramic spheres from the furnace bottom,
A method for producing partially reduced iron, wherein
前記金属セラミックス球を、前記燃焼式加熱装置で発生した燃焼ガスにより1000℃以上に加熱し、炉頂部から装入することを特徴とする請求項1記載の部分還元鉄の製造方法。   2. The method for producing partially reduced iron according to claim 1, wherein the metal ceramic sphere is heated to 1000 [deg.] C. or higher by combustion gas generated by the combustion heating device and charged from the top of the furnace. 前記還元材内装塊成鉱を、前記燃焼式加熱装置で発生した燃焼ガスにより700℃以下に加熱し、炉頂部から装入することを特徴とする請求項1又は2記載の部分還元鉄の製造方法。   3. The partially reduced iron production according to claim 1, wherein the reduced material-incorporated agglomerated mineral is heated to 700 ° C. or less by combustion gas generated by the combustion-type heating device and charged from the top of the furnace. Method. 前記還元帯域で、装入直後の移動層最上部を、前記燃焼式加熱装置で発生した火炎輻射熱により1200℃以上に加熱することを特徴とする請求項1〜3のいずれか1項に記載の部分還元鉄の製造方法。   The top of the moving bed immediately after charging in the reduction zone is heated to 1200 ° C. or more by flame radiant heat generated by the combustion heating device. A method for producing partially reduced iron. 前記還元帯域において、移動層を700〜1300℃に維持することを特徴とする請求項1〜4のいずれか1項に記載の部分還元鉄の製造方法。   The method for producing partially reduced iron according to any one of claims 1 to 4, wherein the moving bed is maintained at 700 to 1300 ° C in the reduction zone. 前記冷却帯域において、移動層を300℃以下に冷却することを特徴とする請求項1〜5のいずれか1項に記載の部分還元鉄の製造方法。   The method for producing partially reduced iron according to claim 1, wherein the moving bed is cooled to 300 ° C. or lower in the cooling zone. 前記冷却装置が、冷却水循環型の冷却装置であることを特徴とする請求項1〜6のいずれか1項に記載の部分還元鉄の製造方法。   The method for producing partially reduced iron according to claim 1, wherein the cooling device is a cooling water circulation type cooling device. 前記冷却ガスが、不活性ガスであることを特徴とする請求項1〜7のいずれか1項に記載の部分還元鉄の製造方法。   The method for producing partially reduced iron according to any one of claims 1 to 7, wherein the cooling gas is an inert gas. 前記炉底部から排出された金属セラミックス球を回収し、前記加熱装置で再加熱した後、炉頂部から再装入し、循環させることを特徴とする請求項1〜8のいずれか1項に記載の部分還元鉄の製造方法。   9. The metal ceramic sphere discharged from the furnace bottom is collected, reheated by the heating device, recharged from the furnace top, and circulated. Of producing partially reduced iron. 前記金属セラミックス球が、融点1300℃以上、比熱0.25kcal/kg・deg以上の金属セラミックス球、又は、熱伝導率1.8kcal/m・h・℃以上の金属セラミックス球であることを特徴とする請求項1〜9のいずれか1項に記載の部分還元鉄の製造方法。   The metal ceramic sphere is a metal ceramic sphere having a melting point of 1300 ° C. or higher and a specific heat of 0.25 kcal / kg · deg or higher, or a metal ceramic sphere having a thermal conductivity of 1.8 kcal / m · h · ° C. or higher. The manufacturing method of the partially reduced iron of any one of Claims 1-9 to do. 前記金属セラミックス球が、アルミナ球であることを特徴とする請求項10に記載の部分還元鉄の製造方法。   The method for producing partially reduced iron according to claim 10, wherein the metal ceramic sphere is an alumina sphere. 炉頂部の炉内中心に燃焼式加熱装置を備え、かつ、炉内下部に冷却装置を備え、還元材内装塊成鉱を部分的に還元して部分還元鉄を製造する縦型シャフト炉であって、
(i)炉頂部に、予め加熱された還元材内塊成鉱及び金属セラミックス球を混合して装入し、炉内を降下する移動層を形成する還元材内塊成鉱・金属セラミックス球混合装入装置を備え、
(ii)炉最下部に、炉内下部の冷却帯域に降下してくる部分還元鉄を前記冷却装置とともに冷却する冷却ガスを吹き込む羽口を備え、かつ、
(iii)炉底部に、部分還元鉄と金属セラミックス球を分離して排出する排出装置を備えることを特徴とする部分還元鉄製造用縦型シャフト炉。
The vertical shaft furnace is equipped with a combustion heating device at the center of the furnace at the top of the furnace and a cooling device at the bottom of the furnace to produce partially reduced iron by partially reducing the agglomerated ore of the reducing material. And
(I) Mixing and charging pre-heated agglomerated minerals and metal ceramic balls into the top of the furnace to form a moving bed that descends in the furnace and mixing the agglomerated minerals and metal ceramic spheres in the reducing material Equipped with a charging device,
(Ii) provided at the bottom of the furnace with tuyere for blowing a cooling gas for cooling the partially reduced iron descending into the cooling zone at the bottom of the furnace together with the cooling device; and
(Iii) A vertical shaft furnace for producing partially reduced iron, comprising a discharge device for separating and discharging partially reduced iron and metal ceramic spheres at the bottom of the furnace.
前記燃焼式加熱装置で発生した燃焼ガスにより金属セラミックス球を1000℃以上に加熱することを特徴とする請求項12に記載の部分還元鉄製造用縦型シャフト炉。   13. The vertical shaft furnace for producing partially reduced iron according to claim 12, wherein the metal ceramic spheres are heated to 1000 ° C. or more by the combustion gas generated by the combustion heating device. 前記燃焼式加熱装置で発生した燃焼ガスにより前記還元材内装塊成鉱を700℃以下に加熱することを特徴とする請求項12又は13に記載の部分還元鉄製造用縦型シャフト炉。   14. The vertical shaft furnace for producing partially reduced iron according to claim 12, wherein the reducing material-containing agglomerated mineral is heated to 700 ° C. or less by combustion gas generated by the combustion heating device. 前記還元材内塊成鉱・金属セラミックス球混合装入装置において、還元材内塊成鉱装入部の開口径と金属セラミックス球装入部の開口径の相対比により、還元材内塊成鉱装入部及び金属セラミックス球装入部のそれぞれに供給する前記燃焼式加熱装置で発生した燃焼ガスの流量を調整することを特徴とする請求項12〜14のいずれか1項に記載の部分還元鉄製造用縦型シャフト炉。   In the reducing material agglomerated / metal ceramic sphere mixing charging device, the reducing material internal agglomerated ore depending on the relative ratio of the opening diameter of the reducing material agglomerated ore charging portion and the opening diameter of the metal ceramic sphere charging portion. The partial reduction according to any one of claims 12 to 14, wherein the flow rate of the combustion gas generated by the combustion heating device supplied to each of the charging part and the metal ceramic ball charging part is adjusted. Vertical shaft furnace for iron production. 前記燃焼式加熱装置で発生した火炎輻射熱により前記還元帯域の装入直後の移動層最上部を1200℃以上に加熱することを特徴とする請求項12〜15のいずれか1項に記載の部分還元鉄製造用縦型シャフト炉。   The partial reduction according to any one of claims 12 to 15, wherein the uppermost part of the moving bed immediately after charging of the reduction zone is heated to 1200 ° C or higher by flame radiant heat generated by the combustion heating device. Vertical shaft furnace for iron production. 前記還元帯域において、移動層を700〜1300℃に維持することを特徴とする請求項12〜16のいずれか1項に記載の部分還元鉄製造用縦型シャフト炉。   The vertical shaft furnace for producing partially reduced iron according to any one of claims 12 to 16, wherein the moving bed is maintained at 700 to 1300 ° C in the reduction zone. 前記冷却帯域において、移動層を300℃以下に冷却することを特徴とする請求項12〜17のいずれか1項に記載の部分還元鉄製造用縦型シャフト炉。   18. The vertical shaft furnace for producing partially reduced iron according to claim 12, wherein the moving bed is cooled to 300 ° C. or less in the cooling zone. 前記冷却装置が、冷却水循環型の冷却装置であることを特徴とする請求項12〜18のいずれか1項に記載の部分還元鉄製造用縦型シャフト炉。   The vertical shaft furnace for producing partially reduced iron according to any one of claims 12 to 18, wherein the cooling device is a cooling water circulation type cooling device. 前記冷却ガスが、不活性ガスであることを特徴とする請求項12〜19のいずれか1項に記載の部分還元鉄製造用縦型シャフト炉。   The vertical shaft furnace for producing partially reduced iron according to any one of claims 12 to 19, wherein the cooling gas is an inert gas. 前記冷却ガスが、還元材内装塊成鉱及び/又は金属セラミックス球の装入部の最上部から排出されるガスを冷却して一部再利用することを特徴とする請求項12〜20のいずれか1項に記載の部分還元鉄製造用縦型シャフト炉。   21. The cooling gas according to any one of claims 12 to 20, wherein the cooling gas cools and partially reuses the gas discharged from the uppermost portion of the reducing material-incorporated agglomerated mineral and / or metal ceramic ball. A vertical shaft furnace for producing partially reduced iron according to claim 1. 前記炉底部から排出された金属セラミックス球を回収し、金属セラミックス球の装入部に循環する金属セラミックス球循環装置を備えることを特徴とする請求項12〜21のいずれか1項に記載の部分還元鉄製造用縦型シャフト炉。   The part according to any one of claims 12 to 21, further comprising a metal ceramic sphere circulation device that collects the metal ceramic sphere discharged from the furnace bottom and circulates the metal ceramic sphere to a charging portion of the metal ceramic sphere. Vertical shaft furnace for the production of reduced iron. 前記金属セラミックス球が、融点1300℃以上、比熱0.25kcal/kg・deg以上の金属セラミックス球、又は、熱伝導率1.8kcal/m・h・℃以上の金属セラミックス球であることを特徴とする請求項12〜22のいずれか1項に記載の部分還元鉄製造用縦型シャフト炉。   The metal ceramic sphere is a metal ceramic sphere having a melting point of 1300 ° C. or higher and a specific heat of 0.25 kcal / kg · deg or higher, or a metal ceramic sphere having a thermal conductivity of 1.8 kcal / m · h · ° C. or higher. The vertical shaft furnace for partially reduced iron production according to any one of claims 12 to 22. 前記金属セラミックス球が、アルミナ球であることを特徴とする請求項23に記載の部分還元鉄製造用縦型シャフト炉。   The vertical shaft furnace for producing partially reduced iron according to claim 23, wherein the metal ceramic spheres are alumina spheres.
JP2004373124A 2004-12-24 2004-12-24 Method for producing partially reduced iron and vertical shaft furnace for producing partially reduced iron Expired - Fee Related JP4214111B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004373124A JP4214111B2 (en) 2004-12-24 2004-12-24 Method for producing partially reduced iron and vertical shaft furnace for producing partially reduced iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004373124A JP4214111B2 (en) 2004-12-24 2004-12-24 Method for producing partially reduced iron and vertical shaft furnace for producing partially reduced iron

Publications (2)

Publication Number Publication Date
JP2006176853A JP2006176853A (en) 2006-07-06
JP4214111B2 true JP4214111B2 (en) 2009-01-28

Family

ID=36731218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004373124A Expired - Fee Related JP4214111B2 (en) 2004-12-24 2004-12-24 Method for producing partially reduced iron and vertical shaft furnace for producing partially reduced iron

Country Status (1)

Country Link
JP (1) JP4214111B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104142065A (en) * 2014-07-04 2014-11-12 安徽骆氏升泰汽车零部件有限公司 Automatic feeding control method
CN109556413A (en) * 2018-11-21 2019-04-02 陈孝 A kind of metallurgical furnace

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104089487B (en) * 2014-07-04 2016-05-11 安徽骆氏升泰汽车零部件有限公司 Automatic feeding and intermediate-frequency heating furnace

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104142065A (en) * 2014-07-04 2014-11-12 安徽骆氏升泰汽车零部件有限公司 Automatic feeding control method
CN104142065B (en) * 2014-07-04 2016-03-16 安徽骆氏升泰汽车零部件有限公司 The control method of self-feeding
CN109556413A (en) * 2018-11-21 2019-04-02 陈孝 A kind of metallurgical furnace

Also Published As

Publication number Publication date
JP2006176853A (en) 2006-07-06

Similar Documents

Publication Publication Date Title
JP6620850B2 (en) Carbonaceous granulated particles for the production of sintered ore and method for producing the same
TWI396745B (en) Method for producing reduced iron pellet and method for producing pig iron
JP4757982B2 (en) Method for improving the yield of granular metallic iron
JP4697340B2 (en) Blast furnace operation method
US20020005089A1 (en) Method of and apparatus for manufacturing the metallic iron
JP5053305B2 (en) Manufacturing method of pig iron
WO2003062474A1 (en) Process for producing molten iron
JP4214111B2 (en) Method for producing partially reduced iron and vertical shaft furnace for producing partially reduced iron
JP4328288B2 (en) Method and equipment for producing partially reduced iron
JP2004285134A (en) Process for producing raw material for metallurgical furnace
JP4894949B2 (en) Blast furnace operation method
JP2006176860A (en) Method for producing partially-reduced iron and vertical type shaft furnace for producing partially-reduced iron
JP3863104B2 (en) Blast furnace operation method
JP4078285B2 (en) Blast furnace operation method
JP2006009156A (en) Sintered ore and blast furnace control method
JP7323075B2 (en) Method for producing agglomerate ore, method for producing reduced iron, agglomerate ore, sintering machine and pellet firing furnace
WO2022209013A1 (en) Reduced iron production method and reduced iron production device
KR101321076B1 (en) Manufacturing method of partial-reduced pellet
JP3864506B2 (en) Semi-reduced iron agglomerate, method for producing the same, and method for producing pig iron
JP2001271121A (en) Method for producing sintered ore for blast furnace
JPS58174511A (en) Manufacture of pig iron and apparatus therefor
JPH0333763B2 (en)
JPS58171513A (en) Method and device for production of pig iron

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081031

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees