JPH09272925A - Production of sintered ore excellent in property at high temperature and cold strength - Google Patents

Production of sintered ore excellent in property at high temperature and cold strength

Info

Publication number
JPH09272925A
JPH09272925A JP10644796A JP10644796A JPH09272925A JP H09272925 A JPH09272925 A JP H09272925A JP 10644796 A JP10644796 A JP 10644796A JP 10644796 A JP10644796 A JP 10644796A JP H09272925 A JPH09272925 A JP H09272925A
Authority
JP
Japan
Prior art keywords
raw material
cold strength
limestone
serpentine
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10644796A
Other languages
Japanese (ja)
Inventor
Kenichi Higuchi
謙一 樋口
Yozo Hosoya
陽三 細谷
Yukihiro Hida
行博 肥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP10644796A priority Critical patent/JPH09272925A/en
Publication of JPH09272925A publication Critical patent/JPH09272925A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing sintered ore by which cold strength, low temp. reduction powdering property, and property to be reduced are simultaneously improved and for which a means has not yet established. SOLUTION: Lime stone D is adjusted or pelletized so that the content of the particles having 3 to 5mm grain size is <=15wt.% and a material to be sintered is compounded with the lime stone D. Then, auxiliary raw material A containing MgO such as serpentine, nickel slag or the like is adjusted or pelletized so that the content of the particles having 0 to 0.5mm grain size is >=30wt.% and that of the particles having 1 to 5mm grain size <=50wt.% and the material to be sintered is compounded with the auxiliary raw material A. Then, whole the compounded materials are blended, pelletized and calcined in a sintering machine 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は高温性状と冷間落下
強度の優れた焼結鉱の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a sinter having excellent high temperature properties and cold drop strength.

【0002】[0002]

【従来の技術】従来から焼結鉱は、焼結原料として鉄鉱
石の他に石灰石や蛇紋岩などの副原料を配合して混合
し、その配合原料を造粒機で造粒したのち焼結機で焼成
して製造されている。このとき、石灰石はCaO源とし
て鉄鉱石と溶融し、低融点の融液を生成して結合相をつ
くるために配合されている。蛇紋岩、ニッケルスラグ、
ジュナイトはSiO2 源としてその結合相を強固にする
と同時に、MgO源として高炉内でのスラグ組成を改質
することで、焼結鉱の高温性状を改善させる目的で配合
されている。
2. Description of the Related Art Conventionally, sinter ore has been used as a raw material for sintering, and in addition to iron ore, auxiliary raw materials such as limestone and serpentine are mixed and mixed, and the mixed raw material is granulated by a granulator and then sintered. It is manufactured by firing with a machine. At this time, limestone is blended as a CaO source to melt with iron ore and generate a low melting point melt to form a binder phase. Serpentine, nickel slag,
Junite is blended for the purpose of improving the high-temperature properties of the sinter by modifying the slag composition in the blast furnace as a MgO source while strengthening its binder phase as a SiO 2 source.

【0003】焼結鉱の生産性や品質の向上のために、こ
れら副原料の特定の粒度を増減する試みが数多くなされ
てきた。
Many attempts have been made to increase or decrease the specific particle size of these auxiliary materials in order to improve the productivity and quality of the sintered ore.

【0004】例えば、特開昭63−282216号公報
には、蛇紋岩の50wt%が1〜10mmとなるように
調整して被還元性の高い焼結鉱を製造する方法が開示さ
れている。しかし、この方法では高炉内での焼結鉱の還
元粉化が著しく起こり、それに対する対策については記
載されていない。
For example, Japanese Unexamined Patent Publication (Kokai) No. 63-228216 discloses a method for producing a sinter having a high reducibility by adjusting the serpentine to 50 wt% to 1 to 10 mm. However, this method causes reductive pulverization of the sintered ore in the blast furnace, and no countermeasure is described for it.

【0005】一方、特開昭57−188626号公報に
は、Ni滓をブレーン指数500〜1000cm2 /g
(粒径に換算すると0.05〜0.5mmに相当すると
思われる)まで粉砕して低温還元粉化性の低い焼結鉱を
製造する方法が開示されている。しかし、この方法では
冷間強度、被還元性の悪化が起こり、それに対する対策
については記載されていない。
On the other hand, in Japanese Unexamined Patent Publication (Kokai) No. 57-188626, Ni slag is treated with a Blaine index of 500 to 1000 cm 2 / g.
A method for producing a sinter having a low low-temperature reduction powderability is disclosed by pulverizing to a particle size (which is considered to be equivalent to 0.05 to 0.5 mm when converted to a particle size). However, this method causes deterioration of cold strength and reducibility, and measures against it are not described.

【0006】特開昭60−248826号公報には、石
灰石を0.5〜2mmに、珪石、蛇紋岩、SiO2 が4
%以上の粉鉄鉱石を1〜2mmとなるようにそれぞれ調
整するJIS還元率および低温還元粉化性に優れた焼結
鉱の製造方法が開示されている。しかし、冷間強度につ
いては記載されていない。
In Japanese Patent Laid-Open No. 60-248826, limestone is added to 0.5 to 2 mm, silica stone, serpentine, and SiO 2 are added to 4
There is disclosed a method for producing a sintered ore which is excellent in JIS reduction rate and low-temperature reduction pulverization property, in which powder iron ore of at least 1% is adjusted to be 1 to 2 mm. However, it does not describe cold strength.

【0007】[0007]

【発明が解決しようとする課題】本発明は、これまで手
段が確立されていなかった冷間強度、低温還元粉化性お
よび被還元性を同時に改善する焼結鉱の製造方法を提供
することを目的とする。
DISCLOSURE OF THE INVENTION The present invention provides a method for producing a sinter that simultaneously improves cold strength, low-temperature reductive pulverization property and reducibility, which means have not been established until now. To aim.

【0008】[0008]

【課題を解決するための手段】本発明の要旨は以下の
〜の通りである。
The summary of the present invention is as follows.

【0009】 鉄鉱石を含む焼結鉱を製造する際に、
石灰石の粒度を3〜5mmが15wt%以上になるよう
に調整または造粒して焼結原料中に配合し、含MgO副
原料の粒度を0〜0.5mmが30wt%以下、1〜5
mmが50wt%以上になるように調整または造粒して
焼結原料中に配合したのち、配合原料全体を混合、造粒
してから焼結機で焼成することを特徴とする高温性状と
冷間強度の優れた焼結鉱の製造方法。
In producing a sintered ore containing iron ore,
The particle size of limestone is adjusted or granulated so that 3 to 5 mm is 15 wt% or more and blended in the sintering raw material, and the particle size of the MgO-containing auxiliary material is 0 to 0.5 mm is 30 wt% or less, 1 to 5
mm is adjusted to 50 wt% or more or granulated and blended in the sintering raw material, and then the entire blended raw material is mixed and granulated, and then fired by a sintering machine. A method for producing a sintered ore having excellent cold strength.

【0010】 含MgO副原料の−1mmを造粒して
1mm以上の造粒物にして焼結原料中に配合することを
特徴とする前記の高温性状と冷間強度の優れた焼結鉱
の製造方法。
A sinter having excellent high-temperature properties and cold strength is characterized in that -1 mm of the MgO-containing auxiliary raw material is granulated to form a granulated product having a size of 1 mm or more and blended in the sintering raw material. Production method.

【0011】 含MgO副原料として蛇紋岩、ニッケ
ルスラグ、ジュナイトのうち1種または2種を用いるこ
とを特徴とする前記の高温性状と冷間強度の優れた焼
結鉱の製造方法。
The method for producing a sinter having excellent high-temperature properties and cold strength, characterized in that one or two of serpentine, nickel slag, and dunite is used as a MgO-containing auxiliary material.

【0012】[0012]

【発明の実施の形態】本発明は、前記課題を解決するた
め、焼結原料に配合する石灰石、蛇紋岩、ニッケルスラ
グ、ジュナイトの粒度分布を焼成前に調整することによ
り、冷間強度が高く、低温還元粉化性が低く、かつ高温
被還元性に優れた焼結鉱を製造する。なお、表1にそれ
ぞれの化学成分を例示した。
BEST MODE FOR CARRYING OUT THE INVENTION In order to solve the above-mentioned problems, the present invention has a high cold strength by adjusting the particle size distribution of limestone, serpentine, nickel slag, and dunite mixed in a sintering raw material before firing. , Sinter that has low low-temperature reduction powderability and excellent high-temperature reducibility is manufactured. In addition, each chemical component is illustrated in Table 1.

【0013】[0013]

【表1】 [Table 1]

【0014】本発明は、まず石灰石の微粉部を大幅に減
少させて、焼結原料層内の通気性を改善させる。それに
よって焼結生産性が改善されるとともに、焼成のヒート
パターンがシャープ化するので低温還元粉化の要因の一
つである二次ヘマタイトが減少し、低温還元粉化が改善
される。しかし、この場合、焼結過程での初期融液の発
生起点である微粉の石灰石が減少するので、歩留、冷間
強度の低下が起こる。そこで、融液の融点を上げる作用
のあるMgOの反応性を抑制するために、MgO源であ
る蛇紋岩、ニッケルスラグ、ジュナイトの微粉部分を大
幅に減少させる。これにより、歩留、冷間強度の低下が
抑制されるとともに、MgOによるマグネタイトの安定
化作用も抑制されるので被還元性の悪いマグネタイトが
減少し、被還元性が向上する。
According to the present invention, first, the fine powder portion of limestone is greatly reduced to improve the air permeability in the sintering raw material layer. As a result, the sintering productivity is improved, and since the heat pattern for firing is sharpened, secondary hematite, which is one of the factors of low-temperature reduced powder, is reduced, and low-temperature reduced powder is improved. However, in this case, the fine powder of limestone, which is the starting point of the generation of the initial melt in the sintering process, is reduced, so that the yield and the cold strength are reduced. Therefore, in order to suppress the reactivity of MgO, which has the effect of raising the melting point of the melt, the fine powder portion of serpentine, nickel slag, and dunite, which are MgO sources, is greatly reduced. As a result, the yield and cold strength are suppressed from being lowered, and the stabilizing effect of magnetite by MgO is also suppressed, so that the magnetite with poor reducibility is reduced and the reducibility is improved.

【0015】本発明法で石灰石の粒度を3〜5mmが1
5%以上としたのは、鍋試験で、これ以上石灰石粒度を
粗粒にすると、石灰石が未同化で焼結鉱中に残留して歩
留と冷間強度の低下が起きたためである。
According to the method of the present invention, the particle size of limestone is 3 to 5 mm is 1
The reason for setting the content to 5% or more is that when the grain size of limestone is made coarser than this in the pot test, limestone is not assimilated and remains in the sintered ore, resulting in a decrease in yield and cold strength.

【0016】蛇紋岩、ニッケルスラグ、ジュナイトなど
のMgO源の粒度を0〜0.5mmが30wt%以下、
1〜5mmが50wt%以上になるようにしたのは、基
礎実験結果から、0.125mm以下の蛇紋岩が著しく
石灰石の同化を抑制し、歩留、冷間強度の低下の要因と
なることが判明したためである。よって本来ならば0.
125mm以下の蛇紋岩を除去することが望ましいが、
実機への適用を考慮して0〜0.5mmを30wt%以
下とした。また、MgO源の粒度の上限値を1〜5mm
としたのは、これ以上の粗粒では実機の下層部分に多く
偏析してしまい、層高方向の均一なマクロ気孔形成への
悪影響が考えられるからである。
The grain size of the MgO source such as serpentine, nickel slag, and Junite is 0 to 0.5 mm and 30 wt% or less,
The reason why 1 to 5 mm is set to 50 wt% or more is that, based on the results of basic experiments, serpentine with a diameter of 0.125 mm or less significantly suppresses assimilation of limestone and may cause a decrease in yield and cold strength. This is because it became clear. Therefore, it should be 0.
It is desirable to remove serpentinite below 125 mm,
Considering application to an actual machine, 0 to 0.5 mm was set to 30 wt% or less. Moreover, the upper limit of the particle size of the MgO source is 1 to 5 mm.
The reason for this is that coarse grains larger than this cause a large amount of segregation in the lower layer of the actual machine, which may adversely affect the formation of uniform macropores in the layer height direction.

【0017】[0017]

【実施例】タブレット試験により石灰石の同化挙動に及
ぼす蛇紋岩粒度の影響を測定した。表2にタブレット試
験に使用した配合原料の配合割合を示す。
[Example] The effect of serpentine grain size on the assimilation behavior of limestone was measured by a tablet test. Table 2 shows the blending ratio of the blended raw materials used in the tablet test.

【0018】[0018]

【表2】 [Table 2]

【0019】図2に、石灰石−蛇紋岩−試薬Fe2 3
系の石灰石の同化に及ぼす蛇紋岩粒度の影響の測定結果
を示す。0.125mm以下の蛇紋岩使用時に石灰石の
同化が著しく抑制されている。よって、焼成体の強度発
現のためには、細粒の蛇紋岩を除去することが望ましい
ことが分かる。
In FIG. 2, limestone-serpentine-reagent Fe 2 O 3
The measurement results of the effect of serpentine grain size on the assimilation of limestone in the system are shown. The assimilation of limestone is remarkably suppressed when a serpentine of 0.125 mm or less is used. Therefore, it is found that it is desirable to remove the fine-grained serpentinite in order to develop the strength of the fired body.

【0020】表3にはφ70mmの鍋試験に使用した配
合原料の配合割合、表4には鍋試験に使用した石灰石、
蛇紋岩の粒度分布を示した。
Table 3 shows the blending ratio of the raw materials used for the pot test of φ70 mm, and Table 4 shows the limestone used for the pot test.
The particle size distribution of serpentine is shown.

【0021】[0021]

【表3】 [Table 3]

【0022】[0022]

【表4】 [Table 4]

【0023】図3には石灰石と蛇紋岩の粒度調整鍋試験
結果の成品歩留、TI(冷間強度、JISM8712に
より測定)、RDI(還元粉化性、製銑部会法)、JI
S−RI(JIS還元率、JISM8713)を示し
た。
FIG. 3 shows the product yield, the TI (cold strength, measured by JISM8712), the RDI (reducing powdering property, the pig iron section method), and the JI of the test results of the grain size adjusting pot for limestone and serpentine.
S-RI (JIS reduction rate, JIS M8713) is shown.

【0024】実施例では、焼成過程で生じる融液量が増
えるので成品歩留とTIが向上した。また、焼成ヒート
パターンがシャープになり2次ヘマタイトが減少するの
でRDIが改善された。さらに、還元性の悪いマグネタ
イトが減少するのでJIS−RIも改善された。
In the example, the product yield and TI were improved because the amount of melt generated during the firing process was increased. Further, the firing heat pattern became sharp and the secondary hematite was reduced, so that the RDI was improved. Further, JIS-RI was also improved because the amount of magnetite, which has a poor reducing property, was reduced.

【0025】実機においては、微細粒の蛇紋岩を除去す
ることは困難であるので、図1に示すように、蛇紋岩、
ニッケルスラグ、ジュナイトなどの含MgO副原料Aの
−1mmを造粒して1mm以上の造粒物にして焼結原料
中に配合してから焼結機4に装入する。
Since it is difficult to remove fine-grained serpentinite in an actual machine, as shown in FIG.
The MgO-containing auxiliary raw material A such as nickel slag and junito is granulated to -1 mm to make a granule having a size of 1 mm or more, and the granulated material is mixed into the sintering raw material and then charged into the sintering machine 4.

【0026】[0026]

【発明の効果】本発明によれば、焼結鉱の冷間強度と還
元粉化性、JIS還元率が同時に改善される。
EFFECTS OF THE INVENTION According to the present invention, the cold strength, reduction powderability and JIS reduction rate of sinter are simultaneously improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施する装置の例を示す図である。FIG. 1 is a diagram showing an example of an apparatus for carrying out the present invention.

【図2】石灰石の同化率に及ぼす蛇紋岩粒度の影響を測
定した結果を示す図である。
FIG. 2 is a diagram showing the results of measuring the effect of serpentine grain size on the assimilation rate of limestone.

【図3】石灰石と蛇紋岩の粒度を調整した鍋試験結果を
示す図である。
FIG. 3 is a diagram showing a pot test result in which particle sizes of limestone and serpentine are adjusted.

【符号の説明】[Explanation of symbols]

1 分級機 2 造粒機 3 造粒機 4 焼結機 A 含MgO副原料 B 鉄鉱石 C 固体炭素粉 D 石灰石 E その他の副原料 F 返鉱 1 Classifier 2 Granulator 3 Granulator 4 Sintering machine A MgO containing raw material B Iron ore C Solid carbon powder D Limestone E Other auxiliary raw material F Return mining

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 鉄鉱石を含む焼結鉱を製造する際に、石
灰石の粒度を3〜5mmが15wt%以上になるように
調整または造粒して焼結原料中に配合し、含MgO副原
料の粒度を0〜0.5mmが30wt%以下、1〜5m
mが50wt%以上になるように調整または造粒して焼
結原料中に配合したのち、配合原料全体を混合、造粒し
てから焼結機で焼成することを特徴とする高温性状と冷
間強度の優れた焼結鉱の製造方法。
1. When manufacturing a sinter containing iron ore, the particle size of limestone is adjusted or granulated so that 3 to 5 mm is 15 wt% or more, and the limestone is compounded in a sintering raw material. The particle size of the raw material is 0 to 0.5 mm, 30 wt% or less, 1 to 5 m
It is characterized by adjusting or granulating so that m is 50 wt% or more and blending it into a sintering raw material, then mixing and granulating the entire blended raw material and then firing it with a sintering machine. A method for producing a sintered ore having excellent cold strength.
【請求項2】 含MgO副原料の−1mmを造粒して1
mm以上の造粒物にして焼結原料中に配合することを特
徴とする請求項1記載の高温性状と冷間強度の優れた焼
結鉱の製造方法。
2. Granulating 1 mm of the MgO-containing auxiliary raw material to 1
The method for producing a sintered ore according to claim 1, wherein the granulated material having a size of at least mm is added to the raw material for sintering, and the high temperature property and the cold strength are excellent.
【請求項3】 含MgO副原料として蛇紋岩、ニッケル
スラグ、ジュナイトのうち1種または2種を用いること
を特徴とする請求項1記載の高温性状と冷間強度の優れ
た焼結鉱の製造方法。
3. The production of sinter having excellent high-temperature properties and cold strength according to claim 1, wherein one or two of serpentine, nickel slag and dunite is used as the MgO-containing auxiliary material. Method.
JP10644796A 1996-04-04 1996-04-04 Production of sintered ore excellent in property at high temperature and cold strength Withdrawn JPH09272925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10644796A JPH09272925A (en) 1996-04-04 1996-04-04 Production of sintered ore excellent in property at high temperature and cold strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10644796A JPH09272925A (en) 1996-04-04 1996-04-04 Production of sintered ore excellent in property at high temperature and cold strength

Publications (1)

Publication Number Publication Date
JPH09272925A true JPH09272925A (en) 1997-10-21

Family

ID=14433878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10644796A Withdrawn JPH09272925A (en) 1996-04-04 1996-04-04 Production of sintered ore excellent in property at high temperature and cold strength

Country Status (1)

Country Link
JP (1) JPH09272925A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100421736B1 (en) * 1999-06-08 2004-03-10 주식회사 포스코 Method of surface treatment of sinter ore for improvement of RDI
JP2014214370A (en) * 2013-04-30 2014-11-17 日新製鋼株式会社 Manufacturing method of sintered ore
JP2015055008A (en) * 2013-09-13 2015-03-23 Jfeスチール株式会社 Method of producing sintered ore
JP2020117767A (en) * 2019-01-24 2020-08-06 日本製鉄株式会社 Method for manufacturing sinter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100421736B1 (en) * 1999-06-08 2004-03-10 주식회사 포스코 Method of surface treatment of sinter ore for improvement of RDI
JP2014214370A (en) * 2013-04-30 2014-11-17 日新製鋼株式会社 Manufacturing method of sintered ore
JP2015055008A (en) * 2013-09-13 2015-03-23 Jfeスチール株式会社 Method of producing sintered ore
JP2020117767A (en) * 2019-01-24 2020-08-06 日本製鉄株式会社 Method for manufacturing sinter

Similar Documents

Publication Publication Date Title
JP5168802B2 (en) Method for producing sintered ore
JPH09272925A (en) Production of sintered ore excellent in property at high temperature and cold strength
JP2003096521A (en) Sintered ore blended with high alumina iron ore, and production method therefor
JP2779647B2 (en) ▲ High ▼ Pretreatment of goethite ore
JPH08239720A (en) Method for manufacturing sintered ore from ore with high content of water of crystallization
JPH0543953A (en) Pre-treating method in manufacture of agglomerate
JPH05339654A (en) Pretreatment of sintered ore raw material and sintered ore raw material for iron making
JPH05339653A (en) Pretreatment of sintered ore raw material and sintered ore raw material for iron making
JP2003313614A (en) Method for manufacturing sintered ore with little slag
JP4661077B2 (en) Method for producing sintered ore
JP3709001B2 (en) Non-fired agglomerated ore for iron making and method of using the same
JPH03111521A (en) Production of sintered ore
JP2003113426A (en) Method for manufacturing sintered ore
JPH06220549A (en) Pretreatment of raw material to be sintered
JPH0827525A (en) Production of sintered ore formed by using ore of high crystallization water as raw material
JPH0617152A (en) Manufacture of sintered ore for blast furnace using high goethite ore as raw material
JPS60248827A (en) Preliminary treatment of sintered raw material
JPS59232238A (en) Production of sintered ore
JPH0885829A (en) Production of sintered ore
JPH1121634A (en) Production of sintered ore
JPH066754B2 (en) Sintering method of iron ore
JPH08176686A (en) Production for sintered ore compounded at high ratio with high alumina iron ore
JP2515639B2 (en) Method for producing agglomerated ore using converter slag
JP2548647B2 (en) Manufacturing method of sintered ore for iron making from high goethite iron ore
JP2001164325A (en) Method for manufacturing sintered ore for blast furnace and operational method for manufacturing sintered ore for blast furnace

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030701