JP2020117767A - Method for manufacturing sinter - Google Patents

Method for manufacturing sinter Download PDF

Info

Publication number
JP2020117767A
JP2020117767A JP2019009917A JP2019009917A JP2020117767A JP 2020117767 A JP2020117767 A JP 2020117767A JP 2019009917 A JP2019009917 A JP 2019009917A JP 2019009917 A JP2019009917 A JP 2019009917A JP 2020117767 A JP2020117767 A JP 2020117767A
Authority
JP
Japan
Prior art keywords
particle size
raw material
mgo
msc
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019009917A
Other languages
Japanese (ja)
Other versions
JP7180406B2 (en
Inventor
謙一 樋口
Kenichi Higuchi
謙一 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2019009917A priority Critical patent/JP7180406B2/en
Publication of JP2020117767A publication Critical patent/JP2020117767A/en
Application granted granted Critical
Publication of JP7180406B2 publication Critical patent/JP7180406B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

To improve a yield of sinter.SOLUTION: A method for manufacturing sinter includes: granulating a sintered material obtained by blending iron ore, a CaO-containing auxiliary material, an MgO-containing auxiliary material, a carbonaceous material and return ore; and segregately loading this into a pallet of a downward suction type sintering machine, followed by firing. A mean particle diameter (MSc) of the carbonaceous material exceeds 2.0 mm but not more than 2.8 mm. A ratio of a mean particle diameter (MSm) of the MgO-containing auxiliary material and the mean particle diameter (MSc) of the carbonaceous material is 0.9≤MSm/MSc≤1.8.SELECTED DRAWING: Figure 3

Description

本発明は、焼結鉱の製造方法に関する。 The present invention relates to a method for manufacturing a sintered ore.

現在、日本の高炉用原料は、主に焼結鉱である。焼結鉱は、主原料である鉄鉱石等の含鉄原料粉、副原料、炭材および返鉱が配合されて作られる。 Currently, the raw material for blast furnaces in Japan is mainly sinter. Sintered ore is made by mixing iron-containing raw material powder such as iron ore, which is the main raw material, auxiliary raw material, carbonaceous material, and return ore.

焼結鉱は、通常、次のように製造される。まず、主原料である鉄鉱石等の含鉄原料粉に対し、副原料、炭材および返鉱を所定の割合で混合し、さらに混合物に適当な水分を加えて造粒して配合原料(以下、焼結原料ともいう)とする。 Sinter ore is usually manufactured as follows. First, with respect to iron-containing raw material powder such as iron ore, which is the main raw material, auxiliary raw materials, carbonaceous materials and return ore are mixed at a predetermined ratio, and further, suitable water is added to the mixture to granulate the raw material mixture (hereinafter, Also referred to as sintering raw material).

次に、この焼結原料を、下方吸引式のドワイトロイド(DL)式焼結機(以下、焼結機ともいう)に装入する。具体的には、焼結原料は、焼結機直上のホッパより原料切出装置により定量が切出され、装入シュートを介してパレット上に装入、載置されて原料充填層を形成する。形成された原料充填層中の上層(表層)の炭材に、点火炉によって点火する。そして、パレットを連続的に移動させながらパレットの下方から空気を吸引することにより酸素を供給し、原料充填層内の炭材の燃焼を上層から下層に向けて進行させる。炭材の燃焼熱により、原料充填層を上層側から下層側に順次焼結させる。得られた焼結部(シンターケーキ)は、所定の粒度に粉砕、篩分けにより整粒され、一定の粒径以上のものが高炉用原料である焼結鉱となる。なお、一定粒径未満のもの(通常は−5mm)は、返鉱として回収され、焼結原料の一部として再使用される。 Next, this sintering raw material is loaded into a downward suction type Dwightroid (DL) type sintering machine (hereinafter, also referred to as a sintering machine). Specifically, a predetermined amount of the sintering raw material is cut out by a raw material cutting device from a hopper directly above the sintering machine, and is charged and placed on a pallet via a charging chute to form a raw material packed layer. .. The carbonaceous material of the upper layer (surface layer) in the formed raw material packed bed is ignited by an ignition furnace. Then, oxygen is supplied by sucking air from below the pallet while continuously moving the pallet, and the combustion of the carbonaceous material in the raw material packed bed proceeds from the upper layer to the lower layer. The raw material packed layer is sequentially sintered from the upper layer side to the lower layer side by the combustion heat of the carbonaceous material. The obtained sintered part (sinter cake) is crushed to a predetermined particle size and sized by sieving, and a sinter having a certain particle size or more becomes a blast furnace raw material. In addition, those having a particle size smaller than a certain value (usually -5 mm) are recovered as return ore and reused as a part of the sintering raw material.

ここで、焼結原料は、装入シュートの傾斜面を介してパレット上に装入される。そのため、装入された焼結原料はパレット上に載置される際に斜面を形成し、この斜面において転動分級作用が起こる。この転動分級作用により、原料充填層の層厚(層高)方向に粒度偏析が起き、焼結原料は粒度が小さいものが原料充填層の上層側に、粒度が大きいものが原料充填層の下層側に装入されやすくなる。 Here, the sintering raw material is charged on the pallet via the inclined surface of the charging chute. Therefore, the charged sintering raw material forms a slope when it is placed on the pallet, and the rolling classification action occurs on this slope. Due to this rolling classification action, grain size segregation occurs in the layer thickness (layer height) direction of the raw material packed layer, and the sintering raw material with a small grain size is on the upper layer side of the raw material packed layer, and the one with a large grain size is the raw material packed layer. It is easy to insert it in the lower layer.

また、下方吸引式の焼結機による焼結過程においては、下方から空気を吸引するため、原料充填層の層厚方向により、原料が受ける熱量が異なる。上層側では、吸引される低温の空気により熱量が不足しがちであるのに対し、下層側では、上層側での燃焼の余熱により熱量過剰となる。 Further, in the sintering process by the downward suction type sintering machine, since air is sucked from below, the amount of heat received by the raw material differs depending on the layer thickness direction of the raw material filling layer. On the upper layer side, the heat quantity tends to be insufficient due to the sucked low temperature air, whereas on the lower layer side, the heat quantity becomes excessive due to the residual heat of combustion on the upper layer side.

このような層厚方向における焼結原料の粒度偏析および層厚方向における受ける熱量の違いによって、層厚方向に主原料である鉄鉱石の融液の量の偏りが生じ、層厚方向で焼成される焼結鉱の歩留や品質が異なってくる。その結果、全体としての歩留が低下してしまうことがあるが、それを防ぐために、焼結原料の層厚方向の分布や融点を左右する成分の濃度を制御する技術が開示されている。 Due to the segregation of the sintering raw material in the layer thickness direction and the difference in the amount of heat received in the layer thickness direction, a deviation in the amount of the melt of the iron ore, which is the main raw material, occurs in the layer thickness direction, and firing in the layer thickness direction The yield and quality of the sintered ore will vary. As a result, the overall yield may decrease, but in order to prevent this, a technique is disclosed for controlling the distribution of the sintering raw material in the layer thickness direction and the concentration of the component that influences the melting point.

例えば、造粒前の焼結原料に含まれる炭材の粒径を調整したり(特許文献1)、MgO含有鉱物の粒度を調整したり(特許文献2)して、焼結鉱の歩留を向上させる技術が開示されている。 For example, the grain size of the carbonaceous material contained in the sintering raw material before granulation is adjusted (Patent Document 1), the grain size of the MgO-containing mineral is adjusted (Patent Document 2), and the yield of the sintered ore is adjusted. A technique for improving the above is disclosed.

特許文献1には、炭材の平均粒径dと鉱石の平均粒径dとの比d/dを適正範囲内に制御することで、焼結充填層内の高さ方向の炭材濃度分布を適正に維持して、焼結鉱の歩留および生産性を悪化させることなく、安定して焼結鉱を製造できるようにする技術が開示されている。 In Patent Document 1, by controlling the ratio d C /d O of the average particle size d C of the carbonaceous material and the average particle size d O of the ore within an appropriate range, the height direction in the sintered packed bed A technique is disclosed in which a carbonaceous material concentration distribution is appropriately maintained and a sintered ore can be stably manufactured without deteriorating the yield and productivity of the sintered ore.

特許文献2には、焼結機に所定の篩目を有するスローピングシュートを設け、更に、MgO含有鉱物の粒度を調整して、その他の焼結原料と共に焼結パレット上に装入することにより焼結パレット上層部の焼結鉱のMgO平均濃度を1wt%以下として、焼結鉱の成品強度、成品歩留、生産効率、及びコークス原単位の改善を図る技術が開示されている。 In Patent Document 2, a sintering machine is provided with a sloping chute having a predetermined screen, and further, the grain size of MgO-containing mineral is adjusted, and the sintering pallet is charged together with other sintering raw materials to perform firing. A technique for improving the product strength, product yield, production efficiency, and coke consumption rate of the sintered ore by setting the MgO average concentration of the sintered ore in the upper part of the binding pallet to 1 wt% or less is disclosed.

特開2009−185356号公報JP, 2009-185356, A 特開平08−60261号公報Japanese Patent Laid-Open No. 08-60261

上記の特許文献1に記載された技術では、炭材の平均粒径と鉱石の平均粒径との比に関する適正範囲が、また、上記の特許文献2に記載された技術では、MgO含有鉱物の粒度を調整することが示されている。しかしながら、炭材とMgO含有副原料(橄欖岩、Niスラグなど)という二つの原料の粒度を調整することにより、焼結鉱の歩留向上を可能とする焼結鉱の製造方法については、これまで提案されていなかった。 In the technique described in Patent Document 1 above, the appropriate range for the ratio of the average particle size of the carbonaceous material and the average particle size of the ore is set, and in the technique described in Patent Document 2 above, the MgO-containing mineral It has been shown to adjust the particle size. However, for the production method of sinter that enables improvement of the yield of sinter by adjusting the particle size of the two materials, carbonaceous materials and MgO-containing auxiliary materials (eggite, Ni slag, etc.) Was not proposed until.

本発明の目的は、配合原料を造粒処理して下方吸引式焼結機のパレットに装入し、焼成する焼結鉱の製造方法において、歩留の向上を可能とする焼結鉱の製造方法を提供することである。 An object of the present invention is to produce a sintered ore that can improve the yield in a method for producing a sintered ore in which a compounded raw material is granulated and charged into a pallet of a downward suction type sintering machine and fired. Is to provide a method.

本発明の要旨とするところは、以下のとおりである。
(1)鉄鉱石、CaO含有副原料、MgO含有副原料、炭材および返鉱を配合した焼結原料を造粒処理して下方吸引式焼結機のパレットに装入し、焼成する焼結鉱の製造方法において、
前記炭材の平均粒径(MSc)は2.0mmを超え2.8mm以下であり、
前記MgO含有副原料の平均粒径(MSm)と前記炭材の平均粒径(MSc)の比率が、0.9≦MSm/MSc≦1.8であること
を特徴とする焼結鉱の製造方法。
(2)前記MgO含有副原料は、橄欖岩であること
を特徴とする(1)に記載の焼結鉱の製造方法。
(3)前記MgO含有副原料は、ニッケルスラグであること
を特徴とする(1)に記載の焼結鉱の製造方法。
The gist of the present invention is as follows.
(1) Sintering in which iron ore, CaO-containing auxiliary raw material, MgO-containing auxiliary raw material, carbonaceous material, and sinter raw material are granulated, charged into a pallet of a lower suction type sintering machine, and sintered. In the method of producing ore,
The average particle size (MSc) of the carbonaceous material is more than 2.0 mm and 2.8 mm or less,
The ratio of the average particle size (MSm) of the MgO-containing auxiliary material to the average particle size (MSc) of the carbonaceous material is 0.9≦MSm/MSc≦1.8 Method.
(2) The method for producing a sinter according to (1), characterized in that the MgO-containing auxiliary material is olivine.
(3) The method for producing a sinter according to (1), wherein the MgO-containing auxiliary material is nickel slag.

本発明によれば、炭材とMgO含有副原料の粒度を調整することにより、粒度偏析を制御して歩留を向上することができる。 According to the present invention, the grain size segregation can be controlled and the yield can be improved by adjusting the grain sizes of the carbonaceous material and the MgO-containing auxiliary raw material.

本実験において使用した篩分け装置を模式的に示す図である。It is a figure which shows typically the sieving apparatus used in this experiment. コークスの平均粒径(MSc)と成品歩留との関係を示す図である。It is a figure which shows the relationship between the average particle diameter (MSc) of coke and a product yield. コークスの平均粒径(MSc)と橄欖岩の平均粒径(MSm)との関係を示す図である。It is a figure which shows the relationship between the average particle diameter (MSc) of coke and the average particle diameter (MSm) of peridotite.

以下に課題を解決した経緯について詳細に説明する。
焼結鉱は、主原料である鉄鉱石等の含鉄原料粉、副原料、炭材および返鉱が配合されて作られる。鉄鉱石は、焼結原料の約70質量%以上85質量%以下を占め、10mm以下の粒度範囲のものが使用されている。通常は5種類から10種類の鉄鉱石銘柄が混合され、その配合割合に応じて、鉄鉱石の平均粒径は1.3mm以上2.5mm以下の範囲とされている。
The details of how the problems were solved are described below.
Sintered ore is made by mixing iron-containing raw material powder such as iron ore, which is the main raw material, auxiliary raw material, carbonaceous material, and return ore. The iron ore accounts for about 70% by mass or more and 85% by mass or less of the sintering raw material, and the one having a particle size range of 10 mm or less is used. Usually, 5 to 10 types of iron ore brands are mixed, and the average particle size of the iron ore is set in the range of 1.3 mm or more and 2.5 mm or less depending on the mixing ratio.

炭材は、通常使用されるコークスや無煙炭の他、石炭チャーなど、融液生成の熱源となる炭素成分(フリーカーボン)を主体とする材料である。焼結過程において、炭材は、原料充填層内の鉄鉱石の周囲に融液を生成させる熱源となる。副原料は、石灰石、生石灰などのCaO含有副原料、橄欖岩、ニッケルスラグなどのMgO含有副原料である。MgO含有副原料である橄欖岩とニッケルスラグは、表1に示すように、加熱後の化学成分がいずれもMgOとSiOとを主体とする原料であるため、同様の性質を示す。 The carbonaceous material is a material mainly containing a carbon component (free carbon) which is a heat source for melt generation, such as coke and anthracite which are usually used, and coal char. During the sintering process, the carbonaceous material serves as a heat source for generating a melt around the iron ore in the raw material packed bed. The auxiliary raw materials are CaO-containing auxiliary raw materials such as limestone and quicklime, and MgO-containing auxiliary raw materials such as granite and nickel slag. As shown in Table 1, since the MgO-containing secondary raw materials, that is, granite and nickel slag, are raw materials whose main chemical components are MgO and SiO 2 after heating, they show similar properties.

Figure 2020117767
Figure 2020117767

MgO含有副原料に含まれるMgOは、融点を上昇させ融液の生成量を減少させることが知られている。そのため、焼結原料の融液生成(焼結)反応において、MgOの含有量および炭材の含有量は、融液の発生量、すなわち、焼成される焼結鉱の強度を左右し、歩留に直結する重要な要素となっている。また、層厚方向における焼結原料の粒度偏析は、焼結原料である炭材やMgO含有副原料についても同様であり、粒度の粗いものが下層に、粒度の細かいものが上層に偏ることが知られている。 It is known that MgO contained in the MgO-containing auxiliary material raises the melting point and reduces the amount of melt produced. Therefore, in the melt generation (sintering) reaction of the sintering raw material, the MgO content and the carbonaceous material content affect the amount of melt generated, that is, the strength of the sintered ore, and the yield. It is an important element that is directly connected to. Further, the segregation of the grain size of the sintering raw material in the layer thickness direction is the same as that of the carbonaceous material and the MgO-containing auxiliary raw material which are the sintering raw materials. Are known.

本発明者は、上述のような炭材とMgO含有副原料の粒度偏析、すなわち、粒度によって層厚方向の賦存量がそれぞれ変化することに着目した。炭材の粒度(MSc)とMgO含有副原料の粒度(MSm)との両方を調整することにより、融液を生成させる熱源であるフリーカーボンと、融点を上昇させて融液の生成量を減少させるMgOとの両成分の層厚方向における偏析状態を制御することができる。その結果として、層厚方向における融液の発生量を制御することができ、焼結鉱の歩留を向上させることが可能であると考えた。 The present inventor has focused on the particle size segregation of the carbonaceous material and the MgO-containing auxiliary material as described above, that is, the endowment amount in the layer thickness direction changes depending on the particle size. By adjusting both the particle size (MSc) of the carbonaceous material and the particle size (MSm) of the MgO-containing auxiliary material, the free carbon, which is the heat source that generates the melt, and the melting point, which decreases the amount of melt generated It is possible to control the segregation state of both components of MgO and MgO in the layer thickness direction. As a result, it was thought that the amount of melt generated in the layer thickness direction could be controlled and the yield of the sintered ore could be improved.

そこで、本発明者は、炭材の粒度と橄欖岩の粒度について、適正な粒径比率の範囲を調べた。具体的には、粒度の異なる炭材、粒度の異なるMgO含有副原料(本実施例においては、橄欖岩を使用)を複数用意し、これらをそれぞれ組み合わせて配合した焼結原料について焼結鍋試験を実施し、焼結工程の各歩留を調べた。その結果、従来の粒度(平均粒径1.5mm以上1.8mm以下)よりも粒度の大きい平均粒径が2.0mmを超え2.8mm以下の炭材を用いた場合でも、MgO含有副原料の粒度(以下、「MgO含有副原料の平均粒径」または「MSm」ともいう)と炭材の粒度(以下、「炭材の平均粒径」または「MSc」ともいう)との比率とが、「0.9≦MSm/MSc≦1.8」となるように調整することにより、焼結鉱の歩留の向上効果が得られることを見出した。ここで、炭材の平均粒径が2.0mm以下であるとパレットの下層部の炭材量が少なくなり、下層部の熱量不足で歩留が低下し、2.8mmよりも大きいとパレットの下層部の炭材量が多くなりすぎ、パレットのグレート面の焼き付きが発生する可能性がある。また、「MSm/MSc」の値が0.9未満であると、融液の生成量が多すぎてしまい焼結層の通気性を悪化させて、歩留が低下する。「MSm/MSc」の値が1.8よりも大きいと、融液の生成量が少なくなり未焼結部分が発生し歩留が低下する。本願は、かかる知見に基づいて発明されたものである。 Therefore, the present inventor investigated the range of the appropriate particle size ratio for the particle size of carbonaceous material and the particle size of peridotite. Specifically, a plurality of carbonaceous materials having different grain sizes and MgO-containing auxiliary raw materials having different grain sizes (in this example, granite is used) are prepared, and a sintering pot test is performed on the sintering raw materials prepared by combining them. Was carried out and each yield in the sintering process was examined. As a result, even when using a carbonaceous material having a particle size larger than the conventional particle size (average particle size of 1.5 mm or more and 1.8 mm or less) of more than 2.0 mm and 2.8 mm or less, the MgO-containing auxiliary raw material is used. Particle size (hereinafter, also referred to as "average particle size of MgO-containing auxiliary material" or "MSm") and the particle size of carbon material (hereinafter also referred to as "average particle size of carbon material" or "MSc") , It has been found that the effect of improving the yield of the sintered ore can be obtained by adjusting so that "0.9≤MSm/MSc≤1.8". Here, if the average particle size of the carbonaceous material is 2.0 mm or less, the amount of carbonaceous material in the lower layer of the pallet decreases, the yield decreases due to insufficient heat in the lower layer, and if it exceeds 2.8 mm, The amount of carbonaceous material in the lower layer may be too large, and seizure may occur on the pallet's great surface. Further, if the value of "MSm/MSc" is less than 0.9, the amount of melt produced is too large, which deteriorates the air permeability of the sintered layer and lowers the yield. When the value of “MSm/MSc” is larger than 1.8, the amount of melt produced is small and unsintered portions are generated, resulting in a low yield. The present application was invented based on such knowledge.

本発明では、発明者は、歩留の向上の指標として、炭材の平均粒径に対するMgO含有副原料の平均粒径の比(MSm/MSc)を採用している。ところで、それぞれの原料充填層における粒度偏析挙動は、主原料である鉄鉱石の粒度(以下、「鉄鉱石の平均粒径」または「MSo」ともいう)に対する粒度の違い、たとえば粒径比率であるMSm/MSo、MSc/MSoに支配されると考えるのが妥当である。従って、炭材とMgO含有副原料との相対的な偏析挙動は、詳しくは、(MSm/MSo)/(MSc/MSo)に支配されることになる。このとき、MSoは分母分子で相殺されるので、結局、本願で採用した指標:MSm/MScとなる。すなわち、本発明における指標である炭材の平均粒径に対するMgO含有副原料の平均粒径の比(MSm/MSc)は、鉄鉱石の粒度に拠らない普遍性を有している。 In the present invention, the inventor has adopted the ratio (MSm/MSc) of the average particle size of the MgO-containing auxiliary material to the average particle size of the carbonaceous material as an index for improving the yield. By the way, the particle size segregation behavior in each raw material packed bed is a difference in particle size with respect to the particle size of the iron ore as the main material (hereinafter, also referred to as “average particle size of iron ore” or “MSo”), for example, particle size ratio. It is appropriate to consider that it is controlled by MSm/MSo and MSc/MSo. Therefore, the relative segregation behavior of the carbonaceous material and the MgO-containing auxiliary material is governed by (MSm/MSo)/(MSc/MSo) in detail. At this time, MSo is canceled by the denominator, so that the index adopted in the present application is MSm/MSc. That is, the ratio (MSm/MSc) of the average particle size of the MgO-containing auxiliary material to the average particle size of the carbonaceous material, which is an index in the present invention, is universal regardless of the particle size of the iron ore.

実施例として、MgO含有副原料の平均粒径(MSm)と炭材の平均粒径(MSc)との比率の好適な範囲を決定した根拠を示す。本実施例は、配合原料の装入状況を再現できる装入実験装置で配合原料充填層を形成し、形成した配合原料充填層を一般的な焼結実験装置(焼結鍋試験)で焼成することで、実際の焼結機を再現する手法を採用した。 As an example, the basis for determining a suitable range of the ratio of the average particle size (MSm) of the MgO-containing auxiliary material to the average particle size (MSc) of the carbonaceous material will be shown. In this example, a compounding raw material filling layer is formed by a charging experiment device capable of reproducing the charging state of the compounding raw material, and the formed compounding raw material filling layer is fired by a general sintering experimental device (sinter pot test). Therefore, we adopted a method to reproduce the actual sintering machine.

(原料の準備)
本発明者が行った試験の内容は以下のようである。
まず、本試験では、配合原料のうち、炭材としてコークスを、MgO含有副原料として橄欖岩を用いた。コークスおよび橄欖岩は、表2に示すように、粒度の異なるものを3種類ずつ用意した。
表2は、本試験に用いた橄欖岩およびコークスの粒度分布と平均粒径を示す。
(Preparation of raw materials)
The contents of the test conducted by the present inventor are as follows.
First, in this test, coke was used as the carbonaceous material and granite was used as the MgO-containing auxiliary raw material among the mixed raw materials. As shown in Table 2, three types of coke and granite having different particle sizes were prepared.
Table 2 shows the particle size distribution and average particle size of the granite and coke used in this test.

Figure 2020117767
Figure 2020117767

表2に示すように、3種類の橄欖岩(細粒(M1)、中粒(M2)、粗粒(M3))の試料と、3種類のコークス(細粒(C1)、中粒(C2)、粗粒(C3))の試料を用意した。表2に、橄欖岩(M1、M2、M3)とコークス(C1、C2、C3)試料、それぞれを、篩目(目開き寸法)の異なる6種類の篩を使用して篩分けた際の粒度分布を示す。粒度区分の境界値となる粒径は、表2に示すように、0.25mm、0.5mm、1mm、3mm、5mm、7mmであり、これらの値は分級に使用した篩の篩目である。例えば、粒度区分「1mm−0.5mm」とは、0.5mmの篩目の篩で篩分けた際に篩上であり、1mmの篩目の篩で篩分けた際に篩下である。なお、0.25mm、0.5mm、1mmの篩については、JIS Z 8801で規定されているものを使用している。粒度区分の中央値を、粒度区分毎の質量分率で荷重して算出した平均値である。なお、算出の際には、粒度毎の比重差はないと仮定している。 As shown in Table 2, samples of three types of apatite (fine grain (M1), medium grain (M2), coarse grain (M3)) and three types of coke (fine grain (C1), medium grain (C2) ), a sample of coarse particles (C3)) was prepared. Table 2 shows the particle size when olivine (M1, M2, M3) and coke (C1, C2, C3) samples, respectively, are sieved using six types of sieves with different sieve meshes (opening size). The distribution is shown. As shown in Table 2, the particle size as the boundary value of the particle size classification is 0.25 mm, 0.5 mm, 1 mm, 3 mm, 5 mm, and 7 mm, and these values are the meshes of the sieve used for classification. .. For example, the particle size classification "1 mm-0.5 mm" means on the sieve when sieved with a sieve of 0.5 mm and under the sieve when sieved with a sieve of 1 mm. As for the 0.25 mm, 0.5 mm, and 1 mm sieves, those specified in JIS Z 8801 are used. It is an average value calculated by loading the median value of the particle size classification with the mass fraction for each particle size classification. In the calculation, it is assumed that there is no difference in specific gravity between particle sizes.

表2に示すように、橄欖岩の細粒(M1)、中粒(M2)、粗粒(M3)の試料の平均粒径(MS)は、それぞれ、0.45mm、2.04mm、3.02mmである。また、コークスの細粒(C1)、中粒(C2)、粗粒(C3)の試料の平均粒径(MS)は、それぞれ、1.63mm、2.01mm、2.55mmである。 As shown in Table 2, the average particle size (MS) of the fine granules (M1), medium particles (M2), and coarse particles (M3) of the granite is 0.45 mm, 2.04 mm, and 3. It is 02 mm. The average particle size (MS) of the fine coke particles (C1), medium particles (C2), and coarse particles (C3) is 1.63 mm, 2.01 mm, and 2.55 mm, respectively.

(原料の配合と造粒)
表3は、原料の構成を示す。コークスと橄欖岩については、上述の粒度の異なる3種類を組み合わせて配合した9種類の配合原料を用意して、それぞれについて試験を行った。なお、鉄鉱石は平均粒径が1.5mmのものを使用した。
(Raw material blending and granulation)
Table 3 shows the composition of the raw materials. With respect to coke and apatite, nine types of compounding raw materials prepared by combining the above-mentioned three types having different particle sizes were prepared, and tests were conducted for each. The iron ore used had an average particle size of 1.5 mm.

Figure 2020117767
Figure 2020117767

表3に示すように、返鉱およびコークスを除いた原料を100質量%として、返鉱とコークスの配合割合を、それぞれ外数で、15.0質量%、3.6質量%とした。これらの配合原料を万能混練機で混合した後、直径1m径のドラム型造粒機を用いて水分7.5質量%を目標にして、所定時間(3分)造粒して、鍋焼成試験用の配合原料(焼結原料)を作製した。 As shown in Table 3, the raw materials excluding the return ore and the coke were set to 100% by mass, and the mixing ratios of the return ore and the coke were set to 15.0% by mass and 3.6% by mass, respectively. After mixing these blended raw materials with a universal kneader, a drum type granulator with a diameter of 1 m was used to target a moisture content of 7.5 mass% for a predetermined time (3 minutes), and a pot firing test was performed. A compounding raw material (sintering raw material) was prepared.

(造粒した焼結原料の分級)
パレットへの装入時に起こる配合原料充填層の層厚方向における粒度偏析を再現するために、スリットバー式配合原料篩分け装置(以下、篩分け装置ともいう)を使用して、造粒した焼結原料を分級した。
(Classification of granulated sintering raw material)
In order to reproduce the particle size segregation in the layer thickness direction of the compounded raw material packed bed that occurs when charging the pallet, a slit bar type compounded raw material sieving device (hereinafter, also referred to as a sieving device) is used for granulation and firing. The raw material was classified.

図1は、本実験において使用した篩分け装置1を模式的に示す図である。図1に示すように、この篩分け装置1は、焼結原料2を供給するための供給部3と、供給された焼結原料2を分級するためのスリット5とを備えている。スリット5の下方には、スリット5により分級された焼結原料2を回収する複数の回収ボックス7(本実施例では6個)が並んで配置される。スリット5は、供給部3から下方に傾斜して配置され、焼結原料の移動方向に対して直交して延出し、この移動方向に等間隔に配置されるスリットバー5aを有する。供給された焼結原料2は、図1に示すように、スリットバー5a上を上流側(図の左上)から下流側(図の右下)に向かって移動する。この移動の間に、焼結原料2は粒度(粒径)の小さいものから、順次スリット5を抜けて回収ボックス7へと落下する。このように、焼結原料2は粒径に応じて回収ボックス7に分けられる。具体的には、スリット5の上流側の回収ボックス7には粒度の小さい細粒のものが、下流側の回収ボックス7には粒度の大きい粗粒のものが回収される。回収された回収ボックス7内の焼結原料を、粗粒側から順に後述する焼結鍋に装入して、実機焼結機の原料充填層と同様な粒度偏析、原料成分偏析を再現した(層厚435mm)。なお、スリット5の傾斜角度は事前検討の結果、連続的な偏析が得られた40°とした。 FIG. 1 is a diagram schematically showing a sieving apparatus 1 used in this experiment. As shown in FIG. 1, the sieving device 1 includes a supply unit 3 for supplying the sintering raw material 2 and a slit 5 for classifying the supplied sintering raw material 2. Below the slits 5, a plurality of recovery boxes 7 (six in this embodiment) for recovering the sintering raw material 2 classified by the slits 5 are arranged side by side. The slits 5 are arranged so as to be inclined downward from the supply unit 3, extend perpendicularly to the moving direction of the sintering raw material, and have slit bars 5a arranged at equal intervals in the moving direction. As shown in FIG. 1, the supplied sintering raw material 2 moves on the slit bar 5a from the upstream side (upper left in the figure) toward the downstream side (lower right in the figure). During this movement, the sintering raw material 2 having a smaller particle size (particle size) sequentially passes through the slit 5 and drops into the recovery box 7. In this way, the sintering raw material 2 is divided into the recovery boxes 7 according to the particle size. Specifically, fine particles having a small particle size are collected in the recovery box 7 on the upstream side of the slit 5, and coarse particles having a large particle size are collected in the recovery box 7 on the downstream side. The recovered sintering raw material in the recovery box 7 was loaded into the sintering pot described later in order from the coarse grain side, and the same particle size segregation and raw material component segregation as in the raw material packed bed of the actual sintering machine were reproduced ( Layer thickness 435 mm). Note that the inclination angle of the slit 5 was set to 40°, which was a result of preliminary examination and at which continuous segregation was obtained.

(焼結鍋試験)
表4は、焼結鍋試験に用いた試験装置の仕様と試験条件を示す。焼結鍋試験により実機での原料充填層の焼成過程をシミュレートした。焼結原料の充填後の焼結層の表面に点火し、焼結鍋の下部に設置した風箱からブロワーで空気を吸引して、原料充填層を焼成した。
(Sintering pot test)
Table 4 shows the specifications and test conditions of the test apparatus used for the sintering pot test. The sintering process was used to simulate the firing process of the raw material packed bed in an actual machine. The surface of the sintered layer after being filled with the sintering raw material was ignited, and air was sucked by a blower from a wind box installed at the bottom of the sintering pot to burn the raw material packed layer.

Figure 2020117767
Figure 2020117767

(焼結鉱の成品歩留の測定)
成品歩留は、以下のように測定した。焼成後のシンターケ−キを高さ方向(層厚方向)に3等分に分割し、試料(上層部、中層部、下層部)とした。各試料について、落錘試験(3kgの錘を2mの高さから4回繰り返し試料上に落下させた)後に目開き5mmの篩にかけ、篩に残った焼結鉱の粒子(+5mm粒子)の、シンターケ−キの総質量に対する質量%を、ここでの成品歩留(+5mm%)と定義した。
(Measurement of product yield of sintered ore)
The product yield was measured as follows. The sintered cake after firing was divided into three equal parts in the height direction (layer thickness direction) to obtain samples (upper layer portion, middle layer portion, lower layer portion). For each sample, after the falling weight test (3 kg of weight was dropped onto the sample from a height of 2 m four times repeatedly), it was passed through a sieve with an opening of 5 mm, and particles of sinter ore (+5 mm particles) remaining on the sieve, The mass% based on the total mass of the sinter cake was defined as the product yield (+5 mm%) here.

(成品歩留の評価)
表5は、上述した9種類の焼結原料から焼成した焼結鉱の成品歩留試験の結果を示す。
実験1〜3、実験4〜6、実験7〜9では、それぞれ、コークスの粒度が、細粒(C1)、中粒(C2)、粗粒(C3)の試料を使用している。また、実験1,4,7、実験2,5,8、実験3,6,9では、それぞれ、橄欖岩の粒度が、細粒(M1)、中粒(M2)、粗粒(M3)の試料を使用している。なお、実験9と同じ条件で、粗粒(C3)のものよりもさらに粗粒(平均粒径3.0mm超え)のコークスを使用した実験も行い、実験10として表5に記載している。なお、この平均粒径は、上述と同様の粒度区分の中央値を質量分率で加重平均したものである。
(Evaluation of product yield)
Table 5 shows the result of the product yield test of the sintered ore sintered from the above-mentioned nine kinds of sintering raw materials.
In Experiments 1 to 3, Experiments 4 to 6 and Experiments 7 to 9, samples of fine coke grain size (C1), medium grain size (C2), and coarse grain size (C3) were used, respectively. Further, in Experiments 1, 4, 7, Experiments 2, 5, 8, and Experiments 3, 6, 9, the particle size of the granite is fine (M1), medium (M2), and coarse (M3), respectively. Using the sample. In addition, under the same conditions as in Experiment 9, an experiment in which coke having coarse particles (average particle diameter exceeding 3.0 mm) was used more than that of coarse particles (C3) was also performed, and is shown in Table 5 as Experiment 10. In addition, this average particle diameter is the weighted average of the median values of the same particle size classification as described above by mass fraction.

Figure 2020117767
Figure 2020117767

表5においては、以下の要件1および要件2を満たすものを実施例とし、それ以外を比較例としている。また、表5の成品歩留は、上層部、中層部、下層部の各試料の歩留(+5mm%)を平均した値である。
要件1:炭材の平均粒径(MSc)が2.0mmを超え2.8mm以下
要件2:橄欖岩の平均粒径(MSm)が炭材の平均粒径(MSc)の0.9倍以上1.8倍以下
In Table 5, those satisfying the following requirements 1 and 2 are taken as examples, and the others are taken as comparative examples. The product yield in Table 5 is a value obtained by averaging the yields (+5 mm%) of the samples of the upper layer portion, the middle layer portion, and the lower layer portion.
Requirement 1: Average particle size (MSc) of carbonaceous material exceeds 2.0 mm and 2.8 mm or less Requirement 2: Average particle size (MSm) of granite is 0.9 times or more of average particle size (MSc) of carbonaceous material 1.8 times or less

図2は、コークスの平均粒径(MSc)と成品歩留との関係を示す図である。図2に示すように、コークスの平均粒径(MSc)を、2.0mmを超え2.8mm以下として、コークスの平均粒径(MSc)と橄欖岩の平均粒径(MSm)との比率を調整することにより、成品歩留が70質量%以上の高歩留となることがわかった。特に、本発明の実施例である実験5、6,9においては、成品歩留が70質量%以上確保できることがわかった。また、平均粒径(MSc)が2.8mmを超えたコークスを使用した実験10においては、下層部のグレート面に焼き付きが発生して、焼結鍋内の通気が低下して、歩留の低下が著しかった。 FIG. 2 is a diagram showing the relationship between the average particle size (MSc) of coke and the product yield. As shown in FIG. 2, the average particle size (MSc) of coke is set to more than 2.0 mm and 2.8 mm or less, and the ratio between the average particle size (MSc) of coke and the average particle size (MSm) of peridotite is calculated. It was found that the adjustment yields a high product yield of 70% by mass or more. In particular, in Experiments 5, 6, and 9 which are Examples of the present invention, it was found that the product yield could be 70% by mass or more. In addition, in Experiment 10 in which coke having an average particle size (MSc) of more than 2.8 mm was used, seizure occurred on the grate surface of the lower layer, air flow in the sintering pot was reduced, and the yield was reduced. The decline was remarkable.

図3は、コークスの平均粒径(MSc)と橄欖岩の平均粒径(MSm)との関係を示す図である。図の直線L1は傾きが1.8の直線を示し、直線L2は傾きが0.9の直線を示す。本発明の実施例である実験5、6,9は、直線L1と直線L2の間に位置する。成品の高歩留を確保するためには、コークスの平均粒径(MSc)を2.0mm超え2.8mm以下として、コークスの平均粒径(MSc)に対する橄欖岩の平均粒径(MSm)の比を、0.9≦MSm/MSc≦1.8の範囲とする必要があることが確認された。 FIG. 3 is a diagram showing the relationship between the average particle size (MSc) of coke and the average particle size (MSm) of peridotite. The straight line L1 in the figure shows a straight line with a slope of 1.8, and the straight line L2 shows a straight line with a slope of 0.9. Experiments 5, 6, and 9, which are examples of the present invention, are located between the straight line L1 and the straight line L2. In order to secure a high yield of the product, the average particle size (MSc) of coke is set to be 2.0 mm or more and 2.8 mm or less, and the average particle size (MSm) of the granite (MSm) relative to the average particle size (MSc) of the coke is set. It was confirmed that the ratio needs to be in the range of 0.9≦MSm/MSc≦1.8.

1…スリットバー式配合原料篩分け装置(篩分け装置)、2…焼結原料、3…供給部、5…スリット、5a…スリットバー、7…回収ボックス DESCRIPTION OF SYMBOLS 1... Slit bar type compounded raw material sieving device (sieving device), 2... Sintering raw material, 3... Supply part, 5... Slit, 5a... Slit bar, 7... Recovery box

Claims (3)

鉄鉱石、CaO含有副原料、MgO含有副原料、炭材および返鉱を配合した焼結原料を造粒処理して下方吸引式焼結機のパレットに装入し、焼成する焼結鉱の製造方法において、
前記炭材の平均粒径(MSc)は2.0mmを超え2.8mm以下であり、
前記MgO含有副原料の平均粒径(MSm)と前記炭材の平均粒径(MSc)の比率が、0.9≦MSm/MSc≦1.8であること
を特徴とする焼結鉱の製造方法。
Manufacture of sintered ore in which iron ore, CaO-containing auxiliary raw material, MgO-containing auxiliary raw material, carbonaceous material and sinter raw material are granulated, charged into a pallet of a downward suction type sintering machine, and fired. In the method
The average particle size (MSc) of the carbonaceous material is more than 2.0 mm and 2.8 mm or less,
The ratio of the average particle size (MSm) of the MgO-containing auxiliary material to the average particle size (MSc) of the carbonaceous material is 0.9≦MSm/MSc≦1.8 Method.
前記MgO含有副原料は、橄欖岩であること
を特徴とする請求項1に記載の焼結鉱の製造方法。
The method for producing a sintered ore according to claim 1, wherein the MgO-containing auxiliary raw material is granite.
前記MgO含有副原料は、ニッケルスラグであること
を特徴とする請求項1に記載の焼結鉱の製造方法。
The method for producing a sintered ore according to claim 1, wherein the MgO-containing auxiliary material is nickel slag.
JP2019009917A 2019-01-24 2019-01-24 Method for producing sintered ore Active JP7180406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019009917A JP7180406B2 (en) 2019-01-24 2019-01-24 Method for producing sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019009917A JP7180406B2 (en) 2019-01-24 2019-01-24 Method for producing sintered ore

Publications (2)

Publication Number Publication Date
JP2020117767A true JP2020117767A (en) 2020-08-06
JP7180406B2 JP7180406B2 (en) 2022-11-30

Family

ID=71890116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019009917A Active JP7180406B2 (en) 2019-01-24 2019-01-24 Method for producing sintered ore

Country Status (1)

Country Link
JP (1) JP7180406B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57171635A (en) * 1981-04-16 1982-10-22 Nippon Steel Corp Manufacture of sintered ore
JPS63282216A (en) * 1987-05-12 1988-11-18 Nkk Corp Manufacture of sintered ore excellent in reducibility
JPH09272925A (en) * 1996-04-04 1997-10-21 Nippon Steel Corp Production of sintered ore excellent in property at high temperature and cold strength
CN1962897A (en) * 2006-11-30 2007-05-16 武汉钢铁(集团)公司 Sintered ore capable of improving viscosity of blast furnace slag and process for preparing same
JP2009185356A (en) * 2008-02-07 2009-08-20 Kobe Steel Ltd Method for producing sintered ore

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57171635A (en) * 1981-04-16 1982-10-22 Nippon Steel Corp Manufacture of sintered ore
JPS63282216A (en) * 1987-05-12 1988-11-18 Nkk Corp Manufacture of sintered ore excellent in reducibility
JPH09272925A (en) * 1996-04-04 1997-10-21 Nippon Steel Corp Production of sintered ore excellent in property at high temperature and cold strength
CN1962897A (en) * 2006-11-30 2007-05-16 武汉钢铁(集团)公司 Sintered ore capable of improving viscosity of blast furnace slag and process for preparing same
JP2009185356A (en) * 2008-02-07 2009-08-20 Kobe Steel Ltd Method for producing sintered ore

Also Published As

Publication number Publication date
JP7180406B2 (en) 2022-11-30

Similar Documents

Publication Publication Date Title
JP2009185356A (en) Method for producing sintered ore
JP6686974B2 (en) Sintered ore manufacturing method
JP6421666B2 (en) Method for producing sintered ore
JP2009097027A (en) Method for producing sintered ore
JP2007177214A (en) Method for producing ferrocoke
KR102290001B1 (en) Manufacturing method of sintered ore
JP4830728B2 (en) Method for producing sintered ore
JP6489092B2 (en) Sinter ore manufacturing method and sintered ore manufacturing equipment line
JP2020117767A (en) Method for manufacturing sinter
JP7205362B2 (en) Method for producing sintered ore
JP5126580B2 (en) Method for producing sintered ore
JP2003313614A (en) Method for manufacturing sintered ore with little slag
JP7339516B2 (en) Method for producing sintered ore
JPH05339653A (en) Pretreatment of sintered ore raw material and sintered ore raw material for iron making
JP4767388B2 (en) Method for producing sintered ore with excellent high-temperature properties
JP2009114485A (en) Method for manufacturing sintered ore
JPH0881717A (en) Production of sintered ore
JP2009242829A (en) Method for producing sintered ore
JP6763412B2 (en) Sintered ore manufacturing method
JP2009209408A (en) Method for producing sintered ore
JPH0380849B2 (en)
JP6477312B2 (en) Method for charging sintered raw material grains
JPH0551652A (en) Production of sintering accelerator and sintered ore
JP2020084252A (en) Manufacturing method of sintered ore
JP5292845B2 (en) Raw material charging method to sintering machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221031

R151 Written notification of patent or utility model registration

Ref document number: 7180406

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151