JPS63282216A - Manufacture of sintered ore excellent in reducibility - Google Patents

Manufacture of sintered ore excellent in reducibility

Info

Publication number
JPS63282216A
JPS63282216A JP11359287A JP11359287A JPS63282216A JP S63282216 A JPS63282216 A JP S63282216A JP 11359287 A JP11359287 A JP 11359287A JP 11359287 A JP11359287 A JP 11359287A JP S63282216 A JPS63282216 A JP S63282216A
Authority
JP
Japan
Prior art keywords
sintered ore
reducibility
ore
raw material
fines
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11359287A
Other languages
Japanese (ja)
Inventor
Tomonori Kato
友則 加藤
Shinichi Kurosawa
黒沢 信一
Hiroshi Fukuyo
福与 寛
Takashi Wada
隆 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP11359287A priority Critical patent/JPS63282216A/en
Publication of JPS63282216A publication Critical patent/JPS63282216A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To efficiently manufacture a sintered ore having superior load softening characteristic and excellent in reducibility, by blending coarse-grained auxiliary material for MgO source having a specific grain size with basic starting material, such as iron-ore fines, and a slagging agent, coke fines, etc. CONSTITUTION:An auxiliary material for MgO source for improving the flowability of blast-furnace slag and also improving load softening characteristic in a blast furnace, such as serpentine, and a slagging agent, such as limestone fines, are blended with a basic starting material such as iron-ore fines and Fe-containing dust. Then, prescribed percentage of coke fines is added to the sintering raw material obtained by the above procedure, which is subjected to sintering. In the method for manufacturing the above-mentioned sintered ore, the grain size of the above auxiliary material for MgO source is regulated so that grains of 1-10mm grain size comprise >=50wt.%. By coarsing the grains of the above auxiliary material, MgO is made difficult to react with Fe2O3 at the time of sintering, and the formation of magnetite is inhibited. As a result, the quantity of FeO in the sintered ore is reduced and the reducibility of the sintered ore can be remarkably improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、高炉内における被還元性の優れ次焼結鉱の
製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing secondary sintered ore with excellent reducibility in a blast furnace.

〔従来の技術〕[Conventional technology]

焼結鉱は、鉄鉱石粉、Fe含有ダスト等の主原料に、蛇
紋岩等のMgO源用副原料および石灰石粉等の造滓材を
配合した焼結原料に、燃料としてのコークス粉を所定割
合で添加し、この混合原料を、焼結機のパレットに装入
し、点火炉によってコークス粉に着火させた後、風箱を
通して吸引される空気によってコークス粉を燃焼させ、
主原料および副原料を焼結することによって製造される
Sintered ore is made by mixing coke powder as a fuel in a predetermined ratio to a sintered raw material that is a mixture of main raw materials such as iron ore powder and Fe-containing dust, auxiliary raw materials for MgO sources such as serpentine, and slag-forming materials such as limestone powder. This mixed raw material is charged into the pallet of the sintering machine, and the coke powder is ignited in the ignition furnace, and then the coke powder is combusted by the air sucked through the wind box.
Manufactured by sintering main raw materials and auxiliary raw materials.

上述した副原料の蛇紋岩は、高炉スラグの流動性を高め
且つ高炉内における焼結鉱の荷重軟化性を改善するMg
O源として添加するものであり、このようなMgO源用
副原料としては、蛇紋岩のほかにカンラン岩、ニッケル
スラグ等が使用されている。
The above-mentioned auxiliary raw material, serpentinite, is a Mg substance that increases the fluidity of blast furnace slag and improves the softening under load of sintered ore in the blast furnace.
It is added as an O source, and in addition to serpentine, peridotite, nickel slag, etc. are used as such auxiliary raw materials for the MgO source.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述のように、蛇紋岩等のMgO源用副原料を配合した
焼結鉱は、高炉スラグの流動性を高め且つ高炉内におけ
る焼結鉱の荷重軟化性を改善する利点があるが、一方、
焼結鉱の高炉内における被還元性を劣化させる問題があ
る。
As mentioned above, sintered ore mixed with auxiliary raw materials for MgO sources such as serpentine has the advantage of increasing the fluidity of blast furnace slag and improving the softening property of sintered ore under load in the blast furnace.
There is a problem in that the reducibility of sintered ore in the blast furnace deteriorates.

このような焼結鉱の被還元性の劣化は、高炉操業におけ
るエネルギー消費量の増大を招き好ましくない。
Such deterioration in the reducibility of sintered ore is undesirable because it leads to an increase in energy consumption during blast furnace operation.

従って、この発明の目的は、高炉スラグの流動性全高め
且つ高炉内における荷重軟化性を改善する九めにM、0
源用副原料を配合しても、被還元性の優れ几焼結鉱を製
造する方法を提供することにある。
Therefore, the object of the present invention is to completely increase the fluidity of blast furnace slag and improve the load softening property in the blast furnace.
The object of the present invention is to provide a method for producing sintered ore having excellent reducibility even when supplementary raw materials are mixed therein.

本発明者等は、上述した目的を達成すべく鋭意研究を重
ねた。MyO源用副原料の配合によって焼結鉱の被還元
性が劣化する原因は次の通っである。
The present inventors have conducted extensive research in order to achieve the above-mentioned objective. The reasons why the reducibility of sintered ore deteriorates due to the addition of the MyO source auxiliary raw material are as follows.

従来のM、0源用副原料は、第1表に示すような化学成
分組成および第2表に示すような粒度分布を有している
Conventional auxiliary raw materials for M, 0 sources have chemical compositions as shown in Table 1 and particle size distributions as shown in Table 2.

従って、焼結時における副原料中のM2Oと主原料中の
F¥!203 との反応によって、多量のマグネタイト
(Fe5st )が生成し、このマグネタイトの定めに
焼結鉱の被還元性が劣化する。
Therefore, M2O in the auxiliary raw material and F\ in the main raw material during sintering! Due to the reaction with 203, a large amount of magnetite (Fe5st) is produced, and this magnetite deteriorates the reducibility of the sintered ore.

そこで、焼結時においてM、OがF’e2o3と反応し
ないようにMho源用副原料を粗粒化すれば、マグネタ
イトの生成を防止することができ、これによって焼結鉱
の被還元性を向上し得ることを知見し友。
Therefore, if the Mho source auxiliary raw material is coarse-grained so that M and O do not react with F'e2o3 during sintering, the generation of magnetite can be prevented, thereby improving the reducibility of the sintered ore. A friend who knows that he can improve.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、上記知見に基いてなされたものであって、
鉄鉱石粉、 Fe含有ダスト等の主原料に、蛇紋岩等の
Mho源用副原料および石灰石粉等の造滓材を配合し友
焼結原料に、所定割合のコークス粉を添加して焼結する
焼結鉱の製造方法において、前記Mto源用副原料の5
0 wt、%以上の粒径ヲ、1諺以上、10w以下とし
几ことに特徴を有するものである。
This invention was made based on the above findings, and
Main raw materials such as iron ore powder and Fe-containing dust are mixed with auxiliary raw materials for Mho sources such as serpentine and slag materials such as limestone powder, and a predetermined proportion of coke powder is added to the tomo-sintering raw materials and sintered. In the method for producing sintered ore, 5 of the Mto source auxiliary raw materials
It is particularly characterized by having a particle size of 0 wt.% or more, 1 wt.% or more, and 10 w or less.

この発明において、MgO源用副原料の50Wt、%以
上の粒径を、上述のように1m以上、10穏以下とした
理由は、 MtO源用副原料を上述のように粗粒とする
ことによって、焼結時における副原料ΦのMgOと主原
料中のFe20sとの反応を抑制することにより、マグ
ネタイトの生成を抑える念めである。即ち、マグネタイ
トの生成を抑制することによって、焼結鉱中のFeO量
が低下する結果、焼結鉱の被還元率(RI)t−顕著に
向上させることができる。この効果は、コークス粉の配
合割合を低下させた場合よりも大きい。
In this invention, the reason why the particle size of 50 Wt. The aim is to suppress the generation of magnetite by suppressing the reaction between MgO in the auxiliary raw material Φ and Fe20s in the main raw material during sintering. That is, by suppressing the generation of magnetite, the amount of FeO in the sintered ore is reduced, and as a result, the reduction ratio (RI) t- of the sintered ore can be significantly improved. This effect is greater than when the blending ratio of coke powder is lowered.

次に、この発明を実施例により説明する。Next, the present invention will be explained using examples.

〔実施例1〕 MtO源用副原料として、第3表に示すこの発明の粒度
分布のものを使用した。
[Example 1] As an auxiliary raw material for an MtO source, those having the particle size distribution of the present invention shown in Table 3 were used.

上記M、O源用副原料中の蛇紋岩およびニッケルスラグ
を配合した下記第4表に示す焼結原料全使用した。
All of the sintering raw materials listed in Table 4 below containing serpentine and nickel slag among the auxiliary raw materials for the M and O sources were used.

第  4  表 上記焼結原料に対し、16wt0%の返鉱と、 4.Q
wt。
Table 4: 16wt0% return ore for the above sintered raw materials; 4. Q
wt.

チおよび4.5wt、%のコークス粉を配合した上、焼
結鋼試験機を使用し、下記条件で本発明方法による焼結
鉱を製造し念。
A sintered ore was produced by the method of the present invention under the following conditions using a sintered steel testing machine after blending with 4.5wt% coke powder and 4.5wt% coke powder.

a、混合および造粒時間:5分 す、添加水分二原料の総量に対し5.5 wt、 %C
0点火時間:1分 d、焼成条件:負圧1,400WmH20比較の九めに
、M20源用副原料として前述の第2表に示す従来の粒
度分布の蛇紋岩およびニッケルスラグを使用したほかは
、上記と同一条件で比較用焼結鉱を製造し友。
a. Mixing and granulation time: 5 minutes, added moisture 5.5 wt, %C based on the total amount of two raw materials
0 Ignition time: 1 min d, Firing conditions: Negative pressure 1,400 WmH , Comparative sintered ore was produced under the same conditions as above.

第5表に、上述の本発明方法により製造し几焼結鉱と従
来方法により製造した焼結鉱の被還元率(RI )およ
びFeO含有割合を示す。なお、被還元率(RI)はJ
ISで規定され北方法により測定し、且つ、FeOは、
マグネタイト(Fe30n)中のFeo t”示し、化
学分布によって測定し友。
Table 5 shows the reduction ratio (RI) and the FeO content of the sintered ore produced by the method of the present invention and the sintered ore produced by the conventional method. In addition, the return rate (RI) is J
Measured according to the Northern method specified in IS, and FeO is
Feot'' in magnetite (Fe30n) and measured by chemical distribution.

第  5  表 第5表から明らかなように、本発明方法によれば、従来
方法に比べて焼結鉱中のFeO含有割合が低下しマグネ
タイトの生成が抑制されるので、この結果、RIを顕著
に向上させることができた。
Table 5 As is clear from Table 5, according to the method of the present invention, compared to the conventional method, the FeO content in the sintered ore is lowered and the generation of magnetite is suppressed.As a result, the RI is significantly reduced. was able to improve.

〔実施例2〕 M、O源用副原料として、第3表に示す粒度分布のカン
ラン岩を配合した下記第6表に示す焼結原料を使用した
[Example 2] As an auxiliary raw material for M and O sources, the sintering raw materials shown in Table 6 below, which were mixed with peridotite having the particle size distribution shown in Table 3, were used.

第  6  表 上記焼結原料に対し、16wt1%の返鉱と、4.0w
t、%および4.5 wt、 %のコークス粉を配合し
t上、焼結鋼試験機全使用し、実施例1と同一の条件で
本発明方法による焼結鉱を製造した。
Table 6 For the above sintered raw materials, 16wt1% return ore and 4.0w
A sintered ore was produced by the method of the present invention under the same conditions as in Example 1 by blending coke powder of 4.5 wt.% and 4.5 wt.% and using a sintered steel testing machine.

比較の几めに、M20源用副原料として前述の第2表に
示す従来の粒度分布のカンラン岩を使用したほかは、上
記と同一条件で比較用焼結鉱を製造した。
For comparison, sintered ore for comparison was produced under the same conditions as above, except that peridotite having the conventional particle size distribution shown in Table 2 was used as an auxiliary raw material for the M20 source.

第7表に、上述の本発明方法により製造し几焼結鉱と従
来方法により製造し几焼結鉱の被還元率(RI )およ
びFeO含有割合を示す。被還元率(RI)およびFe
Oの測定方法は、上記第5表について述べた通りである
Table 7 shows the reduction ratio (RI) and FeO content of the sintered ore produced by the method of the present invention and the sintered ore produced by the conventional method. Reducibility ratio (RI) and Fe
The method for measuring O is as described in Table 5 above.

第  7  表 第7表から明らかなように、M20源用副原料としてカ
ンラン岩を使用しても、本発明方法によれば焼結鉱中の
FeO含有割合が減少し、RI’に顕著に向上させるこ
とができ友。
Table 7 As is clear from Table 7, even if peridotite is used as an auxiliary raw material for M20 source, the method of the present invention reduces the FeO content in the sintered ore and significantly improves RI'. You can let your friend know.

〔実施例3〕 MgO源用開用副原料してのカンラン岩の粒径1fi以
上のものの割合を変えたほかは実施例2と同一の条件(
但しコークス粉の配合割合は4.□wt、%)で、粒径
1mm以上の割合が異なるカンラン岩を使用した複数種
類の焼結鉱を製造し友。そして、それぞれの焼結鉱のF
eO含有割合および被還元率(RI )を調べ友。
[Example 3] The same conditions as in Example 2 were used except that the proportion of peridotite with a grain size of 1fi or more as an auxiliary raw material for MgO source was changed (
However, the mixing ratio of coke powder is 4. We manufacture multiple types of sintered ore using peridotite with different proportions of grain size of 1 mm or more in □wt, %). And F of each sintered ore
Check the eO content rate and reduction ratio (RI).

第1図にMtO源用副原料の粒径1mm以上の割合と、
その副原料によって製造された焼結鉱のFeO含有割合
および被還元率(RI )t−示す。第1図において、
白丸印はFeO含有割合を示し、黒丸印は被還元率を示
す。
Figure 1 shows the ratio of particle size of 1 mm or more of the auxiliary raw material for MtO source,
The FeO content and reducibility ratio (RI) of sintered ore produced using the auxiliary raw material are shown below. In Figure 1,
White circles indicate the FeO content, and black circles indicate the reduction rate.

第1図から明らかなように、粒径1飄以上の割合が50
wt.%以上のMgO源用副原料を使用し九場合には、
焼結鉱中のFeO含有割合が減少し、被還元率(RI)
t−顕著に向上させることができ九。
As is clear from Figure 1, the proportion of particles with a particle size of 1 mm or more is 50%.
wt. If more than 9% of auxiliary raw materials for MgO source are used,
The FeO content in the sintered ore decreases, reducing the reduction ratio (RI).
t-can be significantly improved.

〔実施例4〕 M90源用副原料として、第3表に示す粒度分布の蛇紋
岩およびニッケルスラグを使用し、その合計配合割合を
変えたほかは実施例1と同一の条件〔但し蛇紋岩および
ニッケルスラグの合計配合割合に伴って第4表に示す焼
結鉱篩下粉の配合割合を変え、原料全体で100Wt、
%に保つt〕で、My。
[Example 4] The conditions were the same as in Example 1, except that serpentine and nickel slag with the particle size distribution shown in Table 3 were used as auxiliary raw materials for M90 source, and the total blending ratio was changed. The blending ratio of the sintered ore under-sieve powder shown in Table 4 was changed according to the total blending ratio of nickel slag, and the total raw material was 100 Wt,
%t], My.

源側副原料の配合割合が異なる複数種類の焼結鉱t−f
f造した。そして、それぞれの焼結鉱の被還元率(RI
 )を調べ次。
Multiple types of sintered ore t-f with different blending ratios of source side auxiliary raw materials
f was built. Then, the reducibility ratio (RI
) and next.

比較のtめに第2表に示す従来の粒度分布の蛇紋岩およ
びニッケルスラグを使用し、その合計配合割合金変えた
複数種類の従来焼結鉱を製造し、同じくそれぞれの焼結
鉱の被還元率(RI)’に調べた。
For comparison, we used serpentinite and nickel slag with the conventional particle size distribution shown in Table 2 to produce multiple types of conventional sintered ores with different total blending ratios of gold. The reduction rate (RI) was investigated.

第2図に上述の本発明方法および従来方法により製造さ
れた、MpO源用副原料の配合割合が異なる焼結鉱の被
還元率(RI)t−示す。第2図において、黒丸印は本
発明方法であり、白丸印は従来方法である。
FIG. 2 shows the reducibility ratio (RI) t- of sintered ores produced by the method of the present invention and the conventional method described above and having different blending ratios of auxiliary raw materials for MpO source. In FIG. 2, the black circles are the method of the present invention, and the white circles are the conventional method.

第2図から明らかなように、M、0源用副原料の配合割
合が多くなるほど、特に前記配合割合が2wt、%以上
の場合に、RI内向上効果は顕著であつ几。
As is clear from FIG. 2, as the blending ratio of the auxiliary raw material for M, 0 source increases, especially when the blending ratio is 2 wt.% or more, the effect of improving the RI becomes more remarkable.

〔発明Ω効果〕[Invention Ω effect]

以上述べたように、この発明によれば、高炉スラグの流
動性を高め且つ高炉内における焼結鉱の荷重軟化性を改
善する之めに、焼結原料中にM、0源用副原料を配合し
ても、被還元性の優れ念焼結鉱を効率的に製造すること
ができ、・これによって高炉操業におけるエネルギー消
費量の低減が図られる工業上優れt効果がも几らされる
As described above, according to the present invention, an auxiliary material for M, 0 source is added to the sintering raw material in order to increase the fluidity of blast furnace slag and improve the load softening property of sintered ore in the blast furnace. Even when mixed, it is possible to efficiently produce finely sintered ore with excellent reducibility, and this also provides an excellent industrial effect of reducing energy consumption in blast furnace operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はM90源用副原料の粒径1+a+以上の割合と
、その副原料によって製造された焼結鉱のFeO含有割
合および被還元率(RI )との関係を示すグラフ、第
2図はM、0源用副原料の配合割合と、その副原料によ
って製造され几焼結鉱の被還元率(RI )との関係を
示すグラフである。
Figure 1 is a graph showing the relationship between the proportion of particle size 1+a+ or more of the auxiliary raw material for M90 source, the FeO content rate and the reduction rate (RI) of sintered ore produced from the auxiliary raw material, and Figure 2 is It is a graph showing the relationship between the blending ratio of an auxiliary raw material for M, 0 source and the reducibility ratio (RI) of sintered ore produced from the auxiliary raw material.

Claims (1)

【特許請求の範囲】[Claims] 鉄鉱石粉、Fe含有ダスト等の主原料に、蛇紋岩等のM
gO源用副原料および石灰石粉等の造滓材を配合した焼
結原料に、所定割合のコークス粉を添加して焼結する焼
結鉱の製造方法において、前記MgO源用副原料の50
wt.%以上の粒径を、1mm以上、10mm以下とす
ることを特徴とする被還元性の優れた焼結鉱の製造方法
Main raw materials such as iron ore powder, Fe-containing dust, etc., M such as serpentine
In a method for producing sintered ore, in which a predetermined proportion of coke powder is added to a sintering raw material containing an auxiliary raw material for a gO source and a slag forming material such as limestone powder, and sintered, 50% of the auxiliary raw material for a MgO source is added.
wt. % or more particle size is 1 mm or more and 10 mm or less.
JP11359287A 1987-05-12 1987-05-12 Manufacture of sintered ore excellent in reducibility Pending JPS63282216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11359287A JPS63282216A (en) 1987-05-12 1987-05-12 Manufacture of sintered ore excellent in reducibility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11359287A JPS63282216A (en) 1987-05-12 1987-05-12 Manufacture of sintered ore excellent in reducibility

Publications (1)

Publication Number Publication Date
JPS63282216A true JPS63282216A (en) 1988-11-18

Family

ID=14616119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11359287A Pending JPS63282216A (en) 1987-05-12 1987-05-12 Manufacture of sintered ore excellent in reducibility

Country Status (1)

Country Link
JP (1) JPS63282216A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994014987A1 (en) * 1992-12-24 1994-07-07 Bhp Iron Ore Pty. Ltd. Mineral processing
KR100311790B1 (en) * 1997-11-27 2002-04-17 이구택 Coke correction method during manufacturing of sintered ore using low grade iron oxides
KR100466499B1 (en) * 2000-12-26 2005-01-13 주식회사 포스코 Method for manufacturing the sintering ore having excellent anti-reduction
CN109490351A (en) * 2017-09-11 2019-03-19 上海梅山钢铁股份有限公司 A kind of detection method of Iron Ore Powder Liquid phase flowability
JP2020117767A (en) * 2019-01-24 2020-08-06 日本製鉄株式会社 Method for manufacturing sinter
CN112195337A (en) * 2020-09-25 2021-01-08 包头钢铁(集团)有限责任公司 Sintered ore for improving production quality by controlling grain size of high-silicon flux and preparation method thereof
JP2021025112A (en) * 2019-08-08 2021-02-22 日本製鉄株式会社 Method for manufacturing sintered ore

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5839746A (en) * 1981-09-04 1983-03-08 Nippon Kokan Kk <Nkk> Manufacture of sintered ore
JPS599131A (en) * 1982-07-07 1984-01-18 Nippon Steel Corp Production of sintered raw material of iron ore
JPS61113730A (en) * 1984-11-06 1986-05-31 Sumitomo Metal Ind Ltd Preliminary treating method of sintered raw material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5839746A (en) * 1981-09-04 1983-03-08 Nippon Kokan Kk <Nkk> Manufacture of sintered ore
JPS599131A (en) * 1982-07-07 1984-01-18 Nippon Steel Corp Production of sintered raw material of iron ore
JPS61113730A (en) * 1984-11-06 1986-05-31 Sumitomo Metal Ind Ltd Preliminary treating method of sintered raw material

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994014987A1 (en) * 1992-12-24 1994-07-07 Bhp Iron Ore Pty. Ltd. Mineral processing
KR100311790B1 (en) * 1997-11-27 2002-04-17 이구택 Coke correction method during manufacturing of sintered ore using low grade iron oxides
KR100466499B1 (en) * 2000-12-26 2005-01-13 주식회사 포스코 Method for manufacturing the sintering ore having excellent anti-reduction
CN109490351A (en) * 2017-09-11 2019-03-19 上海梅山钢铁股份有限公司 A kind of detection method of Iron Ore Powder Liquid phase flowability
CN109490351B (en) * 2017-09-11 2021-04-06 上海梅山钢铁股份有限公司 Method for detecting liquid-phase fluidity of iron ore powder
JP2020117767A (en) * 2019-01-24 2020-08-06 日本製鉄株式会社 Method for manufacturing sinter
JP2021025112A (en) * 2019-08-08 2021-02-22 日本製鉄株式会社 Method for manufacturing sintered ore
CN112195337A (en) * 2020-09-25 2021-01-08 包头钢铁(集团)有限责任公司 Sintered ore for improving production quality by controlling grain size of high-silicon flux and preparation method thereof

Similar Documents

Publication Publication Date Title
CN111910072A (en) Preparation and use methods of pre-reduced fluxed pellets with steel slag as partial raw material
CN1936041A (en) Steelsmelting dust-mud pelletizing slag-melting agent compounding method
CN112301215A (en) Iron ore concentrate for improving low-temperature reduction degradation rate of iron ore sinter and preparation method thereof
CN101466853B (en) Process for recycling of steel industry iron bearing by-products, pellet obtained in that process and use thereof
JPS63282216A (en) Manufacture of sintered ore excellent in reducibility
JP6187712B2 (en) Pseudoparticles for sintering and method for producing the same
WO2005103307A1 (en) Layered agglomerated iron ore pellets and balls
JPS60255937A (en) Manufacture of cold-bound briquette
US4518428A (en) Agglomerates containing olivine
JPH06212226A (en) Powdery iron material for use as friction material and method for reduction thereof
JP2005171388A (en) Pseudo particle raw material for sintering, sintered ore for blast furnace, and method of producing pseudo particle raw material for sintering
US3194673A (en) Hydraulic cement and process for making same
JP4599736B2 (en) Granulation method of sintering raw material
US3925069A (en) Process for producing pellets with cement
JPS58213837A (en) Method for sintering chrome ore
RU2768432C2 (en) Method for production of fluxed iron ore agglomerate
JP3952906B2 (en) Ultra-low SiO2, ultra-low Al2O3 high-strength sintered ore and method for producing the same
JP3709001B2 (en) Non-fired agglomerated ore for iron making and method of using the same
JPH06220549A (en) Pretreatment of raw material to be sintered
JP4501656B2 (en) Method for producing sintered ore
JP2023002967A (en) Unfired pellet for reduction and method for producing the same
JPH0128085B2 (en)
JPH0442457B2 (en)
JP2007277684A (en) Nonfired agglomerated ore for iron manufacture
CN112062545A (en) Iron-dust-containing mud ball and preparation method and application thereof