JPS61113730A - Preliminary treating method of sintered raw material - Google Patents

Preliminary treating method of sintered raw material

Info

Publication number
JPS61113730A
JPS61113730A JP23426084A JP23426084A JPS61113730A JP S61113730 A JPS61113730 A JP S61113730A JP 23426084 A JP23426084 A JP 23426084A JP 23426084 A JP23426084 A JP 23426084A JP S61113730 A JPS61113730 A JP S61113730A
Authority
JP
Japan
Prior art keywords
raw material
particle size
sintered raw
ore
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23426084A
Other languages
Japanese (ja)
Inventor
Takazo Kawaguchi
尊三 川口
Shun Sato
駿 佐藤
Kozo Takada
高田 耕三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP23426084A priority Critical patent/JPS61113730A/en
Publication of JPS61113730A publication Critical patent/JPS61113730A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To hold a reduced property of a sintered raw material, and to improve the reducing powdering resistance by mixing and pelletizing preliminarily an ore whose components are Al2O3, crystal water, Fe, CaO, and MgO, of a specified composition, and adding it to all sintered raw materials by a proper ratio. CONSTITUTION:An ore which has components of >=2.3wt% Al2O3 in total, >=2.1% crystal water, >=55% all Fe, <=5.0% CaO, and <=0.5% MgO, by compounding one kind or more of ores (a), (b), etc. containing a high alumina limonite, and also is constituted of a particle size of >=90% <=10mm grain size, and <=75% <=1mm is prepared, and it is mixed and pelletized preliminarily by a mixer 1 such as a pan-pelletizer, etc., and using a binder as necessary, and a pelletized product of >=65% 3-10mm particle size is formed. This pelletized product is added by 5-70% to all sintered raw materials, mixed and/or pelletized by a mixer 2, and the reducing powdering resistance is improved without deteriorating the reduced property of the sintered raw material. Said sintered raw material becomes a sintered ore by a sintering machine 3.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、焼結原料の予備処理方法に関し、さらに詳細
には、高アルミナ褐鉄鉱を原料の一部として使用する場
合における焼結原料の予備処理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for pretreatment of sintering raw materials, and more particularly, to a method for pretreatment of sintering raw materials when high alumina limonite is used as a part of the raw materials. Regarding processing method.

(従来の技術) 銑鉄製造用の溶鉱炉に装入さnる原料としてCaO濃度
の高い石灰焼結鉱が広く使用さnているが、日本の製鉄
業においては、品質の安定した焼結鉱を得るために種々
の性質を有する鉄鉱石をブレンドして焼結原料として使
用するのが一般である。
(Prior art) Lime sintered ore with a high CaO concentration is widely used as a raw material charged into blast furnaces for producing pig iron, but in the Japanese steel industry, sintered ore with stable quality is used. In order to obtain iron ores, it is common to blend iron ores with various properties and use the mixture as a sintering raw material.

このようにブレンドさnる鉄鉱石のうち高アルミナ褐鉄
鉱は、焼結性に悪影響をおよぼす因子を種々有しており
、特に、耐還元粉化性については、第2図に示すように
、鉱石のA 120 :i成分の増加、結晶水成分の増
加にしたがって悪化する傾向がある。こtは、高アルミ
ナ褐鉄鉱は結晶水が熱分解して多くの気孔を発生し、C
aOとの反応性が良好でカルシウムフェライトを作り易
いこと、しかもAl2O3含有量が高いことから高Al
zO3含有のカルシウムフェライトを作り易いことに起
因する。石灰焼結鉱の還元粉化は、焼結鉱中のへマタイ
トがマグネタイトに還元する時に膨張応力を発生し、こ
の応力により形成マトリックスが破壊さnて生じるが、
AlzO3を多く含有するカル7ウムフエライトは強度
的に脆弱で、きわめて還元粉化を受は易い。本発明で問
題とする高アルミナ喝鉄鉱とはA12032.3 wt
%以上、結晶水(CW) 2. Owt%以上を含有す
るものである。
Among the iron ores that are blended in this way, high alumina limonite has various factors that adversely affect sinterability.In particular, as shown in Figure 2, high alumina limonite has various factors that adversely affect sinterability. A 120 : tends to deteriorate as the i component increases and the crystal water component increases. This is because in high alumina limonite, crystal water thermally decomposes and many pores are generated, resulting in carbon
High Al
This is due to the fact that zO3-containing calcium ferrite is easy to produce. Reduction pulverization of lime sintered ore occurs when hematite in the sintered ore is reduced to magnetite, generating expansion stress, and this stress destroys the forming matrix.
Calcium ferrite containing a large amount of AlzO3 is weak in strength and is extremely susceptible to reduction and powdering. The high alumina pyrite of interest in the present invention is A12032.3 wt.
% or more, water of crystallization (CW) 2. Owt% or more.

上記のような高アルミナ褐鉄鉱の耐還元粉化性悪化要因
に対しては、多くの対策や原料処理方法が提案さnてい
る。たとえば、特開昭52−49905号公報において
は、種々の鉱石原料を一度に混合造粒するのではなく、
造粒性の悪い原料のみを別途予備混合造粒することによ
り通気性の改善を図る方法が示さnている。また、特開
昭57−79129号公報には、褐鉄鉱鉱石と微粉のS
i 02−  系またはMg0Si02系造滓剤とを予
備混合造粒処理し、焼結鉱品質改善を図る方法が開示さ
nている。
Many countermeasures and raw material processing methods have been proposed to address the above-mentioned factors that deteriorate the reduction powdering resistance of high alumina limonite. For example, in Japanese Patent Application Laid-Open No. 52-49905, instead of mixing and granulating various ore raw materials at once,
A method has been proposed in which the air permeability is improved by separately premixing and granulating only raw materials with poor granulation properties. In addition, Japanese Patent Application Laid-Open No. 57-79129 describes S of limonite ore and fine powder.
A method has been disclosed for improving the quality of sintered ore by pre-mixing and granulating it with an i 02- or Mg0Si02-based slag forming agent.

一方、焼結原料の造粒方法については、微粉鉄鉱石をペ
レタイザーにより造粒する方法がきわめて有効であるこ
とが従来より知らnている。微粉から核を成長させて造
粒物を得るこの方法は、造粒性に関してはきわめて優n
たものであるが、著しく手間がかかり生産性が劣る欠点
がある。すなわち、鉱石を破砕して微粉にしなけ扛はな
らない上に、微粉から核成長を行なわしめるために原料
が所定の産物の粒径になるまで長時間を要する問題があ
る、0この問題を解決するために、核添加造粒法が、た
とえば特開昭57−169023号公報により開示さn
ている。この方法は、微粉から核を成長させるのではな
く、ちる程度の粗粒を導入することにより核成長時間を
短縮しようとするもので、目標粒度産物と原料種に応じ
て原料の粒度分布を規定する方法である0 (発明が解決しようとする問題点) しかしながら、上記従来の方法のうち第1の方法は、主
として通気性の改善を企図するものであり、焼結鉱の品
質を改善するには到っていない。
On the other hand, as for the method of granulating the sintering raw material, it has been known that a method of granulating fine iron ore using a pelletizer is extremely effective. This method of obtaining granules by growing nuclei from fine powder is extremely superior in terms of granulation properties.
However, it has the disadvantage of being extremely time consuming and low in productivity. In other words, there is the problem that the ore must be crushed into a fine powder, and it takes a long time for the raw material to reach the desired particle size for the product in order to perform nuclear growth from the fine powder. For this purpose, a nucleation granulation method has been disclosed, for example, in Japanese Patent Application Laid-Open No. 169023/1983.
ing. This method does not grow nuclei from fine powder, but instead tries to shorten the nucleus growth time by introducing coarse grains.The particle size distribution of the raw material is defined according to the target particle size product and the type of raw material. 0 (Problems to be Solved by the Invention) However, the first method among the above-mentioned conventional methods is mainly intended to improve air permeability, and is not suitable for improving the quality of sintered ore. has not arrived yet.

また、第2の方法は、耐還元粉化性の改善には有効であ
るが、褐鉄鉱が高濃度の5iOzやMgOと反応する之
めに被還元性の悪い鉱物やスラグが形成さn1焼結鉱全
体の被還元性が低下する問題がある。
The second method is effective in improving resistance to reduction and pulverization, but since limonite reacts with high concentrations of 5iOz and MgO, minerals and slag with poor reducibility are formed. There is a problem that the reducibility of the entire ore decreases.

(問題点を解決するための手段) 上記したように、結晶水含有率の高い褐鉄鉱石は焼結鉱
製造溶材であるCaO成分との反応性が良好であり、カ
ルシウムフェライト鉱物を作り易い。そして、Al12
03を多く含有するカルシウムフェライトは脆弱で耐還
元粉化性が悪い。したがって、高結晶水含有褐鉄鉱でA
6zO+含有率の高いものは耐還元粉化性が劣悪である
。本発明者らは、この問題を解決するためには、高アル
ミナ褐鉄鉱とCaOとの反応を抑制し、高A11z03
含有のカルシウムフェライトを作らないことが有効であ
る、との知見に基づき鋭意研究したところ、この反応を
抑制するためには、高アルミナ褐鉄鉱を粗粒化し、Ca
O成分の高い鉱石と隔離すること、特に予備造粒物(擬
似粒子)のCaO成分を5 wt%以下にすることが有
効であることを見い出した(第5図)。さらに詳細に説
明すると、高アルミナ褐鉄鉱(総計で、A12032.
3wt%以上、結晶水2.1wt ’ip以上)に関し
て種々の実験を行なった結果、CaOが5wt%以下、
MgOが0.5wt%以下、トータルFeが55wt%
以上の成分条件下、かつ粒径10間以下が90 wt 
%以上、1間以下が75wt%以下の粒度構成□条件下
で予備混合造粒を行ない、この予備混合造粒産物中粒径
3〜10mmのものが65俤を超えるようにした場合に
は、高アルミナ褐鉄鉱の悪影響が解消さnることが判明
し、本発明を成すに到った。
(Means for Solving the Problems) As described above, limonite ore with a high crystallization water content has good reactivity with CaO component, which is a solvent for producing sinter, and it is easy to produce calcium ferrite minerals. And Al12
Calcium ferrite containing a large amount of 03 is brittle and has poor reduction resistance. Therefore, in limonite containing high water crystallization, A
Those with a high 6zO+ content have poor resistance to reduction and powdering. The present inventors believe that in order to solve this problem, the reaction between high alumina limonite and CaO is suppressed, and high A11z03
Based on the knowledge that it is effective not to produce calcium-containing ferrite, we conducted extensive research and found that in order to suppress this reaction, we should coarsen the high-alumina limonite and produce calcium-containing ferrite.
It has been found that it is effective to isolate ores with a high O content, especially to reduce the CaO content of pre-granules (pseudo particles) to 5 wt% or less (Figure 5). To explain in more detail, high alumina limonite (in total, A12032.
As a result of conducting various experiments on CaO of 5 wt% or more, crystallization water of 2.1 wt% or more,
MgO is 0.5wt% or less, total Fe is 55wt%
Under the above component conditions and with a particle size of 10% or less, 90wt
If the premix granulation is carried out under the condition where the particle size is 75wt% or less and the particle size of the premix granulation product exceeds 65wt%, It has been found that the adverse effects of high alumina limonite can be eliminated, leading to the completion of the present invention.

予備混合造粒産物の粒径は、3朋に満たない場合には反
応を抑制し切nないので、3朋以上あることが望ましい
。しかしながら、粒径が10朋を超える場合には、焼結
時のむらが発生し歩留りが悪化するので好ましくない(
第3図および第4図)。
If the particle size of the premixed granulated product is less than 3 mm, the reaction will not be suppressed, so it is desirable that the particle size is 3 mm or more. However, if the particle size exceeds 10 mm, it is not preferable because unevenness will occur during sintering and the yield will deteriorate (
Figures 3 and 4).

予備混合造粒産物のMgO成分を0.5wt9f+以下
とし念のは、第6図に示すようにMgO含有量が0.5
wt%を超えると被還元性が著しく悪化するからである
。また、造粒産物中のトータルFeが55wt4未満で
あると、第7図に示すよってス65 wt 4未満であ
る場合には、本発明の効果が   る十分得らnないか
らであるが、粒径3〜10朋の   〜ものを65 w
t%以上得るためには、予備混合造   満粒産物の原
料における粒度構成は、10mm以下が   チ90w
t4以上および1絹以下が75 wt %以下   お
であることが適当であゃ、粒径II+li以下のものが
  別75wt%を超えると所期の造粒物粒度を得るの
   ばか困難となる。
The MgO content of the premixed granulation product should be 0.5wt9f+ or less, as shown in Figure 6.
This is because if it exceeds wt%, the reducibility will deteriorate significantly. Furthermore, if the total Fe content in the granulated product is less than 55wt4, as shown in FIG. 65 w with a diameter of 3 to 10 mm
In order to obtain t% or more, the particle size composition of the raw material for the pre-mixed granulated product must be 10 mm or less.
It is appropriate that the amount of t4 or more and 1 silk or less is 75 wt % or less, but if the particle size of II + li or less exceeds 75 wt %, it will be extremely difficult to obtain the desired granule particle size.

予備混合造粒においては、粒径3〜10龍の造   を
粒物収率向上のためにバインダーを使用すること   
高が望ましい。バインダーの種類は、予備混合造粒  
 サ原料の成分条件を満足するものであnば何nであ 
  キってもよい。  °             
    鉱予備混合造粒に使用さnる造粒機は、ドラム
型   上であってもパンペレタイザー型であってもよ
い。   5゜しかしながら、粒径3〜10朋の造粒物
収率の点   ルからはパンペレタイザー型のものが好
ましい。    分上記のようにして得らt′1.fC
,予備混合造粒産物で   −る、特定範囲の粒度を有
する擬似粒子は、他の結原料に添加さ几、混合造粒さ【
る。添加さn予備混合造粒産物の量は焼結全原料に対し
て570wt%の範囲である。添加量が5 wt %に
たない場合には、添加の効果が乏しく、70wtを超え
る場合には、高炉必要成分であるCaOよびMgOの含
有量が低すぎる几め、高炉内に途CaOおよびMgO成
分のものを添加しなけnならなくなる。
In premix granulation, a binder may be used to improve the granule yield of particles with a particle size of 3 to 10.
High is preferable. The type of binder is pre-mixed granulation
If it satisfies the component conditions of the raw material,
It's okay to press. °
The granulator used for ore premix granulation may be of the drum type or pan pelletizer type. However, from the viewpoint of yield of granules with a particle size of 3 to 10 mm, a pan pelletizer type is preferable. t′1. obtained as above. fC
In the pre-mixed granulation product, pseudo-particles with a specific range of particle sizes are added to other coagulation materials and mixed granulation [
Ru. The amount of added premixed granulation product is in the range of 570 wt% based on the total sintered raw material. If the amount added is less than 5 wt%, the effect of addition is poor, and if it exceeds 70 wt, the content of CaO and MgO, which are necessary components of the blast furnace, is too low, and CaO and MgO are left in the blast furnace. The ingredients must be added.

本発明による焼結原料の予備処理フローの一例第1a図
に示す。第1a図に示す例においては、アルミナ褐鉄鉱
を含む2種の鉱石a+bがミキーたとえばパンペレタイ
ザー1に供給さnl ミサ−1で予備混合造粒さnる。
An example of the flow of pretreatment of sintering raw materials according to the present invention is shown in FIG. 1a. In the example shown in FIG. 1a, two ores a+b containing alumina limonite are fed to a pelletizer, for example a pan pelletizer 1, and premixed and granulated in a pelletizer.

ここで、2種の石a、bは、全体としてAl2O3を2
.3wt%以および結晶水を2.1wt1以上含むが、
CaOがOwt’16以下、MgOが(15wt4以下
、ドータ   □Feが55wt%以上含むように選択
および成調整さ扛ている。鉱石a、bに加えてバインダ
を使用することができる0また、予備混合造粒原料の粒
度は、粒径10朋以下のものが90wt係以上、粒径1
 tarn以下のものが75wt%以下となるよう調整
さnている。
Here, the two types of stones a and b have Al2O3 as a whole.
.. Contains 3wt% or more and crystal water of 2.1wt1 or more,
The composition is selected and adjusted so that CaO is Owt'16 or less, MgO is (15wt4 or less), and daughter □Fe is contained more than 55wt%.A binder can be used in addition to ores a and b. The particle size of the mixed granulation raw material is 90wt or more for particles with a particle size of 10 or less, and particles with a particle size of 1 or less.
It is adjusted so that the amount below tar is 75 wt% or less.

上記のようにして予備混合造粒さnた擬似粒子は、他の
焼結原料すなわ、ち他の性質を有する鉱石c+dと、返
鉱e1石灰石f1粉コークス゛gに対して、全焼結原料
の5〜70wt%となる量だけ添加さnl ミキサー2
で混合、造粒される。得られた焼結原料は焼結機3に装
入さル、焼結鉱が製造さnる。
The pseudo-particles premixed and granulated as described above are compared to other sintering raw materials, i.e., ore c+d having other properties, return ore e1 limestone f1 coke powder g, of all sintering raw materials. Mixer 2 is added in an amount of 5 to 70 wt%.
mixed and granulated. The obtained sintering raw material is charged into a sintering machine 3, and sintered ore is produced.

本発明によ几ば、第1a図のように予備混合造粒物を残
り原料と再混合造粒するかわりに、第1b図に示すよう
に、予備混合造粒原料a、bと残ジ原料c = gとを
そ扛ぞ扛独立に混合造粒1,2′し、そnぞn並行に直
接焼結機3に送給してもよい。この場合には、焼結機3
のパレット内に装入さnるまでの搬送過程における混合
現象が利用される。
According to the present invention, instead of re-mixing and granulating the premixed granules with the remaining raw materials as shown in Figure 1a, as shown in Figure 1b, the premixed granulated raw materials a and b and the remaining raw materials are It is also possible to independently mix and granulate c = g and feed them directly to the sintering machine 3 in parallel. In this case, the sintering machine 3
The mixing phenomenon during the transportation process until it is loaded into the pallet is utilized.

(実施例) 第1表に示す原料特性のものを第2表に示す配合条件で
焼結鋼テストを行なった。処理フローは、本発明法とし
ては第1b図に示すものが、従来法としては第9図に示
すものが使用さ扛た。他の操業条件は全て一定となるよ
うに行なわnた。その結果を第3表に示す。
(Example) A sintered steel test was conducted using the raw material properties shown in Table 1 under the compounding conditions shown in Table 2. The processing flow shown in FIG. 1b was used as the method of the present invention, and that shown in FIG. 9 was used as the conventional method. All other operating conditions were kept constant. The results are shown in Table 3.

さらに、第4表〜第9表に示す条件にょ9実験を行なっ
た。その結果を第3図〜第8図に示す。
Furthermore, nine experiments were conducted under the conditions shown in Tables 4 to 9. The results are shown in FIGS. 3 to 8.

なお、配合表において()で示さnているものは予備混
合造粒原料である。
In addition, what is indicated by n in parentheses in the recipe table is a premixed granulated raw material.

第1表 試験に用いた原料の粒度及び主要成分 筒  2  表 第3表 発明法と従来法との比較テスト結果 第  4  表 (第3図のテスト条件) 第5表 (第4図のテスト条件) 第6表 (第5図のテスト条件) 第7表 (第6図のテスト条件) 第  8  表 第  9  表 (第8図のテスト条件) 〈パンペレタイザー使用〉 (発明の効果) 上記したように、本発明によ往ば、被還元性を悪化させ
ることなく、高アルミナ褐鉄鉱の反応性を抑制し、高A
l2O3含有のカルシウム7エライトの生成を抑え、耐
還元粉化性を向上させることができる。
Table 1: Particle size and main components of the raw materials used in the test 2 Table 3: Comparison test results between the inventive method and the conventional method Table 4 (test conditions shown in Figure 3) Table 5 (test conditions shown in Figure 4) ) Table 6 (Test conditions in Figure 5) Table 7 (Test conditions in Figure 6) Table 8 Table 9 (Test conditions in Figure 8) <Use of pan pelletizer> (Effects of the invention) As mentioned above According to the present invention, the reactivity of high alumina limonite is suppressed without deteriorating reducibility, and high A
It is possible to suppress the production of calcium 7-elite containing 12O3 and improve resistance to reduction and powdering.

【図面の簡単な説明】[Brief explanation of drawings]

第1a図および第1b図は本発明による原料処理フロー
図、第2図は鉱石の結晶水、A、g203成分と耐還元
粉化性との関係を示すグラフ、第3図は造粒後擬似粒径
と還元粉化および成品歩留9との関係を示すグラフ、第
4図は擬似粒子3朋以上の比率と還元粉化との関係を示
すグラフ、第5図は擬似・粒子中のCaO濃度と還元粉
化との関係を示すグラフ、第6図は擬似粒子中のMgO
濃度と被還元性との関係を示すグラフ、第7図は擬似粒
子中のトータルFe11度と被還元性との関係を示すグ
ラフ、第8図は原料乾燥粒度と擬似粒度との関係を示す
グラフ、第9図は従来の原料処理フロー図である。 1、   2.   2’、2  ”   ・  ・ 
 ミ  キ ザ −3・・焼結機 第10.叉 第1b図 第2図 緒晶水+CW) !!!3!!! 擬似粒径(前1 第4図 第5図       第6図 0   5    to    15        
 擬似粒子中のMρ濃度C’l) 擬似オニ手中のC00;襄度 第7図 第8図
Figures 1a and 1b are raw material processing flow diagrams according to the present invention, Figure 2 is a graph showing the relationship between the crystallization water, A, and g203 components of ore and reduction powdering resistance, and Figure 3 is a graph showing the relationship between the crystallization water, A, and g203 components of ore and reduction powdering resistance. A graph showing the relationship between particle size, reduction powdering, and product yield 9, Figure 4 is a graph showing the relationship between the ratio of 3 or more pseudo particles and reduction powdering, and Figure 5 shows CaO in the pseudo particles. A graph showing the relationship between concentration and reduction powdering, Figure 6 shows MgO in pseudo particles.
Graph showing the relationship between concentration and reducibility, Figure 7 is a graph showing the relationship between total Fe11 degree in pseudo particles and reducibility, Figure 8 is a graph showing the relationship between raw material dry particle size and pseudo particle size. , FIG. 9 is a conventional raw material processing flow diagram. 1, 2. 2', 2 ” ・ ・
Mixer-3...Sintering machine No. 10. (Fig. 1b, Fig. 2, Oshishui + CW)! ! ! 3! ! ! Pseudo particle size (front 1 Fig. 4 Fig. 5 Fig. 6 0 5 to 15
Mρ concentration in the pseudo particle C'l) C00 in the pseudo oni hand;

Claims (1)

【特許請求の範囲】[Claims] (1)高アルミナ褐鉄鉱を焼結原料の一部として使用す
る場合に、総計において、Al_2O_3が2.3wt
%以上、結晶水が2.1wt%以上、トータルFeが5
5wt%以上、CaOが5.0wt%以下、MgOが0
.5wt%以下となる成分を有し、粒径10mm以下が
90wt%以上、1mm以下が75wt%以下となる粒
度構成を有する1種または2種以上の鉄鉱石および必要
によりバインダーを用いて、造粒産物の粒径3〜10m
mが65wt%以上となるように予備混合造粒を行ない
、得られた造粒産物を全焼結原料に対して5〜70wt
%量添加し、混合および/または造粒することを特徴と
する焼結原料の予備処理方法。
(1) When using high alumina limonite as part of the sintering raw material, the total amount of Al_2O_3 is 2.3wt.
% or more, crystal water is 2.1 wt% or more, total Fe is 5
5wt% or more, CaO 5.0wt% or less, MgO 0
.. Granulation using one or more types of iron ore having a particle size composition of 5 wt% or less, 90 wt% or more with a particle size of 10 mm or less, and 75 wt% or less with a particle size of 1 mm or less, and a binder if necessary. Product particle size 3-10m
Premix granulation is performed so that m is 65 wt% or more, and the resulting granulated product is 5 to 70 wt% based on the total sintered raw material.
A method for pre-processing sintered raw materials, characterized by adding % of the raw materials, mixing and/or granulating them.
JP23426084A 1984-11-06 1984-11-06 Preliminary treating method of sintered raw material Pending JPS61113730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23426084A JPS61113730A (en) 1984-11-06 1984-11-06 Preliminary treating method of sintered raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23426084A JPS61113730A (en) 1984-11-06 1984-11-06 Preliminary treating method of sintered raw material

Publications (1)

Publication Number Publication Date
JPS61113730A true JPS61113730A (en) 1986-05-31

Family

ID=16968181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23426084A Pending JPS61113730A (en) 1984-11-06 1984-11-06 Preliminary treating method of sintered raw material

Country Status (1)

Country Link
JP (1) JPS61113730A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62192596A (en) * 1986-02-19 1987-08-24 Sumitomo Metal Ind Ltd Preliminary treatment for sintering raw material
JPS6376826A (en) * 1986-09-19 1988-04-07 Nkk Corp Preliminary treatment of sintering raw material
JPS63282216A (en) * 1987-05-12 1988-11-18 Nkk Corp Manufacture of sintered ore excellent in reducibility
KR100469296B1 (en) * 2000-11-24 2005-01-31 주식회사 포스코 Mixing method of sinter materials
JP2008057028A (en) * 2006-09-04 2008-03-13 Sumitomo Metal Ind Ltd Method for manufacturing sintered ore

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62192596A (en) * 1986-02-19 1987-08-24 Sumitomo Metal Ind Ltd Preliminary treatment for sintering raw material
JPS6376826A (en) * 1986-09-19 1988-04-07 Nkk Corp Preliminary treatment of sintering raw material
JPH0610313B2 (en) * 1986-09-19 1994-02-09 日本鋼管株式会社 Pretreatment method for sintering raw material
JPS63282216A (en) * 1987-05-12 1988-11-18 Nkk Corp Manufacture of sintered ore excellent in reducibility
KR100469296B1 (en) * 2000-11-24 2005-01-31 주식회사 포스코 Mixing method of sinter materials
JP2008057028A (en) * 2006-09-04 2008-03-13 Sumitomo Metal Ind Ltd Method for manufacturing sintered ore

Similar Documents

Publication Publication Date Title
JPS61113730A (en) Preliminary treating method of sintered raw material
JPS63210207A (en) Method for operating blast furnace
JPS61113731A (en) Manufacture of sintered ore
JP2003096521A (en) Sintered ore blended with high alumina iron ore, and production method therefor
US3825638A (en) Method for producing cold bound agglomerates from particulate mineral concentrates
JPS61113729A (en) Manufacture of sintered ore using high alumina limonite
JP4788013B2 (en) Method for producing low phosphorus hot metal
JP3675105B2 (en) Sintering raw material processing method
JPS627253B2 (en)
JPH0778256B2 (en) Manufacturing method of mini pellet for sintering
JPS62185837A (en) Pretreatment of sintering material
JPH03111521A (en) Production of sintered ore
JPH09272925A (en) Production of sintered ore excellent in property at high temperature and cold strength
JPS5817813B2 (en) A method to improve productivity in the production of sintered ore using fine iron ore
JPH0774394B2 (en) Pretreatment method for sintering raw material
JPH07166248A (en) Production of burnt agglomerated ore
JP4412313B2 (en) Manufacturing method of high quality low SiO2 sintered ore
JPS59232238A (en) Production of sintered ore
JPS60248827A (en) Preliminary treatment of sintered raw material
JPH06220549A (en) Pretreatment of raw material to be sintered
RU2048548C1 (en) Method for production of fluxed iron-ore agglomerate
JPS61113732A (en) Sintering method of chrome ore
JPS63111133A (en) Sintering method of iron ore
KR960000051B1 (en) Making method of sintering ore
JPH05239561A (en) Manufacture of sintered ore