JPS5839746A - Manufacture of sintered ore - Google Patents

Manufacture of sintered ore

Info

Publication number
JPS5839746A
JPS5839746A JP13833281A JP13833281A JPS5839746A JP S5839746 A JPS5839746 A JP S5839746A JP 13833281 A JP13833281 A JP 13833281A JP 13833281 A JP13833281 A JP 13833281A JP S5839746 A JPS5839746 A JP S5839746A
Authority
JP
Japan
Prior art keywords
sio2
sintered ore
cao
blended
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13833281A
Other languages
Japanese (ja)
Other versions
JPS601368B2 (en
Inventor
Yojiro Yamazaki
山崎 洋次郎
Hirohisa Hotta
堀田 裕久
Kazuhiro Furukawa
古川 和博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP13833281A priority Critical patent/JPS601368B2/en
Publication of JPS5839746A publication Critical patent/JPS5839746A/en
Publication of JPS601368B2 publication Critical patent/JPS601368B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To accurately obtain sintered ore with superior productivity, coke unit and quality by regulating the ratio of CaO/SiO2 and the blending rate of SiO2, specifying the ratio of FeO/SiO2 in a fine powder part, and forming molten Ca ferrite preferentially and rapidly in large quantities. CONSTITUTION:An SiO2-base slag making agent contg. >=3% SiO2 is not used at all. A CaO.MgO- or CaO-base slag making agent is sieved at 2mm. classification point, the plus mesh is blended as it is, and all of the minus mesh is crushed to <0.5mm. and blended. Part or the whole of ore contg. >=6% FeO or other iron source is crushed to <0.5mm. and blended, and the ratio of FeO/SiO2 in the fine powder part having <0.5mm. grain size is controlled to 0.8-2.3. The amount of SiO2 in blended starting material 1 is regulated so as to make the SiO<2> content of sintered ore 4.6-5.4%. Thus, the starting material is thoroughly melted, the amount of SiO2 in the resulting sintered ore is reduced, and the reaction of CaO can be accelerated. When the ratio of FeO/SiO2 is within said range, the formation of molten olivine is accelerated, and when the SiO2 content is not within said range, the productivity, strength, reduction powdering index and reduction index are deteriorated.

Description

【発明の詳細な説明】 本発明は焼結鉱の製造方法に係り、焼結鉱の生il性、
コークス原単位および品質を低下させることなしに高炉
燃料比および銑鉄中&の低減を図シ、シかも高温性状の
改善された焼結鉱を的確に製造することのできる方法を
得ようとするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing sintered ore, and includes:
To obtain a method capable of reducing blast furnace fuel ratio and pig iron content without reducing coke consumption rate and quality, and accurately producing sintered ore with improved high-temperature properties. It is.

ドワイトロイド式のような焼結機における焼結過程は配
合原料を構成する鉄鉱石、練原料、造滓剤およびコーク
スなどを混合すると共に水分を添加し造粒した後焼結機
に装入し、点火炉で原料表層部に点火して下向きに空気
を吸引せしめることにより、原料中のコークスを燃焼さ
せ、その発熱により原料粒子相互の焼結反応ないし溶融
(半溶融)反応を図シ、これを冷却するととによに気孔
率が高く、原料の鉄鉱石とは全く異った鉱物組成を形成
する。このような焼結操業の目標は品質基準を満足し、
生産性を向上し、コークス原単位を低下することの3点
であるから通常は焼結鉱の品質が維持できる範囲内で生
産性を向上させ且つコークス原単位を低減させるような
操業が指向されている。ところで従来の高炉装入原料(
たとえば焼結鉱、イレットなど)についての性状を考え
る場合に問題とされ九温度域は1200℃以下であに、
装入原料が軟化融着する以前の塊状帯での強度、被還元
性、還元粉化性および膨れ性などについて検討され品質
管理されて来九が、近時における具体的な高炉解体調査
の結果、融着層の存在が確認され、この融着帯が高炉内
のガス流れや通気性に大きな影響を及ぼすことが判明し
、それらの結果からして高炉装入原料の性状は上記し九
従来の問題温度域よシも高温域(即ち1200℃以上)
での軟化、融着、溶融、滴下時の性状、即ち高温性状の
改善に重点がおかれるようになった。蓋し高炉装入原料
の高温性状(高温での被還元性、軟化溶融特性およびこ
れに伴う通気性の変化)に関するよシ正確な測定、評価
を目的として荷重軟化溶融試験が行われるようになシ、
焼結鉱の高温性状に差をも九らしている原因は、直接的
にはスラグの同化反応過程における融液生成量の大小、
間接的には1000℃以上の高温での被還元性および還
元前の脈石組成と量であることが判明し、これらの中で
も特に焼結鉱の脈石量の低減(CaO/StOm−足下
では、xo重量の低減)は高温性状を大きく改善させて
おり、高炉でのスラグ量低減と共に高炉燃料比を大幅に
低減させ得ることが確認され九、しかし焼結鉱の脈石量
を低減させ九810 gが&2−以下のような低SL 
Osの焼結鉱は高炉内の400〜600℃の温度域にお
叶、る還元雰囲気で粉化され易く、現在の品質管理項目
の1つである還元粉化指数(RDI:550C%30分
の還元雰囲気で保持した焼結鉱なドラム中で900回転
後の一3鶴の重量割合)が大きく悪化し、且つ焼結時間
が長くなって生産率の低下、又は生産率を一定に保つ九
場合の歩留および強度(8I)が低下するという不利が
ある。
The sintering process in a sintering machine such as the Dwight Lloyd type involves mixing the raw materials such as iron ore, raw material, slag forming agent, coke, etc., adding water, granulating it, and then charging it into the sintering machine. By igniting the surface layer of the raw material in an ignition furnace and sucking air downward, the coke in the raw material is burned, and the heat generated causes a sintering reaction or melting (semi-melting) reaction between the raw material particles. When iron ore is cooled, it has a particularly high porosity and forms a mineral composition that is completely different from that of the raw iron ore. The goal of such a sintering operation is to meet quality standards and
Since the three points are to improve productivity and reduce coke consumption, normally operations are aimed at improving productivity and reducing coke consumption within the range that can maintain the quality of sintered ore. ing. By the way, the conventional blast furnace charging material (
For example, when considering the properties of sintered ore, islet, etc., the nine temperature ranges are below 1200℃,
The strength, reducibility, reduction pulverization property, swelling property, etc. of the bulk zone before the charging material softens and fuses have been studied and quality controlled, and the results of a recent concrete blast furnace dismantling investigation are as follows: The existence of a cohesive layer was confirmed, and it was found that this cohesive zone has a large effect on the gas flow and permeability in the blast furnace.From these results, the properties of the raw material charged to the blast furnace are as follows. The problem temperature range is also a high temperature range (i.e. over 1200℃)
Emphasis has been placed on improving properties during softening, fusion, melting, and dropping, that is, high-temperature properties. Loaded softening and melting tests are now being carried out for the purpose of more accurate measurement and evaluation of the high temperature properties (reducibility, softening and melting characteristics at high temperatures, and associated changes in air permeability) of raw materials charged to blast furnaces with lids. C,
The cause of the differences in the high-temperature properties of sintered ore is directly due to the amount of melt produced during the slag assimilation reaction process,
Indirectly, it has been found that the reducibility at high temperatures of 1000°C or higher and the composition and amount of gangue before reduction are particularly important. It has been confirmed that the reduction in the amount of gangue in the sintered ore greatly improves the high-temperature properties, and the reduction in the amount of slag in the blast furnace as well as the blast furnace fuel ratio. Low SL where 810 g is less than &2-
Os sintered ore is easily pulverized in the reducing atmosphere within the blast furnace temperature range of 400 to 600°C, and has a reduction pulverization index (RDI: 550C% 30 minutes), which is one of the current quality control items. After 900 rotations in a sintered ore drum held in a reducing atmosphere, the weight ratio of 13 cranes deteriorates significantly, and the sintering time becomes longer, resulting in a decrease in production rate, or a decrease in production rate, or a decrease in production rate. The disadvantage is that the yield and strength (8I) of the case are reduced.

然してこの低&(h焼結鉱の製造に関しても田代氏等に
よシ若干の提案が重ねられてはいるが、これらの4のは
St Oa源を粉砕することによシIW未満の微粉部分
における5tOx量を増加せしめ、この微粉部分のCa
b/5Lns又はCab/ (SLOz  Agues
)をあるレベル以下にし、或いは該微粉部分tt55−
以上となし、又このように微粉調整したものの原料予熱
を併用するものであって、要するに低&0鵞化に伴って
予想されるシリケートスラグIンド生成量の減少をその
StOz源を粉砕し有効StOz量を増大せしめること
によって補償しようとするものである。しかしこのよう
にして低5L01化を図つ九としてもがンドとしてシリ
ケートスラグを使用する以上は限度がアシ、従って焼結
鉱に好ましい低5LO1化を得るには配合する鉱石の銘
柄について相当の選択をしなければならないことになシ
、又そのような意味から長期的に継続することは不可能
であって安定した低St Os化操業を継続することが
困難となる。
However, there have been several proposals by Mr. Tashiro and others regarding the production of this low & By increasing the amount of 5tOx in the fine powder part,
b/5Lns or Cab/ (SLOz Agues
) below a certain level, or the fine powder portion tt55-
The method described above is combined with the preheating of the raw material adjusted to a fine powder in this way, and in short, the reduction in the amount of silicate slag produced that is expected due to the trend toward lower and zero density can be reduced by pulverizing the StOz source and increasing the effective StOz. It attempts to compensate by increasing the amount. However, in order to achieve a low 5L01 in this way, there are limits to the use of silicate slag as a binder, and therefore, in order to obtain a desirable low 5LO1 for sintered ore, considerable selection must be made regarding the brand of ore to be blended. In addition, it is impossible to continue the process for a long period of time, and it becomes difficult to continue stable operation with low StOs.

本発明は上記したような実情に鑑み検討を重ね【創案さ
れたものであって、配合原料に゛おける造滓剤として5
40 sを3慢以上含有した&03系造滓剤を全く使用
せず、ドロマイトや石灰石などのcaot+θ系造滓剤
を系間滓剤級点で篩別し、その篩上はそのtまの粒度状
態で配合すると共にその篩下の全量を0.51w未満に
粉砕して配合せしめ、しかもhOを6−以上含有し九鉱
石その他の鉄源の一部又は全部な0,5震未満に粉砕し
て配合することによ〉この0.5諺未満の微粉部分にお
けるFaQ/stO,を0.8〜13に制御し、又焼結
鉱の5Lon含有量が4.6〜&411Iとなるように
配合原料のStO雪含雪量有量整することとを特徴とす
るもので67、それによって焼結鉱中の、5JO,量を
低減し【脈石量を低減し、生産性、コークス原単位を悪
化することなしにカルシクム7エクイト系が/ド及びシ
リケート系スラダ?ンドを強化して高温性状の優れた焼
結鉱を提供し、又斯かる焼結鉱を用いることにより高デ
スラグ比を低減して高炉燃料比を低下せしめ、又鉄中&
の低減を図ろうとするものである。
The present invention has been developed after repeated studies in view of the above-mentioned circumstances, and has been devised as a slag-forming agent in blended raw materials.
We do not use any &03 type sludge containing 40 s or more, and sieve the caot + θ type sludge such as dolomite and limestone at the sludge grade point, and the particle size of the sludge on the sieve is At the same time, the total amount under the sieve is pulverized to less than 0.51w and blended, and in addition, some or all of nine ores and other iron sources containing 6- or more hO are pulverized to less than 0.5w. By blending, the FaQ/stO in the fine powder portion of less than 0.5 is controlled to 0.8 to 13, and the 5Lon content of the sintered ore is 4.6 to &411I. It is characterized by controlling the amount of StO snow in the raw material67, thereby reducing the amount of 5JO in the sintered ore, reducing the amount of gangue, productivity, and coke consumption. Calcium 7 Equito series/de and silicate series without deterioration? The sintered ore is strengthened to provide sintered ore with excellent high-temperature properties, and the use of such sintered ore reduces the high death lag ratio and lowers the blast furnace fuel ratio.
The aim is to reduce the

上記したような本発明において、そのり。In the present invention as described above.

七6−以上含有した鉱石その他の鉄源としてスケール、
噴出滓、転炉滓、筒下粉、ダスト類のようなFaOを1
0−以上含有した雑原料を用いることができ、又0.5
 wxm未満微粉部分におけるCaO/&O鵞を3〜8
に制御することによシ反応の有効化を図ることができる
Scale as ore and other iron sources containing 76- or more
1 FaO such as blowout slag, converter slag, powder under the cylinder, and dust
Miscellaneous raw materials containing 0- or more can be used, and 0.5
CaO/&O weight in the fine powder part less than wxm is 3 to 8
By controlling the temperature, the reaction can be made effective.

更にCa0・4o系造滓剤としてはドロマイト、石灰石
を一般的に用いるが、このようなドロマイト、石灰石に
代えて生石灰、消石灰、軽焼ドロマイト、水酸化マグネ
シウム、海水マグネシア、マグネシアクリ7カーの1種
又は2種以上を用いることができる。
Furthermore, dolomite and limestone are generally used as Ca0.4o-based sludge-forming agents, but instead of such dolomite and limestone, quicklime, slaked lime, lightly calcined dolomite, magnesium hydroxide, seawater magnesia, and one of the seven magnesia A species or two or more species can be used.

上記したような本発明について更に説明すると、自溶性
焼結鉱の焼結反応は同相反応としての拡散結合は少く、
大部分は溶融相を介しての結合であるので融液の果す役
割が極めて重畳である。又その平衡的組織は酸化鉄粒子
をスラグが結合する所謂溶融結合型であり、このスラグ
がンドにより焼結鉱の品質、生産性が大きく左右される
。しかしドヮイトロイド式焼結機を使用した現状のプロ
セスでは高温での反応時間が極めて短く、シか4完全嬉
融状態になるまで加熱されないので部分的に生成し九融
液な介して結合が進んで行く丸め如何にして脈石を迅速
且つ均一にスラグ化し生成せしめるかが重要な課題であ
る。特に脈石量を少くして低5!Onの焼結鉱を製造す
る場゛合にはこのことが極めて重要であ)、脈石量、即
ち造滓量の減少を造滓源の有効率を高めるなど何等かの
手段で補償することが必要である。ところでこり造滓源
としては従来からCaO系の石灰石、生石灰、消石灰、
&0諺系の珪石%珪砂、棒0系ではCaO系の生ドロマ
イト、軽焼ドロマイ)、!0.系の蛇紋岩、Nlス2ダ
或は(aQ 、 !O諺sMpoなどの脈石成分を主成
分とし九鉱石類などが用いられておシ、これらによって
スラグ組成、量などの調整が行われて来え。然し焼結過
程は種々の化学組成の混合粉体の中で融液の生成し易い
粒子の組合わせ、即ち低融点の化学組成領域に相当する
粒子の組合わせのところから融液が生成し、昇温と共に
その量が増加して拡がシ融液間の反応及び合体を通じ【
結合が進むが高温でのず留時間が短い九めに粗粒原料又
は滓化性の劣る原料は完全溶融せず、未反応のまま残る
ことが多い。従来の焼結鉱製造実機操業においては滓化
性の悪い蛇紋岩、茄スラグ、珪石などの5tOhhII
O系癒滓剤はその機能を果すことなく未滓化′のit元
鉱として残存することが多く、添加造滓剤はその効果を
充分に発揮するものとなし難い0本発明者等はこれらの
点くついて種々実験、検討をなしたる結果、滓化性の劣
る前記のようなSL O雪系造滓剤を全く使用しないと
とKよって焼結鉱中St Otの低減をはかり、比較的
滓化性のよいCab、40系造滓剤(ドロマイト、石灰
石)のみを使用し、又これを0゜5fi未満に粒度調整
して使用し、又この0.5 m未満の微粉部分における
Fao/5tozを0.8〜2.3に制御することが低
脈石量で焼結する際のキーポイントである″ことを知っ
た。
To further explain the present invention as described above, the sintering reaction of self-fusing sintered ore has little diffusion bonding as an in-phase reaction;
Since most of the bonding is through the melt phase, the roles played by the melt are extremely overlapping. The equilibrium structure is of the so-called fusion bond type in which iron oxide particles are bonded by slag, and the quality and productivity of the sintered ore are greatly influenced by this slag bond. However, in the current process using a Deutroid sintering machine, the reaction time at high temperatures is extremely short, and the heating is not completed until the state reaches a completely molten state. An important issue is how to form gangue into slag quickly and uniformly. Especially by reducing the amount of gangue and getting a low 5! This is extremely important when producing sintered ore), and the reduction in the amount of gangue, that is, the amount of slag, must be compensated for by some means such as increasing the effectiveness of the slag source. is necessary. By the way, the sources of slag have traditionally been CaO-based limestone, quicklime, slaked lime,
& 0 proverbial silica stone % silica sand, bar 0 series CaO series raw dolomite, lightly calcined dolomite),! 0. The main ingredients are gangue components such as serpentinite, NlS2da, or (aQ, !OsMpo), and nine minerals are used, and the slag composition, amount, etc. are adjusted by these. However, in the sintering process, the melt is extracted from the combination of particles that are likely to generate melt in a mixed powder of various chemical compositions, that is, the combination of particles that correspond to the chemical composition region with a low melting point. is generated, its amount increases and spreads as the temperature rises, and through reaction and coalescence between the melts,
Coarse-grained raw materials or raw materials with poor slag-forming properties are often not completely melted and remain unreacted, although the bonding progresses, but the residence time at high temperatures is short. In conventional sintered ore manufacturing operations, 5tOhhII materials such as serpentine, eggplant slag, and silica stone, which have poor slagability, are used.
The O-based slag forming agent often remains as an unsludge-formed ore without fulfilling its function, and it is difficult for the additive sludge-forming agent to fully demonstrate its effect. As a result of various experiments and studies in this regard, we decided to reduce the St Ot in the sintered ore by not using the above-mentioned SLO snow-based slag-forming agent, which has poor slag-forming properties, and compared it. Only Cab and 40-based slagging agents (dolomite, limestone) with good slagging properties are used, and the particle size is adjusted to less than 0.5 fi, and Fao in the fine powder part of less than 0.5 m is used. /5toz to 0.8 to 2.3 is the key point in sintering with a low amount of gangue.

又との0.5 m未満の微粉部分におけるCIL幹匁0
諺を3〜8とし、或いはこの微粉部分における(CaO
+stO雪)量を7−以上とすると共にCaO/5LO
n を3〜8とすることが好ましい。
CIL stem momme 0 in the fine powder part of less than 0.5 m
The proverb is 3 to 8, or (CaO
+stO snow) amount to 7- or more and CaO/5LO
It is preferable that n be 3-8.

自溶性焼結鉱の主要原石成分を第1次近似とし”CCa
O% 5LOBとし、CaO−5LOx−酸化鉄系で焼
結鉱における融液の生成過程を考えると、酸X、Sテン
シャルが^い場合にはCaO−st偽−JklQB系で
堆扱えるため第1図に示すように1300C以下の低融
点化学組成領域がム、−の2カ所認められる。っtり1
000℃以下の比較的低温で融液が発生する粒子の組合
わせは化学成分的にシリケート領域Aとカルシウムフェ
ライF系領域Bの2種類存在わせよ〉−〇aO−酸化鉄
の組合わせの方が融液化の確率が1&−1PK大きい、
即ち焼結過程ではCaOと酸化鉄の接点がwJs反応に
よ〕低融点のカルシウムフェライトを生成し、それに伴
って融液が発生し反応して行く確率が嶌く、又次の第1
表に示すようにその反応性−他の系に較べて極めてよい
ことから、脈石量(Stog量)が少くてもCaOと酸
化鉄の反応を促進させれば従来のシリケート系スラグl
ノドに代ってカルシウムフェライト系スラグがンドが強
化されることとなり、焼結の品質、生産性は充分に維持
され、向上されることとなる。
As a first approximation of the main ore components of self-fluxing sintered ore, “CCa”
O% 5LOB and considering the generation process of melt in sintered ore in the CaO-5LOx-iron oxide system, if the acid As shown in the figure, two low melting point chemical composition regions of 1300C or less are observed, namely Mu and -. ttri1
There are two types of combinations of particles that generate melt at a relatively low temperature of 000℃ or less: silicate region A and calcium ferrite F system region B〉-〇aO-iron oxide combination. The probability of turning into a liquid is 1&-1PK larger,
That is, in the sintering process, the contact point between CaO and iron oxide produces low melting point calcium ferrite by wJs reaction, and there is a high probability that a melt will be generated and react with it.
As shown in the table, its reactivity is extremely good compared to other systems, so even if the amount of gangue (Stog amount) is small, if the reaction between CaO and iron oxide is promoted, it can be compared to conventional silicate-based slag.
Calcium ferrite-based slag is used instead of the throat to strengthen the throat, and the quality and productivity of sintering are sufficiently maintained and improved.

第1表A10hCaO%sto冨及び腐1偽の反応性O
印:1250’C5分”t”l1M ×印:1400C5分で溶融せず 但し固相拡散による反応は除く。
Table 1 A10hCaO%stofu and rot 1 false reactivity O
Mark: 1250'C 5 minutes "t" l1M × mark: No melting at 1400C 5 minutes, except for reaction due to solid phase diffusion.

又上記のような場合K>いて、焼結原料は一般にその混
合造粒過程で第2.3図に示すように1〜5111の粗
粒を核とし、そのII@に0.5閣未満の微粉を附着し
たgI!似粒子粒子成し、スラダ融液の生成はこの附着
し九微粉原料を起点として始tjP、次#IIf−Ii
シの粗粒原料を溶かし込んで焼結が進行するため脈石量
(!Os量)を低減させ九場合にはこのスラグ融液が迅
速に又ある程度以上の量を生成させなければならない、
薦1図、にはカルシウムフェライト系の低融点領域B′
を併せて示したが、ドロマイト、石灰石などのCaOb
 40 系造滓剤を微粉砕することにより脈石量の少い
原料からでも好ましい生産性、:y−クス原単位、品質
の焼結鉱を得ることができる。
In addition, in the above-mentioned case, the sintering raw material is generally made of coarse grains of 1 to 5111 as the core during the mixing and granulation process, as shown in Figure 2.3, and the II@ contains less than 0.5 K. gI with fine powder attached! Similar particles are formed, and the generation of sludder melt starts from this attached nine-fine powder raw material, then #IIf-Ii
In order to proceed with sintering by melting the coarse grained raw materials, the amount of gangue (!Os amount) must be reduced, and in this case, this slag melt must be generated quickly and in a certain amount or more.
Figure 1 shows the low melting point region B' of calcium ferrite.
are also shown, but CaOb such as dolomite and limestone
By finely pulverizing the 40-based slag-forming agent, sintered ore with favorable productivity, Y-x unit consumption, and quality can be obtained even from raw materials with a small amount of gangue.

本発明では上記のように石灰石(CaCO5)、ドロマ
イト(MICDa−(1’acO3)を使用するが、他
のCaO系造滓剤である生石灰(cao ) s消石灰
(Ca (OH)m )、軽焼ドty w イト(40
11CaO)なども0.5+w未満に細粒化して使用す
るならば同様の効果が得られることは勿論である。
In the present invention, as mentioned above, limestone (CaCO5) and dolomite (MICDa-(1'acO3) are used, but other CaO-based sludge-forming agents such as quicklime (cao), slaked lime (Ca(OH)m), and light Baked ty w ito (40
Of course, the same effect can be obtained if the particles such as 11CaO) are refined to less than 0.5+w.

又MIOの成分調整用として海水マグネシア、iグネク
アクリ7カー、水酸化マグネシウムなどを使用し九場合
についても第5図に示すように0.5 wax未満に細
粒化して使用するならばMIloと酸化鉄の反応により
一ダネタイトーマグネシアフエライト固溶体(これはマ
グネタイトとして回折される)を多量に生成し、本発明
に準じ九効来が得られる。従って本発明のCaO,44
0系造滓剤とは5L(hを3−以上含むことのない上記
したような総べてのCaO系およびhIIO系造滓剤を
意味するものである。
Also, in the case of using seawater magnesia, I-Gnequa Acrylic 7 Car, magnesium hydroxide, etc. to adjust the components of MIO, if it is finely granulated to less than 0.5 wax as shown in Figure 5, it will oxidize with MIlo. By the reaction of iron, a large amount of a solid solution of magnesia ferrite (which is diffracted as magnetite) is produced, and nine effects according to the present invention can be obtained. Therefore, the CaO,44 of the present invention
The term 0-based sludge-forming agent refers to all the above-mentioned CaO-based and hIIO-based sludge-forming agents that do not contain 5L (h) of 3 or more.

本発明によるものの具体的実施に当っては前記したよう
な造滓剤を必要に応じて2101の分級点で篩分けし、
その2m以上の篩上粗粒は通気性確保の九め該粒度のま
まで使用し、2+u+以下のものを黴看化して用いる。
In the specific implementation of the present invention, the sludge forming agent as described above is sieved with a classification point of 2101 as necessary,
The coarse grains on the sieve with a size of 2 m or more are used as they are to ensure air permeability, and those of 2+u+ or less are used after being molded.

即ちこのように2閣の分級点で篩分けし九粗粒分く2〜
5麿)のものを配合した場合の焼結ペッドにおける通気
性は第4図に示すように向上せしめられ、その生産性を
向上することができる。
In other words, it is sieved at two classification points and divided into 9 coarse grains.
The air permeability of the sintered pedd is improved as shown in FIG. 4 when the sintered peddium chloride is mixed with the sintered peddad, and the productivity thereof can be improved.

但し量的に2111以下のものだけで目的の配合関係を
調整できないときKはこの21111以上の粗粒分をそ
の一部又は全部微粉化し、スラダ融液の発生源になると
認められる0、 5 W未満の微粉原料における( C
aO+ :5LOs )量を7−以上とし、且つそのC
aO/5Oxを3〜8とする。即ちこの(CaO+ 5
t(h )量と得られる焼結鉱の強WIL&、Iとの関
係は、この−G、 5 vmの(CaO+sLOm )
量が6〜1一部分よ)焼結鉱の強度が急激に上昇するこ
ととなシ、好ましい製品を得ることができる。又この場
合においてそのCaO/5tOxを3〜8のように保持
するならばカルシウム7エライト系融液を優先的に迅速
且つ大量に生成させる仁とができ、脈石(5LOx)量
の低い焼結原料からでも品質の優れ丸焼給鉱を製造する
ことが可能となる。
However, if it is not possible to adjust the desired blending relationship with only particles of 2111 or less in quantity, K will pulverize some or all of the coarse particles of 21111 or more and become a source of sludder melt. ( C
aO+:5LOs) amount is 7- or more, and the C
aO/5Ox is set to 3 to 8. That is, this (CaO+ 5
The relationship between the amount of t(h) and the strong WIL &, I of the obtained sintered ore is -G, (CaO + sLOm) of 5 vm
When the amount is 6 to 1 part), the strength of the sintered ore increases rapidly and a desirable product can be obtained. In this case, if the CaO/5tOx is maintained at 3 to 8, calcium 7-elite melt can be preferentially produced rapidly and in large quantities, resulting in sintering with a low amount of gangue (5LOx). It becomes possible to produce high-quality burnt feed ore even from raw materials.

この間の事情については第1図に示した1200℃以下
における前記低融点領域Bを示す通夛であって、融液の
起点となる0、 5 wg以下の微粉部分におけるCa
O/5tOxを図示のように3〜8に制御することによ
〉焼結過程にお叶るカルシウム7エライF系融液の生成
を促進し1200℃以下の低融点領域(C)を適切に得
しめる。なおFa O/840 雪  の関係について
は第6図において示すように上記0.5 wi以下の微
粉部分のFa O/840雪 を0.8〜2.3とする
ことにより焼結過程におけるオソビン系融液の生成を促
進させ、1150℃以下の低融点領域りを形成すること
ができる。
Regarding the circumstances during this period, Ca in the fine powder part of 0.5 wg or less, which is the starting point of the melt and which is the low melting point region B at 1200 ° C or less shown in Fig.
By controlling O/5tOx to 3 to 8 as shown in the figure, the production of a calcium 7 Elai F-based melt suitable for the sintering process is promoted, and the low melting point region (C) below 1200°C is appropriately controlled. I'll get it. Regarding the relationship between Fa O/840 snow, as shown in Fig. 6, by setting Fa O/840 snow of the fine powder portion of 0.5 wi or less to 0.8 to 2.3, the osobin system in the sintering process can be reduced. It is possible to promote the production of melt and form a low melting point region of 1150° C. or lower.

更に本発明では焼結鉱におけるSto、を4.6〜5.
4−とするものであって、この関係については別に第7
図に要約して示す過少である。
Furthermore, in the present invention, Sto in the sintered ore is 4.6 to 5.
4-, and this relationship is discussed separately in Section 7.
This is an underestimation as summarized in the figure.

即ちSL O*が4.6s以下となると生産率、強度が
低下し、RDIも悪化することは第7図の上段部分に示
す通りであに、一方とのStomが5.4−以上になる
とCaO系造滓剤を破砕した場合においてR1が極端に
悪化する。従ってこれらの生産率、強度、RDIおよび
RIを共に満足する範囲はStO,が4.6〜5゜4チ
となる。
That is, as shown in the upper part of Fig. 7, when SLO* becomes 4.6 seconds or less, the production rate and strength decrease, and RDI also deteriorates. When a CaO-based slag forming agent is crushed, R1 is extremely deteriorated. Therefore, the range that satisfies all of these production rate, strength, RDI and RI is StO of 4.6 to 5.4 inches.

何れにしても上記のようにしてCaO/&01およびS
tO,の配合率を調整せしめ、カルシウムフェライト系
融液を優先的に迅速且つ大量に生成させるととによ〉脈
石量(Stom量)の低い焼結原料からでも生産性、コ
ークス原単位および品質の優れ丸焼給鉱を的確に製造す
ることができる。ノtシ造滓源配合量を減らして4七の
反応率を高める。ことにより品質、生産性を維持向上し
丸焼給鉱が適切に得られる。
In any case, CaO/&01 and S
By adjusting the blending ratio of tO, and preferentially producing calcium ferrite melt rapidly and in large quantities, productivity, coke consumption rate, and It is possible to accurately produce high-quality burnt ore. The reaction rate of 47 is increased by reducing the amount of slag source mixed. By doing so, the quality and productivity can be maintained and improved, and round feed ore can be obtained appropriately.

本発明において用いるhOの高い鉱石とはhOを6−以
上含有したマダネタイト系もしくはマグへiタイト系鉱
石および砂鉄を指すものであシ、これらの代夛にFnO
4i−以上を含む雑原料(九とえにスケール、噴出滓、
転炉滓など)を使用しても同様な効果を得ることができ
る。
The ores with high hO used in the present invention refer to madanetite or maghetite ores and iron sand containing 6 or more hO, and these include FnO.
Miscellaneous raw materials containing 4i- or more (9 scale, slag,
A similar effect can be obtained by using converter slag, etc.).

又本発明では0.5 wm未満の微粉部分の(CaO+
!Os)量を7チ以上とする丸め、比較的&0黛量の高
い雑原料(st(hsチ以上)および石灰石、ドロ!イ
トなどのCaO,J404造滓剤を微粉砕して使用する
が、この内比較的5t03量の高い雑原料として転炉滓
以外にも篩下粉、噴出滓、ダスト類などを使用すること
もできる。
In addition, in the present invention, (CaO+
! Rounding with an Os) amount of 7 or more, miscellaneous raw materials with a relatively high amount of &0 (st (hs or more)) and CaO, J404 sludge-forming agents such as limestone and dolo!ite are finely ground and used, Among these, as miscellaneous raw materials having a relatively high amount of 5t03, in addition to the converter slag, it is also possible to use under-sieve powder, ejected slag, dust, etc.

従来技術ではaO,系造滓剤を使用するものであるから
焼結原料中のSL Ozを低減させるためには鉱石銘柄
をかなり選択することが必要であり、又その意味からも
例えば半年〜1年以上のように長期的に継続することは
不可能であったが、本発明のsto、系造滓剤を全く使
用しない方法によれば鉱石銘柄選択の必要はなくなp 
、840gが5−前後の低stO,焼結鉱を長期的El
l続して製造することが可能となる。
Since the conventional technology uses aO, a slag-forming agent, it is necessary to select the ore brand considerably in order to reduce SL Oz in the sintering raw material. However, with the method of the present invention that does not use sto or slag-forming agents at all, there is no need to select ore brands.
, 840g has a low stO of around 5-, and the sintered ore has a long-term El
It becomes possible to manufacture the product continuously.

更に鉱石銘柄の選択を組合わせれば、一時的には&0鵞
が4.61前後ないしそれ以下のような極低stO,焼
結鉱の製造も可能となる。
Furthermore, by combining the selection of ore brands, it is temporarily possible to produce sintered ore with an extremely low stO of around 4.61 or lower.

末完羽方法によるものの具体的な実施例を比較のための
従来法および参考例と共に示すと以下の通夛である。
The following are specific examples of the method using the final feathering method, together with conventional methods and reference examples for comparison.

実施例り 次の各銘柄の鉄鉱石、石灰石、ケイ石、ドロマイト、コ
ークス、返鉱などを準備し、これらを用い九従来例■に
よるものの車体的な   シ配合は次の第2表に示す通
りである。      し第  2  表 一〇、5隨SlO鵞冨194 0.5m5FaO−1,24 Q、5wrFsO/&Om = Q、64−Q、SmC
aO−λ18 即ちこの第2表のものは&O,が5.9−のも1であり
”C:& 5L02源としてケイ石、j40源と、てド
ロマイトを使用したものである。
Example: Prepare the following brands of iron ore, limestone, silica stone, dolomite, coke, return ore, etc., and use these to create a car body composition according to conventional example (■) as shown in Table 2 below. It is. 2nd Table 10, 5 隨SlO螞藤194 0.5m5FaO-1,24 Q, 5wrFsO/&Om = Q, 64-Q, SmC
aO-λ18 That is, in this Table 2, &O is 5.9-1, and silica, j40 source, and dolomite are used as C:&5L02 sources.

この第2表に示すものを通常の方法で&0工を低減し、
低&01焼結鉱(5LOs : 4.6〜4−)となる
ように配合したものは参考例して次の第3表に示す通り
である。
The items shown in Table 2 are reduced in &0 machining by the usual method,
Examples of blended sintered ores to achieve low &01 sintered ore (5LOs: 4.6 to 4-) are shown in Table 3 below as a reference example.

なおco第3表に示したtのの具体的な、S4O,は&
4囁のものである。
In addition, the specific S4O of t shown in Table 3 is &
4 whispers.

これらの% Orc対し本発明によるものの具体的な配
合IF1は次のj14表に示す通夛であり、そのC&0
源である石灰石、ドロマイトt 2 waの分級点で篩
分けし、2−以上の粒度のものはそのまま配合し、2−
未満のものは粉砕し、全量をα51m1未満に細粒化せ
しめ、α5霞未満のCaO量を増加させ、同時にFsO
の[z鉱石及び練原料の一部又は全Sをα51III未
満に粉砕することによ少α5−未満の微粉部分における
FaO/S40*  t (L 8〜2.3に調御し、
更に焼結鉱中sLO,量管低減させるためケイ石、蛇紋
岩【ガツトし、ドロマイト、石灰石の配合t−1m整し
たtのである。
The specific formulation IF1 according to the present invention for these % Orc is shown in the following table j14, and its C & 0
The source limestone and dolomite T 2 wa are sieved at the classification point, and those with a particle size of 2- or more are blended as is, and 2-
Those with less than
FaO/S40*t (L adjusted to 8 to 2.3 in the fine powder portion of less than α5- by grinding part or all of the S of the ore and the raw material to less than α51III,
Furthermore, in order to reduce the amount of sLO in the sintered ore, the mixture of silica, serpentine, dolomite, and limestone was adjusted to t-1m.

然して上記したL5な謳2表から菖4表に示した配會鳳
科は夫々水ta加して造粒し、こfLbt4i1nss
 o−試験鍋に工って負圧1300mAq  で吸引し
、鍋焼給鉱を製造した・得らAた各焼結鉱につりでの生
産率、強度(liiI)、成品歩留、還元粉′イヒ率(
RD目 お工び鼠■値を要約して示すと久OSS表の通
りである。
However, the above-mentioned L5 songs shown in Tables 2 to 4 were each granulated by adding water, and this
o- A test pot was used to vacuum the sintered ore with a negative pressure of 1300 mAq. rate(
The RD eyes are summarized as shown in the Kyu OSS table.

菖  5  表 即ち従来例1の44DK対し参考例1のものは七のSt
O,量の低#RIIc伴い、生産率、強度、成品歩留が
悪化し、七Ow8結操業およびm給鉱性状が大きく劣化
する。こ几らの%の[対し末完@0!1ljjit*1
のものは生産率を悪化しないで強度、成品歩留、RDI
  お工び的It夫々大@に改善することができ友。即
ちil&亀性状の評価基準として通気性、軟化ないし溶
けおちO温lL@倉考えてtFflしたが、本発明によ
るものは頗る好ましいtのであった。
Iris 5 table, that is, 44 DK of conventional example 1, and 7 St of reference example 1
With the low #RIIc amount of O, the production rate, strength, and product yield deteriorate, and the 7Ow8 sintering operation and m-feeding properties are greatly deteriorated. % of Koori et al.
It is possible to improve strength, product yield, and RDI without deteriorating production rate.
It's a friend who can greatly improve each and every one of them. That is, tFfl was determined by considering air permeability, softening or melting temperature 1L @ warehouse as the evaluation criteria for IL&Group properties, and the one according to the present invention was found to be extremely preferable.

実JIifIλ 蛇紋岩’tNlE用した従来$112の配合は久のJ!
811 K 示ス通’り テTo 4゜又こf′Lt常
法にz r 、uot量を低減させ、低、S4O,焼結
鉱奮製造する工うにした参考f42のものは次のwL7
表に示す1うな配合になる。
Real JIifIλ The conventional $112 formulation for serpentine 'tNlE is Hisano J!
811 K As shown, the reference f42 which was designed to reduce the amount of z r and uot in the conventional method and produce low S4O and sintered mineral concentrate is as follows wL7
The mixture will be 1 eel as shown in the table.

更に末完@(従い、実JliiN1の場合におけると同
様にそのCaO源である石灰石、ドロ1イ)?2霞で分
級し、2−以上はその1まとし、2−以下を粉砕し、全
量1151未満の細粒として、このα5■未満の粒度域
におけるCaO量増加を図り、又hOの高い鉱石で0.
5■未満部分OFaO/5Lot t O,8〜2.3
に制御し、更に*m例1と同様に調整した本発明実施例
20配合は次の第8表に示す通りである。
Furthermore, the end result (therefore, as in the case of real JliiN1, its CaO source is limestone, Doro1i)? Classify with 2 haze, group 2 or more into one, crush 2 or less to make fine particles with a total amount of less than 1151, and aim to increase the amount of CaO in this particle size range of less than α5■. 0.
Part less than 5 ■OFaO/5Lot t O, 8~2.3
The composition of Example 20 of the present invention, which was controlled in the same manner as Example 1, is as shown in Table 8 below.

然してこnら第6〜a!!8表に示す各配合の4oKつ
いて実施NlKおけると同様に焼結鉱を製造し、そO生
産率、5fiil!、成品歩留りなどtII定した結果
t!!約して示すと次0IIs表の通りであり、実J1
ml111につめて述べた同機に参考例2のtのは生産
率、強度、成品歩留及びRDI  が曇化してhる0K
51L、本実llO実Il1例2による%0はそnらt
大幅に教養することがIIgさnた。
However, this n et al. 6th~a! ! Sintered ore was produced in the same manner as in NlK for each formulation shown in Table 8, and the production rate was 5fiil! , the result of determining tII such as product yield t! ! The following 0IIs table shows the actual J1
The production rate, strength, product yield, and RDI of the same machine described in ml111 in Reference Example 2 are cloudy and 0K.
51L, %0 according to real IlO real Il1 example 2 is sont
I would like to become much more educated.

菖  911 実施例龜 前記した実施例1の%OKお−て、その纂4表と同じ配
合の%Oにおいて、そのドロマイトおよび石灰の粒度t
−2露の分級点で篩別せず5■以下のそnらの造滓剤全
量につ−てα5■未満に微粉砕して配合した。即ちこの
場合の本IAtjA実Jm例による配合例は久の第10
:RK示す通りである。
Iris 911 Example % OK of Example 1 mentioned above, and the particle size of dolomite and lime at % O of the same composition as in Table 4.
The total amount of the sludge-forming agent with a classification point of -2 dew and less than 5 sq. without being sieved was finely pulverized to less than α5 sq. and blended. In other words, the formulation example according to this IAtjA actual Jm example in this case is
:As shown in RK.

なお前記し次第2表のtのの−α5■のCaO/5tO
xは112  であり、第3表のそれはLO8であつ友
As mentioned above, t-α5■ CaO/5tO in Table 2
x is 112, and that in Table 3 is LO8.

焼結鉱の製造につ―ての条件は実施例1に記載したとこ
ろと同様である。
The conditions for producing sintered ore are the same as those described in Example 1.

実JII角表 実施例2と同じに蛇紋岩’iw用ぜず、その配合割分も
同じのものにおいて実JII例3と同様に七O造滓剤の
全量をα5w以下に微粉砕した場合の配合例は次の纂1
1表に示す通りである。
In the same way as in Actual JII Square Table Example 2, serpentinite 'iw is not used, and the proportions are the same, but as in Actual JII Example 3, the total amount of the 7O slag forming agent is finely pulverized to α5w or less. A combination example is the following 1
As shown in Table 1.

なお前記した116表のものの0.5−未満微粉部分に
おけるCao/S!O*は118  でh)、纂7表の
%O1mおけるCaa/&LOtは1.10 であった
In addition, Cao/S in the less than 0.5-fine powder portion of Table 116 mentioned above! O* was 118 h), and Caa/&LOt at %O1m in Table 7 was 1.10.

又焼結鉱O製造は実施例1と同じである。Further, the production of sintered ore O was the same as in Example 1.

然シてこれら実m例14[↓るtのについての具体的な
生産率、強度、成品−1fL遺元看化推数およびR11
1ii記した実施例1゜2の場合とpiIIlに欄定し
、併せて示すと次の藁12表の過すである。
However, these actual example 14 [↓T's specific production rate, strength, finished product - 1fL original nursing estimate and R11
The case of Example 1゜2 described in 1ii and the column of piIIIl are shown together, and the result is shown in the following Table 12.

藁  12   表 即ちこnらの実施fi13,4によるものにおいてt実
施例1,2のtのと1jlIlであり強度、製品歩留に
おいては吏(好ましいtのであること金知った。
12 In the table, ie, those according to these embodiments 13 and 4, it was found that the strength and product yield were the same as those of Examples 1 and 2.

以上説明したような本発明によるときは生産性を害する
ことなしに強度、成品歩留り、還元粉化性などにお9て
何rt%好ましφ改善を図り、高炉操業にお轄る燃料比
および銑鉄中&の各低減taることのできる有刹な焼結
鉱奮的i[に製造することができるものであって、工業
的にその効果の大きい発明である。
According to the present invention as explained above, it is possible to improve the strength, product yield, reduction pulverizability, etc. by how much rt% and φ without impairing productivity, and to improve the fuel ratio and φ for blast furnace operation. It is an invention that can be manufactured into a limited amount of sintered ore that can reduce each of the concentrations in pig iron, and is industrially highly effective.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の技術的内容を示すものであって、第1図
はCaO−、S!O,−Fh、01系における低融点領
域を示し友説男図、落2図と第3図は着粉軍と粒度分布
の関係を示し友tm表、wL4図は焼結ベッドの通気性
と2〜5飄の粗粉分配含率の関係を示しft、図表、第
5回は棒0とマグネタイト−マグネシオフェライト同溶
体の生成量関係を示した図表、纂6図は焼結鉱強度とQ
、s−以下の微粉中脈石量O関係會示した図表、@71
1はCaO−ao、−Fan>系01000℃以下の低
融点領域I!明図である。 特軒出願人  日本鋼管株式会社 発   明   者   山   岡   洋 久 部
M             6m    裕   大
同          古   川   和   博代
理人 弁壇士  白  川  −・ヨ譲1゛1重゛ 1謔′ 第 2  論 々i#布 纂 J @ 邊 f  l \ /4//σ(%) 手続補正書(烏ムつ 昭和57.2.。54月  日 特許庁長官島 1)春 樹 殿 1、事件の表示 昭和% %    許m=stag332号3、補正を
する者 事件との関f#     許出願人 名称(氏釦日本鋼管株式会社 4、代理人 ’ ”  57.’1.2♂   日 発送6、補正の
対象 明細書 7、補正の内容 別紙の通り 補  正  の  内  容 4本願の1発明の名称」を以下のよう(こ訂正するOr
焼結鉱の製造方法」
The drawings show the technical contents of the present invention, and FIG. 1 shows CaO-, S! Figures 2 and 3 show the low melting point region of the O, -Fh, and 01 systems, and Figures 2 and 3 show the relationship between powder adhesion and particle size distribution. Figure 5 shows the relationship between bar 0 and the production amount of magnetite-magnesioferrite isosolute, and Figure 6 shows the relationship between the sinter strength and the sintered ore strength. Q
, Chart showing the relationship between fine powder and medium gangue amount O of s- or less, @71
1 is a low melting point region I of CaO-ao, -Fan> system 01000°C or less! This is a clear diagram. Tokken Applicant Nippon Kokan Co., Ltd. Inventor Hiroshi Yamaoka Kube M 6m Yutaka Daido Kazuhiro Furukawa Agent Japanese speaker Shirakawa - Yoshi 1゛1゛1゛1゛゛1゛1゛1謔' 2nd essay纂 J @ 邊 fl \ /4//σ(%) Procedural amendment (Karamutsu Showa 57.2..54 Japan Patent Office Commissioner Island 1) Haruki Tono 1, case display Showa% % permission m = stag 332 No. 3, relationship with the person making the amendment f # name of applicant (Mr. Button Nippon Steel Tube Co., Ltd. 4, agent'57.'1.2♂ day dispatch 6, specification subject to amendment 7, Contents of the amendment As shown in the attached sheet, contents of the amendment 4. Name of 1 invention of the application as follows (Order to be corrected)
“Method for producing sintered ore”

Claims (1)

【特許請求の範囲】 1、配合原料における造滓剤として5EO意を3嗟以上
含有したsto、系造滓剤を全く使用せず− ドルマイ
トや石灰石などのCab、j40系造滓剤を2wmの分
級点で篩別し、その部上はそのままの粒度状態で配合す
ると共にその篩下の全量を0.5■未満に粉砕して配合
せしめ、しかもFaOを61s以上含有した鉱石その他
の鉄源の一部又は全部を0.5 M未満に粉砕して配合
することにょ〉この0.5■未満の微粉部分におけるA
O/sL0゜を0.8〜L3に制御し、又焼結鉱のaO
,含有量が4.6〜5.41Gとなるように配合原料の
StO,含有量を調整することとを特徴とし、鋏配合原
料を焼結することより成る焼結鉱の製法。 2、  FsOを6s以上含有した鉱石その他の鉄源と
してスケール、噴出滓、転炉滓、篩下粉、ダスト類のよ
うなhOを10チ以上含有し丸線原料を用いる特許請求
の範sgi項に記載の焼結鉱の製造法。 3、 0.5m未満の微粉部分におけるC a O/S
L偽を3〜8に制御する特許請求の範Ii!I第1項又
はj112項に記載の焼結鉱の製造法。 4、  CaO1J410系造滓剤として生石灰(Ca
b)、消石灰(Cm(oa))s 軽焼ドC1ffイト
(CaO・40)、水酸化マグネシウム(+(OH)鵞
)、海水マダネシア、マグネシアクリ7カーの1種又は
2種以上をドセマイト、石灰石の一部又は全部に置換し
て用いる特許請求の範囲第1項〜第3項に記載の焼結鉱
の製造法。
[Scope of Claims] 1. No STO or sludge containing 3 or more of 5EO as a sludge forming agent in the blended raw materials. It is sieved at a classification point, and the upper part is blended in the same particle size state, and the total amount under the sieve is pulverized to less than 0.5 square meters. By pulverizing some or all of the powder to less than 0.5 M and blending it, the A in this fine powder part of less than 0.5
O/sL0° is controlled to 0.8~L3, and the aO of sintered ore is
A method for producing sintered ore comprising sintering a scissor blended raw material, characterized in that the StO content of the blended raw material is adjusted so that the content is 4.6 to 5.41G. 2. Claims sgi that use round wire raw materials containing 10 or more hO such as scale, slag, converter slag, under-sieve powder, and dust as ores and other iron sources containing 6s or more of FsO. The method for producing sintered ore described in . 3. C a O/S in the fine powder part less than 0.5 m
Claim Ii to control L false to 3 to 8! A method for producing sintered ore according to item I or j112. 4. Quicklime (Ca
b), slaked lime (Cm(oa))s Lightly calcined C1ffite (CaO 40), magnesium hydroxide (+(OH)), seawater madanesia, magnesia 7car, one or more types of docemite, The method for producing sintered ore according to claims 1 to 3, which is used as a partial or complete substitute for limestone.
JP13833281A 1981-09-04 1981-09-04 Method for manufacturing sintered ore Expired JPS601368B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13833281A JPS601368B2 (en) 1981-09-04 1981-09-04 Method for manufacturing sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13833281A JPS601368B2 (en) 1981-09-04 1981-09-04 Method for manufacturing sintered ore

Publications (2)

Publication Number Publication Date
JPS5839746A true JPS5839746A (en) 1983-03-08
JPS601368B2 JPS601368B2 (en) 1985-01-14

Family

ID=15219425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13833281A Expired JPS601368B2 (en) 1981-09-04 1981-09-04 Method for manufacturing sintered ore

Country Status (1)

Country Link
JP (1) JPS601368B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63282216A (en) * 1987-05-12 1988-11-18 Nkk Corp Manufacture of sintered ore excellent in reducibility
JP2005307256A (en) * 2004-04-20 2005-11-04 Jfe Steel Kk Method for producing sintered ore

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63282216A (en) * 1987-05-12 1988-11-18 Nkk Corp Manufacture of sintered ore excellent in reducibility
JP2005307256A (en) * 2004-04-20 2005-11-04 Jfe Steel Kk Method for producing sintered ore
JP4661077B2 (en) * 2004-04-20 2011-03-30 Jfeスチール株式会社 Method for producing sintered ore

Also Published As

Publication number Publication date
JPS601368B2 (en) 1985-01-14

Similar Documents

Publication Publication Date Title
KR101145603B1 (en) Process for producing reduced iron pellets, and process for producing pig iron
WO2019071796A1 (en) Method for recovering valuable components from mixed slag containing nickel and iron
CN106048109A (en) Method for mixed slag smelting reduction recycling and thermal refining
CN106119447B (en) A kind of method containing rare earth with the production of niobium mixing slag melting and reducing and modifier treatment
CN104232822A (en) Method for carrying out blast furnace iron making on high-phosphorus oolitic hematite and vanadium titano-magnetite
CN104372127A (en) Method for improving furnace maintenance efficiency of blast furnace
CN106755653A (en) A kind of method containing rare earth or the also original production of niobium slag metallurgy melting
CA3181620A1 (en) Method for producing liquid pig iron from a dri product
JP2013209748A (en) Method of manufacturing reduced iron agglomerate
US4985075A (en) Method for manufacturing chromium-bearing pig iron
JPS5839746A (en) Manufacture of sintered ore
CN111154934A (en) Furnace burden structure ratio for adjusting blast furnace slag MgO
CN107641709A (en) A kind of sintering method for reducing burnup
JP4725230B2 (en) Method for producing sintered ore
CN1313407A (en) Process for preparing Cr-contained sintered ore of blast furnace from powdered chromium ore and Fe-contained raw material
US3083090A (en) Production of sinter
JPS61194125A (en) Simultaneous treatment of sludge and steel making slag
JPH0237410B2 (en)
JPH06220549A (en) Pretreatment of raw material to be sintered
JPS62127413A (en) Raw material charging method for blast furnace
AU656060B2 (en) Iron-making sintered ore produced from pisolitic iron ore and production thereof
JPS5935970B2 (en) Method for manufacturing sintered ore
US2308984A (en) Synthetic ore
JPH0617152A (en) Manufacture of sintered ore for blast furnace using high goethite ore as raw material
CN117867267A (en) Premelted pellet for reducing free calcium oxide in steel slag and preparation method