JPH0128085B2 - - Google Patents

Info

Publication number
JPH0128085B2
JPH0128085B2 JP4661282A JP4661282A JPH0128085B2 JP H0128085 B2 JPH0128085 B2 JP H0128085B2 JP 4661282 A JP4661282 A JP 4661282A JP 4661282 A JP4661282 A JP 4661282A JP H0128085 B2 JPH0128085 B2 JP H0128085B2
Authority
JP
Japan
Prior art keywords
ore
agglomerate
blast furnace
uncalcined
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4661282A
Other languages
Japanese (ja)
Other versions
JPS58164710A (en
Inventor
Kenji Kitamura
Minoru Ichidate
Tatsuhiko Shigematsu
Chitose Shiotani
Yoji Tozawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP4661282A priority Critical patent/JPS58164710A/en
Publication of JPS58164710A publication Critical patent/JPS58164710A/en
Publication of JPH0128085B2 publication Critical patent/JPH0128085B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/008Composition or distribution of the charge

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、高炉に使用する非焼成塊成鉱の装
入方法に関する。 非焼成塊成鉱としては、鉄鉱石を主体とする粉
粒鉱石に、バインダーと適当な水分を加えて製造
するコールドボンドペレツトが代表的である。こ
のコールドボンドペレツトは、球形であり焼成ペ
レツトと同様の低安息角であるため、主たる高炉
装入物である焼結鉱、塊鉱石、焼成ペレツトと共
に使用されると高炉炉芯部に集中し、コールドボ
ンドペレツトの層としてその独自の性状(還元性
状、高温性状)を示すこととなる。しかしなが
ら、コールドボンドペレツトはその還元過程にお
いて焼成ペレツトと同様トポケミカルに還元する
ため、還元性状としては好ましくなく、またこの
ことが高温性状劣化の原因となり、焼結鉱と混合
されても大巾な高温性状の改善は期待できない。 なお従来、コールドボンドペレツトに還元剤を
添加することが検討されているが、この方法では
被還元性は改善できても、還元時の強度劣化が大
であり高炉シヤフト部で激しく粉化するため、高
炉装入物としては好ましいものとはならない。 そこでこの発明者らは、前記したコールドボン
ドペレツトのトポケミカルな還元を改善し、高炉
装入時の分布改善を目的として、非焼成塊成鉱の
製造方法を開発した(特願昭56−130004号、特願
昭56−151225号)。この方法は、鉄鉱石を主体と
する粉鉱石に、バインダーと必要なら水分を加え
て団塊化させて非焼成塊成鉱を製造する方法にお
いて、粉鉱石の粒径と配合割合を規定し、さらに
所定粒径のコークスまたは固体還元剤を添加して
成型・硬化、または成型・硬化したものを所定の
大きさに破砕することを特徴とするものである。 この方法により製造された非焼成塊成鉱は、焼
結鉱と同程度の安息角が得られ、装入分布が改善
されるとともに、安息角が大きいため炉芯での充
填率が低くなり良好なガス流れを与えることがで
きる。また、被還元性、昇温還元性および荷重軟
化時の収縮性が小さい等の高温性状も良好であ
る。 この発明者らは、このような良好な性状を示す
非焼成塊成鉱を使用するにあたり、高炉装入物と
しての使用条件をより明確にすることにより、多
量の非焼成塊成鉱の使用が可能になるとの観点か
ら、装入時の分布調査、および高炉の主原料であ
る焼結鉱と非焼成塊成鉱との混合物の性状等につ
いて調査し、非焼成塊成鉱の適正な装入方法を見
い出した。 以下、この発明について詳細に説明する。 この発明の要旨は、鉄鉱石を主体とする粉粒鉱
石に、バインダーと必要なら固体燃料および水分
を加えて団塊化させて非焼成塊成鉱を製造する方
法により、粒径が10mm以下で1mm以上の鉱石を10
〜70%含む粉粒鉱石を用い成型・硬化、必要なら
破砕して製造した非焼成塊成鉱であつて、還元粉
化指数が70以下の非焼成塊成鉱を、(非焼成塊成
鉱重量)/{(非焼成塊成鉱重量)+(焼結鉱重
量)}が0.05〜0.50を満足するように焼結鉱と混
合し、高炉に装入することを特徴とする高炉原料
の装入方法にある。 この発明における非焼成塊成鉱は、粒径が10mm
以下で1mm以上を10〜70%含む鉱石を主原料とす
るが、その理由は以下に示すとおりである。 すなわち、温度1200〜1250℃における種々の大
きさの鉱石を含む非焼成塊成鉱の昇温還元試験を
観察した結果、0.5〜1mm以下の鉱石はセメント、
副原料と反応し均一な溶融組織となつているが、
1mm以上の鉱石はそのままの状態で残留し、軟化
収縮にはほとんど寄与しないことを見い出した。
その理由は、鉱石粒とセメントの反応は表面でお
こり、鉱石内部までセメントの組成が拡散せず、
鉱石中の脈石量が少ないためと推察される。 また、セメントと反応しない1mm以上の鉱石量
を変化させて高温性状を調べた結果、鉱石中に1
mm以上の粒径のものが10%以上あれば、通常の高
炉原料と同等の軟化性状が得られることが判明し
た。 さらに、1mm以上の鉱石量と圧潰強度の関係を
調べた結果、1mm以上の鉱石粒の比率が70%を越
えると、規準の圧潰強度より低くなり実用に耐え
ないものとなる。これは、高温性状は1mm以上の
鉱石粒の比率が大となる程良好となる一方、微粉
鉱石が減少し成型時の充填性が悪化することがそ
の原因と推定される。 以上の知見より、この発明では粒径が10mm以下
で1mm以上の鉱石粒を10〜70%含む粉粒鉱石を主
原料とする非焼成塊成鉱を用いることとした。な
お、鉱石粒の上限を10mm以下としたのは、10mm以
上の鉱石はそのままの状態で高炉への装入が可能
で、塊成化する必要がないからである。 また、この発明における非焼成塊成鉱は、ブロ
ツク状に成型・硬化したまま使用するか、または
破砕して使用するが、これは安息角の向上と通気
低抗の改善をはかるためである。 すなわち、ブロツク状、あるいはブロツク状の
ものを破砕した非焼成塊成鉱の安息角は、第1表
に示すごとく、主たる高炉装入物であるコーク
ス、焼結鉱の安息角とほぼ等しい。従つて、安息
角の送風による変化も第1図に示すごとく、コー
クス、焼結鉱とほとんど同じであり、また第2図
に示すように、高炉装入時のore/cokeも焼結鉱
と同等である。
The present invention relates to a method for charging uncalcined agglomerates used in a blast furnace. A typical example of uncalcined agglomerate ore is cold bond pellets, which are produced by adding a binder and appropriate moisture to powdered ore, mainly iron ore. These cold bond pellets are spherical and have a low angle of repose similar to that of calcined pellets, so when used together with the main blast furnace charges such as sintered ore, lump ore, and calcined pellets, they concentrate in the core of the blast furnace. As a layer of cold bond pellets, it exhibits unique properties (reducing properties, high temperature properties). However, cold bond pellets are topochemically reduced in the same way as calcined pellets during the reduction process, so their reducing properties are unfavorable.This also causes deterioration of their high-temperature properties, and even when mixed with sintered ore, they are No improvement in high temperature properties can be expected. Conventionally, it has been considered to add a reducing agent to cold bond pellets, but although this method improves reducibility, it significantly deteriorates the strength during reduction and causes severe powdering in the blast furnace shaft. Therefore, it is not desirable as a blast furnace charge. Therefore, the inventors developed a method for producing uncalcined agglomerates with the aim of improving the topochemical reduction of the cold bond pellets described above and improving the distribution during charging into the blast furnace (Patent Application No. 130004/1983). No., Special Application No. 151225/1983). This method involves the production of uncalcined agglomerates by adding a binder and, if necessary, moisture to powdered ore, mainly iron ore. It is characterized by adding coke of a predetermined particle size or a solid reducing agent and molding and hardening, or by crushing the molded and hardened product into a predetermined size. The uncalcined agglomerate ore produced by this method has an angle of repose comparable to that of sintered ore, and the charging distribution is improved, and because the angle of repose is large, the filling rate in the furnace core is low, which is favorable. It can provide a good gas flow. It also has good high-temperature properties such as low reducibility, high temperature reducibility, and low shrinkage when softened under load. In using unfired agglomerate that exhibits such good properties, the inventors have made it possible to use a large amount of unfired agglomerate by clarifying the conditions for use as blast furnace charge. From the perspective of making it possible, we conducted a distribution survey during charging and investigated the properties of the mixture of sintered ore and unfired agglomerate, which are the main raw materials for blast furnaces, to ensure proper charging of unfired agglomerate ore. I found a way. This invention will be explained in detail below. The gist of this invention is to produce a non-calcined agglomerate by adding a binder and, if necessary, solid fuel and water to powdered ore, mainly iron ore, to produce a non-calcined agglomerate with a grain size of 10 mm or less. more than 10 ores
Non-calcined agglomerate ore produced by molding and hardening, and if necessary crushing, using granular ore containing ~70%, with a reduced pulverization index of 70 or less, (non-calcined agglomerate ore) A blast furnace raw material charging method characterized by mixing sintered ore with sintered ore so that weight)/{(unfired agglomerated ore weight) + (sintered ore weight)} satisfies 0.05 to 0.50 and charging the mixture into a blast furnace. It's in the entry method. The uncalcined agglomerate in this invention has a particle size of 10 mm.
In the following, ores containing 10 to 70% of 1 mm or more will be used as the main raw material, and the reason is as follows. In other words, as a result of observing temperature-programmed reduction tests of uncalcined agglomerates containing ores of various sizes at temperatures of 1,200 to 1,250°C, it was found that ores of 0.5 to 1 mm or less were treated as cement,
It reacts with the auxiliary raw materials and becomes a uniform molten structure, but
It has been found that ores larger than 1 mm remain as they are and hardly contribute to softening and shrinkage.
The reason is that the reaction between ore grains and cement occurs on the surface, and the cement composition does not diffuse into the interior of the ore.
This is thought to be due to the small amount of gangue in the ore. In addition, as a result of examining high-temperature properties by varying the amount of ore larger than 1 mm that does not react with cement, we found that
It was found that if 10% or more of the grains had a particle size of mm or more, softening properties equivalent to those of ordinary blast furnace raw materials could be obtained. Furthermore, as a result of investigating the relationship between the amount of ore grains of 1 mm or more and the crushing strength, it was found that when the ratio of ore grains of 1 mm or more exceeds 70%, the crushing strength becomes lower than the standard crushing strength and is not suitable for practical use. The reason for this is presumed to be that, while the high-temperature properties become better as the ratio of ore grains of 1 mm or more increases, the amount of fine ore decreases and the filling properties during molding deteriorate. Based on the above knowledge, in this invention, it was decided to use a non-calcined agglomerate whose main raw material is powder ore containing 10 to 70% of ore grains with a particle size of 10 mm or less and 1 mm or more. The reason why the upper limit of ore grains is set to 10 mm or less is that ores larger than 10 mm can be charged into the blast furnace as they are and do not need to be agglomerated. Further, the uncalcined agglomerated ore in the present invention is used as it is after being formed into a block and hardened, or is used after being crushed, in order to improve the angle of repose and the ventilation resistance. That is, as shown in Table 1, the angle of repose of block-shaped or uncalcined agglomerated ore obtained by crushing block-shaped ore is approximately equal to the angle of repose of coke and sintered ore, which are the main blast furnace charges. Therefore, as shown in Figure 1, the change in the angle of repose due to air blast is almost the same as that of coke and sintered ore, and as shown in Figure 2, the ore/coke at the time of charging into the blast furnace is also different from that of sintered ore. are equivalent.

【表】 この発明者らは、上記のような特徴を有する非
焼成塊成鉱の炉内における分布状態について調べ
たところ、この非焼成塊成鉱の場合は第3図に示
すごとく、装入方法によつて分布状態が異なるこ
とが判明した。すなわち、層状に装入した場合に
は、高炉炉壁に非焼成塊成鉱が偏析するが、混合
装入の場合はほとんど偏析が起こらない。その理
由は、層状装入の場合は、焼結鉱と非焼成塊成鉱
の安息角が若干異なるため別々に装入される形に
より偏析が生ずるものと考えられる。一方、焼結
鉱と混合して装入した場合は、両者の安息角の差
が小さいため一種類の鉱石のごとき挙動を示すこ
とになり偏析が生じないものと考えられる。従つ
て、この非焼成塊成鉱については、混合装入法が
有効である。 また、この発明において、非焼成塊成鉱の還元
粉化指数を70以下とし、この非焼成塊成鉱の使用
量を、(非焼成塊成鉱)/{(非焼成塊成鉱)+(焼
結鉱)}=0.05〜0.50の範囲に限定したのは、以下
の理由による。 第4図は非焼成塊成鉱の高温性状を示す圧力損
失(温度1200℃)と還元粉化指数(−5mm%)と
の関係を示す。すなわち、非焼成塊成鉱の高温性
状は粉化により影響を受けていることがわかる。 高炉の場合、装入された高炉原料は充填された
状況にあり、充填率が高くなれば非焼成塊成鉱が
ある一定荷重下で崩壊するために必要な圧潰強度
は小さくなる。すなわち、高温度、高還元率にな
るまで粉化が遅延され、高温性状が改善されるこ
とになる。第5図は充填粒子個数の変化を示す
が、非焼成塊成鉱を50%以上配合すると、鉱石粒
子の単位体積を占有する個数が減少し、非焼成塊
成鉱の性状が顕著に現われるものと推定される。
第6図は非焼成塊成鉱と焼結鉱を混合した場合の
高温性状の調査結果を示すが、非焼成塊成鉱の使
用量が50%までは焼結鉱の結果と差はなく、良好
な性状を有している。従つて、焼結鉱に対する非
焼成塊成鉱の配合量は50%が最大と推定される。
なお、配合量の下限を5%にとつたのは、これ以
下では高炉原料として意味がないからである。 また、第7図は焼結鉱/非焼成塊成鉱を1/1
の割合で混合して使用した場合の還元粉化指数
(−3mm%)と温度1300℃における圧力損失の関
係を調べた結果である。この第7図より、還元粉
化指数(−3mm%)が70以下であれば、焼結鉱/
非焼成塊成鉱が1/1の場合でも、焼結鉱と同等
の性状を有することが判明した。なお、還元粉化
指数が70を越えると、還元時の粉化が大きくな
り、高炉シヤフト部で悪影響を与えるため使用で
きない。一方、還元粉化指数が小さくなれば、非
焼成塊成鉱の配合率を高くしても、良好な高温性
状は得られるが、非焼成塊成鉱を多配合すると焼
結鉱が偏在しやすくなり高温性状が部分的に悪化
する可能性があるため、非焼成塊成鉱の配合率は
50%が限界と推察される。 次に、この発明の実施例について説明する。 実施例 第2表に示す組成を有し、第3表に示す粒度構
成の原料に−5mmのコークス粉を2%以下添加
し、および無添加のものと水と混合した後、直径
100mm×高さ60mmの円筒体に成型し、これを8日
間養生した後10〜15mmの大きさに破砕した還元粉
化指数が32と62の非焼成塊成鉱A、Bをそれぞれ
焼結鉱と混合して高炉装入物としての性状調査を
行なつた。焼結鉱と非焼成塊成鉱の配合量、常温
強度指数、還元粉化指数および高温性状を第4表
に示す。
[Table] The inventors investigated the distribution state in the furnace of unfired agglomerate having the above-mentioned characteristics, and found that in the case of this unfired agglomerate, charging It was found that the distribution state differed depending on the method. That is, when charging in layers, uncalcined agglomerates segregate on the blast furnace wall, but when charging in a mixed manner, almost no segregation occurs. The reason for this is thought to be that in the case of layered charging, the angles of repose of the sintered ore and the unfired agglomerated ore are slightly different, so segregation occurs due to the shape in which they are charged separately. On the other hand, when it is charged mixed with sintered ore, the difference in the angle of repose between the two is small, so it behaves like one type of ore, and no segregation occurs. Therefore, the mixed charging method is effective for this uncalcined agglomerate ore. In addition, in this invention, the reduction pulverization index of the non-calcined agglomerate ore is set to 70 or less, and the usage amount of the non-calcined agglomerate ore is calculated as (non-calcined agglomerate)/{(non-calcined agglomerate)+( The reason for limiting the range of sintered ore) to 0.05 to 0.50 is as follows. Figure 4 shows the relationship between pressure loss (temperature 1200°C) and reduction powdering index (-5 mm%), which indicates the high-temperature properties of uncalcined agglomerate ore. In other words, it can be seen that the high-temperature properties of uncalcined agglomerate ore are affected by pulverization. In the case of a blast furnace, the charged blast furnace raw material is in a packed state, and the higher the filling rate, the smaller the crushing strength required for unburned agglomerates to collapse under a certain load. That is, powdering is delayed until high temperature and high reduction rate are reached, and high temperature properties are improved. Figure 5 shows the change in the number of packed particles, and when more than 50% of uncalcined agglomerate is blended, the number of ore particles occupying a unit volume decreases, and the properties of uncalcined agglomerate become noticeable. It is estimated to be.
Figure 6 shows the investigation results of high-temperature properties when uncalcined agglomerate ore and sintered ore are mixed, but there is no difference from the results for sintered ore until the amount of uncalcined agglomerate is used up to 50%. It has good properties. Therefore, it is estimated that the maximum amount of uncalcined agglomerate to sintered ore is 50%.
The lower limit of the blending amount was set at 5% because anything less than this is meaningless as a blast furnace raw material. In addition, Figure 7 shows sintered ore/non-fired agglomerated ore at 1/1
These are the results of investigating the relationship between the reduction powdering index (-3 mm%) and the pressure loss at a temperature of 1300°C when used in a mixture at a ratio of . From this figure 7, if the reduction powdering index (-3mm%) is 70 or less, sintered ore/
It was found that even when the ratio of uncalcined agglomerated ore is 1:1, it has properties equivalent to those of sintered ore. In addition, if the reduction powdering index exceeds 70, powdering during reduction will increase and it will have an adverse effect on the blast furnace shaft, so it cannot be used. On the other hand, if the reduced pulverization index becomes small, good high-temperature properties can be obtained even if the proportion of uncalcined agglomerate is increased, but if a large amount of uncalcined agglomerate is blended, sinter tends to be unevenly distributed. Since the high-temperature properties may partially deteriorate, the blending ratio of unfired agglomerate should be
It is estimated that 50% is the limit. Next, embodiments of the invention will be described. Example: A raw material having the composition shown in Table 2 and the particle size structure shown in Table 3 was added with 2% or less of -5 mm coke powder, and after mixing with no additive and water, the diameter
The uncalcined agglomerated ores A and B, which have reduction pulverization indexes of 32 and 62, are formed into a cylindrical body of 100 mm x height 60 mm, cured for 8 days, and then crushed to a size of 10 to 15 mm. The properties of the mixture as a blast furnace charge were investigated. Table 4 shows the blending amounts of sintered ore and unfired agglomerated ore, room temperature strength index, reduction powdering index, and high temperature properties.

【表】【table】

【表】【table】

【表】 第4表より、常温強度指数、還元粉化指数、高
温性状のそれぞれの値は、高炉操業に悪影響を与
えない値であることが判明した。 以上説明したごとく、この発明法によれば、非
焼成塊成鉱は焼結鉱と同様の挙動を示すことか
ら、炉内では偏析はほとんど起こらず、また良好
な高温性状を示すため、非焼成塊成鉱の使用量を
大巾に増大することが可能となり、原料コスト並
びに燃料原単位の低減に大なる効果を奏する。
[Table] From Table 4, it was found that the values of the room temperature strength index, reduction powdering index, and high temperature properties were values that did not adversely affect blast furnace operation. As explained above, according to the method of this invention, uncalcined agglomerated ore exhibits the same behavior as sintered ore, so almost no segregation occurs in the furnace, and since it exhibits good high-temperature properties, It becomes possible to greatly increase the amount of agglomerated ore used, which has a great effect on reducing raw material costs and fuel consumption.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明における非焼成塊成鉱と、焼
結鉱およびコークスの安息角の送風による変化を
示す図表、第2図は焼結鉱と非焼成塊成鉱の高炉
装入時のore/coke比を示す図表、第3図は非焼
成塊成鉱の装入方法の違いによる分布状態を示す
図表、第4図は非焼成塊成鉱の還元粉化指数(−
5mm%)と温度1200℃における圧力損失の関係を
示す図表、第5図は非焼成塊成鉱配合比と鉱石粒
子固数比の関係を示す図表、第6図は非焼成塊成
鉱混合比率と圧力損失の関係を示す図表、第7図
は非焼成塊成鉱の還元粉化指数(−3mm%)と温
度1300℃における圧力損失の関係を示す図表であ
る。
Figure 1 is a chart showing changes in the angle of repose of unfired agglomerate ore, sintered ore and coke according to the present invention, and Figure 2 shows the ore of sintered ore and unfired agglomerate when charged into a blast furnace. /coke ratio, Figure 3 is a diagram showing the distribution state of uncalcined agglomerate ore depending on the charging method, and Figure 4 is a diagram showing the reduction powdering index (-
5mm%) and pressure drop at a temperature of 1200°C, Figure 5 is a diagram showing the relationship between uncalcined agglomerate blending ratio and ore particle solid ratio, and Figure 6 is a graph showing the relationship between uncalcined agglomerate blending ratio and ore particle solid number ratio. Fig. 7 is a chart showing the relationship between the reduction powdering index (-3 mm%) of uncalcined agglomerated ore and the pressure loss at a temperature of 1300°C.

Claims (1)

【特許請求の範囲】[Claims] 1 鉄鉱石を主体とする粉粒鉱石に、バインダー
と必要なら固体燃料および水分を加えて団塊化さ
せて非焼成塊成鉱を製造する方法により、粒径が
10mm以下で1mm以上の鉱石を10〜70%含む粉粒鉱
石を用い成型・硬化、必要なら破砕して製造した
非焼成塊成鉱であつて、還元粉化指数が70以下の
非焼成塊成鉱を、(非焼成塊成鉱重量)/{(非焼
成塊成鉱重量)+(焼結鉱重量)}が0.05〜0.50を
満足するように焼結鉱と混合し、高炉に装入する
ことを特徴とする高炉原料の装入方法。
1. Particle size is reduced by a method of producing non-calcined agglomerates by adding a binder and, if necessary, solid fuel and moisture to powdered ore, which is mainly iron ore, and agglomerating it.
Non-calcined agglomerate ore produced by molding, hardening and, if necessary, crushing, using granular ore containing 10 to 70% of ore of 1 mm or less, with a reduced pulverization index of 70 or less. The ore is mixed with sintered ore so that (weight of unfired agglomerate ore)/{(weight of unfired agglomerate ore) + (weight of sintered ore)} satisfies 0.05 to 0.50, and charged into a blast furnace. A method of charging raw materials for a blast furnace characterized by the following.
JP4661282A 1982-03-24 1982-03-24 Method for charging raw material to blast furnace Granted JPS58164710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4661282A JPS58164710A (en) 1982-03-24 1982-03-24 Method for charging raw material to blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4661282A JPS58164710A (en) 1982-03-24 1982-03-24 Method for charging raw material to blast furnace

Publications (2)

Publication Number Publication Date
JPS58164710A JPS58164710A (en) 1983-09-29
JPH0128085B2 true JPH0128085B2 (en) 1989-06-01

Family

ID=12752118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4661282A Granted JPS58164710A (en) 1982-03-24 1982-03-24 Method for charging raw material to blast furnace

Country Status (1)

Country Link
JP (1) JPS58164710A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4971815B2 (en) * 2007-02-01 2012-07-11 株式会社神戸製鋼所 Blast furnace operation method
JP2009211740A (en) 2008-02-29 2009-09-17 Panasonic Corp Method of manufacturing base member, method of manufacturing motor, method of manufacturing information apparatus, base member, motor, and information apparatus
UA97916C2 (en) * 2008-10-10 2012-03-26 Нипон Стил Корпорейшн blast-furnace process with the use of carbon-containing unfired pellets
EP2857529A4 (en) * 2012-05-28 2016-02-24 Nippon Steel & Sumitomo Metal Corp Method for charging raw material into bell-less blast furnace

Also Published As

Publication number Publication date
JPS58164710A (en) 1983-09-29

Similar Documents

Publication Publication Date Title
JP2008214715A (en) Method for manufacturing nonfired agglomerated ore for iron manufacture
JP6056492B2 (en) Method for producing unfired carbon-containing agglomerated blast furnace
JP5803540B2 (en) Method for producing unfired carbon-containing agglomerated mineral
CA1149617A (en) Porous iron ore pellets and process for manufacturing same
JP5114742B2 (en) Method for producing carbon-containing unfired pellets for blast furnace
JPH0128085B2 (en)
KR101444562B1 (en) Unfired carbon-containing agglomerate and production method therefor
JP3863052B2 (en) Blast furnace raw material charging method
JP6326074B2 (en) Carbon material interior ore and method for producing the same
US3194673A (en) Hydraulic cement and process for making same
JP7188126B2 (en) Method for manufacturing carbon-containing non-fired pellets for blast furnace
JP3709001B2 (en) Non-fired agglomerated ore for iron making and method of using the same
JP7188033B2 (en) Method for producing coal-bearing agglomerate ore
JPS5928534A (en) Manufacture of unbaked massive ore
JPS58213837A (en) Method for sintering chrome ore
JP2627854B2 (en) Method for producing unfired agglomerate
JPS629653B2 (en)
JP2003027150A (en) Method for manufacturing nonfired agglomerated ore with excellent degradation resistance, and nonfired agglomerated ore
JPH01191750A (en) Production of sintered ore
JPH0559972B2 (en)
JPS586941A (en) Production of uncalcined massive ore
KR100687250B1 (en) Cokes briquette containingg fine concentrate containing steelmaking slag and method for producing the same
JP2711587B2 (en) Unfired agglomerate production method
JP2007302956A (en) Nonfired agglomerated ore for iron manufacture
JPH0230722A (en) Manufacture of briquetted ore for blast furnace