JPH01191750A - Production of sintered ore - Google Patents

Production of sintered ore

Info

Publication number
JPH01191750A
JPH01191750A JP1372188A JP1372188A JPH01191750A JP H01191750 A JPH01191750 A JP H01191750A JP 1372188 A JP1372188 A JP 1372188A JP 1372188 A JP1372188 A JP 1372188A JP H01191750 A JPH01191750 A JP H01191750A
Authority
JP
Japan
Prior art keywords
ore
raw materials
sintering
sintered
iron ore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1372188A
Other languages
Japanese (ja)
Inventor
Shiro Tarumoto
樽本 四郎
Harumi Ishii
石井 晴美
Susumu Kameo
亀尾 晋
Masato Kono
正人 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP1372188A priority Critical patent/JPH01191750A/en
Publication of JPH01191750A publication Critical patent/JPH01191750A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To produce a raw material of a sintered ore having excellent reducibility with good productivity by adding an MgO-contg. raw material or further fine particulate iron ore, silica sand and returns to an easily meltable iron ore, pelletizing the mixture and repelletizing these pellets together with the remaining iron ore, auxiliary raw materials, returns, and coke, etc., at the time of producing the sintered ore for a blast furnace. CONSTITUTION:The easily meltable iron ore is selected from various brands of the iron ores and the MgO-contg. material such as serpentine is mixed with this iron ore at the time of producing the sintered ore as the raw material for the blast furnace. The fine particulate iron ore, silica sand or returns of the sintered ore are otherwise mixed further in addition to the serpentine with said iron ore and the mixture is pelletized by adding water thereto. The remaining iron ore, limestone, powder coke, etc., are added to these pellets and the mixture is repelletized. The pellets are sintered by a sintering machine, by which the sintered ore for the blast furnace having the excellent reducibility in the blast furnace is produced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、製鉄における焼結鉱を農道する方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for converting sintered ore into agricultural roads in iron manufacturing.

〔従来の技術〕[Conventional technology]

高炉の主原料は、焼結鉱、ペレット、塊鉱石等があるが
、その中の焼結鉱は、他の主原料よりも、被還元性等の
品質が優れており、高炉を安定にかつ、燃料比を低くす
るには、高炉主原料中の、焼結鉱比を高くすることが望
ましい。
The main raw materials for blast furnaces include sintered ore, pellets, lump ore, etc. Among them, sintered ore has better reducibility and other qualities than other main raw materials, and it makes the blast furnace stable and stable. In order to lower the fuel ratio, it is desirable to increase the sintered ore ratio in the blast furnace main raw material.

従来より、焼結鉱の生産性を向上させるため焼結原料の
通気性を改善する手法として特開昭56−21341で
は、微粉原料をあらかじめミニペレットにして通気性を
改善する方法が提案されている。
Conventionally, as a method for improving the air permeability of sintered raw materials in order to improve the productivity of sintered ore, JP-A-56-21341 proposed a method of improving air permeability by making fine powder raw materials into mini pellets in advance. There is.

また、特開昭59−232238では、微粉原料をブリ
ケラティングで、ある限定された寸法の成型物とするこ
とにより生産性を向上させる方法が提案されている。
Furthermore, Japanese Patent Laid-Open No. 59-232238 proposes a method of improving productivity by forming a molded product of a certain limited size by briquerating a fine powder raw material.

しかしながら、従来法ではベントナイト等のバインダー
を必要とし、しかも通気性を改善して焼結時間を短縮し
、生産性を向上させるものであるが、吸引空気量が増大
して冷間強度や歩留が低下することになる。したがって
、焼成熱量を増加させるため固体燃料の増配で、冷間強
度、歩留を推持しているのが現状であり、そのため焼結
温度が従来と変わらず、被還元性が依然として改善され
ていない。
However, the conventional method requires a binder such as bentonite, which improves air permeability, shortens sintering time, and improves productivity, but increases the amount of suction air and reduces cold strength and yield. will decrease. Therefore, the current situation is to maintain cold strength and yield by increasing the amount of solid fuel in order to increase the calorific value of sintering.As a result, the sintering temperature remains the same as before, and reducibility is still improved. do not have.

〔発明が解決しようする問題点〕[Problem that the invention aims to solve]

以上のように、従来技術では焼結原料層の通気性を改善
させる方法であるため、生産性と被還元性の両者を同時
に改善することが出来なかった。
As described above, since the conventional technique is a method of improving the air permeability of the sintered raw material layer, it has not been possible to simultaneously improve both productivity and reducibility.

〔問題を解決する手段〕 本発明者は、鋭意研究を重ねた結果、あらかじめ他の鉄
鉱石から選り分けた、易溶融鉱石に融液化しがたいMg
Oを含有する蛇紋岩等と水を加えて造粒し、得られた造
粒物を残りの銘柄の鉄鉱石、雑原料、副原料、返鉱およ
び固体燃料とともに造粒して焼結原料とし、この焼結原
料を通常の方法に従って焼結することにより、生産性と
被還元性を同時に改善するものである。
[Means for Solving the Problem] As a result of extensive research, the present inventor has found that Mg, which is difficult to melt, is added to easily melted ore, which has been selected from other iron ores in advance.
Granulate by adding O-containing serpentinite, etc. and water, and granulate the resulting granules together with the remaining brand of iron ore, miscellaneous raw materials, auxiliary raw materials, return ore, and solid fuel to use as a sintering raw material. By sintering this sintered raw material according to a conventional method, productivity and reducibility are improved at the same time.

〔発明の構成〕[Structure of the invention]

すなわち、本発明は、複数の銘柄の鉄鉱石、雑原料、副
原料および返鉱に、固体燃料を混合して焼結原料を得る
に際し1通常の焼結条件において、その焼結過程では容
易に同化する易溶融鉱石をあらかじめ、他の銘柄の鉄鉱
石から選り分け、この選り分けた易溶融鉱石に、前記の
副原料の一部としてのMgO源および水を添加して造粒
し、この造粒物を残りの銘柄の鉄鉱石、雑原料、副原料
、返鉱および固体燃料とともに造粒して焼結原料とし、
この焼結原料を通常の方法に従って焼結することからな
る焼結鉱の製造方法を提供する。
That is, the present invention provides a method for obtaining a sintering raw material by mixing multiple brands of iron ore, miscellaneous raw materials, auxiliary raw materials, and return ore with solid fuel. The easily melted ore to be assimilated is sorted in advance from other brands of iron ore, and the MgO source and water as part of the auxiliary raw materials are added to the sorted easily melted ore and granulated. is granulated with the remaining brands of iron ore, miscellaneous raw materials, auxiliary raw materials, return ore, and solid fuel to become a sintering raw material.
A method for producing sintered ore is provided, which comprises sintering this sintered raw material according to a conventional method.

本発明の方法において、雑原料とは製鉄所において不可
避的に発生する鉄原料を意味し、その具体例はスケール
、ダスト等である。
In the method of the present invention, miscellaneous raw materials refer to iron raw materials that are unavoidably generated in ironworks, and specific examples thereof include scale, dust, and the like.

本発明の方法において、副原料とは焼結鉱の品質を高め
るために配合する滓化剤やスラグ組成調整用の鉄原料以
外の原料を意味し、その具体例は石灰石、蛇紋岩等であ
る。副原料中MgO源は代表的には蛇紋岩である。
In the method of the present invention, auxiliary raw materials refer to raw materials other than iron raw materials for adjusting the composition of slag and slag agents blended to improve the quality of sintered ore, specific examples of which are limestone, serpentine, etc. . The MgO source among the auxiliary raw materials is typically serpentine.

本発明の方法において、易溶融鉱石とは滓化剤の石灰石
との反応性が良好で、融液が多く生成する鉱石であり、
その具体例はローブリバーやマウントニューマン、>1
マースレー等の鉱石である。
In the method of the present invention, the easily melting ore is an ore that has good reactivity with limestone as a slag agent and produces a large amount of melt,
Specific examples include Robe River and Mount Newman, >1
Marsley and other ores.

本発明の方法において、同化とは高温時の融液により原
料が一旦均質化することを意味する。
In the method of the present invention, assimilation means that the raw material is once homogenized by the melt at high temperature.

好ましい態様において、易溶融鉱石の造粒において、M
gO源(好ましくは蛇紋岩)に加えて微粉鉱石、さらに
珪砂、返鉱等が混合される。
In a preferred embodiment, in the granulation of easily melted ore, M
In addition to the gO source (preferably serpentine), fine ore, silica sand, return ore, etc. are mixed.

本発明方法において、造粒、焼結の操作自体は既知法に
よる。
In the method of the present invention, the granulation and sintering operations themselves are performed using known methods.

今日多用される鉄鉱石の銘柄(産地名)と平均的組成を
第1表に示す。
Table 1 shows the brands (places of origin) and average compositions of iron ores that are frequently used today.

第1表         (vt%) ロープリバーは代表的易溶融鉱石である。Table 1 (vt%) Rope river is a typical easily melted ore.

本発明方法において、微粉鉱石とはペレットフィードを
いう。
In the method of the present invention, fine ore refers to pellet feed.

(発明の具体的な開示) 以下実施例により本発明を具体的に説明する。(Specific disclosure of invention) The present invention will be specifically explained below using Examples.

実施例において使用した原料を第2表に示す。Table 2 shows the raw materials used in the examples.

実施例■ 第3表に示すように、そのなかから易溶融鉱石Aと蛇紋
岩だけを混合してドラム型造粒機で造粒し、その後、他
の成分と全都合せてパン型造粒機で造粒した。
Example■ As shown in Table 3, only easily melted ore A and serpentine are mixed and granulated in a drum-type granulator, and then all other ingredients are mixed and granulated in a pan-type granulator. It was granulated with

その両方を合せて50kg容量の錨型試験焼結機で焼結
した。
Both were sintered in an anchor-type test sintering machine with a combined capacity of 50 kg.

この実験に使用した上記錨型試験焼結機は第1図に示す
構造のもので、#41、点火用フード3(LPG導入口
4を有する)、ウィンドボックス5、吸引ブロワ−7を
含む排ガス系よりなり、要所に熱電対温度計6を備えて
いる。鍋に焼結原料を装入し、LPGに着火して下部よ
り吸引した。
The anchor-type test sintering machine used in this experiment has the structure shown in Figure 1, and includes a #41, ignition hood 3 (with an LPG inlet 4), a wind box 5, and a suction blower 7. The system is equipped with thermocouple thermometers 6 at key points. Sintering raw materials were charged into a pot, LPG was ignited, and suction was drawn from the bottom.

別に、比較例として、従来法により第2表に示す原料を
選りわけることなく同時に、造粒焼結した。
Separately, as a comparative example, the raw materials shown in Table 2 were granulated and sintered at the same time without selection according to a conventional method.

第  2  表            (すt/%)
*外側り重量% 第  3  表              (すt/
%)実施例■ 第4表に示す原料を用いて、実施例Iと同様に造粒焼結
した。
Table 2 (st/%)
*Outside weight% Table 3 (st/
%) Example ■ Using the raw materials shown in Table 4, granulation and sintering were carried out in the same manner as in Example I.

第4表     (誓t/%) *外側り重量% 実施例■ 第5表に示す原料を用いて、実施例■と同様に造粒焼結
した。
Table 4 (T/%) *External weight% Example ■ Using the raw materials shown in Table 5, granulation and sintering were carried out in the same manner as in Example ■.

第5表     (wt/%) 車外側り重量% 第6表 上記実施の結果をまとめて第6表に示す。Table 5 (wt/%) Vehicle outside weight% Table 6 The results of the above implementation are summarized in Table 6.

焼結特性としては焼結時間、歩留および生産性を示し、
また、焼結鉱品質としては低温還元粉化指数およびJI
Si元率を示した。なお、低温還元粉化指数は、焼結鉱
試料500gを、COガス30%で残部がN2の還元ガ
スで550℃×30分間の還元処理後、直径130mm
 X長さ200Q111のバレルに装入し、30rpm
で30分間回転して粉化させ、その粒径3ml11未満
のものの量C%)の測定値であり、この値が小さいほど
焼結鉱の低温還元粉化性が良好であることを意味する。
Sintering characteristics include sintering time, yield, and productivity.
In addition, the quality of sintered ore is determined by low temperature reduction powdering index and JI
The Si element rate is shown. The low-temperature reduction powdering index is calculated by reducing 500 g of a sintered ore sample with a reducing gas of 30% CO gas and the balance N2 at 550°C for 30 minutes.
Loaded into a barrel of X length 200Q111, 30 rpm
The sintered ore is rotated for 30 minutes to be powdered, and the amount of particles with a particle size of less than 3 ml (C%) is measured, and the smaller this value is, the better the low-temperature reduction powdering properties of the sintered ore are.

また、還元率(%)はJIS M 8713に準拠した
試験法で測定したものであり、この値が大きいものほど
焼結鉱の被還元性が良好であることを意味する。
Further, the reduction rate (%) is measured by a test method based on JIS M 8713, and the larger the value, the better the reducibility of the sintered ore.

第6表の結果より、本発明法の場合、比較例(従来法)
に比べて焼結時間が短くなっている。また、前述したよ
うに従来技術は焼結原料層の通気性を改善させる方法で
あるため、生産性と被還元性の両者を同時に改善するこ
とが出来なかったが。
From the results in Table 6, in the case of the present invention method, the comparative example (conventional method)
The sintering time is shorter than that of Furthermore, as described above, since the conventional technique is a method of improving the air permeability of the sintered raw material layer, it has not been possible to simultaneously improve both productivity and reducibility.

本発明法の場合では比較例(従来法)に比べ歩留を低下
させることなく焼結時間の短縮により生産性の向上を達
成されており、被還元性も改善されていることが明らか
である。なお、低温還元粉化指数については、はとんど
差がなかった。
In the case of the method of the present invention, productivity has been improved by shortening the sintering time without reducing the yield compared to the comparative example (conventional method), and it is clear that the reducibility has also been improved. . Furthermore, there was almost no difference in the low-temperature reduction powdering index.

第2図は、比較例(従来法)、実施例■、実施例■・■
における焼結時の焼結層内温度の測定結果を示す、この
結果より、本発明法の実施例■の場合、比較例(従来法
)に比べて層内最高温度に差がないものの、1100℃
、1200℃の高温部での保持時間が短くなっているこ
とがわかる。すなわち、通常では焼結温度付近では、は
とんど融液化しない蛇紋岩等のM(O源と易溶融鉱石を
一緒に造粒した本発明法では、過剰な融液化が抑制され
、焼結原料が焼結される時の過溶融が防止でき1通気性
が改善され、生産性を向上させたものと考えられる。
Figure 2 shows a comparative example (conventional method), an example ■, an example ■・■
The results show the measurement results of the temperature inside the sintered layer during sintering in 1100. ℃
, it can be seen that the holding time at the high temperature section of 1200° C. is shortened. In other words, in the method of the present invention, in which M(O) source such as serpentinite, which normally does not melt near the sintering temperature, and easily melted ore are granulated together, excessive melting is suppressed, and the sintering temperature is reduced. It is thought that over-melting of the raw materials during sintering can be prevented, 1 air permeability has been improved, and productivity has been improved.

さらには、比較例(従来法)では全原料を一度に混合造
粒しているため、蛇紋岩が焼結原料全体に一様に分散す
るために、融液化せずに脆弱となる部分が一様に存在し
、焼結鉱の強度は低下し歩留を低くすることになるが、
本発明法の実施例Iでは、あらかじめ選り分けた易溶融
鉱石と蛇紋岩を造粒することにより、脆弱部が低減され
ることになり、比較例(通常法)と同量の固体燃料で、
焼結鉱全体の強度(歩留)を劣化させることなく、強度
(歩留)が比較例(従来法)と同等の焼結鉱の製造が達
成できる。
Furthermore, in the comparative example (conventional method), all the raw materials are mixed and granulated at once, so the serpentinite is uniformly dispersed throughout the sintered raw material, and the fragile parts are not molten. However, the strength of the sintered ore decreases and the yield decreases.
In Example I of the method of the present invention, the weak parts are reduced by granulating easily melted ore and serpentine that have been selected in advance, and with the same amount of solid fuel as in the comparative example (normal method),
It is possible to produce sintered ore whose strength (yield) is equivalent to that of the comparative example (conventional method) without deteriorating the overall strength (yield) of the sintered ore.

〔発明の効果〕〔Effect of the invention〕

以上、述べたように、本発明法は焼結鉱の強度(歩留)
を劣化させることなく、焼結時間の短縮を図り生産性を
向上させ、さらには、被還元性を向上させることができ
る。
As mentioned above, the method of the present invention improves the strength (yield) of sintered ore.
It is possible to shorten the sintering time, improve productivity, and further improve reducibility without deteriorating the sintering time.

しかも1本発明法は、あらかじめ選り分けて造粒する原
料には、粒径が大きな粒子が多く含まれているため、造
粒時に従来技術のようにバインダー類を添加しなくても
造粒することができ、バインダー類を一切必要としない
Moreover, in the method of the present invention, since the raw materials that are sorted and granulated in advance contain many particles with large particle sizes, granulation can be carried out without adding binders as in the conventional technology. , and does not require any binders.

したがって、本発明による製造方法で得られる焼結鉱は
被還元性に優れ、高炉操業の安定かつ燃料比の低下をも
たらす、しかも製造時の燃料原単位を上げることもなく
、生産性の向上が達成できる。また、造粒時にバインダ
ーを必要としないなど、製造コストの大幅な低減が図れ
、産業上、有益な効果をもたらす。
Therefore, the sintered ore obtained by the production method according to the present invention has excellent reducibility, stabilizes blast furnace operation and reduces the fuel ratio, and also improves productivity without increasing the fuel consumption rate during production. It can be achieved. In addition, since no binder is required during granulation, manufacturing costs can be significantly reduced, which is beneficial in industry.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の実施例で使用した焼結装置の既念
を示す図である。 第2図は焼結時の焼結原料層内の温度の経時変化を示す
。 第1図
FIG. 1 is a diagram showing the concept of a sintering apparatus used in an embodiment of the method of the present invention. FIG. 2 shows the change in temperature within the sintering raw material layer over time during sintering. Figure 1

Claims (1)

【特許請求の範囲】 1、複数の銘柄の鉄鉱石、雑原料、副原料および返鉱に
、固体燃料を混合して焼結原料を得るに際し、通常の焼
結条件において、その焼結過程では容易に同化する易溶
融鉱石をあらかじめ、他の銘柄の鉄鉱石から選り分け、
この選り分けた易溶融鉱石に、前記の副原料の一部とし
てのMgO源および水を添加して造粒し、この造粒物を
残りの銘柄の鉄鉱石、雑原料、副原料、返鉱および固体
燃料とともに造粒して焼結原料とし、この焼結原料を通
常の方法に従って焼結することからなる焼結鉱の製造方
法。 2、特許請求の範囲第1項に記載の焼結鉱の製造方法に
おいて、選り分けた易溶融鉱石を造粒する際に、MgO
源の他に微粉鉱石を加えて造粒する方法。 3、特許請求の範囲第1項に記載の焼結鉱の製造方法に
おいて、選り分けた易溶融鉱石を造粒する際に、MgO
源の他に微粉鉱石、珪砂、返鉱を加えて造粒する方法。 4、特許請求の範囲第1ないし3項のいずれかの項に記
載の焼結鉱の製造方法において、MgO源として蛇紋岩
を使用する方法。
[Claims] 1. When a solid fuel is mixed with multiple brands of iron ore, miscellaneous raw materials, auxiliary raw materials, and return ore to obtain a sintering raw material, under normal sintering conditions, the sintering process The easily assimilated ore is sorted out from other brands of iron ore in advance.
The MgO source and water as part of the auxiliary raw materials are added to this sorted easily melted ore and granulated, and the granulated product is combined with the remaining brands of iron ore, miscellaneous raw materials, auxiliary raw materials, return ore, and A method for producing sintered ore, which comprises granulating it together with a solid fuel to obtain a sintering raw material, and sintering this sintering raw material according to a conventional method. 2. In the method for producing sintered ore according to claim 1, when granulating the selected easily melted ore, MgO
A method of granulating by adding fine ore to the source. 3. In the method for producing sintered ore according to claim 1, when granulating the selected easily melted ore, MgO
A method of granulating by adding fine ore, silica sand, and return ore to the source. 4. A method for producing sintered ore according to any one of claims 1 to 3, in which serpentine is used as the MgO source.
JP1372188A 1988-01-26 1988-01-26 Production of sintered ore Pending JPH01191750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1372188A JPH01191750A (en) 1988-01-26 1988-01-26 Production of sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1372188A JPH01191750A (en) 1988-01-26 1988-01-26 Production of sintered ore

Publications (1)

Publication Number Publication Date
JPH01191750A true JPH01191750A (en) 1989-08-01

Family

ID=11841107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1372188A Pending JPH01191750A (en) 1988-01-26 1988-01-26 Production of sintered ore

Country Status (1)

Country Link
JP (1) JPH01191750A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005307256A (en) * 2004-04-20 2005-11-04 Jfe Steel Kk Method for producing sintered ore
JP2005307253A (en) * 2004-04-20 2005-11-04 Jfe Steel Kk Method for producing sintered ore
CN110512074A (en) * 2019-09-29 2019-11-29 东北大学 A kind of method that high mixture ratio New Zealand sea sand raw ore prepares acid pellet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005307256A (en) * 2004-04-20 2005-11-04 Jfe Steel Kk Method for producing sintered ore
JP2005307253A (en) * 2004-04-20 2005-11-04 Jfe Steel Kk Method for producing sintered ore
JP4661077B2 (en) * 2004-04-20 2011-03-30 Jfeスチール株式会社 Method for producing sintered ore
CN110512074A (en) * 2019-09-29 2019-11-29 东北大学 A kind of method that high mixture ratio New Zealand sea sand raw ore prepares acid pellet
CN110512074B (en) * 2019-09-29 2021-02-09 东北大学 Method for preparing acid pellets from high-proportion raw ore of New Zealand sea sand

Similar Documents

Publication Publication Date Title
KR930003599B1 (en) Method for manufacturing agglomerates of sintered pellets
US5395441A (en) Revert briquettes for iron making blast furnace
US4082539A (en) Method for the preliminary treatment of materials for sintering
US4326887A (en) Basic process of producing basic fluxed pellets for iron-making
JP5168802B2 (en) Method for producing sintered ore
JPH01191750A (en) Production of sintered ore
JPH04210432A (en) Manufacture of semireduced sintered ore
US5698009A (en) Method for agglomerating pre-reduced hot iron ore particles to produce ingot iron
JP2002129247A (en) High grade sintered agglomerate for iron manufacturing and method for manufacturing the same
JPH05339653A (en) Pretreatment of sintered ore raw material and sintered ore raw material for iron making
CA1153894A (en) Fluxed pellets for iron-making
RU2048548C1 (en) Method for production of fluxed iron-ore agglomerate
JPH0617152A (en) Manufacture of sintered ore for blast furnace using high goethite ore as raw material
JP2003277838A (en) High crystal water ore used for sintering raw material for blast furnace, sintering raw material for blast furnace and its producing method
JP2008088533A (en) Method for manufacturing sintered ore
JPH07166248A (en) Production of burnt agglomerated ore
JPH03503399A (en) Manufacture of SiC, MnC and ferroalloys
JPH0128085B2 (en)
JPS6047887B2 (en) Sintered ore manufacturing method
JPH06220549A (en) Pretreatment of raw material to be sintered
JPH066754B2 (en) Sintering method of iron ore
JPS597770B2 (en) Chrome ore sintering method
JPH0625758A (en) Sintering accelerator and production of sintered ore by using this accelerator
JP2548647B2 (en) Manufacturing method of sintered ore for iron making from high goethite iron ore
JP2001164325A (en) Method for manufacturing sintered ore for blast furnace and operational method for manufacturing sintered ore for blast furnace