JPS6047887B2 - Sintered ore manufacturing method - Google Patents

Sintered ore manufacturing method

Info

Publication number
JPS6047887B2
JPS6047887B2 JP57035476A JP3547682A JPS6047887B2 JP S6047887 B2 JPS6047887 B2 JP S6047887B2 JP 57035476 A JP57035476 A JP 57035476A JP 3547682 A JP3547682 A JP 3547682A JP S6047887 B2 JPS6047887 B2 JP S6047887B2
Authority
JP
Japan
Prior art keywords
ore
sintered
layer
raw materials
sintered ore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57035476A
Other languages
Japanese (ja)
Other versions
JPS58153737A (en
Inventor
英審 相馬
司 高田
正巳 和島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP57035476A priority Critical patent/JPS6047887B2/en
Publication of JPS58153737A publication Critical patent/JPS58153737A/en
Publication of JPS6047887B2 publication Critical patent/JPS6047887B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 本発明は焼結過程での過溶融による通気性低下を抑制
し、高被還元性焼結鉱を得るための焼結鉱製造方法に関
するもので、詳細にはドワイトロイド式焼結機のパレッ
ト上に供給する配合原料の中、下層部に位置する鉱石銘
柄を選択し、焼結過程ての鉱石の過溶融による通気性低
下を防止することで焼結鉱中のFeOを低下し、かつ気
孔率を高め、被還元性の良好な焼結鉱を製造する方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a sintered ore production method for suppressing the decrease in air permeability due to overmelting during the sintering process and obtaining highly reducible sintered ore. FeO in the sintered ore is reduced by selecting an ore brand located in the lower layer of the mixed raw materials supplied on the pallet of the sintering machine, and preventing a decrease in air permeability due to overmelting of the ore during the sintering process. The present invention relates to a method for producing sintered ore having good reducibility by reducing the porosity and increasing the porosity.

高炉操業において炉況を安定化させ、燃料比の低減を
図るためには装入する原料の被還元性が良好てあること
が重要である。
In order to stabilize the furnace condition and reduce the fuel ratio during blast furnace operation, it is important that the charged raw material has good reducibility.

高炉装入原料鉄源としては、塊鉄鉱石、焼結鉱、ペレッ
トが主であるが、近年は焼結鉱の装入割合が80〜90
%と非常に高まり焼結鉱の品質が高炉操業成績を左右す
るといつても過言ではない。このため高被還元性焼結鉱
の製造が望まれている。 従来から行われている焼結鉱
製造方法は、第1 図に示すように、ヤードIAにそれ
ぞれ別置きされた鉄鉱石、石灰石、MgO含有鉱物粉等
がベル トコンベヤー3Aによつて貯鉱層4Aに貯わえ
られたものと、ヤード1からロッドミル2を通りベルト
コンベヤー3により貯鉱層4内に貯えられた コークス
とがベルトコンベヤー5上に同時に切り出され、1次ミ
キサー6及び2次ミキサー7内で水分添加、混合、造粒
された後、給鉱ホッパー8を経由して焼結機10上のパ
レット11に装入され、その後点火炉9により配合原料
表層に点火され、着火の後下向きに吸気することで配合
原料内の焼結反応が上層部から下層部へと連続的に進行
していき約15〜2紛で反応が終了し焼結鉱が得られ
る方式のものである。
The main iron sources for blast furnace charging are lump iron ore, sintered ore, and pellets, but in recent years the charging ratio of sintered ore has increased to 80 to 90%.
%, and it is no exaggeration to say that the quality of the sintered ore influences the operational performance of the blast furnace. Therefore, it is desired to produce highly reducible sintered ore. As shown in Figure 1, the conventional method for producing sintered ore is that iron ore, limestone, MgO-containing mineral powder, etc. stored separately in a yard IA are transferred to an ore storage layer 4A by a belt conveyor 3A. The coke stored in the storage layer 4 from the yard 1 through the rod mill 2 and the coke stored in the ore storage layer 4 by the belt conveyor 3 are simultaneously cut out onto the belt conveyor 5, and are fed into the primary mixer 6 and secondary mixer 7. After adding moisture, mixing, and granulation, the ore is charged into the pallet 11 on the sintering machine 10 via the feed hopper 8, and then the surface layer of the blended raw materials is ignited in the ignition furnace 9, and after ignition, the raw materials are granulated downward. By inhaling air, the sintering reaction within the blended raw materials proceeds continuously from the upper layer to the lower layer, and the reaction is completed at about 15 to 2 particles, yielding sintered ore.

この場合、上層のコークス燃焼熱は下層部へと順次蓄
熱されていき、下層部における鉱石の溶融率は上層部よ
りも高く、従つて下層部での融体生成量が多い。
In this case, the heat of coke combustion in the upper layer is sequentially stored in the lower layer, and the melting rate of the ore in the lower layer is higher than that in the upper layer, so the amount of melt produced in the lower layer is large.

そして下層部での融体生成量が多いほど焼結後半のベッ
ド通過風速は低下し、高風速J時に比べ、第1表に示す
ごとく、高Fe0)低気孔率となり第2表のように被還
元率も低くなる。丁このように被還元率が低下する主因
は、下層部が溶融過剰となるため通気が阻害され、酸素
分圧が低下し、マグネタイト、非晶質スラグを主体とし
た緻密な組織となるためである。
The larger the amount of melt produced in the lower layer, the lower the bed passing wind speed in the latter half of sintering, and compared to high wind speed J, as shown in Table 1, the porosity is high and Fe0) is low, and the porosity is as shown in Table 2. The rate of return will also be lower. The main reason for this decrease in the reduction rate is that the lower layer becomes excessively molten, which obstructs ventilation, lowers the oxygen partial pressure, and creates a dense structure mainly composed of magnetite and amorphous slag. be.

実操業および焼結鍋試験時に特定の銘柄の鉱石を多量に
配合すると過溶融となり、通気性が低下するという現象
はよくみかけられる。このことから銘柄によつて溶融性
に差のあることが判る。しかしこれまで各銘柄の溶融特
性は定量的に把握されるまでは至つておらず、従つて、
鉱石の過溶融を防止するためには先ず鉱石の溶融特性を
解明することが必要である。そこで鉱石の銘柄毎の溶融
特性を以下の条件下で測定した。各銘柄の7〜W順粒子
(焼結原料のトップ・サイズ)に、配合原料の−1?部
分のスラグ組成の近似した第3表に示す成分の試薬、即
ち焼結における溶融は微粉部分から始まり次第に粗粒鉱
石を溶かし込むと考えられるので、微?部分の組成に合
わせて作成した微粉状の試薬を表面に重量比で20%被
覆し乾燥後、電気炉内(大気中)で1300℃(昇温速
度650℃Imin)まで急加熱し、2.紛間保持後、
空冷し、各々の鉱石の溶融状態を鉱石の断面を観察する
ことにより測定した。
During actual operations and sintering pot tests, it is often seen that when a large amount of a particular brand of ore is blended, overmelting occurs and air permeability decreases. This shows that there are differences in meltability depending on the brand. However, until now, the melting characteristics of each brand have not been quantitatively understood, and therefore,
In order to prevent overmelting of ore, it is first necessary to clarify the melting characteristics of ore. Therefore, the melting characteristics of each brand of ore were measured under the following conditions. For each brand's 7 to W particles (top size of sintered raw materials), -1? of the blended raw materials? The reagents shown in Table 3 approximate the slag composition of the parts, that is, the melting during sintering is thought to start from the fine powder part and gradually dissolve the coarse ore, so the fine? The surface was coated with 20% by weight of a finely powdered reagent prepared according to the composition of the part, dried, and then rapidly heated to 1300°C (heating rate 650°C Imin) in an electric furnace (in the atmosphere).2. After holding the dispute,
The ore was cooled in air, and the molten state of each ore was measured by observing the cross section of the ore.

その結果を第・2図に示す。第2図に示すように鉱石中
に含まれる結晶水と溶融率には対応がみられ、結晶水含
有率2.0%を境にしてこれより多く結晶水を含む鉱石
は極めて溶けやすいことが判つた。この結果は、実機操
業において結晶水を2%以上含む鉱石が元鉱として残る
確率が低い事実と良く一致している。これは昇温過程の
400〜900℃附近で結晶水が急激に抜けるため多孔
質化しスラグとの反応面積が増加し融液と良く反応する
ためと考えられる。この測定結果から、結晶水を2.0
%以上含有する鉱石は易溶融性鉱石、一方結晶水2.0
%未満の鉱石は難溶融性鉱石と分類できる。
The results are shown in Figure 2. As shown in Figure 2, there is a correspondence between the crystal water contained in the ore and the melting rate, and ores that contain more crystal water are extremely soluble after the crystal water content reaches 2.0%. I understand. This result is in good agreement with the fact that in actual operation, ore containing 2% or more of crystallization water has a low probability of remaining as the original ore. This is thought to be because crystal water rapidly escapes around 400 to 900° C. during the heating process, making it porous, increasing the reaction area with the slag, and reacting well with the melt. From this measurement result, the crystal water was 2.0
Ores containing 2.0% or more are easily meltable ores, while crystalline water is 2.0% or more.
% ore can be classified as refractory ore.

そして焼結後5半の過溶融を抑制するためには、易溶融
性鉱石使用量の制限が考えられるが、現在使用している
銘柄中で結晶水を2.0%以上含有する鉱石の占める比
率は高く、結晶水2.0%未満の難溶融性鉱石を多量に
使用することは日常操業では不可能でありる。また難溶
融性鉱石のみを使用すると焼結ベッドの表層部から中心
部にかけては反応時間が短かいため十分反応せず緻密な
元鉱として残り表層部から中心部の被還元性を低下する
。以上のことから結晶水を2.0%以上含有する鉱7石
を多量に使用しつつ下層部の過溶融を防止して被還元性
の優れた焼結鉱製造技術の開発が望まれるに至つた。
In order to suppress overmelting after sintering, it is possible to limit the amount of easily melted ore used, but among the brands currently used, ores containing 2.0% or more of crystallized water account for The ratio is high, and it is impossible in daily operations to use a large amount of refractory ore with less than 2.0% crystallization water. Furthermore, if only a refractory ore is used, the reaction time is short from the surface layer to the center of the sintered bed, so that the reaction does not occur sufficiently and remains as a dense base ore, reducing the reducibility from the surface layer to the center. From the above, it has become desirable to develop a technology for producing sintered ore that has excellent reducibility by preventing overmelting of the lower layer while using a large amount of ore containing 2.0% or more of crystallization water. Ivy.

本発明はこのような状況に鑑みてなしたものでドワイト
ロイド式焼結機による焼結鉱の製造方法ノにおいて、結
晶水を2.0%以上含有する易溶融性鉱石を多量に含む
配合原料が上層部に、2.0%未満の難溶融性鉱石を多
量に含む配合原料が下層部になるようにパレット上に配
合原料を供給して焼結することを特徴とするものである
The present invention was made in view of the above circumstances, and is a method for producing sintered ore using a Dwight Lloyd sintering machine, which uses mixed raw materials containing a large amount of easily meltable ore containing crystal water of 2.0% or more. The method is characterized in that the raw materials are supplied onto a pallet and sintered so that the raw materials containing a large amount of refractory ore of less than 2.0% are in the upper layer and the raw materials are in the lower layer.

以下本発明方法を図面に基づき詳細に説明する。The method of the present invention will be explained in detail below based on the drawings.

本発明は第3図に示すように結晶水を2.0%以上含む
易溶性融鉱石をヤード1Aからベルトコンベヤー3Aを
経由して貯鉱層4Aに貯わえる。
In the present invention, as shown in FIG. 3, easily soluble molten ore containing 2.0% or more of crystallization water is stored in an ore storage layer 4A from a yard 1A via a belt conveyor 3A.

一方結晶水2.0%未満の難溶融性鉱石をヤード1Bか
らベルトコンベヤー3Bを経由して貯鉱層4Bに貯わえ
る。その後ベルトコンベヤー5および5A上に鉱石、石
灰石コークス等と共に切り出しそれぞれ別の1次ミキサ
ー6A,6Bおよび2次ミキサー7A,7Bを経由して
給鉱ホッパー8A,8Bに入れる。パレット上に装入す
るときは、給鉱ホッパー8Bの原料を下層に、給鉱ホッ
パー8Aの原料を上層に装入するようにする。こうする
ことで蓄熱量の少ない上層部の原料中には易溶融性鉱石
が、また蓄熱量の多い下層部には難溶融性鉱石が存在し
、焼結過程で上層部、下層部いずれも十分に反応が進む
ことになる。この場合上層部(焼結層中心より上)の配
合原料中に占める易溶融性鉱石の割合は70〜100%
、下層部(焼結層中心より下)の配合原料中に占める易
溶融性鉱石の割合は0〜20%の範囲(残りは難溶融性
鉱石)とする。なお焼結層の蓄熱は上部から下部へ順次
増加していくのであるから、上述の焼結層を2段に分割
する方法の外に3分割、4分割等多段に分けて装入して
も良い。
On the other hand, refractory ore containing crystal water of less than 2.0% is stored in the ore storage layer 4B from the yard 1B via the belt conveyor 3B. Thereafter, it is cut onto belt conveyors 5 and 5A together with ore, limestone coke, etc., and fed into ore feed hoppers 8A and 8B via separate primary mixers 6A and 6B and secondary mixers 7A and 7B, respectively. When charging onto a pallet, the raw materials from the ore feed hopper 8B are charged into the lower layer, and the raw materials from the ore feed hopper 8A are charged into the upper layer. By doing this, easily meltable ore is present in the raw material in the upper layer where there is less heat storage, and difficult to melt ore is present in the lower layer where there is a large amount of heat storage, so that both the upper layer and the lower layer are sufficiently heated during the sintering process. The reaction will proceed. In this case, the proportion of easily meltable ore in the blended raw materials in the upper layer (above the center of the sintered layer) is 70 to 100%.
The proportion of easily meltable ore in the blended raw materials in the lower layer (below the center of the sintered layer) is in the range of 0 to 20% (the remainder is hardly meltable ore). Furthermore, since the heat storage in the sintered layer increases sequentially from the top to the bottom, in addition to the method of dividing the sintered layer into two stages as described above, it is also possible to charge the sintered layer by dividing it into three or four stages. good.

この場合焼結原料層表層部分(表面から10c!rlの
深さ)の配合原料中に占める易溶融,)゛性鉱石の割合
は70%以上とし、底部(グレード面から10C1n上
)の配合原料中に占める易溶融性鉱石の割合を20%以
下の範囲とし、表層部分と底部との中間は双方の配合勾
配にそつて上部から下部へ徐々に易溶融性鉱石を減じて
いく。実施例従来法と本発明法による比較を明らかにす
る意味で下記のテストを行つた。
In this case, the proportion of easily meltable ore in the blended raw materials in the surface layer of the sintered raw material layer (10c!rl depth from the surface) should be 70% or more, and the blended raw materials in the bottom (10c1n above the grade surface) should be 70% or more. The proportion of easily meltable ore in the mixture is set to 20% or less, and the content of easily meltable ore is gradually reduced from the top to the bottom along the blending gradient between the surface layer and the bottom. EXAMPLE The following tests were conducted to clarify the comparison between the conventional method and the method of the present invention.

第4表の化学組成を有する易溶融性鉱石と難溶融性鉱石
を第5表に示す割合、即ちテスト1は従来法である全層
均一装入したもの、テスト2は本発明法である易溶融性
鉱石を多量に上層(焼結原料層中心より上部)へ集中配
合したもの、テスト8はテスト2の効果を更に明らかと
するため易溶門融性鉱石を多量に下層(焼結原料層中心
より下部)へ集中したものの3条件て焼結鉱を製造した
The proportions of easily melting ore and hardly melting ore having the chemical compositions shown in Table 4 are shown in Table 5, that is, test 1 is the conventional method in which the whole layer is uniformly charged, and test 2 is the easy melting method of the present invention. In test 8, in order to further clarify the effect of test 2, a large amount of easily meltable ore was blended in the upper layer (above the center of the sintered raw material layer) in a concentrated manner. Sintered ore was produced under three conditions, although the sintered ore was concentrated in the lower part of the center.

なお配合原料のCaO/SiO2、SiO2、MgO、
水分は一定とした。
In addition, the blended raw materials CaO/SiO2, SiO2, MgO,
Moisture was kept constant.

但し、AI2O3については、一般に易溶融性鉱石の方
が難溶融性鉱石に比べAl2O3は高めであり偏ゞ析装
入によりテスト2とテスト3の上層部では”0.A12
03レベルは異なつている。
However, regarding AI2O3, in general, easily melting ores have higher Al2O3 than difficultly melting ores, and due to uneven charging, the upper layer of Tests 2 and 3 had a value of "0.A12".
03 levels are different.

しかし全量の平均値ではテスト1と同一である。
l これら各テストの焼結過程での焼結ベッド内通過風速を
第4図に、また第5図にはシンターケーキ中のFeO、
気孔率、被還元率を示す。
However, the average value of the total amount is the same as Test 1.
Figure 4 shows the wind speed passing through the sintering bed during the sintering process of each of these tests, and Figure 5 shows the velocity of the wind passing through the sintering bed during the sintering process, and
Indicates porosity and reduction rate.

第4図から明らかなように、テスト2の本発明による易
溶融性鉱石を多量に上層に集中配合した方法では、テス
ト1の従来法およびテスト3の易溶融性鉱石を多量に下
層に集中配合した方法に比べ、焼結反応過程の後半の通
過風速は高い。
As is clear from FIG. 4, in the method of test 2, in which a large amount of the easily meltable ore according to the present invention is concentrated in the upper layer, the conventional method of test 1 and the method of test 3, in which a large amount of the easily meltable ore is concentrated in the lower layer. Compared to the above method, the passing air velocity during the latter half of the sintering reaction process is higher.

そしてテスト2のものは第5図に示すように上層部、中
層部においてテスト1、3とFeO、気孔率、被還元率
とも劣ることなく、かつ下層部のFeOl気孔率は中層
部の値に近く、テスト1、3に比べて良い値を示し、そ
して被還元率も従来法より高くなつている。以上の結果
から本発明法は、実際に即して易溶融性鉱石を多く使用
しつつ焼結過程後半の溶体生成量が過大になること、即
ち過溶融を抑制して、過溶融による通気防害を減少し、
その結果、従来法よりも高被還元率の焼結鉱を製造する
ことができるという重要な利点を有しているといえる。
As shown in Fig. 5, the test 2 was not inferior to Tests 1 and 3 in terms of FeO, porosity, and reduction rate in the upper and middle layers, and the FeO porosity in the lower layer was the same as the value in the middle layer. It shows better values compared to Tests 1 and 3, and the return rate is also higher than the conventional method. Based on the above results, the method of the present invention is effective in actually using a large amount of easily melted ore while suppressing the excessive amount of solution produced in the latter half of the sintering process. reduce harm,
As a result, it can be said that this method has the important advantage of being able to produce sintered ore with a higher reduction ratio than conventional methods.

また本発明による焼結鉱製造法は蓄熱が少なく溶融反応
不足で脆弱となりやすい上層部に易溶融!性鉱石を多量
に配するため溶融反応が促進して、該脆弱化を除排しま
た下層部の通気量向上により
々t−ニー1Lφv 妬υ結晶時
間の短縮が図れることから第6図に示すよフうに成品歩
留、冷間強度、生産率の何れも向上するという利点も有
している。
In addition, the sintered ore production method according to the present invention has little heat accumulation and melts easily in the upper layer, which tends to be fragile due to insufficient melting reaction! The melting reaction is accelerated due to the presence of a large amount of carbonaceous ore, which eliminates the brittleness and improves the ventilation rate in the lower layer.
Since the crystallization time can be shortened, it also has the advantage of improving the product yield, cold strength, and production rate, as shown in FIG. 6.

以上述べたように本発明によれば現在使用している易溶
融性鉱石、難溶融性鉱石のいずれをも十分に活性し従来
法による焼結鉱以上の成品歩留、・冷間強度および生産
率を維持しながら高被還元性焼結鉱が製造でき、安定し
た高炉操業を可能にするものである。
As described above, according to the present invention, both the easily melting ore and the hardly melting ore currently in use can be sufficiently activated, and the product yield, cold strength, and productivity are higher than that of sintered ore produced by conventional methods. This enables highly reducible sintered ore to be produced while maintaining the yield rate, and enables stable blast furnace operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の焼結鉱製造工程図、第2図は鉱石中の結
晶水と溶融性の関係図、第3図は本発明による焼結鉱製
造工程図、第4図は焼結時間と焼結ペット内通過風速と
の関係を示す図、第5図は焼結層内のFeOl気孔率、
被還元率の分布図、第6図は従来法および本発明法で製
造した焼結鉱の性状を比較して示す図である。 1,1A,1B・・・・・・ヤード、2・・・・・・ロ
ッドミル、3,3A,3B・・・・・・ベルトコンベヤ
ー、4,4A,4B・・・・・・貯鉱槽、5,5A・・
・・・・ベルトコンベヤー、6,6A,6B・・・・・
1次ミキサー、7,7A,7B・・・・・・2次ミキサ
ー、8,8A,8B・・・・・給鉱ホッパー、9・・・
・・点火炉、10・・・・・焼結機、11・・・・・・
パレット。
Figure 1 is a diagram of the conventional sintered ore production process, Figure 2 is a diagram of the relationship between crystal water in ore and meltability, Figure 3 is a diagram of the sintered ore production process according to the present invention, and Figure 4 is the sintering time. Figure 5 shows the relationship between the velocity of air passing through the sintered PET and the FeOl porosity within the sintered layer.
FIG. 6 is a diagram showing the distribution of the reduction rate, comparing the properties of sintered ore produced by the conventional method and the method of the present invention. 1, 1A, 1B... Yard, 2... Rod mill, 3, 3A, 3B... Belt conveyor, 4, 4A, 4B... Ore storage tank. ,5,5A...
...Belt conveyor, 6, 6A, 6B...
Primary mixer, 7, 7A, 7B... Secondary mixer, 8, 8A, 8B... Feed hopper, 9...
...Ignition furnace, 10...Sintering machine, 11...
palette.

Claims (1)

【特許請求の範囲】[Claims] 1 ドワイトロイド式焼結機による焼結鉱の製造方法に
おいて、結晶水を2.0%以上含有する易溶融性鉱石を
多量に含む配合原料が上層部に、2.0%未満の難溶融
性鉱石を多量に含む配合原料が下層部になるように配合
原料をパレット上に供給して焼結することを特徴とする
焼結鉱製造方法。
1 In a method for producing sintered ore using a Dwight Lloyd sintering machine, a blended raw material containing a large amount of easily meltable ore containing 2.0% or more of crystallization water is added to the upper layer, and a refractory ore containing less than 2.0% water of crystallization is added to the upper layer. A method for producing sintered ore, characterized in that mixed raw materials are fed onto a pallet and sintered so that the mixed raw materials containing a large amount of ore are in the lower layer.
JP57035476A 1982-03-06 1982-03-06 Sintered ore manufacturing method Expired JPS6047887B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57035476A JPS6047887B2 (en) 1982-03-06 1982-03-06 Sintered ore manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57035476A JPS6047887B2 (en) 1982-03-06 1982-03-06 Sintered ore manufacturing method

Publications (2)

Publication Number Publication Date
JPS58153737A JPS58153737A (en) 1983-09-12
JPS6047887B2 true JPS6047887B2 (en) 1985-10-24

Family

ID=12442814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57035476A Expired JPS6047887B2 (en) 1982-03-06 1982-03-06 Sintered ore manufacturing method

Country Status (1)

Country Link
JP (1) JPS6047887B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010032466A1 (en) * 2008-09-17 2010-03-25 新日本製鐵株式会社 Sintered ore manufacturing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0730417B2 (en) * 1989-10-17 1995-04-05 新日本製鐵株式会社 Manufacturing method of sinter for blast furnace using high goethite ore

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5045712A (en) * 1973-08-28 1975-04-24
JPS5631848A (en) * 1979-08-22 1981-03-31 Hitachi Ltd Controller for detecting rotation difference of wheel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5045712A (en) * 1973-08-28 1975-04-24
JPS5631848A (en) * 1979-08-22 1981-03-31 Hitachi Ltd Controller for detecting rotation difference of wheel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010032466A1 (en) * 2008-09-17 2010-03-25 新日本製鐵株式会社 Sintered ore manufacturing method
JP4528362B2 (en) * 2008-09-17 2010-08-18 新日本製鐵株式会社 Method for producing sintered ore
JPWO2010032466A1 (en) * 2008-09-17 2012-02-09 新日本製鐵株式会社 Method for producing sintered ore

Also Published As

Publication number Publication date
JPS58153737A (en) 1983-09-12

Similar Documents

Publication Publication Date Title
JP2014214334A (en) Method for manufacturing sintered ore
KR20140002218A (en) Method for manufacturing pellet for blast firnace
JPS6047887B2 (en) Sintered ore manufacturing method
KR0173842B1 (en) Sintered ore manufacturing method using high crystal water iron ore as raw materials
JP4725230B2 (en) Method for producing sintered ore
JP2009019224A (en) Method for manufacturing sintered ore
KR101526451B1 (en) Method for manufacturing sintered ore
JPH05339653A (en) Pretreatment of sintered ore raw material and sintered ore raw material for iron making
JP4661077B2 (en) Method for producing sintered ore
JPH0586458B2 (en)
CN115491488B (en) Iron-containing material for sintering with low usage amount of Brazil mixed powder, sintering composition, sintered ore and preparation method of iron-containing material
JPH0617152A (en) Manufacture of sintered ore for blast furnace using high goethite ore as raw material
JPH01191750A (en) Production of sintered ore
KR100383271B1 (en) Sintered ore manufacturing method with improved recovery
JPH10317069A (en) Sintering raw material treatment
JP2548647B2 (en) Manufacturing method of sintered ore for iron making from high goethite iron ore
SU602576A1 (en) Method of obtaining iron flux
JPH0885829A (en) Production of sintered ore
JP2003096522A (en) Method for producing sintered ore for blast furnace and sintered ore for blast furnace
CN113073254A (en) Silicon-vanadium alloy prepared from low-vanadium corundum slag and preparation method thereof
JPH0559972B2 (en)
JP3952871B2 (en) Manufacturing method of high-strength sintered ore
CN111809043A (en) High-alkalinity sintered ore material, sintering method thereof and sintered ore
JPH10280057A (en) Grannular raw material for producing high grade sintered ore
KR20140084556A (en) Briquettes for manufacturing sintered ore, manufacturing method of it and method for manufacturing using it