JPWO2010032466A1 - Method for producing sintered ore - Google Patents

Method for producing sintered ore Download PDF

Info

Publication number
JPWO2010032466A1
JPWO2010032466A1 JP2010504356A JP2010504356A JPWO2010032466A1 JP WO2010032466 A1 JPWO2010032466 A1 JP WO2010032466A1 JP 2010504356 A JP2010504356 A JP 2010504356A JP 2010504356 A JP2010504356 A JP 2010504356A JP WO2010032466 A1 JPWO2010032466 A1 JP WO2010032466A1
Authority
JP
Japan
Prior art keywords
ore
raw material
iron
sintered
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010504356A
Other languages
Japanese (ja)
Other versions
JP4528362B2 (en
Inventor
潤 岡崎
潤 岡崎
裕二 藤岡
裕二 藤岡
正則 中野
正則 中野
元治 斎藤
元治 斎藤
武彦 佐藤
武彦 佐藤
岡田 務
務 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Application granted granted Critical
Publication of JP4528362B2 publication Critical patent/JP4528362B2/en
Publication of JPWO2010032466A1 publication Critical patent/JPWO2010032466A1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • C22B1/20Sintering; Agglomerating in sintering machines with movable grates
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/2406Binding; Briquetting ; Granulating pelletizing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/2413Binding; Briquetting ; Granulating enduration of pellets

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

複数銘柄の鉄鉱石を含む鉄含有原料、副原料、固体燃料、および、返鉱を配合して焼結原料とし、これら焼結原料を混合、造粒した後、焼結パレット上に装入し、焼成する焼結鉱の製造方法であって、前記鉄鉱石の前記銘柄毎に測定された融液浸透距離に基づいて、前記複数銘柄の前記鉄鉱石から、前記融液浸透距離の加重平均値が4.0mm以上となるように選択もしくは配合された高融液浸透性鉄鉱石を、前記焼結パレット上に形成される原料充填層の上表面から全層厚に対する層厚比率で5〜12%の範囲の上層に装入し、その他の鉄鉱石を前記原料充填層の下層に装入し、かつ、前記副原料、前記固体燃料、および、前記返鉱を、前記原料充填層の前記上層および前記下層に装入する。Mixing and granulating iron-containing raw materials containing multiple brands of iron ore, secondary raw materials, solid fuel, and return ore into sintered raw materials, mixing and granulating these sintered raw materials, and then charging them onto a sintering pallet The sintered ore manufacturing method for firing, wherein the weight average of the melt penetration distance from the iron ore of the plurality of brands based on the melt penetration distance measured for each brand of the iron ore The high-melt-penetrating iron ore selected or blended to have a thickness of 4.0 mm or more is 5 to 12 in a layer thickness ratio with respect to the total layer thickness from the upper surface of the raw material filled layer formed on the sintered pallet. %, The other iron ore is charged in the lower layer of the raw material packed bed, and the auxiliary raw material, the solid fuel, and the return ore are added to the upper layer of the raw material packed layer. And charging the lower layer.

Description

本発明は、製鉄原料として使用される焼結鉱の製造方法に関し、特に、焼結パレット内に形成される原料充填層上部の成品歩留および強度を改善するための焼結鉱の製造方法に関する。
本願は、2008年9月17日に、日本に出願された特願2008−238448号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a method for producing sintered ore used as an ironmaking raw material, and more particularly to a method for producing sintered ore for improving the product yield and strength of the upper part of the raw material packed bed formed in the sintering pallet. .
This application claims priority on September 17, 2008 based on Japanese Patent Application No. 2008-238448 for which it applied to Japan, and uses the content here.

近年、日本で使用する主要鉄鉱石である豪州産の鉄鉱石においては、良質なヘマタイト鉱石の枯渇化が進み、現状では、ピソライト鉱床、さらには、マラマンバ鉱床や、高りんブロックマン鉱床の開発が進んでいる。   In recent years, Australia's iron ore, which is the main iron ore used in Japan, has been depleted of high-quality hematite ore. At present, the development of the pisolite deposit, the Maramamba deposit and the high phosphorus block man deposit has been developed. Progressing.

マラマンバ鉱床や高りんブロックマン鉱床から産出される鉄鉱石は、良質なヘマタイト鉱石に比べて粒度が小さく、かつ、結晶水の含有量が高い。そのため、焼結時に、これらの鉄鉱石が通気性の低下や、焼結反応性の悪化の原因となる。   Iron ore produced from the Maramamba deposit or the high phosphorus block man deposit has a smaller particle size and a higher content of crystal water than a good quality hematite ore. Therefore, at the time of sintering, these iron ores cause a decrease in air permeability and a deterioration in sintering reactivity.

ピソライト鉱床から産出される既存のピソライト鉱石は、高結晶水鉱石である。このピソライト鉱床とマラマンバ鉱床と高りんブロックマン鉱床とから産出される鉄鉱石のうちの9割は、結晶水含有量が4質量%以上の鉄鉱石である。   The existing pisolite ore from the pisolite deposit is a high crystal water ore. Ninety percent of the iron ore produced from this psolite deposit, the Maramamba deposit and the high phosphorus block man deposit is iron ore with a crystal water content of 4% by mass or more.

焼結原料として、高結晶水鉱石を多量に配合した場合の焼結操業に及ぼす影響について以下に説明する。   The influence on the sintering operation when a large amount of high crystal water ore is added as a sintering raw material will be described below.

一般に、下方吸引型焼結機を用いた焼結鉱の製造は、次のようにして行われる。   In general, the production of sintered ore using a lower suction type sintering machine is performed as follows.

焼結原料は、主原料である鉄鉱石や製鉄プロセスで発生する製鉄ダストなどの鉄含有原料と、焼結反応に必要となる石灰石および蛇紋岩などの副原料と、熱源としてのコークス粉等の固体燃料とを含み、これらを配合して使用する。   Sintering materials include iron-containing materials such as iron ore as the main material and iron-making dust generated in the iron-making process, auxiliary materials such as limestone and serpentine required for the sintering reaction, coke powder as a heat source, etc. These are used in combination with solid fuel.

焼結原料は、下方吸引型焼結機に装入される前に、ドラム型ミキサーなどの混合・造粒機を用いて、水を添加しながら混合、造粒され、擬似粒子に加工される。この擬似粒子は、主として、粒径1mm以上の核粒子と、その周囲に付着した粒径0.5mm以下の付着粉とからなる。   The sintered raw material is mixed and granulated while adding water using a mixing / granulating machine such as a drum mixer before being charged into the lower suction type sintering machine, and processed into pseudo particles. . The pseudo particles are mainly composed of core particles having a particle diameter of 1 mm or more and adhering powder having a particle diameter of 0.5 mm or less attached around the core particles.

焼結機内にこの擬似粒子に加工された焼結原料を装入することによって、焼結パレット内に形成された焼結充填層内の通気性を維持し、焼結原料の焼結反応を促進し、高い生産性を確保できる。   By inserting the sintering raw material processed into the pseudo particles into the sintering machine, the air permeability in the sintered packed bed formed in the sintering pallet is maintained, and the sintering reaction of the sintering raw material is promoted. And high productivity can be secured.

擬似粒子に加工された焼結原料は、焼結機の給鉱部から、焼結パレット内に装入され、原料充填層を形成する。その後、点火炉で、原料充填層表面のコークス粉に点火し、焼結機下部から空気吸引することにより、コークス粉の燃焼点を原料充填層の下方に移動させる。   The sintered raw material processed into pseudo particles is charged into the sintering pallet from the feeding section of the sintering machine to form a raw material packed layer. Thereafter, in the ignition furnace, the coke powder on the surface of the raw material packed bed is ignited and air is sucked from the lower part of the sintering machine, thereby moving the combustion point of the coke powder to the lower side of the raw material packed bed.

このコークス粉の燃焼熱により原料充填層の上層から下層へと順次焼結反応が進行し、焼結パレットが移動して排鉱部に到達するまでに焼結が完了する。焼結パレット内の焼結ケーキ(塊)は、排鉱部から排出された後、破砕され、所定粒度の高炉用の焼結鉱が製造される。   Sintering reaction proceeds sequentially from the upper layer to the lower layer of the raw material packed bed by the combustion heat of the coke powder, and the sintering is completed by the time the sintering pallet moves and reaches the waste ore section. The sintered cake (lumps) in the sintering pallet is discharged from the waste ore section and then crushed to produce a sintered ore for a blast furnace with a predetermined particle size.

焼結鉱の製造において発生した所定粒度より小さな焼結鉱粉は、高炉用の焼結鉱として利用できないため、返鉱として、焼結原料中に配合されて、再度焼結される。   Since the sintered ore powder having a particle size smaller than the predetermined particle size generated in the production of the sintered ore cannot be used as the sintered ore for the blast furnace, it is blended in the sintering raw material as a return ore and sintered again.

焼結原料の焼結反応は、1200℃付近で、主として、次のような初期融液の生成とその後の同化反応により進行する。すなわち、鉄含有原料中のFe23と石灰石中のCaOとの反応によって、カルシウムフェライト(CaO−Fe23)の初期融液が生成する。その後、この初期融液中に鉄鉱石中の成分と副原料中の成分とが溶け込む同化反応が進行する。The sintering reaction of the sintering raw material proceeds at around 1200 ° C. mainly by the following initial melt generation and subsequent assimilation reaction. That is, an initial melt of calcium ferrite (CaO—Fe 2 O 3 ) is generated by a reaction between Fe 2 O 3 in the iron-containing raw material and CaO in limestone. Thereafter, an assimilation reaction in which the components in the iron ore and the components in the auxiliary raw material dissolve in the initial melt proceeds.

この焼結反応は、初期融液の生成から数分程度で終了する極めて速い反応である。この反応によって、焼結鉱の成品歩留および生産性、並びに、焼結鉱の強度などの品質が大きく影響される。   This sintering reaction is an extremely fast reaction that is completed within a few minutes after the formation of the initial melt. This reaction greatly affects the product yield and productivity of the sintered ore and the quality of the sintered ore.

例えば、焼結反応が過剰に進み、生成する融液量が極端に増加すると、焼結操業において、焼結層内の通気性が悪化する。この通気性の悪化により焼けムラが発生するため、成品歩留および生産性が低下し、強度などの焼結鉱の品質も悪化する。   For example, if the sintering reaction proceeds excessively and the amount of melt produced is extremely increased, the air permeability in the sintered layer deteriorates during the sintering operation. Due to the deterioration of the air permeability, uneven burning occurs, so that the product yield and productivity are lowered, and the quality of sintered ore such as strength is also deteriorated.

一方、焼結反応が十分に進まない場合は、残留鉄鉱石(残留元鉱)等の未溶融部同士を結合させるための融液が減少するため、成品歩留が低下し、強度や還元粉化(RDI)などの焼結鉱の品質が悪化する。   On the other hand, if the sintering reaction does not proceed sufficiently, the melt for bonding unmelted parts such as residual iron ore (residual source ore) decreases, so the product yield decreases, and the strength and reduced powder The quality of sintered ore such as chemical conversion (RDI) deteriorates.

この焼結反応は、配合原料中の主原料であり、全体の6割以上を占める鉄鉱石の鉱物組成や性状などに起因する焼結性(同化性)と、焼結原料充填層の通気性を左右する造粒性とに大きく影響される。   This sintering reaction is the main raw material in the blended raw material, and sinterability (assimilability) due to the mineral composition and properties of iron ore, which accounts for more than 60% of the total, and the air permeability of the sintered raw material packed layer It is greatly influenced by the granulation property that affects

鉄鉱石として、ピソライト鉱石などの高結晶水鉄鉱石を配合する場合は、鉄鉱石中のゲーサイト組織に由来する結晶水が、300℃付近からで熱分解、脱水を開始し、この際、ゲーサイト組織に亀裂が発生する。   When high crystal hydrous ores such as pisolite ore are blended as iron ore, the crystal water derived from the goethite structure in the iron ore starts pyrolysis and dehydration at around 300 ° C. Cracks occur in the site structure.

このため、初期融液中に気孔が生成したり、生成した気孔が残留したまま凝固した結合相が生成したり、亀裂を含む未溶融元鉱石が残存したりする。その結果、焼結鉱が脆弱で多孔質な組織となり、焼結鉱の成品歩留が低下し、強度などの焼結鉱の品質が悪化する。   For this reason, pores are generated in the initial melt, a solidified binder phase is generated with the generated pores remaining, or unmelted original ore containing cracks remains. As a result, the sintered ore becomes a brittle and porous structure, the product yield of the sintered ore decreases, and the quality of the sintered ore such as strength deteriorates.

また、焼結原料として、マラマンバ鉱石や高りん鉱石などの結晶水の含有量が高く、粒度が細かい鉄鉱石を配合する場合は、上記の結晶水による問題に加えて、造粒性が悪くなる。そのため、擬似粒子が生成し難く、擬似粒子が搬送時や原料装入時に崩壊し易くなる。   In addition, in the case of blending iron ore with a high particle size such as maramanba ore and high phosphate ore as a sintering raw material, in addition to the above-mentioned problems caused by crystal water, the granulation property is deteriorated. . Therefore, it is difficult to generate pseudo particles, and the pseudo particles are liable to collapse during transportation or charging of raw materials.

このため、原料をパレットに装入する際に、造粒されなかった微粉鉄鉱石や崩壊して生成した鉄鉱石の微粉粒子が原料充填層の上層側に偏析して分布するため、上層部の通気性が低下する。また、結晶水を含むゲーサイト組織は、脆いため、粒度が細かい鉄鉱石粒子に多く存在する。   For this reason, when the raw material is charged into the pallet, finely divided iron ore that has not been granulated or finely divided particles of iron ore that have been disintegrated are segregated and distributed on the upper layer side of the raw material packed bed, so Air permeability is reduced. Further, since the goethite structure containing crystal water is brittle, there are many iron ore particles having a small particle size.

このため、原料充填層の上層側に偏析して分布する鉄鉱石の微粉粒子は、上記の結晶水に起因する問題を引き起こす原因にもなる。   For this reason, the fine powder particles of iron ore that are segregated and distributed on the upper layer side of the raw material packed bed also cause a problem caused by the crystal water.

一般に、下方吸引型焼結機を用いた焼結鉱の製造においては、室温に近い空気の吸引により、着火後の原料充填層の表層部の温度が低下する。そのため、上層部における焼結鉱の成品歩留の低下および強度等の品質悪化が、従来から問題となっていた。   In general, in the production of sintered ore using a lower suction type sintering machine, the temperature of the surface layer portion of the raw material packed layer after ignition is lowered by suction of air close to room temperature. For this reason, a decrease in product yield of sintered ore in the upper layer and deterioration in quality such as strength have been problems.

この上層部における焼結鉱の成品歩留および強度等の品質の問題は、焼結原料として高結晶水鉄鉱石および細粒鉄鉱石を配合する近年の焼結操業において顕著である。   The problem of quality such as product yield and strength of the sintered ore in the upper layer is remarkable in the recent sintering operation in which high crystal hydrous ore and fine iron ore are blended as a sintering raw material.

上記下方吸引型焼結機を用いた焼結鉱の製造において、焼結原料充填層の上層部の成品歩留および強度などの品質を向上するための方法は、今までに、数多く提案されている。   In the production of sintered ore using the lower suction type sintering machine, many methods have been proposed so far for improving the quality such as the product yield and strength of the upper layer of the sintered raw material packed layer. Yes.

例えば、原料充填層の上層部の固体燃料を増加させる方法(例えば、特許文献1、参照)が提案されている。   For example, a method for increasing the solid fuel in the upper layer portion of the raw material packed bed (for example, see Patent Document 1) has been proposed.

また、磁気を利用した装入装置により、返鉱、ミルスケール、マグネタイトなどの高FeO強磁性原料および強磁性原料と炭材との造粒物を、原料充填層の表層部に装入する方法(例えば、特許文献2〜6、参照)も提案されている。   Also, a method of charging a surface layer portion of a raw material packed bed with a high FeO ferromagnetic raw material such as return mineral, mill scale, and magnetite and a granulated product of a ferromagnetic raw material and a carbonaceous material using a magnetic charging device. (For example, refer to Patent Documents 2 to 6).

また、焼結原料に配合する鉄鉱石の同化溶融性を考慮し、原料充填層の上層に易溶融性鉄鉱石を装入し、その下層部に、難溶融性鉄鉱石を装入する方法(例えば、特許文献7、参照)も提案されている。   In addition, in consideration of the assimilation and melting properties of iron ore to be blended with the sintering raw material, a method of charging easily fusible iron ore into the upper layer of the raw material packed layer and charging poorly fusible iron ore into the lower layer ( For example, Patent Document 7, see) has also been proposed.

すなわち、着火後の原料充填層の表層部の温度を上昇させるために、原料充填層の表層部の固体燃料を増加したり、原料充填層の表層部中に副原料中のCaOやSiO2と融液(CaO−SiO2−FeO)を生成し易いFeOを多く含有する強磁性原料や、易溶融性鉄鉱石などを装入したりする。これらの方法は、原料充填層上層部の焼結鉱の成品歩留および強度等の品質を向上させることを目的としている。That is, in order to increase the temperature of the surface layer portion of the raw material packed layer after ignition, the solid fuel in the surface layer portion of the raw material packed layer is increased, or CaO and SiO 2 in the auxiliary raw material in the surface layer portion of the raw material packed layer and For example, a ferromagnetic raw material containing a large amount of FeO that easily forms a melt (CaO—SiO 2 —FeO), or an easily meltable iron ore is charged. These methods are intended to improve the product yield and quality of the sintered ore in the upper layer portion of the raw material packed bed.

しかし、これらの方法によれば、原料充填層の上層の熱量や融液生成量を適度に制御することが難しいため、熱量が高過ぎたり、融液が過度に増加したりする。そのため、原料充填層全体の通気性が悪化して、生産性が低下し、被還元性などの焼結鉱の品質が低下するという問題があった。   However, according to these methods, it is difficult to appropriately control the amount of heat and the amount of melt generated in the upper layer of the raw material packed layer, so that the amount of heat is too high and the amount of melt increases excessively. Therefore, the air permeability of the entire raw material packed bed is deteriorated, the productivity is lowered, and the quality of sintered ore such as reducibility is lowered.

特開2000−144266号公報JP 2000-144266 A 特開2000−328148号公報JP 2000-328148 A 特開2001−234257号公報JP 2001-234257 A 特開2001−271122号公報JP 2001-271122 A 特開2001−335849号公報JP 2001-335849 A 特開2002−130957号公報JP 2002-130957 A 特公昭60−47887号公報Japanese Patent Publication No. 60-47887

上記従来技術の問題点に鑑みて、本発明は、下方吸引型焼結機を用いた焼結鉱の製造方法において、原料充填層の上層に微粉部への融液浸透性に優れた銘柄の鉄鉱石を選択的に装入することにより、原料充填層の上層の融液が過度に増加することを防止して、原料充填層全体の通気性を悪化させ、被還元性などの焼結鉱の品質を低下させることなく、原料充填層の上層の成品歩留および強度を改善し、焼結鉱の生産性を向上することができる焼結鉱の製造方法を提供することを目的とする。   In view of the above-mentioned problems of the prior art, the present invention is a method for producing a sintered ore using a lower suction type sintering machine, and has a brand excellent in melt permeability to the fine powder portion in the upper layer of the raw material packed layer. By selectively charging iron ore, the melt of the upper layer of the raw material packed bed is prevented from excessively increasing, the air permeability of the entire raw material packed layer is deteriorated, and reducible and other sintered ore It is an object of the present invention to provide a method for producing a sintered ore that can improve the product yield and strength of the upper layer of the raw material packed layer and improve the productivity of the sintered ore without reducing the quality of the ore.

本発明者らは、焼結鉱の製造において焼結パレットに形成される原料充填層の上層の成品歩留および強度を改善するための方法を鋭意検討した。   The present inventors diligently studied a method for improving the product yield and strength of the upper layer of the raw material packed layer formed on the sintered pallet in the production of sintered ore.

その結果、焼結原料を構成する複数銘柄の鉄鉱石のうちで、鉄鉱石粉中への融液浸透性評価試験により測定した融液浸透距離が4.0mm以上である鉄鉱石を、焼結パレット上に形成される原料充填層の所定範囲の上層に選択的に装入することにより、原料充填層の上層の焼結鉱の成品歩留および強度を改善できることを確認した。   As a result, among the multiple brands of iron ore constituting the sintering raw material, an iron ore having a melt penetration distance of 4.0 mm or more measured by a melt penetration evaluation test into the iron ore powder is obtained from a sintering pallet. It was confirmed that the product yield and strength of the sintered ore in the upper layer of the raw material packed layer can be improved by selectively charging the upper layer of the raw material packed layer in a predetermined range.

また、この方法によれば、従来提案されている原料充填層の上層の固体燃料やFeO源を増加させる方法や、原料充填層の上層に易溶融性鉄鉱石を装入する方法に比べて、原料充填層の上層に過度の融液が生成して、原料充填層全体の通気性を低下させることなく、原料充填層の上層の焼結鉱の成品歩留および強度を改善できることが解った。   In addition, according to this method, compared to a conventionally proposed method of increasing the solid fuel and FeO source in the upper layer of the raw material packed bed, and a method of charging easily meltable iron ore into the upper layer of the raw material packed bed, It has been found that the product yield and strength of the sintered ore in the upper layer of the raw material packed layer can be improved without generating an excessive melt in the upper layer of the raw material packed layer and reducing the air permeability of the entire raw material packed layer.

本発明は、上記知見に基づいてなされたもので、その発明の要旨は、以下のとおりである。   The present invention has been made based on the above findings, and the gist of the invention is as follows.

(1)複数銘柄の鉄鉱石を含む鉄含有原料、副原料、固体燃料、および、返鉱を配合して焼結原料とし、これら焼結原料を混合、造粒した後、焼結パレット上に装入し、焼成する焼結鉱の製造方法であって、前記鉄鉱石の前記銘柄毎に測定された融液浸透距離に基づいて、前記複数銘柄の前記鉄鉱石から、前記融液浸透距離の加重平均値が4.0mm以上となるように選択もしくは配合された高融液浸透性鉄鉱石を、前記焼結パレット上に形成される原料充填層の上表面から全層厚に対する層厚比率で5〜12%の範囲の上層に装入し、その他の鉄鉱石を前記原料充填層の下層に装入し、かつ、前記副原料、前記固体燃料、および、前記返鉱を、前記原料充填層の前記上層および前記下層に装入する。   (1) Mixing iron-containing raw materials containing multiple brands of iron ore, auxiliary raw materials, solid fuel, and return ore into sintered raw materials, mixing and granulating these sintered raw materials, and then placing them on the sintering pallet A method for producing sintered ore to be charged and fired, based on the melt penetration distance measured for each brand of the iron ore, from the iron ore of the plurality of brands, the melt penetration distance of The high melt permeable iron ore selected or blended so that the weighted average value is 4.0 mm or more is the layer thickness ratio with respect to the total layer thickness from the upper surface of the raw material packed layer formed on the sintered pallet. The upper layer in the range of 5 to 12% is charged, the other iron ore is charged in the lower layer of the raw material packed layer, and the auxiliary raw material, the solid fuel, and the return ore are supplied to the raw material packed layer. In the upper layer and the lower layer.

(2)上記(1)に記載の焼結鉱の製造方法では、前記高融液浸透性鉄鉱石のAl含有量が0.6質量%以下であってもよい。(2) In the method for producing a sintered ore according to (1) above, the Al 2 O 3 content of the high melt-permeable iron ore may be 0.6% by mass or less.

(3)上記(1)に記載の焼結鉱の製造方法では、前記高融液浸透性鉄鉱石に加えて、前記鉄含有原料として、製鉄プロセスで発生したスケールを、前記原料充填層の上表面からの全層厚に対する層厚比率で5〜12%の範囲の上層に装入してもよい。   (3) In the method for producing a sintered ore according to (1) above, in addition to the high melt-permeable iron ore, the iron-containing raw material is scaled in the iron making process above the raw material packed bed. You may insert in the upper layer of the range of 5-12% by the layer thickness ratio with respect to the total layer thickness from the surface.

(4)上記(1)に記載の焼結鉱の製造方法では、前記固体燃料および前記返鉱が、前記原料充填層の前記上層および前記下層で、同じ配合割合で装入されていてもよい。   (4) In the method for producing a sintered ore according to (1), the solid fuel and the return ore may be charged in the same mixing ratio in the upper layer and the lower layer of the raw material packed bed. .

(5)上記(1)に記載の焼結鉱の製造方法では、前記原料充填層に装入される前記副原料について、前記上層の配合割合が前記下層の配合割合以下であってもよい。   (5) In the method for producing a sintered ore described in (1) above, with respect to the auxiliary material charged into the raw material packed layer, the mixing ratio of the upper layer may be equal to or less than the mixing ratio of the lower layer.

(6)上記(1)に記載の焼結鉱の製造方法では、前記高融液浸透性鉄鉱石、および、前記その他の鉄鉱石は、前記副原料、前記固体燃料、および、前記返鉱を配合し、混合、造粒した後、前記原料充填層の前記上層および前記下層に、それぞれ装入してもよい。   (6) In the method for producing a sintered ore according to (1), the high-melt-penetrating iron ore and the other iron ore are the secondary raw material, the solid fuel, and the return ore. After blending, mixing, and granulating, each of the upper layer and the lower layer of the raw material packed layer may be charged.

(7)上記(6)に記載の焼結鉱の製造方法では、前記高融液浸透性鉄鉱石は、前記鉄含有原料として、前記製鉄プロセスで発生した前記スケールを配合し、前記副原料、前記固体燃料、および、前記返鉱を配合し、混合、造粒した後、前記原料充填層の前記上層に装入してもよい。   (7) In the method for producing a sintered ore according to (6), the highly melt-permeable iron ore is blended with the scale generated in the iron making process as the iron-containing raw material, After blending, mixing, and granulating the solid fuel and the return mineral, the solid fuel may be charged into the upper layer of the raw material packed bed.

本発明によれば、下方吸引型焼結機を用いた焼結鉱の製造方法において、焼結原料に配合する各銘柄鉄鉱石の微粉部への融液浸透性を評価し、この評価結果に基づき、各銘柄の鉄鉱石のうち、微粉部への融液浸透性に優れた銘柄の鉄鉱石を選定して、原料充填層の上層に選択的に装入することにより、原料充填層の上層の成品歩留および強度を改善し、焼結鉱の生産性を向上することができる。   According to the present invention, in the method for producing sintered ore using the lower suction type sintering machine, the melt permeability to the fine powder portion of each brand iron ore to be blended with the sintering raw material is evaluated, and this evaluation result Based on the iron ore of each brand, select the iron ore of the brand excellent in melt penetration into the fine powder part and selectively insert it into the upper layer of the raw material packed bed, so that the upper layer of the raw material packed bed The yield and strength of the product can be improved, and the productivity of sintered ore can be improved.

焼結機の原料充填層から採取した焼結原料の擬似粒子断面の顕微鏡組織を示す図である。It is a figure which shows the micro structure of the pseudo-particle cross section of the sintering raw material extract | collected from the raw material filling layer of a sintering machine. 鉄鉱石の融液浸透距離と実機焼結操業での焼結鉱の強度SIとの関係を示す図である。It is a figure which shows the relationship between the melt penetration distance of an iron ore, and intensity | strength SI of the sintered ore in an actual machine sintering operation. 鉄鉱石の融液浸透距離と実機焼結操業での焼結鉱の成品歩留との関係を示す図である。It is a figure which shows the relationship between the melt penetration distance of an iron ore, and the product yield of the sintered ore in an actual machine sintering operation. 焼成後のタブレットにおける融液浸透距離の測定位置を示す図である。It is a figure which shows the measurement position of the melt penetration distance in the tablet after baking. 主要銘柄の鉄鉱石の融液浸透距離の比較を示す図である。It is a figure which shows the comparison of the melt penetration distance of the iron ore of a main brand. 鉄鉱石の融液浸透距離と、タブレット焼成試験での落下試験による強度指標(+0.5mm%値)との関係を示す図である。It is a figure which shows the relationship between the melt penetration distance of an iron ore, and the intensity | strength parameter | index (+0.5 mm% value) by the drop test in a tablet baking test. 上部装入層厚比率と、焼結鍋試験での焼結鉱の強度SIとの関係を示す図である。It is a figure which shows the relationship between an upper charging layer thickness ratio and the intensity | strength SI of the sintered ore in a sintering pot test. 上部装入層厚比率と、焼結鍋試験での焼結鉱の成品歩留との関係を示す図である。It is a figure which shows the relationship between an upper charging layer thickness ratio and the product yield of the sintered ore in a sintering pot test. 鉄鉱石の融液浸透距離と、Al含有率との関係を示す図である。The melt infiltration distance iron ore is a diagram showing the relationship between the Al 2 O 3 content. 上層中石灰石割合と、焼結鍋試験での焼結鉱の成品歩留との関係を示す図である。It is a figure which shows the relationship between the limestone ratio in an upper layer, and the product yield of the sintered ore in a sintering pot test. 上層中石灰石割合と、焼結鍋試験での焼結鉱の強度SIとの関係を示す図である。It is a figure which shows the relationship between the limestone ratio in an upper layer, and the intensity | strength SI of the sintered ore in a sintering pot test. 実施例の焼結鍋試験の焼結原料の装入条件を示す図である。It is a figure which shows the charging conditions of the sintering raw material of the sintering pot test of an Example. 高融液浸透性鉄鉱石およびその他の鉄鉱石をそれぞれ原料充填層の上層および下層に装入する方法の一例を示す図である。It is a figure which shows an example of the method of charging a highly melt-permeable iron ore and other iron ores in the upper layer and lower layer of a raw material packed layer, respectively.

まず、本発明の技術思想について説明する。   First, the technical idea of the present invention will be described.

図1は、焼結機の原料充填層から採取した焼結原料の擬似粒子断面の光学顕微鏡組織を示す図である。   FIG. 1 is a diagram showing an optical microscope structure of a cross section of pseudo particles of a sintered raw material collected from a raw material packed layer of a sintering machine.

焼結過程で初期融液は、鉄鉱石(Fe)と石灰石(CaO)とが接触した部分で生成すると考えられる。しかしながら、図1に示すとおり、焼結原料の擬似粒子(粒径1mm以上の核粒子と、その周囲の粒径0.5mm以下の付着粉部とで構成される)の付着粉部(微粉部)のミクロ観察によれば、鉄鉱石(Fe)と石灰石(CaO)とは、不規則に分布しているため、それらが接触する部分は少ない。In the sintering process, the initial melt is considered to be generated at a portion where iron ore (Fe 2 O 3 ) and limestone (CaO) are in contact with each other. However, as shown in FIG. 1, the adhering powder part (fine powder part) of the pseudo raw material of the sintering material (consisting of core particles having a particle diameter of 1 mm or more and the adhering powder part having a particle diameter of 0.5 mm or less around it) According to the micro observation of), iron ore (Fe 2 O 3 ) and limestone (CaO) are irregularly distributed, and therefore there are few portions in contact with each other.

このことから、実際の焼結過程では、以下のように次のように焼結反応が進行すると考えられる。すなわち、焼結原料の擬似粒子の付着粉部中の鉄鉱石(Fe23)と石灰石(CaO)とが接触した部分で、カルシウムフェライト(CaO−Fe23)の初期融液が生成する。その後、初期融液が付着粉部内に浸透し、周囲の鉄鉱石や副原料と接触し、同化、合体を繰り返す。このようにして融液量が増加し、焼結鉱の結合相が形成される。From this, in the actual sintering process, it is considered that the sintering reaction proceeds as follows. That is, an initial melt of calcium ferrite (CaO—Fe 2 O 3 ) is generated at the portion where the iron ore (Fe 2 O 3 ) and limestone (CaO) in the adhering powder portion of the pseudo raw material of the sintering material are in contact To do. Thereafter, the initial melt penetrates into the adhering powder part, comes into contact with surrounding iron ore and auxiliary materials, and repeats assimilation and coalescence. In this way, the amount of melt increases and a binder phase of sintered ore is formed.

なお、本発明者らは、焼結過程で生成した初期融液が鉄鉱石充填層内に浸透する挙動、即ち、融液浸透性は、鉄鉱石の鉱物特性に依存し、焼結鉱の結合相形成に大きく影響することを明らかにしている(ISIJ−Int.43(2003),p.1384、参照)。   The inventors of the present invention have found that the behavior of the initial melt produced in the sintering process penetrates into the iron ore packed bed, that is, the melt permeability depends on the mineral characteristics of the iron ore, and the bonding of the sintered ore. It has been clarified that phase formation is greatly affected (see ISIJ-Int. 43 (2003), p. 1384).

焼結操業中の焼結原料充填層の上層の温度は低くなり易く、かつ、鉄鉱石(Fe)と石灰石(CaO)との初期融液の生成から焼結反応(同化反応)が完了するまでの時間は短い。このことから、本発明者らは、原料充填層の上層における焼結鉱の成品歩留を向上するためには、原料充填層の上層に融液浸透性の高い鉄鉱石を選択的に装入し、生成した初期融液を速やかに原料微粉部中に浸透させ、同化反応を促進することが有効であると考えた。The temperature of the upper layer of the sintering raw material packed bed during the sintering operation tends to be low, and the sintering reaction (anabolic reaction) starts from the formation of the initial melt of iron ore (Fe 2 O 3 ) and limestone (CaO). The time to complete is short. Therefore, the present inventors selectively charged iron ore with high melt permeability into the upper layer of the raw material packed bed in order to improve the product yield of the sintered ore in the upper layer of the raw material packed layer. Then, it was considered effective to promptly infiltrate the produced initial melt into the raw material fine powder part to promote the anabolic reaction.

本発明は、この技術思想に基づいてなされ、複数銘柄(鉄鉱石銘柄)の鉄鉱石を含む鉄含有原料、副原料(石灰石など)、固体燃料(コークスなど)、および、返鉱を配合して焼結原料とし、該焼結原料を混合、造粒した後、焼結パレット上に装入し、焼成する焼結鉱の製造方法において以下の特徴を有する。すなわち、前記鉄鉱石の銘柄毎に融液浸透性の評価試験を行い、それぞれの銘柄の融液浸透距離の測定値に基づいて、前記複数銘柄の鉄鉱石から、融液浸透距離が4.0mm以上となるように1種以上からなる鉄鉱石を選択もしくは配合し、前記焼結パレット上に形成される原料充填層の上表面から全層厚に対する層厚比率(上部装入層厚比率)が5〜12%の範囲となるように上層に装入することを特徴とする。   The present invention is made on the basis of this technical idea, and includes iron-containing raw materials including iron ores of a plurality of brands (iron ore brands), secondary raw materials (such as limestone), solid fuel (such as coke), and return ore. The sintered raw material is mixed, granulated, charged on a sintering pallet, and fired. The manufacturing method of the sintered ore has the following characteristics. That is, a melt permeability evaluation test is performed for each iron ore brand, and the melt penetration distance is 4.0 mm from the plurality of brand iron ores based on the measured value of the melt penetration distance of each brand. One or more types of iron ore are selected or blended so as to have the above, and the layer thickness ratio (upper charge layer thickness ratio) to the total layer thickness from the upper surface of the raw material packed layer formed on the sintered pallet is The upper layer is charged so as to be in the range of 5 to 12%.

本発明において、鉄鉱石の融液浸透性(初期融液が粒径0.5mm以下の鉄鉱石粉中へ浸透する際の拡がり易さ)、および、融液浸透距離(鉄鉱石粉中の融液の浸透距離)は、本発明者らが、特開2002−62290号公報などで提案した評価試験(以下、「鉄鉱石の融液浸透性評価試験」という)によって評価、測定することができる。
この融液浸透距離は、焼結原料の鉄鉱石として2種以上の銘柄の鉄鉱石を配合する場合は、測定の簡略化のため、測定された各銘柄の鉄鉱石の融液浸透距離の加重平均値を使用した。以降では、2種以上の銘柄の鉄鉱石を配合した鉄鉱石を用いる場合には、その加重平均値も融液浸透距離と表現する。なお、複数の銘柄の鉄鉱石を配合し、1種の銘柄の鉄鉱石として融液浸透距離を測定してもよい。
また、本発明における融液浸透距離は、本発明の前記融液浸透性評価試験により評価したものであるが、他の評価試験により融液浸透性を評価して、本発明における融液浸透距離に換算しても良い。例えば、上記鉄鉱石の融液浸透性評価試験の成型圧力、鉄鉱石タブレットおよび初期融液材タブレットの大きさや形状、試験手順等を変えて評価を行い、本発明における融液浸透距離に換算しても良い。また、例えば、所定の距離を融液が浸透した時間を測定し、本発明における融液浸透距離に換算しても良く、浸透重量や同化反応による温度変化等、本発明における融液浸透距離に換算可能な物理量であれば良い。
In the present invention, the melt permeability of the iron ore (ease of spreading when the initial melt penetrates into the iron ore powder having a particle size of 0.5 mm or less), and the melt penetration distance (of the melt in the iron ore powder) The permeation distance) can be evaluated and measured by an evaluation test proposed by the present inventors in Japanese Patent Application Laid-Open No. 2002-62290 (hereinafter referred to as “iron ore melt permeability evaluation test”).
This melt penetration distance is a weighting of the measured melt penetration distance for each brand of iron ore in order to simplify the measurement when two or more brands of iron ore are blended as the iron ore of the sintering raw material. Average values were used. Hereinafter, when using iron ore containing two or more types of iron ore, the weighted average value is also expressed as the melt penetration distance. A plurality of brand iron ores may be blended and the melt penetration distance may be measured as one brand iron ore.
The melt penetration distance in the present invention is evaluated by the melt permeability evaluation test of the present invention. The melt penetration distance in the present invention is evaluated by evaluating the melt permeability by other evaluation tests. May be converted into For example, evaluation is performed by changing the molding pressure of the iron ore melt permeability test, the size and shape of the iron ore tablet and the initial melt material tablet, the test procedure, etc., and converted into the melt penetration distance in the present invention. May be. In addition, for example, the time during which the melt has permeated a predetermined distance may be measured and converted to the melt penetration distance in the present invention. Any physical quantity that can be converted may be used.

本発明における鉄鉱石の融液浸透性評価試験は、以下の要領で行い、融液浸透距離を測定する。   The melt penetration evaluation test of iron ore in the present invention is performed as follows, and the melt penetration distance is measured.

鉄鉱石試料は、粒径:0.25〜0.5mmの割合が50質量%で、かつ、粒径:0.25mm以下の割合が50質量%となるように粒度調整し、十分に混合する。その後、金型成形ダイスを用いて、鉄鉱石試料を成形圧力:4MPaで成形し、直径:15mm、高さ:5mmの鉄鉱石タブレット(水銀圧入法による空隙率(開気孔率):約30%)を作製する。   Adjust the particle size of the iron ore sample so that the ratio of particle size: 0.25 to 0.5 mm is 50% by mass, and the ratio of particle size: 0.25 mm or less is 50% by mass, and mix well. . Thereafter, an iron ore sample was molded at a molding pressure of 4 MPa using a mold forming die, and an iron ore tablet having a diameter of 15 mm and a height of 5 mm (porosity (open porosity) by mercury intrusion method): about 30% ).

一方、初期融液材は、CaO−Feの2元系状態図の共晶組成に近いCaO:26質量%、Fe:74質量%の組成になるように、Fe試薬とCaO試薬とを配合し、自動乳鉢で20分間混合する。その後、鉄鉱石タブレットと同様に、金型成形ダイスを用いて初期融液材を成形圧力:4MPaで成形し、直径:5mm、高さ:5mmの初期融液材タブレットを作製する。On the other hand, the initial melt material is close to the eutectic composition of the binary system phase diagram of CaO-Fe 2 O 3 CaO: 26 wt%, Fe 2 O 3: As will become 74% by weight of the composition, Fe 2 O 3 reagents and CaO reagent are mixed and mixed in an automatic mortar for 20 minutes. Thereafter, similarly to the iron ore tablet, the initial melt material is molded at a molding pressure of 4 MPa using a mold forming die to produce an initial melt material tablet having a diameter of 5 mm and a height of 5 mm.

さらに、前記鉄鉱石タブレット上面の中心部に、前記初期融液材タブレットを載せて、Ni製円筒型坩堝(内径20mm、高さ15mm)に装入し、電気炉内において空気気流中で加熱し、焼成する。その後、焼成後のタブレットの断面観察により融液浸透距離を測定する。   Furthermore, the initial melt material tablet is placed on the center of the upper surface of the iron ore tablet, charged into a Ni cylindrical crucible (inner diameter 20 mm, height 15 mm), and heated in an air stream in an electric furnace. , Fire. Then, melt penetration distance is measured by cross-sectional observation of the tablet after baking.

なお、焼成後のタブレットにおける融液浸透距離の測定では、タブレット径方向中央部で垂直に切断し、切断面を研磨し、図4に示すような切断面の鉱物組織を光学顕微鏡により観察する。撮影した断面組織において、図4に示す融液が浸透した部分の幅方向(タブレット径方向)中心部(3)、この中心部(3)と外端(1)および(5)とのそれぞれの中間点である(2)および(4)の3箇所で浸透距離を実測し、それらの平均値から融液浸透距離を求めることが好ましい。   In the measurement of the melt permeation distance in the tablet after baking, the tablet is cut vertically at the center in the radial direction of the tablet, the cut surface is polished, and the mineral structure of the cut surface as shown in FIG. 4 is observed with an optical microscope. In the photographed cross-sectional structure, the width direction (tablet radial direction) central portion (3) of the portion infiltrated with the melt shown in FIG. 4, each of the central portion (3) and the outer ends (1) and (5). It is preferable to actually measure the permeation distance at three points (2) and (4), which are intermediate points, and obtain the melt permeation distance from the average value thereof.

上記評価試験において、タブレットの焼成条件は、実機と類似した焼結ヒートパターンを使用している。即ち、タブレットを1100℃から1290℃(最高温度)までを1分で加熱した後、1290℃から1100℃までを3分で冷却し、直ちに、タブレットを炉外へ取り出し空冷する。   In the evaluation test, the sintering heat pattern similar to that of the actual machine is used as the tablet baking condition. That is, the tablet is heated from 1100 ° C. to 1290 ° C. (maximum temperature) in 1 minute, then cooled from 1290 ° C. to 1100 ° C. in 3 minutes, and the tablet is immediately taken out of the furnace and air-cooled.

複数銘柄の鉄鉱石を含む鉄含有原料を用いた実機焼結操業において、図2は、鉄鉱石の融液浸透距離と焼結鉱の強度SIとの関係を示し、図3は、鉄鉱石の融液浸透距離と焼結鉱の成品歩留との関係を示す。   FIG. 2 shows the relationship between the melt penetration distance of the iron ore and the strength SI of the sintered ore, and FIG. 3 shows the relationship between the iron ore in the actual sintering operation using the iron-containing raw material containing multiple brands of iron ore. The relationship between melt penetration distance and product yield of sintered ore is shown.

焼結鉱の強度を示す指標であるSIは、下記成品歩留測定後の焼結鉱の中から粒径:10〜25mmの焼結鉱10kgを採取し、2mの高さから4回落下させることにより測定される。このSIは、落下前の焼結鉱の質量(kg)に対する、落下後の粒径:5mm以上の焼結鉱の質量(kg)の割合(質量%)を示す。   SI, which is an index indicating the strength of sintered ore, samples 10 kg of sintered ore having a particle size of 10 to 25 mm from the sintered ore after the following product yield measurement, and drops 4 times from a height of 2 m. Is measured. This SI indicates the ratio (mass%) of the mass (kg) of the sintered ore having a particle diameter of 5 mm or more after dropping to the mass (kg) of the sintered ore before dropping.

焼結鉱の成品歩留は、焼結ケーキ(塊)を2mの高さから5回落下させることにより測定される。この焼結鉱の成品歩留は、落下前の焼結ケーキ(塊)(但し、床敷鉱分を除く)の質量(kg)に対する、落下後の粒径:5mm以上の焼結鉱(但し、床敷鉱分を除く)の質量(kg)の割合(質量%)を示す。   The product yield of sintered ore is measured by dropping the sintered cake (lumps) 5 times from a height of 2 m. The product yield of this sintered ore is the sintered ore with a particle size of 5mm or more after dropping with respect to the mass (kg) of the sintered cake (lumb) before dropping (excluding the bedding ore) , The ratio (mass%) of the mass (kg) of the bedding ore is excluded.

図2および図3によれば、複数銘柄の鉄鉱石を含む焼結原料において融液浸透距離が増加すると、焼結鉱の成品歩留およびSIが向上することが解る。   2 and 3, it can be seen that the product yield and SI of the sintered ore are improved when the melt penetration distance is increased in the sintered raw material including a plurality of brands of iron ore.

即ち、これらの結果は、鉄鉱石の融液浸透性の指標として、融液浸透距離に基づいて、焼結原料中の鉄鉱石の各銘柄の配合を調整する方法は、実機により製造した焼結鉱の成品歩留や強度を向上するために有効であることを示唆している。   That is, these results are based on the melt penetration distance as an index of the melt permeability of iron ore, and the method of adjusting the composition of each brand of iron ore in the sintering raw material is a sintering machine manufactured by an actual machine. This suggests that it is effective for improving the yield and strength of the ore.

なお、図2および図3に示すように、実機焼結操業において、焼結鉱の強度SIは、90.5%以上、成品歩留は、80.0%以上が求められている。   As shown in FIGS. 2 and 3, in the actual machine sintering operation, the strength SI of the sintered ore is required to be 90.5% or more, and the product yield is required to be 80.0% or more.

次に、本発明において、原料充填層の上層の焼結鉱の強度および成品歩留を向上する(強度SI:90.5%以上、成品歩留:80.0%以上)ために必要とされる、鉄鉱石の融液浸透性、つまり、融液浸透性評価試験で測定される融液浸透距離の適正範囲について説明する。   Next, in the present invention, it is required to improve the strength and product yield of the upper-layer sintered ore (strength SI: 90.5% or more, product yield: 80.0% or more). An appropriate range of the melt permeability of the iron ore, that is, the melt penetration distance measured in the melt permeability evaluation test will be described.

表1に、焼結原料に配合する主要銘柄の鉄鉱石の化学成分組成と、融液浸透性評価試験で測定された融液浸透距離を示す。   Table 1 shows the chemical composition of the main brand iron ore to be blended with the sintered raw material and the melt penetration distance measured in the melt permeability evaluation test.

表1において、B(a)およびB(b)は、2種類のブラジル産鉱石、H(a)およびH(b)は、2種類の豪州産ヘマタイト鉱石、M(a)およびM(b)は、2種類の豪州産マラマンバ鉱石を示す。HP(a)およびHP(b)は、2種類の豪州産高りん鉱石、P(a)およびP(b)は、2種類の豪州産ピソライト鉱石、HPMは、豪州産新規ブレンド鉱石、I(a)およびI(b)は、2種類のインド産鉱石を示す。また、S1およびS2は、2種類の製鉄プロセスで発生するスケールを示す。   In Table 1, B (a) and B (b) are two Brazilian ores, H (a) and H (b) are two Australian hematite ores, M (a) and M (b) Shows two types of Australian maramamba ore. HP (a) and HP (b) are two Australian high phosphate rocks, P (a) and P (b) are two Australian pisolite ores, HPM is a new Australian blended ore, I ( a) and I (b) represent two types of Indian ores. S1 and S2 indicate scales generated in two types of iron making processes.

図5は、表1に示す主要銘柄の鉄鉱石の融液浸透距離の比較を示す図である。表1および図5によれば、主要銘柄の鉄鉱石の中で、2種類のブラジル産鉱石B(a)およびB(b)は、いずれも、融液浸透距離が4.0mm以上と高いことが解る。   FIG. 5 is a diagram showing a comparison of melt penetration distances of main brand iron ores shown in Table 1. According to Table 1 and FIG. 5, among the main brands of iron ore, two Brazilian ores B (a) and B (b) both have a high melt penetration distance of 4.0 mm or more. I understand.

一方、2種類の豪州産ヘマタイト鉱石H(a)およびH(b)、2種類の豪州産高りん鉱石HP(a)およびHP(b)、および、2種類の豪州産ピソライト鉱石P(a)およびP(b)は、何れも融液浸透距離が2.0mm以下と低いことが解る。   On the other hand, two Australian hematite ores H (a) and H (b), two Australian high-phosphorus ores HP (a) and HP (b), and two Australian pisolite ores P (a) As for P and (b), the melt penetration distance is as low as 2.0 mm or less.

また、豪州産新規ブレンド鉱石HPM、2種類の豪州産マラマンバ鉱石M(a)、M(b)、および、2種類のインド産鉱石I(a)およびI(b)は、融液浸透距離が2.0mm超〜4.0mm未満の範囲にあることが解る。   In addition, Australian new blended ore HPM, two Australian maramamba ores M (a) and M (b), and two Indian ores I (a) and I (b) have a melt penetration distance. It turns out that it exists in the range of more than 2.0 mm-less than 4.0 mm.

なお、豪州産ピソライト鉱石P(a)およびP(b)は、結晶水含有量が高く、焼結反応において同化溶融し易い、易溶融性鉄鉱石として知られる。しかしながら、豪州産ピソライト鉱石P(a)およびP(b)は、融液浸透距離が2.0mm以下と低く、融液浸透性が良くないことが解る。また、製鉄プロセスで発生するスケールS1およびS2は、融液浸透性距離がスケールの種類によって大きく異なることが解る。   Australian pisolite ores P (a) and P (b) are known as easily meltable iron ores that have a high crystallization water content and are easily assimilated and melted in the sintering reaction. However, it can be seen that Australian pisolite ores P (a) and P (b) have a low melt penetration distance of 2.0 mm or less and have poor melt permeability. In addition, it can be seen that the scales S1 and S2 generated in the iron making process differ greatly in the melt permeability distance depending on the type of scale.

次に、表1の融液浸透性が異なる複数銘柄の鉄鉱石を用いて、これらを焼結原料充填層の上層に選択的に装入した場合の焼結鉱の強度および成品歩留の向上効果を、タブレット焼成試験により確認した。   Next, using multiple grades of iron ore with different melt permeability shown in Table 1 and improving the strength and product yield of the sintered ore when these are selectively charged into the upper layer of the sintered raw material packed bed The effect was confirmed by a tablet baking test.

タブレット焼成試験用の試料として、表1に示した、複数銘柄の鉄鉱石を粉砕し、粒径0.25〜0.25mmの鉄鉱石を50質量%、粒径0.25mm以下の鉄鉱石を50質量%含有する粒度に調整し、これらの各鉄鉱石に、CaO濃度が10質量%になるように0.25mm以下の石灰石を混合した。   As a sample for tablet firing test, the iron ore of plural brands shown in Table 1 is pulverized, and iron ore having a particle size of 0.25 to 0.25 mm is 50% by mass, and iron ore having a particle size of 0.25 mm or less is used. The particle size was adjusted to 50% by mass, and limestone of 0.25 mm or less was mixed with each iron ore so that the CaO concentration was 10% by mass.

これらの試料は、金型成形ダイスを用いて、成形圧力4MPaで、直径8mm、高さ10mmのタブレット(空隙率約30%)に成形した。   These samples were molded into tablets (porosity of about 30%) having a diameter of 8 mm and a height of 10 mm using a mold forming die at a molding pressure of 4 MPa.

タブレット焼成試験では、試料タブレットを内径20mm、高さ15mmのNi製円筒型坩堝に入れ、電気炉内で空気気流中焼成した。タブレットの焼成条件は、実機と類似した焼結ヒートパターンを使用している。即ち、タブレットを1100℃から1290℃(最高温度)までを1分で加熱した後、1290℃から1100℃までを3分で冷却し、直ちに、タブレットを炉外へ取り出し空冷した。   In the tablet firing test, the sample tablet was placed in a Ni cylindrical crucible having an inner diameter of 20 mm and a height of 15 mm and fired in an air stream in an electric furnace. A sintering heat pattern similar to that of the actual machine is used as the tablet baking condition. That is, the tablet was heated from 1100 ° C. to 1290 ° C. (maximum temperature) in 1 minute, then cooled from 1290 ° C. to 1100 ° C. in 3 minutes, and the tablet was immediately taken out of the furnace and air-cooled.

焼成した後の焼成タブレットの強度評価には、焼成タブレット1個につき、300gの鉄製分銅を3回落とす落下試験を行った。この試験後の試料(焼成タブレット)を混合した後、0.5mm篩で分級した。強度指標(+0.5mm%値)として、全試料の質量に対する0.5mm以上の試料の質量百分率を求めた。   For the strength evaluation of the baked tablet after baking, a drop test was performed in which 300 g of iron weight was dropped three times for each baked tablet. After mixing the sample (baked tablet) after this test, it was classified with a 0.5 mm sieve. As a strength index (+0.5 mm% value), a mass percentage of a sample of 0.5 mm or more with respect to the mass of all samples was obtained.

実機焼結操業において、焼結鉱の強度SIは、90.5%以上、成品歩留は80.0%以上が求められている。   In the actual machine sintering operation, the strength SI of the sintered ore is required to be 90.5% or more, and the product yield is required to be 80.0% or more.

焼成タブレットの強度の評価基準を決定するために、予め、実機焼結操業で製造した強度SIが90.5%以上、成品歩留が80.0%以上の焼結鉱を採取し、上記落下試験を実施した。この落下試験では、鍋試験用タブレットと同様な形状、つまり、直径8mm、高さ10mmのタブレット形状に加工した試料を用いた。この落下試験で測定された強度指標(+0.5mm%値)を評価基準とした。   In order to determine the evaluation criteria for the strength of the fired tablet, a sinter with an intensity SI of 90.5% or more and a product yield of 80.0% or more produced in advance by actual machine sintering operation is collected and dropped. The test was conducted. In this drop test, a sample processed into the same shape as the pot test tablet, that is, a tablet shape having a diameter of 8 mm and a height of 10 mm was used. The strength index (+0.5 mm% value) measured in this drop test was used as an evaluation standard.

なお、実機焼結操業で製造した強度SIが90.5%以上、成品歩留が80.0%以上の焼結鉱を用いて上記落下試験により測定した強度指標(+0.5mm%値)は、88%であった。したがって、焼成タブレットの強度評価では、上記落下試験の強度指標(+0.5mm%値)が88%以上を満足する焼成タブレットを焼結鉱の強度および成品歩留が良好であると評価した。   In addition, the strength index (+0.5 mm% value) measured by the above drop test using a sintered ore having a strength SI of 90.5% or more and a product yield of 80.0% or more manufactured by an actual machine sintering operation is 88%. Therefore, in the strength evaluation of the fired tablet, the fired tablet satisfying the drop test strength index (+0.5 mm% value) of 88% or more was evaluated as having good sintered ore strength and product yield.

図6に、タブレット焼成試験による各銘柄鉄鉱石の融液浸透距離と、落下試験による強度指標(+0.5mm%値)との関係を示す。   FIG. 6 shows the relationship between the melt penetration distance of each brand iron ore by the tablet firing test and the strength index (+0.5 mm% value) by the drop test.

図6に示すように、実機焼結操業での目標焼結鉱強度(SIが90.5%以上)に相当する88%以上の上記落下試験の強度指標(+0.5mm%値)を達成するためには、融液浸透距離が4.0mm以上の融液浸透性が必要である。   As shown in FIG. 6, the above drop test strength index (+0.5 mm% value) of 88% or more corresponding to the target sinter strength (SI is 90.5% or more) in actual machine sintering operation is achieved. In order to achieve this, melt permeability having a melt penetration distance of 4.0 mm or more is required.

融液浸透距離が4.0mm以上の融液浸透性を有する鉄鉱石銘柄は、具体的には、例えば、表1に示した、ブラジル産鉱石B(a)およびB(b)が挙げられる。   Specific examples of the iron ore brand having melt permeability having a melt penetration distance of 4.0 mm or more include Brazilian ores B (a) and B (b) shown in Table 1.

本発明では、焼結原料充填層の上層の焼結鉱の強度や成品歩留を向上する(強度SIが90.5%以上、成品歩留が80.0%以上)ために、焼結原料充填層の所定範囲の上層に、融液浸透距離が4.0mm以上となるように1種以上からなる鉄鉱石を装入する。   In the present invention, in order to improve the strength and product yield of the sintered ore in the upper layer of the sintered material packed layer (strength SI is 90.5% or more, product yield is 80.0% or more) One or more types of iron ore are charged into the upper layer in a predetermined range of the packed bed so that the melt penetration distance is 4.0 mm or more.

上述したように、焼結原料充填層の所定範囲の上層に装入する鉄鉱石が2種以上の銘柄の鉄鉱石を含む場合は、融液浸透性の評価試験により測定される各銘柄の鉄鉱石の融液浸透距離の加重平均値が4.0mm以上となるように、2種以上の銘柄の鉄鉱石の配合割合を調整する。
以下では、融液浸透距離が4.0mm以上となるように選択もしくは配合された1種以上からなる鉄鉱石を高融液浸透性鉄鉱石と定義する。
As described above, when the iron ore charged in the upper layer of the predetermined range of the sintering raw material packed layer contains two or more brands of iron ore, each brand of iron ore measured by the melt permeability evaluation test The blending ratio of two or more brands of iron ore is adjusted so that the weighted average value of the stone melt penetration distance is 4.0 mm or more.
Below, the iron ore which consists of 1 or more types selected or mix | blended so that a melt penetration distance may be set to 4.0 mm or more is defined as a high melt penetration iron ore.

図7に、高融液浸透性鉄鉱石を装入する上部装入層厚比率と焼結鉱の強度SIとの関係を示す。同様に、図8に、上部装入層厚比率と焼結鉱の成品歩留との関係を示す。   FIG. 7 shows the relationship between the ratio of the thickness of the upper charged layer in which the high melt permeability iron ore is charged and the strength SI of the sintered ore. Similarly, FIG. 8 shows the relationship between the upper charge layer thickness ratio and the product yield of sintered ore.

焼結鉱石の強度を示す指標であるSIは、下記成品歩留測定後の焼結鉱の中から粒径:10〜25mmの焼結鉱10kgを採取し、これを、2mの高さから4回落下させることにより測定される。このSIは、落下前の焼結鉱の質量(kg)に対する、落下後の粒径:5mm以上の焼結鉱の質量(kg)の割合(質量%)を示す。   SI, which is an index indicating the strength of sintered ore, is obtained by collecting 10 kg of sintered ore having a particle size of 10 to 25 mm from the sintered ore after measurement of the following product yield, and measuring 4 kg from the height of 2 m. It is measured by dropping it twice. This SI indicates the ratio (mass%) of the mass (kg) of the sintered ore having a particle diameter of 5 mm or more after dropping to the mass (kg) of the sintered ore before dropping.

焼結鉱の成品歩留は、焼結ケーキ(塊)を2mの高さから5回落下させることにより測定される。この焼結鉱の成品歩留は、落下前の焼結ケーキ(塊)(但し、床敷鉱分を除く)の質量(kg)に対する、落下後の粒径:5mm以上の焼結鉱(但し、床敷鉱分を除く)の質量(kg)の割合(質量%)を示す。   The product yield of sintered ore is measured by dropping the sintered cake (lumps) 5 times from a height of 2 m. The product yield of this sintered ore is the sintered ore with a particle size of 5mm or more after dropping with respect to the mass (kg) of the sintered cake (lumb) before dropping (excluding the bedding ore) , The ratio (mass%) of the mass (kg) of the bedding ore is excluded.

なお、図7および図8は、図12に示す、高さ600mm、直径300mmの焼結鍋の上層(A部)および下層(B部)に、それぞれ高融液浸透性鉄鉱石およびその他の鉄鉱石を装入し、焼成した場合の試験結果を示している。なお、上層(A層)および下層(B層)の平均値で、焼結原料中のSiO:5.01質量%、CaO/SiO:1.89、コークス:4.3質量%が一定になるように、石灰石、コークス、および、返鉱を配合している。これらの焼結原料は、造粒水分:7.0質量%で造粒した後、使用される。ここで、その他の鉄鉱石は、上層に装入した鉄鉱石を除く鉄鉱石を意味する。7 and FIG. 8 show the high melt permeability iron ore and other iron ores in the upper layer (A part) and the lower layer (B part) of the sintering pot having a height of 600 mm and a diameter of 300 mm shown in FIG. The test results when stones are charged and fired are shown. The average values of the upper layer (A layer) and the lower layer (B layer) are constant in SiO 2 : 5.01% by mass, CaO / SiO 2 : 1.89, and coke: 4.3% by mass in the sintering raw material. Limestone, coke, and return are blended. These sintered raw materials are used after granulation at a granulation moisture of 7.0% by mass. Here, the other iron ores mean iron ores excluding the iron ore charged in the upper layer.

この焼結鍋試験の焼成条件は、層厚:600mm、吸引負圧:14.7KPa、焼成時間:27分とした。   The firing conditions of the sintering pot test were as follows: layer thickness: 600 mm, suction negative pressure: 14.7 KPa, firing time: 27 minutes.

本焼結鍋試験における焼結鉱の強度および成品歩留は、焼結鉱の強度SI:77%、成品歩留:76%を基準として評価した。これらの評価基準は、実機焼結操業をした場合に、焼結鉱の強度SIが90.5%以上、成品歩留が80.0%以上であることを予め確認している表2に示す配合条件の焼結原料を用い、本焼結鍋試験をして得られた。したがって、これらの評価基準は、実機焼結操業で目標とする焼結鉱の強度SI(90.5%以上)、および、成品歩留(80.0%以上)に相当する。   The strength of the sintered ore and the product yield in this sintering pot test were evaluated based on the strength of the sintered ore SI: 77% and the product yield: 76%. These evaluation criteria are shown in Table 2 in which it is confirmed in advance that the strength SI of the sintered ore is 90.5% or more and the product yield is 80.0% or more when the actual machine sintering operation is performed. It was obtained by carrying out a main sintering pot test using a sintering raw material under blending conditions. Therefore, these evaluation criteria correspond to the strength SI (90.5% or more) and the product yield (80.0% or more) of the sintered ore targeted in the actual machine sintering operation.

つまり、本焼結鍋試験で、焼結鉱の強度SIが77%以上、成品歩留が76%以上の場合を、焼結鉱の強度および成品歩留が良好であると評価した。   That is, in the sintering pot test, when the strength SI of the sintered ore was 77% or more and the product yield was 76% or more, the strength of the sintered ore and the product yield were evaluated as good.

図7および図8に示すように、上記焼結鍋試験の焼結鉱の強度SIが77%以上、成品歩留が76%以上を達成するためには、高融液浸透性鉄鉱石を装入する上部装入層厚比率(原料充填層上層の全層厚に対する層厚比率)は、5〜12%の範囲とする必要がある。   As shown in FIGS. 7 and 8, in order to achieve the strength SI of 77% or more and the product yield of 76% or more in the above-mentioned sintering pot test, high melt-permeable iron ore is installed. The upper charging layer thickness ratio (layer thickness ratio with respect to the total layer thickness of the raw material-filled layer) needs to be in the range of 5 to 12%.

高融液浸透性鉄鉱石を装入する上部装入層厚比率が、5%より低い場合は、融液浸透性に優れた鉄鉱石の選択的な装入による原料充填層の上層の焼結鉱の成品歩留、強度、および、生産率の向上効果を、十分に得ることができなくなる。   Sintering of the upper layer of the raw material packed layer by selective charging of iron ore with excellent melt permeability when the upper charging layer thickness ratio for charging high melt-permeable iron ore is lower than 5% The effect of improving the product yield, strength, and production rate of the ore cannot be obtained sufficiently.

高融液浸透性鉄鉱石を装入する上部装入層厚比率が、12%より高い場合は、後述するように、融液浸透性が高い鉄鉱石は造粒性が低く、焼結機装入時および焼成過程で擬似粒子が崩壊し、原料充填層内の通気性が低下し易い。そのため、原料充填層全体の焼結性が悪化し、焼結鉱の成品歩留、強度、および、生産率が悪化する。   When the upper charge layer thickness ratio for charging the high melt permeability iron ore is higher than 12%, the iron ore with high melt permeability has a low granulation property as described later. Pseudoparticles collapse at the time of entering and in the firing process, and the air permeability in the raw material packed layer tends to be lowered. Therefore, the sinterability of the entire raw material packed layer is deteriorated, and the product yield, strength, and production rate of the sintered ore are deteriorated.

また、融液浸透性が高い鉄鉱石は、後述するように、Al含有率が低く、比較的価格の高い鉱石である。そのため、焼結鉱の製造コストの上昇を招く原因となる。Moreover, the iron ore having high melt permeability is an ore having a low Al 2 O 3 content and a relatively high price, as will be described later. Therefore, it causes an increase in the manufacturing cost of the sintered ore.

以上の理由から、原料充填層全体の通気性を低下させずに、原料充填層の上層の成品歩留および強度を十分に改善する(強度SIが90.5%以上、成品歩留が80.0%以上)ために、複数銘柄の鉄鉱石から、融液浸透距離の加重平均値が4.0mm以上となるように選択もしくは配合された高融液浸透性鉄鉱石を、原料充填層の上表面から全層厚に対する層厚比率で5〜12%の範囲の上層に装入し、その他の鉄鉱石を原料充填層の下層に装入し、かつ、副原料、固体燃料、および、返鉱を、原料充填層の上層および下層に装入することとした。なお、特に断らない限り、副原料、固体燃料、および、返鉱の配合割合は、原料充填層の上層および下層で同じである。   For the above reasons, the product yield and strength of the upper layer of the raw material packed layer are sufficiently improved without reducing the air permeability of the entire raw material packed layer (strength SI is 90.5% or more, and the product yield is 80.%). Therefore, a high melt permeable iron ore selected or blended from multiple brands of iron ore so that the weighted average value of the melt infiltration distance is 4.0 mm or more is applied to the raw material packed bed. The upper layer in the range of 5 to 12% of the total layer thickness from the surface is charged, the other iron ore is charged in the lower layer of the raw material packed bed, and the auxiliary raw material, solid fuel, and return ore Was charged into the upper and lower layers of the raw material packed layer. Unless otherwise specified, the mixing ratio of the auxiliary raw material, the solid fuel, and the return ore is the same in the upper layer and the lower layer of the raw material packed bed.

また、製鉄プロセスで発生するスケールS1およびS2も、高融液浸透性鉄鉱石に加えて、鉄含有原料として、上部装入層厚比率が5〜12%の範囲の上層に装入してもよい。同様に、上記スケールS1およびS2を、その他の鉄鉱石に加えて、鉄含有原料として、下層に装入してもよい。以下では、高融液浸透性鉄鉱石のみ、または、高融液浸透性鉄鉱石とスケールとを合わせた鉄含有原料を高融液浸透性鉄含有原料とする。また、その他の鉄鉱石のみ、または、その他の鉄鉱石とスケールとを合わせた鉄含有原料をその他の鉄含有原料とする。   In addition to the high melt permeable iron ore, the scales S1 and S2 generated in the iron making process may also be charged as an iron-containing raw material into the upper layer in the range where the upper charging layer thickness ratio is 5 to 12%. Good. Similarly, the scales S1 and S2 may be added to the lower layer as an iron-containing raw material in addition to other iron ores. Below, only the high melt permeability iron ore, or the iron-containing raw material combining the high melt permeability iron ore and the scale will be referred to as the high melt permeability iron-containing raw material. Moreover, only the other iron ore or the iron-containing raw material combining the other iron ore and the scale is used as the other iron-containing raw material.

図9に、各銘柄の鉄鉱石の融液浸透距離と、Al含有率との関係を示す。図9に示すとおり、融液浸透距離とAl含有率とは相関があり、融液浸透距離:4.0mm以上を有する鉄鉱石として、Al含有率が0.6質量%以下の鉄鉱石銘柄を選定することが好ましい。FIG. 9 shows the relationship between the melt penetration distance of each brand of iron ore and the Al 2 O 3 content. As shown in FIG. 9, there is a correlation between the melt infiltration distance and the Al 2 O 3 content, and as the iron ore having the melt infiltration distance: 4.0 mm or more, the Al 2 O 3 content is 0.6% by mass. It is preferable to select the following iron ore brands.

鉄鉱石の融液浸透性は、Al含有率のみからは決まらず、鉄鉱石の気孔などの構造にも影響される。しかしながら、鉄鉱石中のAl含有率が高くなると、生成する同化融液中のAl含有率も高くなる。そのため、融液の粘性が高まり、融液浸透性が低下する。The melt permeability of iron ore is not determined only by the Al 2 O 3 content, but is also affected by the structure of the iron ore such as pores. However, when the Al 2 O 3 content in the iron ore increases, the Al 2 O 3 content in the assimilated melt to be generated also increases. Therefore, the viscosity of the melt increases and the melt permeability decreases.

したがって、本発明では、原料充填層の上層に装入する融液浸透距離:4.0mm以上である鉄鉱石は、Al含有量が0.6質量%以下であることが好ましい。Therefore, in the present invention, the iron ore having a melt penetration distance of 4.0 mm or more charged in the upper layer of the raw material packed layer preferably has an Al 2 O 3 content of 0.6% by mass or less.

さらに、前述したように、原料充填層全体の通気性を維持するために、原料充填層の上層の融液が過度に増加することを防止する必要がある。また、コストを削減するために、副原料を削減することが好ましい。そのため、融液形成に必要とされる副原料、特に、石灰石の上層中割合が焼結性に与える影響を調査した。   Furthermore, as described above, in order to maintain the air permeability of the entire raw material packed layer, it is necessary to prevent the melt of the upper layer of the raw material packed layer from excessively increasing. Moreover, in order to reduce cost, it is preferable to reduce auxiliary materials. For this reason, the influence of the auxiliary raw materials required for melt formation, particularly the proportion of limestone in the upper layer, on the sinterability was investigated.

図10に、上層中石灰石割合と、焼結鍋試験での焼結鉱の成品歩留との関係を示す。また、図11に、上層中石灰石割合と、焼結鍋試験での焼結鉱の強度SIとの関係を示す。本発明の実施例では、上層中の高融液浸透性鉄鉱石として、ブラジル産鉱石B(b)を使用し、上部装入層厚比率は、11.7%とした。また、表2に示す配合割合の焼結原料を使用した。   FIG. 10 shows the relationship between the limestone ratio in the upper layer and the product yield of the sintered ore in the sintering pot test. Moreover, in FIG. 11, the relationship between the limestone ratio in an upper layer and the intensity | strength SI of the sintered ore in a sintering pot test is shown. In the examples of the present invention, Brazilian ore B (b) was used as the high melt-permeable iron ore in the upper layer, and the upper charge layer thickness ratio was 11.7%. Moreover, the sintering raw material of the mixture ratio shown in Table 2 was used.

図10、11に示すように、上層中の鉄鉱石として、高融液浸透性鉄鉱石を使用することにより、SIおよび製品歩留が向上した。さらに、上層中の石灰石割合を減らすことにより、SIおよび成品歩留が増加した。
したがって、原料充填層に装入される副原料について、コスト削減の観点から、上層の副原料の配合割合が下層の副原料の配合割合以下にすることが好ましい。
As shown in FIGS. 10 and 11, SI and product yield were improved by using high melt permeability iron ore as the iron ore in the upper layer. In addition, reducing the proportion of limestone in the upper layer increased SI and product yield.
Therefore, with respect to the auxiliary raw material charged in the raw material packed layer, it is preferable that the mixing ratio of the upper auxiliary material is equal to or less than the mixing ratio of the lower auxiliary material from the viewpoint of cost reduction.

本発明において、高融液浸透性鉄含有原料、および、その他の鉄含有原料を、それぞれ、焼結パレット上の原料充填層の上層、および、原料充填層の下層に装入する方法は、特に限定されるものではないが、例えば、図13に示すような方法が用いられる。   In the present invention, the method of charging the high melt-permeable iron-containing raw material and other iron-containing raw materials into the upper layer of the raw material packed layer on the sintering pallet and the lower layer of the raw material packed layer, respectively, Although not limited, for example, a method as shown in FIG. 13 is used.

下方吸引型焼結機の給鉱部に、第1サージホッパー(その他の鉄含有原料用)1および第2サージホッパー(高融液浸透性鉄含有原料用)2が、機長方向に直列に配置されている。この第1サージホッパー1から、高融液浸透性鉄含有原料を除いたその他の鉄含有原料と、石灰石、コークス、および、返鉱とからなる焼結原料3を、焼結パレット4上に装入して、原料充填層の下層5を形成する。その後、第2サージホッパー2から、高融液浸透性鉄含有原料と、石灰石、コークス、および、返鉱とからなる焼結原料6を装入して、前記下層5の上に、原料充填層の上層7を形成することができる。   A first surge hopper (for other iron-containing raw materials) 1 and a second surge hopper (for high melt-permeable iron-containing raw materials) 2 are arranged in series in the machine length direction in the feed section of the downward suction type sintering machine. Has been. From this first surge hopper 1, a sintered raw material 3 made up of other iron-containing raw materials excluding the high melt-permeable iron-containing raw material and limestone, coke, and return ore is placed on a sintering pallet 4. Then, the lower layer 5 of the raw material packed layer is formed. Thereafter, the second surge hopper 2 is charged with a raw material containing high melt permeability iron and a sintering raw material 6 made of limestone, coke and return ore, and on the lower layer 5, a raw material packed layer The upper layer 7 can be formed.

なお、高融液浸透性鉄含有原料と、石灰石、コークス、および、返鉱とからなる焼結原料6、および、その他の鉄含有原料と、石灰石、コークス、および、返鉱とからなる焼結原料3は、それぞれ、ドラムミキサー、パンペレタイザーなどの造粒機8、9を用いて混合、造粒し、擬似粒子とする。その後、それぞれの焼結原料は、第2サージホッパー(高融液浸透性鉄含有原料用)2および第1サージホッパー(その他の鉄含有原料用)1に供給される。   In addition, the sintering raw material 6 which consists of a highly melt-permeable iron-containing raw material, limestone, coke and return ore, and the other iron-containing raw material, sintering which consists of limestone, coke and return ore The raw material 3 is mixed and granulated using granulators 8 and 9 such as a drum mixer and a pan pelletizer, respectively, to obtain pseudo particles. Thereafter, the respective sintered raw materials are supplied to a second surge hopper (for high melt-permeable iron-containing raw material) 2 and a first surge hopper (for other iron-containing raw materials) 1.

また、高融液浸透性鉄含有原料と、石灰石、コークス、および、返鉱とからなる焼結原料6、および、その他の鉄含有原料と、石灰石、コークス、および、返鉱とからなる焼結原料3は、上述したように、石灰石、コークス、および、返鉱が所定の配合割合になるように配合する。   Moreover, the sintering raw material 6 which consists of a highly melt-permeable iron-containing raw material, limestone, coke and return ore, and the sintering which consists of other iron-containing raw materials, limestone, coke and return ore As described above, the raw material 3 is blended so that limestone, coke, and return ore are in a predetermined blending ratio.

[第一実施例]
以下に、本発明の効果を実施例で説明する。
焼結原料として、表2に示す実機操業時の平均的な配合条件を基準とし、図12に示すような、高さ600mm、直径300mmの焼結鍋を用いて、焼結鍋試験を実施した。
[First embodiment]
The effects of the present invention will be described below with reference to examples.
As a sintering raw material, a sintering pot test was carried out using a sintering pot having a height of 600 mm and a diameter of 300 mm as shown in FIG. 12 based on the average blending conditions during actual operation shown in Table 2. .

なお、表2に示す配合条件の焼結原料を用いて実機焼結操業をした場合に、強度SIが90.5%以上、成品歩留が80.0%以上の焼結鉱が得られることを予め確認している。   In addition, when an actual machine sintering operation is performed using sintering raw materials having the blending conditions shown in Table 2, a sintered ore having a strength SI of 90.5% or more and a product yield of 80.0% or more is obtained. Is confirmed in advance.

また、焼結鍋試験における生産率、得られた焼結鉱の成品歩留、冷間強度SI、耐還元粉化指数RDI、被還元率JIS−RI(%)を測定した。その結果を、製造条件とともに、表3に示す。なお、生産率は、粒径:床敷鉱を除いた5mm以上の焼結鉱の質量(t)を、鍋面積(m)と焼結時間(day)とで割った値を示す。Moreover, the production rate in the sintering pot test, the product yield of the obtained sinter, the cold strength SI, the reduction powder resistance index RDI, and the reduction ratio JIS-RI (%) were measured. The results are shown in Table 3 together with the production conditions. In addition, a production rate shows the value which divided | segmented the mass (t) of the sintered ore of 5 mm or more except the bed covering ore by the pan area (m < 2 >) and sintering time (day).

焼結鉱の強度SIは、下記成品歩留測定後の焼結鉱の中から、粒径:10〜25mmの焼結鉱10kgを採取し、2mの高さから4回落下させることにより測定される。このSIは、落下前の焼結鉱の質量(kg)に対する、落下後の粒径:5mm以上の焼結鉱の質量(kg)の割合(質量%)を示す。   The strength SI of the sinter is measured by collecting 10 kg of sintered ore with a particle size of 10 to 25 mm from the sinter after the following product yield measurement and dropping it 4 times from a height of 2 m. The This SI indicates the ratio (mass%) of the mass (kg) of the sintered ore having a particle diameter of 5 mm or more after dropping to the mass (kg) of the sintered ore before dropping.

焼結鉱の成品歩留は、焼結ケーキ(塊)を、2mの高さから5回落下させることにより測定される。この焼結鉱の製品歩留は、落下前の焼結ケーキ(塊)(但し、床敷鉱分を除く)の質量(kg)に対する、落下後の粒径:5mm以上の焼結鉱(但し、床敷鉱分を除く)の質量(kg)の割合(質量%)を示す。   The product yield of sintered ore is measured by dropping a sintered cake (lumps) 5 times from a height of 2 m. The product yield of this sintered ore is calculated based on the mass (kg) of the sintered cake (lumps) before dropping (excluding the bedding ore), but the grain size after dropping: , The ratio (mass%) of the mass (kg) of the bedding ore is excluded.

焼結鉱の耐還元粉化指数(RDI)は、JIS M 8720に規定された試験方法に準じて測定した。すなわち、粒径:15〜19mmの焼結鉱500gを採取し、N:70%,CO:30%の混合ガス中で550℃で30分間還元する。その後、還元された焼結鉱を、ドラムに装入して、30分で900回の回転試験を行う。回転前の還元後焼結鉱の質量(g)に対する、回転後の粒径:3mm以下の焼結鉱粉の質量(g)の割合(質量%)が、耐還元粉化指数(RDI)である。The reduction powder resistance index (RDI) of the sintered ore was measured according to the test method specified in JIS M 8720. That is, 500 g of sintered ore having a particle size of 15 to 19 mm is collected and reduced at 550 ° C. for 30 minutes in a mixed gas of N 2 : 70% and CO: 30%. Thereafter, the reduced sintered ore is charged into a drum and subjected to 900 rotation tests in 30 minutes. The ratio (mass%) of the mass (g) of the sintered ore powder having a particle diameter after rotation of 3 mm or less to the mass (g) of the sintered ore after reduction before the rotation is the reduction dust resistance index (RDI). is there.

焼結鉱のJIS還元率(JIS−RI)は、JIS M 8713に規定された試験方法に準じて測定した。すなわち、粒径:19〜21mmの焼結鉱500gを採取し、N:70%、CO:30%の混合ガス中で900℃で180分間還元する。還元前の焼結鉱の酸化鉄に含まれる酸素の質量(g)に対する、還元による焼結鉱の質量の減少量(g)の割合(質量%)がJIS還元率(JIS−RI)である。The JIS reduction rate (JIS-RI) of the sintered ore was measured according to a test method defined in JIS M 8713. That is, 500 g of sintered ore having a particle size of 19 to 21 mm is collected and reduced at 900 ° C. for 180 minutes in a mixed gas of N 2 : 70% and CO: 30%. The ratio (mass%) of the reduction amount (g) of the mass of sintered ore due to the reduction to the mass (g) of oxygen contained in the iron oxide of the sintered ore before reduction is the JIS reduction rate (JIS-RI). .

原料充填層の上層に装入する高融液浸透性鉄含有原料は、石灰石、返鉱、および、コークスと混合し、造粒することで擬似粒子とし、図12に示すA部(原料充填層の上層)に装入した。なお、石灰石、コークス、および、返鉱の配合割合は、装入原料全体における配合割合と同じである。   The high melt permeable iron-containing raw material charged into the upper layer of the raw material packed bed is mixed with limestone, return mineral, and coke and granulated to form pseudo particles, which are shown in FIG. The upper layer). In addition, the mixture ratio of limestone, coke, and return mineral is the same as the mixture ratio in the whole charging raw material.

また、その他の鉄含有原料は、上記と同様に、石灰石、返鉱、コークスと混合し、造粒することで擬似粒子とし、図12に示すB部(原料充填層の下層)に装入した。焼結原料充填層のA部とB部とにおけるコークスおよび石灰石(CaO)、並びに、返鉱の割合は、同等である。   In addition, the other iron-containing raw materials were mixed with limestone, return mineral, coke, and granulated to form pseudo particles, and charged into part B (lower layer of the raw material packed layer) shown in FIG. . The proportions of coke and limestone (CaO) and return ore in the A part and the B part of the sintered raw material packed layer are the same.

また、A部に装入するための高融液浸透性鉄含有原料は、表1に示す、融液浸透距離が異なる2種類のブラジル産鉱石B(a)およびB(b)、融液浸透距離が異なる2種類の豪州産ピソライト鉱石P(a)およびP(b)、および、これらを混合した鉄鉱石、並びに、豪州産新規ブレンド鉱石HPM、さらに、融液浸透距離が異なる2種類の製鉄プロセスで発生したスケールS1およびS2である。   In addition, the high melt permeable iron-containing raw material to be charged into part A is shown in Table 1, two kinds of Brazilian ores B (a) and B (b) having different melt penetration distances, and melt penetration. Two Australian pisolite ores P (a) and P (b) with different distances, and iron ores mixed with these, and Australia's new blended ore HPM, and two types of steel making with different melt penetration distances Scales S1 and S2 generated in the process.

本実施例では、B部を、焼結パレットのグレート面から530mm装入し、A部を、B部の上に、70mmの層厚(全層厚(600mm)に対する層厚比率:11.7%)で装入した。   In this example, B part was charged 530 mm from the great surface of the sintered pallet, and A part was placed on B part with a layer thickness of 70 mm (layer thickness ratio to total layer thickness (600 mm): 11.7). %).

また、A部およびB部の配合原料中のSiO:5.01質量%、CaO/SiO:1.89、コークス配合:4.3質量%(それぞれ、焼結原料全体の割合と同じ)を一定とし、造粒条件を、造粒水分:7.0質量%とした。さらに、この焼結鍋試験の焼成条件は、層厚:600mm、吸引負圧:14.7KPa、焼成時間:27分とした。表3に示す各試験結果は、n=2回の測定値の平均値である。Further, SiO 2 in the blending raw materials of part A and B: 5.01% by mass, CaO / SiO 2 : 1.89, coke blending: 4.3% by mass (each equal to the ratio of the entire sintered raw material) The granulation conditions were granulated moisture: 7.0% by mass. Furthermore, the firing conditions of this sintering pot test were as follows: layer thickness: 600 mm, suction negative pressure: 14.7 KPa, firing time: 27 minutes. Each test result shown in Table 3 is an average value of n = 2 measured values.

参考例1は、焼結原料として表2に示される複数銘柄の鉄鉱石を充填層厚み方向で均一に装入したベース試験である。以下に示す実施例および比較例の焼結鉱の強度SI、成品歩留、生産率などの評価は、参考例1を基準として評価した。   Reference Example 1 is a base test in which a plurality of brand iron ores shown in Table 2 as the sintering raw material were uniformly charged in the packed bed thickness direction. Evaluation of strength SI, product yield, production rate and the like of the sintered ore of Examples and Comparative Examples shown below was evaluated based on Reference Example 1.

実施例1は、表1に示す融液浸透距離:4.65mmのブラジル産鉱石B(a)を、A部(原料充填層の上層)に選択的に装入し、残りの鉄含有原料(その他の鉄含有原料)を、B部(原料充填層の下層)に装入した例である。   In Example 1, a Brazilian ore B (a) having a melt penetration distance: 4.65 mm shown in Table 1 was selectively charged into part A (upper layer of the raw material packed bed), and the remaining iron-containing raw material ( This is an example in which the other iron-containing raw material) is charged into part B (lower layer of the raw material packed layer).

実施例2は、表1に示す融液浸透距離:4.22mmのブラジル産鉱石B(b)を、A部に選択的に装入し、残りの鉄含有原料を、B部に装入した例である。   In Example 2, the Brazilian ore B (b) having a melt penetration distance: 4.22 mm shown in Table 1 was selectively charged in part A, and the remaining iron-containing raw material was charged in part B. It is an example.

実施例1および実施例2においては、耐還元粉化RDIおよび被還元率JIS−RIを損なうことなく、参考例1に比べて、焼結鉱の成品歩留および強度SIが改善され、生産率が向上した。   In Example 1 and Example 2, the product yield and strength SI of the sintered ore were improved and the production rate compared with Reference Example 1 without impairing the reduction-resistant powdered RDI and the reduction rate JIS-RI. Improved.

実施例3は、表1に示す融液浸透距離:4.65mmのブラジル産鉱石B(a)と、融液浸透距離:1.12mmの豪州産ピソライト産鉱石P(a)を、混合比P(a):B(a)=15:85となるように混合して、A部に選択的に装入し、残りの鉄含有原料を、B部に装入した例である。   Example 3 is a mixture ratio P of Brazilian ore B (a) having a melt penetration distance: 4.65 mm shown in Table 1 and Australian pisolite ore P (a) having a melt penetration distance: 1.12 mm. (A): B (a) = 15: 85 In this example, the mixture was selectively charged in part A, and the remaining iron-containing raw material was charged in part B.

実施例3のA部に、選択的に装入したB(a)とP(a)との鉄鉱石の混合物の融液浸透距離(B(a)とP(a)の各融液浸透距離の混合比による加重平均値)は、4.12mmであった。そのため、耐還元粉化RDIおよび被還元率JIS−RIを損なうことなく、参考例1に比べて、焼結鉱の成品歩留および強度SIが改善され、生産率が向上した。   Melt penetration distance (B (a) and P (a) melt penetration distances of the iron ore mixture of B (a) and P (a) selectively charged in part A of Example 3 The weighted average value according to the mixing ratio was 4.12 mm. Therefore, the product yield and strength SI of the sintered ore were improved and the production rate was improved as compared with Reference Example 1 without impairing the reduction-resistant powdered RDI and the reduction rate JIS-RI.

実施例4は、表1に示す融液浸透距離:4.65mmのブラジル産鉱石B(a)と、融液浸透距離:4.21mmの製鉄プロセスで発生するスケールS1を、混合比B(a):S =85:15となるように混合して、A部に選択的に装入し、残りの鉄含有原料を、B部に装入した例である。   In Example 4, the Brazilian ore B (a) having a melt penetration distance: 4.65 mm shown in Table 1 and the scale S1 generated in the iron making process having a melt penetration distance: 4.21 mm are mixed with a mixing ratio B (a ): S = 85: 15 In this example, the mixture was mixed and selectively charged in part A, and the remaining iron-containing raw material was charged in part B.

実施例5は、表1に示す融液浸透距離:4.65mmのブラジル産鉱石B(a)と、融液浸透距離:1.66mmの製鉄プロセスで発生するスケールS2を、混合比B(a):S2 =85:15となるように混合して、A部に選択的に装入し、残りの鉄含有原料を、B部に装入した例である。   In Example 5, the Brazilian ore B (a) having a melt penetration distance: 4.65 mm shown in Table 1 and a scale S2 generated in an iron making process having a melt penetration distance: 1.66 mm are mixed with a mixing ratio B (a ): S2 = 85: 15 In this example, the mixture was mixed and selectively charged in part A, and the remaining iron-containing material was charged in part B.

実施例4のA部に選択的に装入したB(a)とS1の鉄鉱石の混合物の融液浸透距離(B(a)とS1との各融液浸透距離の混合比による加重平均値)は、4.28mmであった。そのため、耐還元粉化RDIおよび被還元率JIS−RIを損なうことなく、参考例1に比べて、焼結鉱の成品歩留および強度SIが改善され、生産率が向上した。
また、実施例5のA部に選択的に装入したB(a)とS2の鉄鉱石の混合物の融液浸透距離(B(a)とS2との各融液浸透距離の混合比による加重平均値)は、4.28mmであった。そのため、耐還元粉化RDIおよび被還元率JIS−RIを損なうことなく、参考例1に比べて、焼結鉱の成品歩留および強度SIが改善され、生産率が向上した。
Melt penetration distance of a mixture of B (a) and S1 iron ore selectively charged in part A of Example 4 (weighted average value by mixing ratio of each melt penetration distance between B (a) and S1 ) Was 4.28 mm. Therefore, the product yield and strength SI of the sintered ore were improved and the production rate was improved as compared with Reference Example 1 without impairing the reduction-resistant powdered RDI and the reduction rate JIS-RI.
Further, the melt penetration distance of the mixture of B (a) and S2 iron ore selectively charged in part A of Example 5 (weighting by the mixing ratio of the melt penetration distances of B (a) and S2) The average value) was 4.28 mm. Therefore, the product yield and strength SI of the sintered ore were improved and the production rate was improved as compared with Reference Example 1 without impairing the reduction-resistant powdered RDI and the reduction rate JIS-RI.

一方、比較例1は、表1に示す融液浸透距離:4.22mmのブラジル産鉱石B(b)と、融液浸透距離:1.23mmの豪州産ピソライト産鉱石P(b)を、混合比P(b):B(b)=45:55となるように混合して、A部に選択的に装入し、残りの鉄含有原料を、B部に装入した例である。   On the other hand, Comparative Example 1 is a mixture of the Brazilian ore B (b) with a melt penetration distance: 4.22 mm shown in Table 1 and the Australian pisolite ore P (b) with a melt penetration distance: 1.23 mm. This is an example in which the mixture was mixed so that the ratio P (b): B (b) = 45: 55 was selectively charged into part A, and the remaining iron-containing raw material was charged into part B.

比較例1のA部に選択的に装入したB(b)とP(b)との鉄鉱石の混合物の融液浸透距離(B(b)とP(b)の各融液浸透距離の混合比による加重平均値)は、2.87mmと低かった。そのため、参考例1に比べて、焼結鉱の成品歩留および強度SIが低下し、生産率も低下した。   The melt penetration distance (B (b) and P (b) of each melt penetration distance of the iron ore mixture of B (b) and P (b) selectively charged in part A of Comparative Example 1 The weighted average value by the mixing ratio) was as low as 2.87 mm. Therefore, compared with the reference example 1, the product yield and intensity | strength SI of the sintered ore fell, and the production rate also fell.

比較例2は、表1に示す融液浸透距離:1.12mmの豪州産ピソライト産鉱石P(a)を、A部に選択的に装入し、残りの鉄含有原料を、B部に装入した例である。   Comparative Example 2 is a method of selectively charging Australian Pisolite ore P (a) having a melt penetration distance: 1.12 mm shown in Table 1 into part A and charging the remaining iron-containing raw material into part B. This is an example.

比較例3は、表1に示す融液浸透距離:1.23mmの豪州産ピソライト産鉱石P(b)を、A部に選択的に装入し、残りの鉄含有原料を、B部に装入した例である。   In Comparative Example 3, Australian Pisolite ore P (b) having a melt penetration distance: 1.23 mm shown in Table 1 was selectively charged in part A, and the remaining iron-containing raw material was charged in part B. This is an example.

比較例2および比較例3の何れも、A部に選択的に装入したP(a)およびP(b)の鉄鉱石の融液浸透距離は、それぞれ、1.12mmおよび1.23mmと低かった。そのため、参考例1に比べて、焼結鉱の成品歩留および強度SIが低下し、生産率も低下した。   In both Comparative Example 2 and Comparative Example 3, the melt penetration distances of P (a) and P (b) iron ores selectively charged in part A were as low as 1.12 mm and 1.23 mm, respectively. It was. Therefore, compared with the reference example 1, the product yield and intensity | strength SI of the sintered ore fell, and the production rate also fell.

[第二実施例]
次に、[第一実施例]で実施した、実施例1と同様の条件で、即ち、A部(原料充填層の上層)に装入するブラジル産鉱石B(a)の上部装入層厚比率(上表面からの全層厚に対する層厚比率)以外は同じ条件で、上部装入層厚比率のみを替えて、同様に、試験を行った。なお、参考例1は、[第一実施例]の条件と同じ条件である。
[Second Example]
Next, the upper charge layer thickness of the Brazilian ore B (a) charged in the part A (the upper layer of the raw material packed bed) under the same conditions as in the first example carried out in the [first example]. The test was performed in the same manner except that the ratio (layer thickness ratio with respect to the total layer thickness from the upper surface) was the same, except that only the upper charge layer thickness ratio was changed. Reference Example 1 has the same conditions as [First Example].

また、[第一実施例]と同様に、焼結鍋試験における生産率、得られた焼結鉱の成品歩留、および、冷間強度SIを測定した。その結果を、表4に示す。   Further, as in [First Example], the production rate in the sintering pot test, the product yield of the obtained sintered ore, and the cold strength SI were measured. The results are shown in Table 4.

ブラジル産鉱石B(a)を、上部装入層厚比率が5〜12%の範囲になるようにA部に装入した実施例1〜3は、耐還元粉化RDIおよび被還元率JIS−RIを損なうことなく、参考例1に比べて、焼結鉱の成品歩留および強度SIが改善され、生産率が向上した。   Examples 1 to 3, in which Brazilian ore B (a) was charged into part A so that the upper charge layer thickness ratio was in the range of 5 to 12%, were reduced powder-resistant RDI and reduction rate JIS- Without impairing RI, the product yield and strength SI of the sintered ore were improved and the production rate was improved as compared with Reference Example 1.

一方、ブラジル産鉱石B(a)を、上部装入層厚比率が5%未満の範囲になるようにA部に装入した比較例1および2、並びに、ブラジル産鉱石B(a)を、上部装入層厚比率が12%より大きい範囲になるようにA部に装入した比較例3および4の場合は、いずれも、参考例1に比べて、焼結鉱の成品歩留および強度SIが低下し、生産率も低下した。   On the other hand, Brazilian ore B (a), Comparative Examples 1 and 2 in which the upper charge layer thickness ratio is less than 5% in the A part, and Brazilian ore B (a), In the case of Comparative Examples 3 and 4 where the portion A was charged so that the thickness ratio of the upper charge layer was greater than 12%, both the product yield and strength of the sintered ore as compared with Reference Example 1 SI decreased and production rate also decreased.

前述したように、本発明によれば、下方吸引型焼結機を用いた焼結鉱の製造方法において、焼結原料に配合する各銘柄の鉄鉱石の微粉部への融液浸透性を評価し、この評価結果に基づき、各銘柄鉄鉱石のうち、微粉部への融液浸透性に優れた銘柄の鉄鉱石を選定して、原料充填層の上層に選択的に装入することにより、原料充填層の上層の成品歩留および強度を改善し、焼結鉱の生産性を向上することができる。よって、本発明は、鉄鋼産業において、利用可能性が高い。   As described above, according to the present invention, in the method for producing sintered ore using the lower suction type sintering machine, the melt permeability to the fine powder portion of each brand of iron ore to be blended with the sintering raw material is evaluated. Based on this evaluation result, among each brand iron ore, select a brand iron ore with excellent melt penetration into the fine powder part, and selectively insert it into the upper layer of the raw material packed bed, The product yield and strength of the upper layer of the raw material packed bed can be improved, and the productivity of the sintered ore can be improved. Therefore, the present invention has high applicability in the steel industry.

1 第1サージホッパー(その他の鉄含有原料用)
2 第2サージホッパー(高融液浸透性鉄含有原料用)
3 その他の鉄含有原料、副原料、コークス、および、返鉱からなる焼結原料
4 焼結パレット
5 原料充填層の下層
6 高融液浸透性鉄含有原料、副原料、コークス、および、返鉱からなる焼結原料
7 原料充填層の上層
8 造粒機
9 造粒機
1 First surge hopper (for other iron-containing raw materials)
2 Second surge hopper (for high melt-permeable iron-containing raw materials)
3 Sintered raw materials consisting of other iron-containing raw materials, auxiliary raw materials, coke and return ore 4 Sintering pallet 5 Lower layer of raw material packed bed 6 High melt permeable iron-containing raw materials, auxiliary raw materials, coke and returned ores Sintered raw material consisting of 7 Upper layer of raw material packed bed 8 Granulator 9 Granulator

Claims (7)

複数銘柄の鉄鉱石を含む鉄含有原料、副原料、固体燃料、および、返鉱を配合して焼結原料とし、これら焼結原料を混合、造粒した後、焼結パレット上に装入し、焼成する焼結鉱の製造方法であって、
前記鉄鉱石の前記銘柄毎に測定された融液浸透距離に基づいて、前記複数銘柄の前記鉄鉱石から、前記融液浸透距離の加重平均値が4.0mm以上となるように選択もしくは配合された高融液浸透性鉄鉱石を、前記焼結パレット上に形成される原料充填層の上表面から全層厚に対する層厚比率で5〜12%の範囲の上層に装入し;
その他の鉄鉱石を前記原料充填層の下層に装入し;
かつ、前記副原料、前記固体燃料、および、前記返鉱を、前記原料充填層の前記上層および前記下層に装入する;
ことを特徴とする焼結鉱の製造方法。
Mixing and granulating iron-containing raw materials containing multiple brands of iron ore, secondary raw materials, solid fuel, and return ore into sintered raw materials, mixing and granulating these sintered raw materials, and then charging them onto a sintering pallet A method for producing a sintered ore to be fired,
Based on the melt penetration distance measured for each brand of the iron ore, the weight average value of the melt penetration distance is selected or blended from the plurality of brand iron ores to 4.0 mm or more. High melt-permeable iron ore is charged from the upper surface of the raw material packed layer formed on the sintered pallet to the upper layer in the range of 5 to 12% in the layer thickness ratio to the total layer thickness;
Charging other iron ore into the lower layer of the raw material packed bed;
And charging the secondary raw material, the solid fuel, and the return ore into the upper layer and the lower layer of the raw material packed bed;
The manufacturing method of the sintered ore characterized by the above-mentioned.
前記高融液浸透性鉄鉱石のAl含有量が0.6質量%以下であることを特徴とする請求項1に記載の焼結鉱の製造方法。Method for producing sintered ore according to claim 1, the content of Al 2 O 3 the KoTorueki permeable iron ore is equal to or less than 0.6 wt%. 前記高融液浸透性鉄鉱石に加えて、前記鉄含有原料として、製鉄プロセスで発生したスケールを、前記原料充填層の上表面からの全層厚に対する層厚比率で5〜12%の範囲の上層に装入することを特徴とする請求項1に記載の焼結鉱の製造方法。   In addition to the high melt permeability iron ore, as the iron-containing raw material, the scale generated in the iron making process is in the range of 5 to 12% in the layer thickness ratio with respect to the total layer thickness from the upper surface of the raw material packed layer. The method for producing a sintered ore according to claim 1, wherein the upper layer is charged. 前記固体燃料および前記返鉱が、前記原料充填層の前記上層および前記下層で、同じ配合割合で装入されていることを特徴とする請求項1に記載の焼結鉱の製造方法。   2. The method for producing a sintered ore according to claim 1, wherein the solid fuel and the return ore are charged in the same mixing ratio in the upper layer and the lower layer of the raw material packed bed. 前記原料充填層に装入される前記副原料について、前記上層の配合割合が前記下層の配合割合以下であることを特徴とする請求項1に記載の焼結鉱の製造方法。   2. The method for producing a sintered ore according to claim 1, wherein a mixing ratio of the upper layer is equal to or less than a mixing ratio of the lower layer with respect to the auxiliary material charged in the raw material packed layer. 前記高融液浸透性鉄鉱石、および、前記その他の鉄鉱石は、前記副原料、前記固体燃料、および、前記返鉱を配合し、混合、造粒した後、前記原料充填層の前記上層および前記下層に、それぞれ装入することを特徴とする請求項1に記載の焼結鉱の製造方法。   The high melt permeable iron ore and the other iron ore are mixed with the auxiliary raw material, the solid fuel, and the return mineral, mixed, granulated, and then the upper layer of the raw material packed bed and The method for producing a sintered ore according to claim 1, wherein the lower layer is charged respectively. 前記高融液浸透性鉄鉱石は、前記鉄含有原料として、前記製鉄プロセスで発生した前記スケールを配合し、前記副原料、前記固体燃料、および、前記返鉱を配合し、混合、造粒した後、前記原料充填層の前記上層に装入することを特徴とする請求項6に記載の焼結鉱の製造方法。   The high melt permeability iron ore is blended with the scale generated in the iron making process as the iron-containing raw material, blended with the auxiliary raw material, the solid fuel, and the return mineral, mixed, and granulated. 7. The method for producing a sintered ore according to claim 6, wherein after that, the upper layer of the raw material packed bed is charged.
JP2010504356A 2008-09-17 2009-09-17 Method for producing sintered ore Expired - Fee Related JP4528362B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008238448 2008-09-17
JP2008238448 2008-09-17
PCT/JP2009/004679 WO2010032466A1 (en) 2008-09-17 2009-09-17 Sintered ore manufacturing method

Publications (2)

Publication Number Publication Date
JP4528362B2 JP4528362B2 (en) 2010-08-18
JPWO2010032466A1 true JPWO2010032466A1 (en) 2012-02-09

Family

ID=42039314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010504356A Expired - Fee Related JP4528362B2 (en) 2008-09-17 2009-09-17 Method for producing sintered ore

Country Status (5)

Country Link
JP (1) JP4528362B2 (en)
KR (1) KR101204525B1 (en)
CN (1) CN102159733B (en)
BR (1) BRPI0918512B1 (en)
WO (1) WO2010032466A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5703616B2 (en) * 2010-07-16 2015-04-22 新日鐵住金株式会社 Method for producing sintered ore
CN103215442B (en) * 2013-04-27 2014-07-02 河北钢铁股份有限公司邯郸分公司 Thick-bed sintering feed surface-spraying covering agent and spraying method thereof
KR102043781B1 (en) * 2017-12-26 2019-12-02 주식회사 포스코 Method and apparatus for manufacturing sintered ores
TWI820935B (en) * 2021-09-29 2023-11-01 日商日本製鐵股份有限公司 Iron making method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6047887B2 (en) * 1982-03-06 1985-10-24 新日本製鐵株式会社 Sintered ore manufacturing method
JPS62130227A (en) * 1985-12-03 1987-06-12 Kawasaki Steel Corp Method for sintering fine ore
JPS62130229A (en) * 1985-12-02 1987-06-12 Sumitomo Metal Ind Ltd Sintering operation method
JPH01240627A (en) * 1988-03-23 1989-09-26 Kawasaki Steel Corp Method for sintering iron ore fines
JPH06346159A (en) * 1993-06-07 1994-12-20 Kawasaki Steel Corp Production of sintered ore
JP2002062290A (en) * 2000-08-21 2002-02-28 Nippon Steel Corp Iron ore powder evaluating method
JP2006097083A (en) * 2004-09-29 2006-04-13 Nippon Steel Corp Method for evaluating raw material for sintering, and blending design method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100308830B1 (en) 1997-07-18 2002-04-17 이구택 Sintered ore manufacturing method for improving recovery ratio of sintered ore
KR100504365B1 (en) 2000-08-19 2005-07-29 주식회사 포스코 Manufacturing method of sinter ore in high combined water ore mixing

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6047887B2 (en) * 1982-03-06 1985-10-24 新日本製鐵株式会社 Sintered ore manufacturing method
JPS62130229A (en) * 1985-12-02 1987-06-12 Sumitomo Metal Ind Ltd Sintering operation method
JPS62130227A (en) * 1985-12-03 1987-06-12 Kawasaki Steel Corp Method for sintering fine ore
JPH01240627A (en) * 1988-03-23 1989-09-26 Kawasaki Steel Corp Method for sintering iron ore fines
JPH06346159A (en) * 1993-06-07 1994-12-20 Kawasaki Steel Corp Production of sintered ore
JP2002062290A (en) * 2000-08-21 2002-02-28 Nippon Steel Corp Iron ore powder evaluating method
JP2006097083A (en) * 2004-09-29 2006-04-13 Nippon Steel Corp Method for evaluating raw material for sintering, and blending design method

Also Published As

Publication number Publication date
BRPI0918512A2 (en) 2015-12-01
BRPI0918512B1 (en) 2017-11-21
CN102159733B (en) 2013-05-15
WO2010032466A1 (en) 2010-03-25
KR20110042361A (en) 2011-04-26
KR101204525B1 (en) 2012-11-23
JP4528362B2 (en) 2010-08-18
CN102159733A (en) 2011-08-17

Similar Documents

Publication Publication Date Title
CN105308194B (en) The manufacturing method of the sinter of interior packet Carbon Materials
JP5699567B2 (en) Method for producing sintered ore
JP4528362B2 (en) Method for producing sintered ore
TWI473882B (en) Sintering raw materials for the adjustment of raw materials and sintering raw materials for powder
JP6102463B2 (en) Method for producing sintered ore
JP2015193930A (en) Method for producing sintered ore
JP5935979B2 (en) Method for producing pseudo-particles for producing sinter and method for producing sinter
JP4786022B2 (en) Method for producing sintered ore
JP2000256756A (en) Method for granulating sintering raw material
JP4725230B2 (en) Method for producing sintered ore
JP4580114B2 (en) Pseudo particles for sintering
JP6887717B2 (en) Charcoal interior granulated particles for sinter production and sinter production method using them
JP4661154B2 (en) Method for producing sintered ore
JP4392302B2 (en) Method for producing sintered ore
KR102233326B1 (en) Manufacturing method of carbon material embedded sintered ore
JP4767388B2 (en) Method for producing sintered ore with excellent high-temperature properties
JP5703616B2 (en) Method for producing sintered ore
JP4982993B2 (en) Method for producing sintered ore
JP5801752B2 (en) Sintered ore
JP7273305B2 (en) Method for producing sintered ore
JP3952871B2 (en) Manufacturing method of high-strength sintered ore
JP5011637B2 (en) Processing method of ore for sintering
JP2014214370A (en) Manufacturing method of sintered ore
JP2007100150A (en) Method for producing sintered ore
JP2005307256A (en) Method for producing sintered ore

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100604

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4528362

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20100426

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees