JP5935979B2 - Method for producing pseudo-particles for producing sinter and method for producing sinter - Google Patents
Method for producing pseudo-particles for producing sinter and method for producing sinter Download PDFInfo
- Publication number
- JP5935979B2 JP5935979B2 JP2012071594A JP2012071594A JP5935979B2 JP 5935979 B2 JP5935979 B2 JP 5935979B2 JP 2012071594 A JP2012071594 A JP 2012071594A JP 2012071594 A JP2012071594 A JP 2012071594A JP 5935979 B2 JP5935979 B2 JP 5935979B2
- Authority
- JP
- Japan
- Prior art keywords
- moisture
- pseudo
- particles
- water
- producing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002245 particle Substances 0.000 title claims description 192
- 238000004519 manufacturing process Methods 0.000 title claims description 39
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 97
- 239000002994 raw material Substances 0.000 claims description 71
- 239000000843 powder Substances 0.000 claims description 57
- 238000005245 sintering Methods 0.000 claims description 54
- 238000001035 drying Methods 0.000 claims description 52
- 230000035699 permeability Effects 0.000 claims description 29
- 238000000034 method Methods 0.000 claims description 20
- 238000005469 granulation Methods 0.000 description 27
- 230000003179 granulation Effects 0.000 description 27
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 20
- 238000012360 testing method Methods 0.000 description 17
- 230000000694 effects Effects 0.000 description 14
- 230000007423 decrease Effects 0.000 description 11
- 238000009826 distribution Methods 0.000 description 11
- 229910052742 iron Inorganic materials 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 238000002156 mixing Methods 0.000 description 8
- 238000010521 absorption reaction Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 229920006395 saturated elastomer Polymers 0.000 description 6
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 239000000571 coke Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000004449 solid propellant Substances 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 235000019738 Limestone Nutrition 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 239000000292 calcium oxide Substances 0.000 description 2
- 235000012255 calcium oxide Nutrition 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000011362 coarse particle Substances 0.000 description 2
- 239000007771 core particle Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 239000006028 limestone Substances 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 description 1
- RHZUVFJBSILHOK-UHFFFAOYSA-N anthracen-1-ylmethanolate Chemical compound C1=CC=C2C=C3C(C[O-])=CC=CC3=CC2=C1 RHZUVFJBSILHOK-UHFFFAOYSA-N 0.000 description 1
- 239000003830 anthracite Substances 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000011361 granulated particle Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 238000005453 pelletization Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B1/00—Preliminary treatment of ores or scrap
- C22B1/14—Agglomerating; Briquetting; Binding; Granulating
- C22B1/16—Sintering; Agglomerating
- C22B1/216—Sintering; Agglomerating in rotary furnaces
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Geochemistry & Mineralogy (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacture And Refinement Of Metals (AREA)
Description
本発明は、ドワイトロイド式焼結機によって焼結鉱を製造する際に、高強度の焼結鉱を高い生産性を維持したまま製造しようとするときに有利に用いられる焼結鉱製造用擬似粒子の製造方法、この擬似粒子を用いる焼結鉱の製造方法に関する。 The present invention provides a pseudo ore for sinter production that is advantageously used when producing a high strength sintered ore while maintaining high productivity when producing a sinter using a Dwytroid type sintering machine. The present invention relates to a method for producing particles and a method for producing sintered ore using the pseudo particles.
近年の製鉄業は、多量に排出する炭酸ガス(CO 2 )に起因する地球温暖化への影響が問題視されており、CO 2 排出量の削減という重い課題を抱えている。このような課題に対し、最近の高炉操業については、低還元材比の操業が望まれている。一般に、還元材比とは、溶銑1トンを製造するために使用される、羽口から吹き込まれる還元材と炉頂から装入されるコークスとの合計量のことであり、以下、還元材比を「RAR(Reducing Agent Ratio)」と言う。高炉において低RAR操業を行なうためには、下記の方法が有効であると考えられている。
(a)高炉に装入される鉄含有原料の粒径を小さくして、着熱効率や還元ガスとの反応界面積を増加させること。
(b)高炉に装入される鉄含有原料の被還元性を向上させること。
(c)高炉操業時、周辺ガス流を抑制してガス利用率の向上を図ること。
(d)高炉炉体からの抜熱量を低減させること。
In recent years, the steel industry is regarded as a problem of the effect on global warming caused by carbon dioxide ( CO 2 ) discharged in large quantities, and has a serious problem of reducing CO 2 emissions. In response to such problems, the operation of a low reducing material ratio is desired for the recent blast furnace operation. In general, the reducing material ratio is the total amount of reducing material blown from the tuyere and coke charged from the top of the furnace used to produce 1 ton of hot metal. Is called “RAR (Reducing Agent Ratio)”. In order to perform low RAR operation in a blast furnace, the following method is considered effective.
(A) To reduce the particle size of the iron-containing raw material charged in the blast furnace and increase the heat receiving efficiency and the reaction interface area with the reducing gas.
(B) Improving the reducibility of the iron-containing raw material charged into the blast furnace.
(C) At the time of blast furnace operation, the gas flow rate should be improved by suppressing the surrounding gas flow.
(D) To reduce the amount of heat removed from the blast furnace body.
しかし、低RAR操業時には、装入させる鉄含有原料とコークスとの比率が大きくなって、炉上部での通気性の悪化、融着帯の変形や肥大化による炉下部での通気性の悪化を招き、安定した高炉操業が困難になることがある。それゆえに、安定した低RAR操業を実現するためには、鉄含有原料の約7割を占める焼結鉱の性状が非常に重要となる。 However, during low RAR operation, the ratio of the iron-containing raw material to be charged and the coke increases, resulting in deterioration of air permeability in the upper part of the furnace, deterioration of air permeability in the lower part of the furnace due to deformation and enlargement of the cohesive zone. Invited, stable blast furnace operation may be difficult. Therefore, in order to realize a stable low RAR operation, the properties of sintered ore, which accounts for about 70% of the iron-containing raw material, are very important.
高炉用原料として用いられる焼結鉱は、一般に、以下に説明するような処理を経て製造される。
(1)まず、粒径が10mm以下の鉄鉱石粉、返鉱の他、珪石、蛇紋岩、各種製錬スラグなどからなるSiO2含有原料や石灰石などのCaO含有原料からなる副原料、および粉コークスまたは無煙炭などの熱源となる固体燃料粉を、適量の水分を添加して、ドラムミキサーにて混合し、造粒して焼結鉱製造用擬似粒子を製造する。
The sintered ore used as a blast furnace raw material is generally manufactured through a process as described below.
(1) First, in addition to iron ore powder having a particle size of 10 mm or less, return ore, a secondary raw material made of a SiO 2 containing raw material made of silica, serpentine, various smelting slags, or a CaO containing raw material such as limestone, and powder coke Alternatively, solid fuel powder serving as a heat source such as anthracite is added with an appropriate amount of water, mixed in a drum mixer, and granulated to produce pseudo particles for sinter production.
(2)次に、前記擬似粒子を、ドワイトロイド式(DL)焼結機のパレット上、例えば500〜700mm程度の厚さになるように装入し、その装入によってパレット上に堆積する擬似粒子の充填層(以下、「原料充填層」という)表層部の固体燃料に着火し、下方に吸引する空気を利用して原料充填層内の固体燃料を燃焼させ、その燃焼熱によって擬似粒子を焼結して焼結ケーキとする。その後、その焼結ケーキを破砕し、整粒することにより、一定粒径以上のものを成品焼結鉱としている。なお、整粒後の粒径の小さいものは返鉱として、焼結原料として再利用される。 (2) Next, the pseudo particles are charged on a pallet of a Dwytroid type (DL) sintering machine so as to have a thickness of, for example, about 500 to 700 mm, and are deposited on the pallet by the charging. The solid fuel in the surface portion of the packed bed of particles (hereinafter referred to as “raw material packed bed”) is ignited, and the solid fuel in the raw material packed bed is combusted by using the air sucked downward, and the combustion heat generates pseudo particles. Sinter into a sintered cake. Thereafter, the sintered cake is crushed and sized so that a product having a certain particle size or more is used as a product sintered ore. In addition, the thing with a small particle diameter after sizing is reused as a sintering raw material as a return ore.
一般に、高炉の操業を左右する因子の1つとして、前記成品焼結鉱(以下、単に「焼結鉱」という)の被還元性がある。焼結鉱の被還元性は、高炉でのガス利用率と関連すると共に、前記RARとは良好な負の相関があり、焼結鉱の被還元性を向上させると、高炉でのRARは低下する。また、焼結鉱の冷間強度も、高炉での通気性を確保する上で重要な因子であり、高炉操業に当たってはこの冷間強度に下限基準を設けている。 In general, as one of the factors affecting the operation of a blast furnace, there is a reducibility of the product sintered ore (hereinafter simply referred to as “sintered ore”). The reducibility of the sinter is related to the gas utilization rate in the blast furnace and has a good negative correlation with the RAR. When the reducibility of the sinter is improved, the RAR in the blast furnace decreases. To do. In addition, the cold strength of the sintered ore is also an important factor in ensuring air permeability in the blast furnace, and a lower limit is set for the cold strength in the operation of the blast furnace.
しかし、近年、高炉の高出銑比操業により、焼結鉱の使用量が増加する傾向にあること、あるいは原料品位の低下(高結晶水鉱石の増加、鉱石中のAl2O3の増加、微粉鉱石の増加など)により、焼結機のパレット上に堆積させた原料充填層の良好な通気性の確保や、十分な焼結時間の確保が困難な状況となりつつあり、これに起因する焼結生産性の低下や歩留まりの低下、焼結鉱の冷間強度の低下などが懸念されている。 However, in recent years, the use of sintered ore tends to increase due to high blast furnace ratio operation of the blast furnace, or the deterioration of raw material quality (increase in high crystal water ore, increase in Al 2 O 3 in the ore, As a result of the increase in fine ore, etc.), it is becoming difficult to ensure good air permeability of the raw material packed layer deposited on the pallet of the sintering machine and to ensure sufficient sintering time. There are concerns about a decrease in yield, a decrease in yield, and a decrease in the cold strength of sintered ore.
このような課題に対し、従来、前記原料充填層の通気性を改善するために、焼結原料の造粒方法が検討されてきた。例えば、特許文献1では、粗粒および微粉を含有する焼結原料の1種または2種以上の配合物に水分を添加しながら転動することにより擬似粒子化して焼結原料を製造する方法において、前記水分の添加前に、前記焼結原料の水分濃度の分布を、前記焼結原料の持込水分濃度を用いて添加後水分濃度の関数として算出し、算出した前記水分濃度分布と前記焼結原料の粒度分布とにより擬似粒子粒度分布を算出し、当該擬似粒子粒度分布が、2mm以上10mm以下の粒径の前記擬似粒子の量が最大である粒度分布となるように、前記添加後水分濃度を決定し、当該添加後水分濃度を目標として、前記水分の添加量を制御する方法を開示している。 In order to improve the air permeability of the raw material packed layer, conventionally, a method for granulating a sintered raw material has been studied for such problems. For example, in Patent Document 1, in a method of manufacturing a sintered raw material by forming pseudo particles by rolling while adding water to one or more blends of sintered raw materials containing coarse particles and fine powders Before the addition of the moisture, the moisture concentration distribution of the sintering raw material is calculated as a function of the moisture concentration after addition using the brought-in moisture concentration of the sintering raw material, and the calculated moisture concentration distribution and the sintering The pseudo-particle size distribution is calculated based on the particle size distribution of the binding raw material, and the post-addition water content is such that the pseudo-particle size distribution is a particle size distribution in which the amount of the pseudo-particles having a particle size of 2 mm to 10 mm is the maximum. A method is disclosed in which the concentration is determined and the amount of water added is controlled with the water concentration after the addition as a target.
また、特許文献2は、複数基の焼結原料槽に個別に収容された複数種の焼結原料それぞれの飽和吸水率および造粒前粒度分布から前記焼結原料が付着力を有する水分濃度の下限値である臨界水分濃度を前記焼結原料毎に算出しておき、複数基の前記焼結原料槽にそれぞれ収容された前記焼結原料のうちで、少なくとも、前記飽和吸水率が大きな前記焼結原料に水分を添加して前記飽和吸水率以上の水分濃度とした後、複数種の前記焼結原料を配合して、前記臨界水分濃度以上の水分濃度となるように水分を添加しながら、転動することにより擬似粒子にする方法を開示している。 Further, Patent Document 2 describes the moisture concentration at which the sintered raw material has adhesive strength from the saturated water absorption rate and the pre-granulation particle size distribution of each of the plural types of sintered raw materials individually accommodated in a plurality of sintered raw material tanks. A critical moisture concentration which is a lower limit value is calculated for each of the sintering raw materials, and among the sintering raw materials respectively accommodated in the plurality of sintering raw material tanks, at least the sintering water having a large saturated water absorption rate. After adding moisture to the binding raw material to obtain a moisture concentration equal to or higher than the saturated water absorption rate, blending a plurality of types of the sintering raw materials while adding moisture so that the moisture concentration is equal to or higher than the critical moisture concentration, Disclosed is a method of forming pseudo particles by rolling.
しかしながら、上記特許文献1で提案している目標水分濃度、特許文献2で開示している飽和吸水率に相当する量の水分を添加するこれらの方法については、水分の分散性に起因して水分が微粉に十分に行き渡らず、微粉の付着力も十分ではなく、造粒効果が小さいという問題があった。 However, for these methods of adding the amount of water corresponding to the target water concentration proposed in Patent Document 1 and the saturated water absorption rate disclosed in Patent Document 2, the water content is due to the dispersibility of water. However, there is a problem that the fine powder does not sufficiently spread, the adhesion of the fine powder is not sufficient, and the granulation effect is small.
また、特許文献3には、水分を質量%で7.5%以上9.0%以下に調整した焼結用原料を造粒し、造粒後原料の水分を、造粒機から焼結機給鉱部出側の間で高温ガスを使用して減少させ、焼結原料として使用することを特徴とする焼結原料の造粒方法が開示されている。 In Patent Document 3, a raw material for sintering whose moisture is adjusted to 7.5% or more and 9.0% or less by mass% is granulated, and the moisture of the granulated raw material is transferred from the granulator to the sintering machine. A method for granulating a sintered raw material, characterized in that it is reduced by using a high-temperature gas between the delivery sides of the feed section and used as a raw material for sintering, is disclosed.
しかしながら、その乾燥処理の過程で焼結原料が付着力を有する水分を下回った場合、付着力がなくなって粉化してしまうため、大きな擬似粒子径のものを製造することができないと共に、乾燥処理の過程で焼結原料が付着力を有する水分濃度を上回った場合、擬似粒子間の空隙を過剰な水分が埋めるため、原料充填層を通過する空気の流れが妨げられるという問題が生じる。 However, when the sintering raw material falls below the moisture having adhesive force in the course of the drying process, the adhesive force is lost and the powder is pulverized. If the sintered raw material exceeds the moisture concentration having adhesive force in the process, the void between the pseudo particles is filled with excess water, which causes a problem that the flow of air passing through the raw material packed bed is hindered.
さらに、非特許文献1には、図2に、添加水分量と原料充填層の通気性、及び擬似粒子の粒径との関係を開示している。この非特許文献1の開示内容によると、水分が7.5mass%までは、擬似粒子内への水分の吸収が徐々に飽和してゆき、粒子表面を濡らした水分によるバインダー効果が生じ、造粒粒子の擬似粒子径が増大して通気性が改善されると報告している。 Further, in Non-Patent Document 1, FIG. 2 discloses the relationship between the amount of added water, the air permeability of the raw material packed layer, and the particle size of the pseudo particles. According to the disclosed contents of Non-Patent Document 1, up to 7.5 mass% of moisture, the absorption of moisture into the pseudo-particles is gradually saturated, resulting in a binder effect due to moisture that wets the particle surface, and granulation. It has been reported that the pseudo particle size of the particles is increased and the air permeability is improved.
しかしながら、水分が7.5mass%を超えると、該擬似粒子の径は継続して増大する傾向にあるにも拘らず、当該擬似粒子間の空隙を過剰な水分が埋めるため、原料充填層を通過する空気の流れが妨げられるという問題が生じる。 However, if the water content exceeds 7.5 mass%, the diameter of the pseudo particles tends to continuously increase, but the excess water fills the gaps between the pseudo particles, so that it passes through the raw material packed bed. The problem arises in that the flow of air is disturbed.
前記各文献に開示されている技術は、主として、擬似粒子を製造する前に適正な水分量を予測し、焼結原料品位の変動に対処するための方法である。しかしながら、焼結原料の造粒に際して適正水分を設定するだけでは、生産性を大幅に改善することはできない。 The techniques disclosed in the above-mentioned documents are mainly methods for predicting an appropriate amount of moisture before manufacturing pseudo particles and dealing with fluctuations in the quality of sintered raw materials. However, productivity cannot be significantly improved only by setting an appropriate moisture at the time of granulation of the sintered raw material.
本発明の目的は、従来技術が抱えている上述した課題を解決し、焼結機の操業に際しての原料充填層の通気性を改善することで、強度や歩留の低下を招くことなく、焼結鉱生産率の向上を図る上で有効となる、焼結鉱製造のために用いられる擬似粒子の製造方法および焼結鉱の製造方法を提案することにある。 The object of the present invention is to solve the above-mentioned problems of the prior art and to improve the air permeability of the raw material packed bed during operation of the sintering machine, without causing a decrease in strength and yield. The object is to propose a method for producing pseudo-particles and a method for producing sintered ore used for producing sintered ore, which are effective in improving the production rate of ore.
本発明は、焼結原料粉に適正水分よりも過剰な水分を添加して造粒することにより、該適正水分の下で形成されるべき粒径よりも大きな粒径の、含水微粉層を有する擬似粒子を形成し、その後該含水微粉層を有する擬似粒子を乾燥して、乾燥後の擬似粒子の水分を(適正水分−1)mass%〜(適正水分+1)mass%にまで低下させることを特徴とする焼結鉱製造用擬似粒子の製造方法である。 The present invention has by granulation by adding excess water than the proper moisture sintering raw material powder, the particle size larger than the particle size to be formed under該適positive moisture, the water fine layer Forming pseudo particles, and then drying the pseudo particles having the water-containing fine powder layer to reduce the moisture of the pseudo particles after drying to (appropriate moisture-1) mass% to (appropriate moisture + 1) mass%. It is the manufacturing method of the pseudo particle for the sinter manufacture characterized by the above.
また、焼結原料粉に適正水分よりも過剰な水分を添加して造粒することにより、該適正水分の下で形成されるべき粒径よりも大きな粒径の、含水微粉層を有する擬似粒子を形成し、該含水微粉層を有する擬似粒子を乾燥して、乾燥後の擬似粒子の水分を(適正水分−1)mass%〜(適正水分+1)mass%にまで低下させ、そして水分が低下した擬似粒子を、焼結機に装入して焼結する、ことを特徴とする焼結鉱の製造方法である。 Further , by adding granulation to the sintering raw material powder in excess of the appropriate moisture and granulating, the pseudo particle having a hydrous fine powder layer having a particle size larger than the particle size to be formed under the appropriate moisture The pseudo particles having the water-containing fine powder layer are dried, and the moisture of the pseudo particles after drying is reduced to (appropriate moisture-1) mass% to (appropriate moisture + 1) mass%, and the moisture is reduced. The quasi-particles are charged into a sintering machine and sintered to produce a sintered ore.
本発明は、さらに以下のような構成にすることで、より好ましい実施の形態になる。
(1)前記適正水分は、擬似粒子が充填された原料充填層の通気性が最大となる水分であること、
(2)前記過剰な水分は、適正水分の1.1〜1.5倍の水分であること、
(3)前記過剰な水分は、適正水分の1.25〜1.5倍の水分であること、
(4)前記過剰な水分は、適正水分の1.3〜1.45倍の水分であること、
(5)前記乾燥は、乾燥後の擬似粒子の水分を、適正水分mass%〜(適正水分+0.5)mass%の水分とする乾燥処理であること。
The present invention can be more preferably implemented by the following configuration.
(1) The appropriate moisture is moisture that maximizes the air permeability of the raw material packed layer filled with pseudo particles.
(2) The excess moisture is 1.1 to 1.5 times the appropriate moisture,
(3) The excess moisture is 1.25 to 1.5 times as much as the appropriate moisture,
(4) The excess water is 1.3 to 1.45 times the appropriate water ,
(5 ) The said drying is a drying process which makes the water | moisture content of the pseudo-particles after drying the water | moisture content of appropriate water mass%-(appropriate water +0.5) mass%.
前記のような構成を有する本発明によれば、一旦、適正水分よりも過剰に水分を添加して微粉へ十分に水分が行き渡る状態で造粒することにより、適正水分の下で形成される粒径よりも大きな粒径を有する擬似粒子とし、次に、この擬似粒子を造粒後に間を置くことなく、または間を置いたとしても擬似粒子が壊れることがないように適正な水分近傍まで乾燥処理することで、大きな粒径となるのに寄与した過剰に加えた水分が除去されるので、過剰に水分を添加した場合に予想される原料充填層の通気性の悪化を招くことなく、擬似粒子の粒径の拡大効果を享受することができる。 According to the present invention having the above-described configuration, once the water is added in excess of the appropriate moisture and granulated in a state where the moisture is sufficiently distributed to the fine powder, the particles formed under the appropriate moisture Pseudo particles with a particle size larger than the diameter, and then dried to near the proper moisture so that the pseudo particles do not break after granulation or the pseudo particles do not break even if they are placed By processing, excess added moisture that contributed to the large particle size is removed, so that the air permeability of the raw material packed layer expected when adding excessive moisture is not simulated, The effect of expanding the particle size of the particles can be enjoyed.
そして、このような構成にすることにより、本発明では、原料充填層の通気性が改善され、ひいては焼結時間を短縮することができるので、成品焼結鉱の冷間強度や歩留の低下を招くことなく、焼結鉱の生産率を向上させることができる。 By adopting such a configuration, in the present invention, the air permeability of the raw material packed layer is improved, and as a result, the sintering time can be shortened, so the cold strength and yield of the product sintered ore are reduced. The production rate of sintered ore can be improved without incurring.
発明者らは、まず、水分を微粉へ十分に行き渡らせることにより、微粉に対し十分な付着力を与えることを考えた。そこで、DL焼結機に装入する造粒した擬似粒子を製造する際、まず、擬似粒子が堆積して形成される原料充填層の通気性が最大となる擬似粒子の適正水分よりも、高い水分となるように水分を添加する。これにより大きな粒径を有する擬似粒子が得られる。その後、擬似粒子間の空隙が過剰な水分で埋まらないようにするための乾燥条件について種々検討した。その際、前記適正な水分近傍にまで乾燥することにより、擬似粒子外側に水分と凝集した微粉とからなる含水微粉層を有し、大きな粒径を有する擬似粒子となることを発見し、本発明を開発するに至った。即ち、本発明は、DL焼結機に装入する造粒した擬似粒子を製造する際、まず適正水分よりも多い水分となるように、即ち、適正な水分よりも過剰な量の水分を添加して大きな粒径のままの擬似粒子としたのち、再び適正水分近傍まで乾燥する方法である。 The inventors first considered giving sufficient adhesion to the fine powder by sufficiently spreading moisture to the fine powder. Therefore, when producing granulated pseudo particles to be charged into a DL sintering machine, first, the moisture content of the raw material packed layer formed by depositing the pseudo particles is higher than the proper moisture content of the pseudo particles that maximizes the air permeability. Add water to get moisture. Thereby, pseudo particles having a large particle size are obtained. Thereafter, various studies were made on drying conditions for preventing the voids between the pseudo particles from being filled with excessive moisture. At that time, it was discovered that by drying to the vicinity of the appropriate moisture, a pseudo fine particle having a water-containing fine powder layer composed of moisture and agglomerated fine powder on the outer side of the pseudo particle, and having a large particle size, was obtained. Led to the development. That is, in the present invention, when producing granulated pseudo particles to be charged into a DL sintering machine, firstly, the amount of water is more than the appropriate amount of water, that is, an excessive amount of water is added to the proper amount of water. In this method, pseudo particles having a large particle size are used, and then dried to the vicinity of appropriate moisture.
そのために、本発明においては、特に、適正水分よりも過剰に水分を添加して造粒し、養生などを行なうことなく直ちに、適正水分近傍になるまで加熱乾燥する。その結果、擬似粒子は外側に微粉が凝集した含水微粉層を有するため、適正水分で形成される擬似粒子径まで縮径することなく大きな粒径のままの擬似粒子になる。 Therefore, in the present invention, in particular, the water is added in excess of the appropriate water, granulated, and immediately dried to near the appropriate water without curing. As a result, since the pseudo particles have a water-containing fine powder layer in which fine powders are aggregated on the outside, they become pseudo particles having a large particle size without being reduced to a pseudo particle size formed with appropriate moisture.
このように、適正水分近傍になるまでの乾燥によって水分を除去するので、従来のように焼結操業時に、擬似粒子間の空隙を過剰な水分が埋めることによって原料充填層を通過する空気の流れを妨害するようなことがなく、つまり通気性の悪化を招くことなく、一方で、微粉が凝集した含水微粉層を有するため粒径の拡大効果は享受できるようになる。しかも、このことによって、成品焼結鉱は冷間強度や歩留まりの低下を招くことなく、焼結鉱の生産性を改善することができる。 In this way, since moisture is removed by drying until it is close to the appropriate moisture, the flow of air passing through the raw material packed bed by filling the voids between the pseudo particles during the sintering operation as in the past On the other hand, since it has a water-containing fine powder layer in which fine powder is aggregated, the effect of enlarging the particle diameter can be enjoyed. Moreover, the product sintered ore can improve the productivity of the sintered ore without causing a decrease in cold strength and yield.
このような考え方の下に開発された本発明は、以下に説明するような試験を通じて知見したものである。即ち、発明者らは、前記擬似粒子を焼結機のパレット上に装入して形成される原料充填層の通気性や焼結鉱の生産率が向上するメカニズムを解明するため、一般的な焼結鉱製造プロセスを模擬した図1に示すような試験機にて造粒と焼結の試験を行なった。この試験においては、粗粒鉄鉱石(8mm以下)および微粉鉄鉱石(0.125mm〜0.063mm)、返鉱を含む鉄鉱石類原料に、塩基度調整用の珪石や生石灰、石灰石などからなる副原料および熱源となる粉コークスを配合し、得られた焼結原料粉1をディスク形ミキサー2で混合し、次に、混合後の焼結原料粉をドラムミキサー3に移し、水分添加を行いながらドラムミキサー3を回転させて造粒し、擬似粒子を得た。 The present invention developed under such a concept has been discovered through tests as described below. That is, the inventors clarified the general mechanism for improving the air permeability of the raw material packed bed formed by inserting the pseudo particles on the pallet of the sintering machine and the production rate of the sintered ore. Granulation and sintering tests were performed with a testing machine as shown in FIG. 1 simulating the sinter production process. In this test, coarse iron ore (less than 8mm), fine iron ore (0.125mm to 0.063mm), iron ore raw materials including return ore, basicity adjustment silica, quick lime, limestone, etc. Powder coke as an auxiliary material and heat source is blended, and the resulting sintered raw material powder 1 is mixed with a disk-type mixer 2, and then the mixed sintered raw material powder is transferred to a drum mixer 3 to add water. Then, the drum mixer 3 was rotated and granulated to obtain pseudo particles.
次に、発明者らは、焼結機での原料充填層の通気性が最大となる適正水分を見積るため、表1に示すように、鉱石種とそれの配合率が異なる2水準の焼結原料配合について、造粒水分と通気性(JPU指数)との関係を測定した。図2は、測定した造粒水分と通気性(JPU指数)との関係を示すものである。この図に見られるように、原料充填層の通気性は、使用する焼結原料粉の配合率によって大きく異なり、水準1では7.6mass%、水準2では5.5mass%において、その通気性は最大となることがわかった。なお、通気性は、通気性(JPU指数)=(風量/吸引面積)×(層厚/吸引負圧)0.6で求めることができ、JPU指数が大きいほど通気性が良いことを意味する。 Next, in order to estimate the appropriate moisture that maximizes the air permeability of the raw material packed layer in the sintering machine, the inventors, as shown in Table 1, have two levels of sintering in which the ore type and its blending ratio are different. About raw material mixing | blending, the relationship between granulation water | moisture content and air permeability (JPU index) was measured. FIG. 2 shows the relationship between the measured granulated moisture and air permeability (JPU index). As seen in this figure, the air permeability of the raw material packed layer varies greatly depending on the blending ratio of the sintered raw material powder used, and the air permeability is 7.6 mass% at level 1 and 5.5 mass% at level 2. It turned out to be the maximum. The air permeability can be obtained by air permeability (JPU index) = (air volume / suction area) × (layer thickness / suction negative pressure) 0.6, and the larger the JPU index, the better the air permeability. .
一般に、適正水分は、焼結原料粉の種類(鉱石の性状や配合率によって決まる)によって異なり、3.5〜10.0mass%の範囲にある。 In general, the appropriate moisture depends on the type of sintered raw material powder (determined by the properties of the ore and the blending ratio), and is in the range of 3.5 to 10.0 mass%.
さらに、本発明の優位性を調査するため、適正水分よりも過剰な水分を加えて造粒した後、直ちに乾燥するという擬似粒子製造試験を行なった。この試験では、配合後に主要な成分組成が表2に示すような焼結原料粉を用いた。図3に示すドラムミキサー3に添加する水分の量を、上述した適正水分に該当する適正水分T1:7.6mass%を基準とし、これに対し、水分を過剰に加えた例である、T2:8.6mass%(適正水分+1mass%)、T3:9.6mass%(適正水分+2mass%)、T4:10.6mass%(適正水分+3mass%)、T5:11.6mass%(適正水分+4mass%)、T6:12.6mass%(適正水分+5mass%)の6水準で試験した。 Furthermore, in order to investigate the superiority of the present invention, a pseudo-particle production test was conducted in which the excess moisture was added to the appropriate moisture and granulated, and then immediately dried. In this test, a sintered raw material powder whose main component composition is shown in Table 2 after blending was used. The amount of water added to the drum mixer 3 shown in FIG. 3 is based on the above-mentioned appropriate moisture T1: 7.6 mass% corresponding to the appropriate moisture, and on the other hand, T2 is an example in which moisture is excessively added. 8.6 mass% (appropriate moisture + 1 mass%), T3: 9.6 mass% (appropriate moisture + 2 mass%), T4: 10.6 mass% (appropriate moisture + 3 mass%), T5: 11.6 mass% (appropriate moisture + 4 mass%), T6: Tested at 6 levels of 12.6 mass% (appropriate moisture +5 mass%).
通常の焼結操業では、ドラムミキサー3で造粒した直後の擬似粒子を、図1に示すように、そのまま焼結機のパレット上に装入している。しかし、前記擬似粒子製造試験では、図3に示すように、造粒して得られる擬似粒子をバット4に入れ、直ちに200℃に設定した乾燥機5内に入れて所定時間(5〜20分)乾燥した。ただし、必要以上に、例えば、完全に乾燥させると、擬似粒子の壊裂を招くので好ましくない。望ましい乾燥の時間は、水分蒸発量の経時変化を予め測定しておき、乾燥後の擬似粒子の含有水分が、当初の適正水分±1mass%程度(約7.6mass%に戻る近傍の値)にまで戻るように調節される。過剰な水分で造粒し適性水分近傍まで乾燥された上記の擬似粒子は、微粉鉱石が擬似粒子を形成する上で必要な水分を保たれているため、崩壊することなく、焼結機の原料充填層の通気性を確保することに適した粒径を維持できる。また、この適正水分±1mass%の値は、乾燥しても、適正水分よりも過剰に水分を添加することにより粒子径が増大した擬似粒子の崩壊が起きない程度にまで乾燥できる範囲である。なお、適正水分±0.5mass%)にまで戻るように調節することが好ましい。 In a normal sintering operation, the pseudo particles immediately after granulation by the drum mixer 3 are directly charged on a pallet of a sintering machine as shown in FIG. However, in the pseudo particle production test, as shown in FIG. 3, the pseudo particles obtained by granulation are placed in the vat 4 and immediately put in the dryer 5 set to 200 ° C. for a predetermined time (5 to 20 minutes). ) Dried. However, it is not preferable to completely dry, for example, more than necessary, because the pseudo particles are destroyed. Desirable drying time is measured in advance with the time-dependent change in the amount of water evaporated, and the moisture content of the pseudo particles after drying is about ± 1 mass% of the initial appropriate moisture (a value close to returning to about 7.6 mass%). Adjusted to return. The above pseudo-particles granulated with excess moisture and dried to the vicinity of suitable moisture retain the moisture necessary for the fine ore to form pseudo-particles. The particle size suitable for ensuring the air permeability of the packed bed can be maintained. Further, the value of the proper moisture ± 1 mass% is a range that can be dried to such an extent that even if it is dried, the pseudo particles whose particle diameter has been increased by adding more water than the proper moisture does not collapse. In addition, it is preferable to adjust so that it may return to a suitable water | moisture content +/- 0.5 mass%.
表2には、この試験で使用した焼結原料粉の配合後の代表的な化学組成、表3には、造粒時添加水分の割合と焼結試験直前に測定した乾燥(適正水分±1mass%までの乾燥)後の擬似粒子の含有水分をそれぞれ示した。 Table 2 shows a typical chemical composition after blending of the sintering raw material powder used in this test, and Table 3 shows the ratio of moisture added during granulation and the dryness (appropriate moisture ± 1 mass) measured immediately before the sintering test. The moisture content of the pseudoparticles after drying to%) is shown.
図4は、ドラムミキサー3で造粒した後の乾燥後に篩を用いて測定し算出した擬似粒子(図中には造粒時の水分と乾燥後の水分を表示)の算術平均径を示す。この図4に示すように、造粒時の水分が8.6〜11.6mass%のものについては、粒子の算術平均径が造粒水分の増加に応じて増大している。この理由は、水分を過剰に加えた場合、擬似粒子内への水分吸収が飽和したときに、その過剰水分が粒子表面に滞留して水膜を形成し、その水分がバインダー作用を発揮して、その水膜部分に微粉が凝集して、含水微粉層を形造って造粒された擬似粒子の粒径が増大するものと考えられる。 FIG. 4 shows the arithmetic average diameter of the pseudo particles (in the figure, the moisture at the time of granulation and the moisture after the drying are displayed) measured and calculated using a sieve after drying after granulation by the drum mixer 3. As shown in FIG. 4, when the water content during granulation is 8.6 to 11.6 mass%, the arithmetic average diameter of the particles increases as the granulated water content increases. The reason for this is that when moisture is added excessively, when moisture absorption into the pseudo-particles is saturated, the excess moisture stays on the particle surface to form a water film, and the moisture exerts a binder action. It is considered that the fine powder aggregates in the water film portion, and the particle diameter of the pseudo particles granulated by forming the water-containing fine powder layer is increased.
図5には、本来の適正造粒水分:7.6mass%に対し、10.6mass%や12.6mass%という適正水分よりも水分を過剰に加えて造粒して得た擬似粒子の篩分けによる粒度分布を示す。図5に示すところから明らかなように、造粒水分7.6mass%、10.6mass%、12.6mass%の各粒径分布を比較すると、造粒時の水分が増加すると、造粒水分10.6mass%の場合、8.0〜1.0mmの粗粒割合が増大し、−1mmの微粉の割合は減少している。 FIG. 5 shows sifting of pseudo particles obtained by granulation by adding water in excess of the proper moisture of 10.6 mass% or 12.6 mass% with respect to the original proper granulated moisture: 7.6 mass%. Shows the particle size distribution. As is apparent from FIG. 5, when the particle size distributions of granulated moisture 7.6 mass%, 10.6 mass%, and 12.6 mass% are compared, when the moisture during granulation increases, the granulated moisture 10 In the case of 0.6 mass%, the ratio of coarse particles of 8.0 to 1.0 mm is increased, and the ratio of fine powder of -1 mm is decreased.
一方、図4を見る限り、造粒水分が+12.6mass%の領域については、造粒水分の増加に従い、擬似粒子の算術平均径が低下している。即ち、図4、図5に示す結果からわかることは、適正水分7.6mass%に対し、+5mass%過剰となる12.6mass%という水分添加では却って核粒子部分の崩壊を招き、むしろ、凝集しない微粉割合が増加することがわかる。 On the other hand, as shown in FIG. 4, in the region where the granulated moisture is +12.6 mass%, the arithmetic average diameter of the pseudo particles decreases as the granulated moisture increases. That is, as can be seen from the results shown in FIGS. 4 and 5, the addition of 12.6 mass%, which is +5 mass% over the appropriate moisture of 7.6 mass%, causes the core particle part to collapse and rather does not aggregate. It can be seen that the fine powder ratio increases.
従って、本発明の場合、過剰に加える水分としては、適正水分の1.1倍(造粒水分8.4mass%)〜1.5倍(造粒水分11.4mass%)の範囲とすることが好ましい。より好ましい過剰な水分は、適正水分よりも1.25倍〜1.5倍、さらに好ましくは1.30倍〜1.45倍である。 Therefore, in the case of the present invention, the excess water added is in the range of 1.1 times the appropriate moisture (granulated moisture 8.4 mass%) to 1.5 times (granulated moisture 11.4 mass%). preferable. More preferable excess water is 1.25 times to 1.5 times, more preferably 1.30 times to 1.45 times the proper water content.
図6は、適正水分+3.0mass%の水分で造粒し、乾燥した擬似粒子の断面写真、およびそれの模式図である。
図6(a)は、半球状核粒子と微粉粒子を適正水分よりも過剰な水分を加えて水分10.6mass%として造粒し、プレパラート上に載せた状態の状況を示す該擬似粒子の断面写真とその説明図である。
図6(b)は、適正水分相当(7.5mass%)まで乾燥する途中の状態の状況を示す該擬似粒子の断面写真とその説明図である。
図6(c)は、適正水分相当(7.5mass%)まで乾燥させた状態の状況を示す該擬似粒子の断面写真とその説明図である。
FIG. 6 is a cross-sectional photograph of a pseudo particle that has been granulated with an appropriate moisture + 3.0 mass% and dried, and a schematic diagram thereof.
FIG. 6 (a) is a cross-section of the pseudo-particle showing a state in which hemispherical core particles and fine powder particles are granulated to a water content of 10.6 mass% by adding water in excess of the appropriate water and placed on the preparation. It is a photograph and its explanatory drawing.
FIG. 6B is a cross-sectional photograph of the pseudo-particles and an explanatory diagram showing a state in the middle of drying to an appropriate moisture equivalent (7.5 mass%).
FIG. 6C is a cross-sectional photograph of the pseudo-particles and an explanatory view thereof showing a state of drying to an appropriate moisture equivalent (7.5 mass%).
図6(a)の写真は、本発明範囲内の過剰な水分を添加して造粒した状態であり、微粉に水分が十分に行き渡り、過剰な水分と微粉とにより大きな粒径を有する擬似粒子が得られている。図6(b)の写真は、適正水分相当(7.5mass%)まで乾燥する途中の状態であり、周辺に存在する微粉が水分の減少に伴って発生する対流に乗って擬似粒子表面に凝集・付着し、擬似粒子外側に水分と凝集した微粉とからなる含水微粉層を有し、未凝集微粉がわずかであることが観察できる。その結果、図6(b)の写真および右側の模式図に示すとおり、過剰な水分を含まない大きな粒径の擬似粒子となっている。 The photograph in FIG. 6 (a) is a granulated state in which excess moisture within the scope of the present invention is added and is sufficiently granulated, and the pseudo particles have a large particle size due to excess moisture and fine powder. Is obtained. The photograph in Fig. 6 (b) shows a state in the middle of drying to an appropriate moisture equivalent (7.5 mass%), and the fine powder existing in the vicinity is agglomerated on the surface of the quasi-particle by riding on the convection generated as the moisture decreases. It can be observed that it has a water-containing fine powder layer composed of water and agglomerated fine powder on the outside of the pseudo particles, and there are few unagglomerated fine powders. As a result, as shown in the photograph of FIG. 6B and the schematic diagram on the right side, it is a pseudo particle having a large particle size that does not contain excessive moisture.
一方、図6(c)の図は、本発明の範囲内の過剰な水分を添加して造粒し、それを適正水分相当(7.5mass%)となる約3mass%の水分を除去する乾燥処理した後の状態を示したものである。なお、未凝集・未付着となって残る微粉はわずかで、擬似粒子表面に凝集して付着し、擬似粒子粒径を増大する現象が適正水分相当(7.5mass%)まで乾燥させた後も維持されていることが観察できる。 On the other hand, FIG. 6 (c) is a diagram in which excess moisture within the scope of the present invention is added and granulated, and then it is removed to remove about 3 mass% of water corresponding to appropriate moisture (7.5 mass%). The state after processing is shown. In addition, even after the fine powder remaining as non-aggregated / non-adhered is agglomerated and adhered to the surface of the pseudo particle and the phenomenon of increasing the particle size of the pseudo particle is dried to an appropriate moisture equivalent (7.5 mass%). It can be observed that it is maintained.
次に、図7(a)〜(c)は、本発明の範囲外の例であり、過剰な水分として、適正水分に過剰水分5.0mass%分を加えて添加してから造粒し、その後、乾燥させたときの例である。この例では、適正水分相当まで乾燥する途中の状態である図7(b)の写真ならびに模式図に示すように、水分が多いために擬似粒子と周囲に存在する微粉との間隔が大きくなり、凝集乾燥過程で水分減少に伴って発生する水分の対流によっても微粉が凝集しきらず、残存した微粉として観察され、図6(b)に示すような、水膜と凝集微粉とからなる含水微粉層に入りきらない微粉が発生している。従って、この例の微粉は、擬似粒子粒径の拡大に寄与しないことがわかる。それは、図7(c)の写真、模式図に示すように、乾燥したときに、より明解にあらわれ、未凝集・未付着となって残る微粉が多く観察され、本発明の作用効果が生じなくなることがわかる。 Next, FIGS. 7 (a) to (c) are examples outside the scope of the present invention, and as excess moisture, granulate after adding an excess moisture of 5.0 mass% to the appropriate moisture, Then, it is an example when it is dried. In this example, as shown in the photograph and schematic diagram of FIG. 7 (b), which is in the middle of drying to an appropriate moisture equivalent, the interval between the pseudo particles and the fine powder existing in the surroundings increases due to the large amount of moisture, The water-containing fine powder layer composed of a water film and agglomerated fine powder as shown in FIG. 6 (b) is observed as a residual fine powder that does not agglomerate due to the convection of moisture generated in the coagulation drying process due to moisture reduction. Fine powder that cannot be contained is generated. Therefore, it turns out that the fine powder of this example does not contribute to expansion of a pseudo particle size. As shown in the photograph and schematic diagram of FIG. 7 (c), it appears more clearly when dried, and a lot of fine powder remaining as non-aggregated / unattached is observed, and the effect of the present invention does not occur. I understand that.
次に、図8、図9は、本発明法に適合する方法を実施したときの擬似粒子の乾燥前後の水分と焼結時間および生産率との関係をそれぞれ示したものである。これらの図に示すように、造粒のための適正水分:7.6mass%に対し、造粒水分(乾燥前水分)が10.6mass%および11.6mass%と過剰に添加したものでは、焼結時間が短縮し、生産率も向上することがわかる。一方、この水分が11.6mass%超から12.6mass%まで、即ち、過剰に加える水分が適正水分の1.5倍を超えると、通気性が悪化し、焼結時間が増加して生産率も低下している。 Next, FIG. 8 and FIG. 9 show the relationship between the moisture before and after drying the pseudo particles, the sintering time, and the production rate when the method suitable for the method of the present invention is performed. As shown in these figures, the appropriate moisture for granulation: 7.6 mass%, while granulation moisture (moisture before drying) is excessively added as 10.6 mass% and 11.6 mass%, It can be seen that the settling time is shortened and the production rate is improved. On the other hand, if this moisture exceeds 11.6 mass% to 12.6 mass%, that is, if the moisture added excessively exceeds 1.5 times the appropriate moisture, the air permeability deteriorates, the sintering time increases, and the production rate Has also declined.
図10は、前記の焼結試験後に調査した+10mmの焼結鉱成品歩留への影響を示すものである。この図に見られるように、少なくとも本発明法に従って実施した過剰に加える水分量が適正水分の約1.1倍(適正水分+1mass%)〜約1.5倍(適正水分+4mass%)の範囲については、歩留まりの低下は観測されなかったが、1.5倍超(12.6mass%)では歩留が低下していた。 FIG. 10 shows the effect on the yield of sintered mineral products of +10 mm investigated after the sintering test. As can be seen from this figure, at least the amount of water added in accordance with the method of the present invention is about 1.1 times (appropriate moisture + 1 mass%) to about 1.5 times (appropriate moisture + 4 mass%) of appropriate moisture. No decrease in yield was observed, but the yield decreased at over 1.5 times (12.6 mass%).
以上説明したように、本発明によれば、焼結機に装入する擬似粒子をドラムミキサーにて水を添加しながら造粒して製造する際に、造粒するために必要とされる本来の適正水分よりも、過剰な水分を添加して擬似粒子を造粒することで、大きな粒径の擬似粒子を形成し、次いで、その擬似粒子を望ましくは直ちに、乾燥処理し、次いで、本来の適正水分相当の水分にまで乾燥した擬似粒子とする。このことにより、焼結機での操業時には、パレット上での原料充填層の通気性が改善され、焼結鉱の冷間強度や歩留の低下を招くことなく、焼結鉱の生産性を改善することが可能になる。 As described above, according to the present invention, when the pseudo particles to be charged into the sintering machine are granulated while adding water with a drum mixer, they are originally required for granulation. The pseudo-particles are granulated by adding excess moisture to the proper moisture of the above, thereby forming pseudo-particles having a large particle size, and then the pseudo-particles are desirably dried immediately, The pseudo particles are dried to a moisture equivalent to appropriate moisture. This improves the air permeability of the raw material packed bed on the pallet during operation with the sintering machine, and improves the productivity of the sintered ore without reducing the cold strength and yield of the sintered ore. It becomes possible to improve.
(実施例1)
図11は、実験室規模の本発明に適合する方式の下にある造粒−焼結試験装置のフロー図である。この実施例では、乾燥した各種の焼結原料粉を、ミキサーにて混合し、次いで、ドラムミキサーに装入すると共に、水分を添加して360秒間造粒した。その後、造粒粒子の一部をサンプリングし、擬似粒子の水分と粒度分布を測定した。これを乾燥前擬似粒子粒径とした。残りの擬似粒子は、後段のドラムミキサーに装入し、熱風発生器にて300℃の熱風を導入しながら造粒を行なった。ドラムミキサーの回転数は一定とし、造粒時間を調節することにより、乾燥度合いを調節した。乾燥後の擬似粒子の一部をサンプリングし、擬似粒子の水分と粒度分布を測定した。これを、乾燥後擬似粒子粒径とした。これら擬似粒子を、図1に示すのと同じ焼結試験装置に導入し、焼結試験を行なった。
Example 1
FIG. 11 is a flow diagram of a granulation-sintering test apparatus under a lab-scale method consistent with the present invention. In this example, various dried sintered raw material powders were mixed in a mixer, then charged into a drum mixer, and water was added to granulate for 360 seconds. Thereafter, a part of the granulated particles was sampled, and the moisture and particle size distribution of the pseudo particles were measured. This was made into the pseudo particle diameter before drying. The remaining pseudo particles were charged into a subsequent drum mixer and granulated while introducing hot air at 300 ° C. with a hot air generator. The degree of drying was adjusted by adjusting the number of revolutions of the drum mixer and adjusting the granulation time. A portion of the pseudo particles after drying was sampled, and the moisture and particle size distribution of the pseudo particles were measured. This was set as the pseudo particle size after drying. These pseudo particles were introduced into the same sintering test apparatus as shown in FIG. 1 and subjected to a sintering test.
図12は、擬似粒子の水分と算術平均径との関係を示すものである。ベース条件の算術平均径:3.6mmに対して、ベース条件よりも過剰な水分を添加して造粒した乾燥前の水分8.6〜9.3mass%の擬似粒子は乾燥後における算術平均径は4.2〜4.6mmである。そして、過剰な水分を添加して造粒した乾燥前擬似粒子の水分10.3〜11.6mass%のものは、乾燥後の算術平均径が4.9〜5.2mmとなった。一般に、添加水分が適正水分以上になると、キャピラリー領域を超えて水が存在するために、粒子同士の毛細管力の影響が損なわれ、粒子強度が低下する。そのため、その後の搬送工程を考慮すると好ましくない。しかし、ドラムミキサーの出側においては、搬送衝撃を受ける前のため、大きな粒径の状態が保たれている。一方、乾燥前の擬似粒子の水分が10.3〜11.6mass%になると、粒子強度が低下するため、ドラムミキサーの出側に到達するまでに、ミキサー内部での破壊される機会が大きくなり、擬似粒子の成長直線の傾きは小さくなる。 FIG. 12 shows the relationship between the moisture of the pseudo particles and the arithmetic average diameter. Arithmetic mean diameter of base condition: 3.6 mm of pseudo particles having a moisture content of 8.6 to 9.3 mass% before drying, which is granulated by adding more moisture than the base condition, is the arithmetic mean diameter after drying Is 4.2 to 4.6 mm. And the thing with the water | moisture content of 10.3-11.6 mass% of the pseudo | simulation particle | grains before drying granulated by adding an excessive water | moisture content was 4.9-5.2 mm in arithmetic mean diameter after drying. In general, when the added water is equal to or higher than the appropriate water, the water is present beyond the capillary region, so that the influence of the capillary force between the particles is impaired, and the particle strength is reduced. Therefore, it is not preferable in consideration of the subsequent transport process. However, on the exit side of the drum mixer, the state of a large particle size is maintained before it is subjected to a transport impact. On the other hand, when the moisture content of the pseudo particles before drying becomes 10.3-11.6 mass%, the particle strength decreases, so that the chance of being destroyed inside the mixer increases before reaching the exit side of the drum mixer. The slope of the pseudo-particle growth line becomes smaller.
過剰に水分を添加して得たこれらの擬似粒子を、適正水分にまで乾燥すると、ベース条件に比べて、擬似粒子の粒径は増大する。即ち、乾燥前擬似粒子の水分8.6〜9.3mass%の擬似粒子は、7.6mass%程度まで乾燥した後は、算術平均径が4.2〜4.6mmとなり、また、乾燥前擬似粒子の水分10.3〜11.6mass%の擬似粒子は、乾燥後の算術平均径は4.9〜5.2mmとなっている。要するに、乾燥後の擬似粒子の粒径が乾燥前に比べて低下するのは、ミキサー内で乾燥ムラが不可避的に発生するために、一部の擬似粒子では適正水分未満まで乾燥され、粒子表面から微粉が剥離するためと考えられる。 When these pseudo particles obtained by adding water excessively are dried to appropriate moisture, the particle size of the pseudo particles increases as compared with the base condition. That is, the pseudo particles having a moisture content of 8.6 to 9.3 mass% before drying have an arithmetic average diameter of 4.2 to 4.6 mm after being dried to about 7.6 mass%. The pseudo-particles having a moisture content of 10.3 to 11.6 mass% have an arithmetic average diameter of 4.9 to 5.2 mm after drying. In short, the particle size of the pseudo particles after drying is lower than that before drying because uneven drying inevitably occurs in the mixer. This is thought to be because the fine powder peels off.
(実施例2)
この実施例は、南米鉱石主体の原料を使用したときの、本発明の効果について説明するものである。図13は、適正造粒水分6.0mass%に対して、適正水分よりも1.23倍の過剰な水分である、7.4mass%の水分にて造粒し、その後、6.0mass%まで乾燥させたときの、擬似粒子の算術平均粒径の変化を示したものである。南米鉱石原料は、鉱石内部に気孔が少ないため、適正造粒水分が小さい。さらに、細粒同士の付着性が悪いために大幅に過剰な水分を添加すると、擬似粒子の粒径はもはや増大せず、擬似粒子の粒径は低下する。したがって、この原料においては、7.4mass%程度の水分添加が、擬似粒子粒径の増大のためには限界であった。また、熱風による乾燥工程後では、擬似粒子の粒径は増大し、本発明の効果が確認された。
(Example 2)
This example explains the effect of the present invention when a raw material mainly composed of South American ore is used. FIG. 13 shows granulation with 7.4 mass% of moisture, which is 1.23 times the excess moisture with respect to proper granulation moisture of 6.0 mass%, and then to 6.0 mass%. The change of the arithmetic average particle diameter of the pseudo particles when dried is shown. South American ore raw materials have a small amount of proper granulation moisture because there are few pores inside the ore. Furthermore, since the adhesion between the fine particles is poor, if a large excess of water is added, the particle size of the pseudo particles no longer increases and the particle size of the pseudo particles decreases. Therefore, in this raw material, the addition of about 7.4 mass% of water was the limit for increasing the pseudo particle size. Moreover, the particle size of the pseudo particles increased after the drying step with hot air, and the effect of the present invention was confirmed.
(実施例3)
豪州鉱石に対して、ペレットフィード鉱石(-64μmが80%以上)を配合した原料における、本発明の効果について説明する。図14は、適正造粒水分8.5mass%に対して、過剰な水分を加えて水分10.3mass%、11.3mass%としたときの結果を示す。ペレットフィード配合時には、微粉が多いために、適正造粒水分が増加する。熱風による乾燥工程後では、擬似粒子の粒径が増大し、本発明の効果が確認された。
(Example 3)
The effect of the present invention in a raw material in which pellet feed ore (-64 μm is 80% or more) with respect to Australian ore will be described. FIG. 14 shows the results when excess moisture was added to the moisture content of 10.3 mass% and 11.3 mass% with respect to the appropriate granulated moisture of 8.5 mass%. When pellet feed is blended, the amount of fine powder increases, so that the appropriate granulated moisture increases. After the drying step with hot air, the particle size of the pseudo particles increased, and the effect of the present invention was confirmed.
(実施例4)
有効火格子面積:410m2、生産率:1.5t/h・m2の下方吸引式DL焼結機の操業において、本発明に従う焼結鉱の製造方法について試験した。この試験では、ドラムミキサーを2基用い、1次ドラムミキサーに過剰な水分に当たる10.6mass%(適正水分:7.6mass%に対し1.4倍)を添加して造粒し、適正水分の下で得られる擬似粒子の算術平均径:3.2mmを、3.4mm超えまで拡大させて大きな粒径の擬似粒子をつくり、次に、2次ドラムミキサーにおいて300℃の熱風を吹き込み、該擬似粒子を乾燥させて適正水分相当の7.9mass%の水分にまで乾燥した。このとき、該擬似粒子の平均粒径は約15%向上し、焼結充填層の通気性が向上して、焼結生産率は約6%向上した。このことから、本発明に適合する焼結鉱の製造方法を採用すれば、焼結機のパレット上での原料充填層の通気性が改善され、焼結鉱の冷間強度や歩留の低下を招くことなく、焼結鉱の生産性を改善することが可能になることがわかった。
Example 4
In the operation of a downward suction DL sintering machine with an effective grate area of 410 m 2 and a production rate of 1.5 t / h · m 2 , the method for producing a sintered ore according to the present invention was tested. In this test, two drum mixers were used, granulated by adding 10.6 mass% (appropriate moisture: 1.4 times that of 7.6 mass%) to the primary drum mixer and adding the appropriate moisture. Arithmetic mean diameter of the pseudo particles obtained below: 3.2 mm is expanded to over 3.4 mm to produce pseudo particles having a large particle size, and then hot air at 300 ° C. is blown in a secondary drum mixer. The particles were dried and dried to a moisture content of 7.9 mass% corresponding to the appropriate moisture content. At this time, the average particle size of the pseudo particles was improved by about 15%, the air permeability of the sintered packed layer was improved, and the sintering production rate was improved by about 6%. From this, if the manufacturing method of the sintered ore suitable for the present invention is adopted, the air permeability of the raw material packed bed on the pallet of the sintering machine is improved, and the cold strength and yield of the sintered ore are reduced. It has been found that it is possible to improve the productivity of sintered ore without incurring the above.
本発明の技術は、例示したドラムミキサーによる擬似粒子の製造だけでなく、ペレタイザーなど他の造粒機を使って造粒する場合にも適用できると共に、焼結原料以外のペレタイジングのような塊成化技術への適用も可能である。 The technology of the present invention can be applied not only to the production of pseudo particles by the exemplified drum mixer, but also to the case of granulation using other granulators such as a pelletizer, and agglomeration such as pelletizing other than the sintering raw material. It can also be applied to the technology.
1 焼結原料
2 ミキサー
3 ドラムミキサー
4 バット
5 焼結機
1 Sintering raw material 2 Mixer 3 Drum mixer 4 Butt 5 Sintering machine
Claims (12)
該含水微粉層を有する擬似粒子を乾燥して、乾燥後の擬似粒子の水分を(適正水分−1)mass%〜(適正水分+1)mass%にまで低下させ、
そして水分が低下した擬似粒子を、焼結機に装入して焼結する、
ことを特徴とする焼結鉱の製造方法。 By granulated with the addition of excess water than the proper moisture sintering raw material powder, the particle size larger than the particle size to be formed under該適positive moisture, the pseudo particles having a water fine layer formed And
The pseudo particles having the water-containing fine powder layer are dried, and the moisture of the pseudo particles after drying is reduced to (appropriate moisture-1) mass% to (appropriate moisture + 1) mass%,
And the pseudo particles with reduced moisture are charged into a sintering machine and sintered.
The manufacturing method of the sintered ore characterized by the above-mentioned.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012071594A JP5935979B2 (en) | 2012-03-27 | 2012-03-27 | Method for producing pseudo-particles for producing sinter and method for producing sinter |
PCT/JP2012/058888 WO2013145332A1 (en) | 2012-03-27 | 2012-04-02 | Method for manufacturing pseudo-particles for sintered ore manufacture, and method for manufacturing sintered ore |
TW101113726A TWI480380B (en) | 2012-03-27 | 2012-04-18 | Production method of pseudo-particles for sintering production and method for manufacturing sintered ore |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012071594A JP5935979B2 (en) | 2012-03-27 | 2012-03-27 | Method for producing pseudo-particles for producing sinter and method for producing sinter |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013204058A JP2013204058A (en) | 2013-10-07 |
JP5935979B2 true JP5935979B2 (en) | 2016-06-15 |
Family
ID=49258693
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012071594A Active JP5935979B2 (en) | 2012-03-27 | 2012-03-27 | Method for producing pseudo-particles for producing sinter and method for producing sinter |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5935979B2 (en) |
TW (1) | TWI480380B (en) |
WO (1) | WO2013145332A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TR201613592T1 (en) * | 2014-04-01 | 2017-02-21 | Jfe Steel Corp | Raw granulated material production device for sintering. |
BR112018067367B1 (en) * | 2016-03-04 | 2022-05-03 | Jfe Steel Corporation | Method for making sintered ore |
JP6562226B2 (en) * | 2016-12-27 | 2019-08-21 | Jfeスチール株式会社 | Method for estimating proper granulated water content during production of sintered raw material and method for producing sintered raw material |
BR112023005590A2 (en) * | 2020-09-30 | 2023-05-09 | Jfe Steel Corp | METHOD FOR MANUFACTURING SINTERED ORE AND SINTERED ORE |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6089526A (en) * | 1983-10-19 | 1985-05-20 | Sumitomo Metal Ind Ltd | Production of sintered ore |
JP2009024190A (en) * | 2007-07-17 | 2009-02-05 | Jfe Steel Kk | Method for producing molded raw material to be sintered |
JP5315659B2 (en) * | 2007-10-15 | 2013-10-16 | 新日鐵住金株式会社 | Method for producing sintered ore |
TW201020510A (en) * | 2008-11-26 | 2010-06-01 | China Steel Corp | Analysis device for diameter and moisture of artificial particle |
JP5532986B2 (en) * | 2010-02-05 | 2014-06-25 | Jfeスチール株式会社 | Method for adjusting the appropriate amount of moisture during the production of granulated and sintered raw materials |
JP5803340B2 (en) * | 2010-08-31 | 2015-11-04 | Jfeスチール株式会社 | Sintering raw material manufacturing method |
-
2012
- 2012-03-27 JP JP2012071594A patent/JP5935979B2/en active Active
- 2012-04-02 WO PCT/JP2012/058888 patent/WO2013145332A1/en active Application Filing
- 2012-04-18 TW TW101113726A patent/TWI480380B/en active
Also Published As
Publication number | Publication date |
---|---|
TW201339319A (en) | 2013-10-01 |
WO2013145332A1 (en) | 2013-10-03 |
TWI480380B (en) | 2015-04-11 |
JP2013204058A (en) | 2013-10-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5253701B2 (en) | Iron ore briquetting | |
KR102189069B1 (en) | Method for manufacturing sintered ore | |
JP4840524B2 (en) | Method for manufacturing raw materials for sintering | |
JP5935979B2 (en) | Method for producing pseudo-particles for producing sinter and method for producing sinter | |
JP5375742B2 (en) | Granulation method of sintering raw material | |
JP5954533B2 (en) | Method for producing sintered ore | |
JP5315659B2 (en) | Method for producing sintered ore | |
CN107614710B (en) | The manufacturing method of reduced iron | |
JP6421666B2 (en) | Method for producing sintered ore | |
JP6686974B2 (en) | Sintered ore manufacturing method | |
TWI649429B (en) | Manufacturing method of sintered ore | |
JP4996100B2 (en) | Method for producing sintered ore | |
TW200925289A (en) | A blast furnace self fluxing pellet and a method for fabricating the same | |
JP5146572B1 (en) | Method for manufacturing raw materials for sintering | |
JP4528362B2 (en) | Method for producing sintered ore | |
JP5803340B2 (en) | Sintering raw material manufacturing method | |
JP2008189994A (en) | Method for manufacturing pelletized raw material for sintering | |
JP2003129141A (en) | Sintered ore for blast furnace and manufacturing method therefor | |
TWI632241B (en) | Method for manufacturing sinter ore in carbon material | |
JP2007031818A (en) | Method for manufacturing sintered ore | |
TWI849926B (en) | Method for producing granulated raw material for sintering and method for producing sintered ore | |
JP2003277838A (en) | High crystal water ore used for sintering raw material for blast furnace, sintering raw material for blast furnace and its producing method | |
JP7273305B2 (en) | Method for producing sintered ore | |
JP2009024248A (en) | Method for producing sintered ore | |
WO2020137484A1 (en) | Sintered ore production method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150218 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20151028 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151224 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160127 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160322 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160413 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160426 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5935979 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |