JP5532986B2 - Method for adjusting the appropriate amount of moisture during the production of granulated and sintered raw materials - Google Patents

Method for adjusting the appropriate amount of moisture during the production of granulated and sintered raw materials Download PDF

Info

Publication number
JP5532986B2
JP5532986B2 JP2010024384A JP2010024384A JP5532986B2 JP 5532986 B2 JP5532986 B2 JP 5532986B2 JP 2010024384 A JP2010024384 A JP 2010024384A JP 2010024384 A JP2010024384 A JP 2010024384A JP 5532986 B2 JP5532986 B2 JP 5532986B2
Authority
JP
Japan
Prior art keywords
water
moisture
raw material
granulated
ore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010024384A
Other languages
Japanese (ja)
Other versions
JP2011162814A (en
Inventor
隆英 樋口
伸幸 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010024384A priority Critical patent/JP5532986B2/en
Publication of JP2011162814A publication Critical patent/JP2011162814A/en
Application granted granted Critical
Publication of JP5532986B2 publication Critical patent/JP5532986B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、焼結機に供給するための造粒焼結原料を製造する時の適正水分量の調整方法に関し、特に、山元でブレンドした焼結原料を用いて造粒焼結原料を製造(造粒)するような場合においても、造粒時の適正水分量の調整を的確に行うための方法に関するものである。   The present invention relates to a method for adjusting an appropriate amount of moisture when producing a granulated and sintered raw material to be supplied to a sintering machine, and in particular, produces a granulated and sintered raw material using a sintered raw material blended in a mountain ( This also relates to a method for accurately adjusting an appropriate amount of water during granulation.

焼結鉱は、通常、複数銘柄の粉状の鉄鉱石(以下、単に「鉱石」とも言う)に、石灰石、珪石、蛇紋岩等の副原料粉と、ダスト、スケール、返鉱等の雑原料と、粉コークス等の固体燃料とを適量づつ配合した焼結原料に、水分を添加してドラムミキサーやディスクペレタイザー等で混合造粒して擬似粒子化した造粒焼結原料を製造し、その造粒焼結原料を焼結機のパレット上に装入し、装入層表層部の固体燃料に着火し、下向き吸引下で焼成することによって得られる。   Sinter is usually made from powdered iron ore of several brands (hereinafter also referred to simply as “ore”), secondary raw material powders such as limestone, quartzite, and serpentine, and miscellaneous raw materials such as dust, scales, and return minerals. And a granulated sintered raw material, which is mixed with a solid material such as powdered coke and appropriate amounts, mixed with a drum mixer or a disk pelletizer, and pseudo-particles are produced. It is obtained by charging the granulated and sintered raw material onto a pallet of a sintering machine, igniting the solid fuel in the surface layer portion of the charged layer, and firing it under downward suction.

一般に、DL焼結機を用いて焼結鉱を製造する場合、前記造粒焼結原料の性状が、前記装入層の通気性に影響し、ひいては焼結鉱の品質や生産性あるいは歩留まで大きく左右することが知られている。一方、造粒焼結原料の製造に際しては、水分が焼結原料中の微粉を粗粒(核粒子)の表面に付着させるバインダーとして主要な役割を担うことから、造粒を適正に行うためには、この水分量を適正に調整することが重要になる。   Generally, when a sintered ore is produced using a DL sintering machine, the properties of the granulated and sintered raw material affect the air permeability of the charging layer, and consequently the quality, productivity or yield of the sintered ore. It is well known that On the other hand, in the production of granulated and sintered raw materials, moisture plays a major role as a binder that attaches fine powder in the sintered raw materials to the surface of the coarse particles (core particles). Therefore, it is important to adjust the amount of water appropriately.

そこで、従来、微粉と核粒子とに付着力を付与することにより、擬似粒子化の作用を促進させることを目的として、造粒時における焼結原料の水分量を制御する試みが種々なされている。
例えば、特許文献1、2には、焼結原料を構成する各粉状物質の飽和水分値を予め求めておき、この各飽和水分値と各粉状物質の配合割合とから加重平均によって焼結原料の飽和水分値を算出し、この加重平均飽和水分値の一定割合の水分を焼結原料に添加して造粒する方法が開示されている。
Therefore, conventionally, various attempts have been made to control the moisture content of the sintering raw material during granulation for the purpose of promoting the action of quasi-particle formation by imparting adhesion to fine powder and core particles. .
For example, in Patent Documents 1 and 2, the saturated moisture value of each powdery substance constituting the sintering raw material is obtained in advance, and sintering is performed by a weighted average from each saturated moisture value and the blending ratio of each powdery substance. A method is disclosed in which a saturated moisture value of a raw material is calculated, and a certain proportion of the weighted average saturated moisture value is added to the sintered raw material for granulation.

また、特許文献3、4には、焼結原料の吸水率および造粒前粒度分布から水分添加後の焼結原料が付着力を有する水分濃度の下限値である臨界水分濃度を算出し、焼結原料の水分濃度がその臨界水分濃度以上となるように、水分添加量を制御する造粒方法が開示されている。   In Patent Documents 3 and 4, the critical moisture concentration, which is the lower limit value of the moisture concentration at which the sintered raw material after the addition of water has adhesion, is calculated from the water absorption rate of the sintered raw material and the particle size distribution before granulation. A granulation method is disclosed in which the amount of moisture added is controlled so that the moisture concentration of the ligation raw material is equal to or higher than the critical moisture concentration.

ところで、近年は、焼結原料として、ピソライト鉱石やマラマンバ鉱石など吸水性の高い鉱石の配合率を増加させる傾向にある。これら吸水性の高い鉱石を多量配合した焼結原料の場合は、従来技術のように、単に、飽和水分値や吸水率といった指標のみに基づく制御では、適正な造粒水分濃度を精度良く予測することは困難であり、造粒時における水分添加量の適正範囲を、精度良く決定することができないという状況にある。   By the way, in recent years, there is a tendency to increase the blending rate of ores with high water absorption, such as pisolite ore and maramamba ore, as a sintering raw material. In the case of a sintering raw material containing a large amount of these ore with high water absorption, appropriate granulation water concentration can be accurately predicted with control based solely on indices such as saturated water value and water absorption rate, as in the prior art. It is difficult to determine the appropriate range of the amount of water added during granulation with high accuracy.

さらに、マラマンバ鉱石は微粉が多いのに対し、ピソライト鉱石の中には粗粒の多いものが存在するため、鉱石銘柄や原料配合の変更により焼結原料の粒度構成が大幅に変動し、これに伴い適正な造粒水分濃度も大きく変動するおそれがある。したがって、造粒水分濃度の管理は、従来に比べて格段に重要性を増しており、適正造粒水分濃度をより高精度に予想しうる技術の開発が急務となっている。   In addition, while maramamba ore has a lot of fine powder, some of the psolite ore has a large amount of coarse particles.Therefore, the grain size composition of the sintered raw material varies greatly due to changes in the ore brand and raw material composition. Along with this, there is a possibility that the appropriate granulated water concentration also varies greatly. Therefore, the management of the granulation moisture concentration has become much more important than before, and there is an urgent need to develop a technology that can predict the proper granulation moisture concentration with higher accuracy.

このような課題を解決するために、特許文献5では、焼結原料の保水率の他に、その3〜5mmの粒径範囲における開気孔体積をも考慮し、さらに実際の粒度分布と標準粒度分布との差異より生じるずれの量を加味することにより、焼結原料の最適造粒水分濃度の算出方法を開示している。そして、この方法により、焼結原料として、吸収性が高くかつ粒度構成が大幅に異なる劣質鉱石を多量に配合した場合でも、最適造粒水分濃度を精度良く予測することが可能であるとしている。   In order to solve such a problem, in Patent Document 5, in addition to the water retention rate of the sintering raw material, the open pore volume in the particle size range of 3 to 5 mm is also considered, and the actual particle size distribution and the standard particle size are further considered. The calculation method of the optimal granulation moisture concentration of a sintering raw material is disclosed by taking into account the amount of deviation caused by the difference from the distribution. And even if it mix | blends a large quantity of inferior ores with high absorbability and a particle size structure greatly different as a sintering raw material by this method, it is supposed that the optimal granulation water density | concentration can be estimated accurately.

特公平3−80849号公報Japanese Patent Publication No. 3-80849 特開平5−51654号公報Japanese Patent Laid-Open No. 5-51654 特開平11−61281号公報Japanese Patent Laid-Open No. 11-61281 特開2000−1725号公報JP 2000-1725 A 特開2008−1960号公報Japanese Patent Laid-Open No. 2008-1960

ところで近年、焼結原料としては、鉄鉱石の価格の上昇に伴なって、安価な劣質鉱石を使用せざるを得ない状況下にあり、より安価な原料を入手するため、山元において予めブレンディングされた粉鉱石を購入する動きがある。山元においては、採掘した粉鉱石の鉄品位、SiO、Al等の成分を選鉱により調整して出荷するが、購入側が選鉱基準を緩和すれば、品位は低下するものの購入価格を低く抑えることができる。このような背景から今後、原料価格の高騰に従い、ブレンディング鉱石使用の可能性が高まるものと予想される。 By the way, in recent years, as a raw material for sintering, as the price of iron ore has risen, it has been in a situation where an inexpensive inferior ore has to be used, and in order to obtain a cheaper raw material, it has been previously blended in Yamamoto. There is a move to buy crushed ore. In Yamamoto, the iron grade of the mined powder ore, the components such as SiO 2 and Al 2 O 3 are adjusted and shipped by the beneficiation, but if the purchase side relaxes the beneficiation standards, the purchase price will be lowered although the quality will be lowered. Can be suppressed. Against this background, the possibility of using blending ores is expected to increase as raw material prices rise.

従来、造粒焼結原料である擬似粒子を製造する時、その擬似粒子化のための水分量としては、焼結原料を構成する単味原料(単一銘柄からなる原料)の開気孔率や保水率といった基礎物性値と、配合比率とに基づいて算出している。しかし、この場合において、山元でブレンディングした鉱石を使用しようとするとき、配合鉱石の種類、配合割合が不明なことが多く、そのため、従来の適正水分量予測方法が適用できないという問題があった。   Conventionally, when producing pseudo-particles that are granulated and sintered raw materials, the amount of water for making the pseudo-particles is the open porosity of simple raw materials (raw materials consisting of a single brand) constituting the sintered raw materials, Calculation is based on basic physical properties such as water retention rate and blending ratio. However, in this case, when trying to use the ore blended at the foot of the mountain, the type and blending ratio of the blended ore are often unknown, so that there has been a problem that the conventional method for predicting the appropriate water content cannot be applied.

そこで、本発明は、鉱石種や各鉱石種の配合割合が不明な、いわゆる山元で複数銘柄の鉱石が混合されてくるブレンディング鉱石等の焼結原料を用いる場合でさえ、造粒時の適正水分量を副原料の影響をも考慮した上で、精度よく予測できて、造粒時における水分添加量をより高精度に決定しうる造粒焼結原料製造時の適正水分調整のための方法を提案することを目的とする。   Therefore, the present invention is suitable for the proper moisture content at the time of granulation, even when using a sintering raw material such as blending ore in which the ore species and the blending ratio of each ore species are unknown, so-called Yamamoto, where multiple brands of ores are mixed. A method for adjusting the proper moisture content at the time of granulated sintered raw material production, which can accurately predict the amount, taking into account the effects of auxiliary materials, and can determine the amount of water added during granulation with higher accuracy. The purpose is to propose.

このような課題を解決するために本発明では、鉄鉱石、副原料、雑原料および固体燃料の核粒子および微粉を含む焼結原料に、水分を添加して混合造粒することにより、疑似粒子である造粒焼結原料を製造する際の適正水分量を調整する方法において、
焼結原料への水分添加の前に、該焼結原料の吸収水分指数、付着水分指数、補正指数を求め、これらの指数に基づき、疑似粒子にするために必要な適性造粒水分量を推定し、その推定適正造粒水分量となるように前記水分の添加量を決定することを特徴とする造粒焼結原料製造時の適正水分量調整方法を提案する。
In order to solve such problems, in the present invention, pseudo-particles are obtained by adding water to a sintered raw material containing iron ore, auxiliary raw materials, miscellaneous raw materials and solid fuel core particles and fine powder, and mixing and granulating the mixture. In the method of adjusting the appropriate moisture content when producing the granulated sintered raw material,
Before water addition to the sintering material, moisture absorbed index sintered material, adhering moisture index, obtains a correction index Hazuki group index of these, suitability granulation water necessary for the pseudo-particles An amount of water is estimated and the amount of water added is determined so that the estimated appropriate amount of granulated water is obtained.

本発明において、
(1)前記焼結原料のうちの鉄鉱石が、配合鉱石種や配合比率が不明なブレンディング鉱石を少なくとも一部に含有するものであること、
が好ましい。
In the present invention,
(1) that before the iron ore of the Kishoyui raw material, in which compounding ore types and mixing ratio is contained in at least a portion of the unknown blending ore,
Is preferred.

(1)本発明によれば、造粒時に焼結原料を容易にかつ的確に擬似粒子化(造粒)させることができると共に、高強度の造粒焼結原料(擬似粒子)を製造することができ、ひいては焼結機での焼成時における装入層の通気性を確保するのに役立つ造粒焼結原料を得ることができる。
(2)本発明は、配合された鉄鉱石の種類や配合比率の不明なブレンディング鉱石を焼結原料とするような場合においても、造粒の際しての適正な造粒水分量を、とくに副原料配合条件をも考慮して的確かつ容易に決定することができるので、より正確な水分量の予測が可能である。
(3)従って、本発明によれば、焼結鉱の品質や生産性、歩留をより一層向上させることができる。
(1) According to the present invention, the sintered raw material can be easily and accurately made into pseudo particles (granulated) at the time of granulation, and a high-strength granulated sintered material (pseudo particles) is produced. As a result, it is possible to obtain a granulated and sintered raw material useful for ensuring the air permeability of the charging layer at the time of firing in a sintering machine.
(2) In the present invention, even when blending ore with an unknown type or blending ratio of blended iron ore is used as a sintering raw material, an appropriate amount of granulated water in granulation, Since it can be determined accurately and easily in consideration of the auxiliary raw material blending conditions, it is possible to predict the moisture content more accurately.
(3) Therefore, according to the present invention, the quality, productivity, and yield of the sintered ore can be further improved.

本発明の作用を確認するために使用した試験用焼結鍋装置の概要図である。It is a schematic diagram of the sintering pot apparatus for a test used in order to confirm the effect | action of this invention. 焼結装入層の通気度ならびに擬似粒子径に及ぼす造粒(擬似粒子)水分の影響を示すグラフである。It is a graph which shows the influence of the granulation (pseudoparticle) water | moisture content which acts on the air permeability of a sintering charge layer, and a pseudoparticle diameter. 適正造粒(擬似粒子)水分のメカニズムを説明する図である。It is a figure explaining the mechanism of appropriate granulation (pseudo particle) moisture. 含水率に及ぼす粒子径(1/dp)の影響を示すグラフである。It is a graph which shows the influence of the particle diameter (1 / dp) which acts on a moisture content. 焼結鉱製造工程全体の概略を示すフロー図である。It is a flowchart which shows the outline of the whole sinter manufacturing process. 従来方法を適用して実施したケースでの適正造粒水分値の推定値と実測値との関係を示すグラフである。It is a graph which shows the relationship between the estimated value of the appropriate granulation moisture value in the case implemented by applying the conventional method, and an actual measurement value. 本発明方法を適用して実施したケースでの適正造粒水分値の推定値と実測値との関係を示すグラフである。It is a graph which shows the relationship between the estimated value of the appropriate granulation water value, and the actual measurement value in the case implemented by applying the method of the present invention. 操業中における通気変動の、従来方法と本発明方法の比較結果を示すグラフである。It is a graph which shows the comparison result of the conventional method and this invention method of the ventilation | gas_flowing fluctuation | variation during operation.

発明者らは、山元で配合されるために焼結原料(鉱石種)が不明ないわゆるブレンディング鉱石が含まれるような焼結原料を用いて造粒(擬似粒子)焼結原料を製造(造粒)する場合に、その造粒に先だって、該焼結原料中の鉄鉱石や副原料の「吸収水分指数」、「付着水分指数」、補正指数(「化学成分」、「濡れ性」)を求め、これらの指数と、それぞれの原料の配合率に基づいて算出された適正水分予測値を用いたところ、造粒(擬似粒子化)が安定的にかつ適正に行われることを見出し、本発明を完成させた。   The inventors produce a granulated (pseudo-particle) sintered raw material (granulated) using a sintered raw material containing so-called blending ore whose sintering raw material (ore type) is unknown because it is blended at the mountain base. ), Prior to the granulation, obtain the “absorption moisture index”, “adhesion moisture index”, and correction index (“chemical composition”, “wettability”) of the iron ore and auxiliary materials in the sintering raw material. , Using these indexes and the appropriate moisture predicted value calculated based on the blending ratio of each raw material, it was found that granulation (pseudo-particle formation) is performed stably and appropriately, the present invention Completed.

以下、焼結原料の造粒時に要求される適正造粒水分の量を決定する方法についての、本発明の考え方を説明する。
図1は、擬似粒子径と通気性に及ぼす造粒水分濃度の影響を調査するために使用した、実験鍋設備の模式図を示す。使用した粉状鉱石については、鉱石単味銘柄毎に、水分の添加量を順次に変更しながら水分濃度を種々変化させてドラムミキサーにて混合造粒し、得られた造粒物である擬似粒子を上記試験焼結鍋内に充填し、冷間で大気を下向き吸引して冷間通気性指数JPU(Japan Permeability Unit)を下記(1)式から算出した。なお、JPUは大きいほど通気性が良好であることを示す値である。
Hereinafter, the concept of the present invention will be described with respect to a method for determining the amount of proper granulation moisture required at the time of granulation of the sintered raw material.
FIG. 1 shows a schematic diagram of the experimental pan equipment used for investigating the influence of the granulated water concentration on the pseudo particle diameter and air permeability. For the powdered ore used, for each plain ore brand, the moisture content was changed in various ways while sequentially changing the amount of water added, and the mixture was granulated with a drum mixer. The particles were filled into the test sintering pan, and the air was sucked downward in the cold to calculate a cold air permeability index JPU (Japan Permeability Unit) from the following equation (1). In addition, JPU is a value which shows that air permeability is so favorable that it is large.

JPU=V/S(h/ΔP)0・6 …(1)
ここで、各係数は
V:風量[Nm/min]、
S:充填層断面積[m]、
h:充填層高さ[mm]、
△P:圧力損失[mmHO]
である。
JPU = V / S (h / ΔP) 0 ... (1)
Here, each coefficient is V: air volume [Nm 3 / min],
S: sectional area of packed bed [m 2 ],
h: packed bed height [mm],
ΔP: Pressure loss [mmH 2 O]
It is.

なお、図示の1はオリフイス、2は風箱、3は試験焼結鍋(φ150mm)、4はグレート、5はピトー管、6は差圧計、7は吸引ブロアである。また、図3において、8は微粉、9は核粒子、10は気孔、11は鉱石粒子、12は水分、13は擬似粒子、14は架橋水、15は付着水、16は添加水分、17は原料ホッパ、18はコンベア、19はドラムミキサー、20はコンベア、21は給鉱ホッパ、22は焼結パレット、27は焼結鉱を示す。   In the figure, 1 is an orifice, 2 is an air box, 3 is a test sintering pot (φ150 mm), 4 is a great, 5 is a Pitot tube, 6 is a differential pressure gauge, and 7 is a suction blower. In FIG. 3, 8 is fine powder, 9 is core particles, 10 is pores, 11 is ore particles, 12 is moisture, 13 is pseudo particles, 14 is cross-linked water, 15 is adhering water, 16 is added water, 17 is A raw material hopper, 18 is a conveyor, 19 is a drum mixer, 20 is a conveyor, 21 is a feeding hopper, 22 is a sintered pallet, and 27 is a sintered ore.

図2は、2種の鉱石(A鉱石、B鉱石)について、造粒物の水分濃度を変化させた時の擬似粒子径(調和平均径)、通気度(JPU)の測定結果を示す。この図から明らかなように、水分の添加に伴い、擬似粒子の粒径は増加するものの、通気度(JPU)が最大となる造粒水分(適正造粒水分)は原料によって異なることがわかる。   FIG. 2 shows the measurement results of pseudo particle diameter (harmonic mean diameter) and air permeability (JPU) when the moisture concentration of the granulated product is changed for two types of ores (A ore and B ore). As is clear from this figure, although the particle size of the pseudo particles increases with the addition of moisture, it is understood that the granulated moisture (appropriate granulated moisture) that maximizes the air permeability (JPU) varies depending on the raw material.

図3は、造粒水分の考え方を示す。即ち、焼結原料を造粒して擬似粒子を造るときの造粒水分というのは、図2に示した通気度(JPU)および擬似粒子径と擬似粒子水分(造粒水分)との関係から、造粒水分の鉱石粒子へのかかわり方には、吸収(A)、付着(B)、架橋(C)の3つの段階があると考えられる。以下、それぞれの段階の考え方と、造粒時の水分に影響する因子について説明する。   FIG. 3 shows the concept of granulated moisture. That is, the granulated moisture when the sintered raw material is granulated to produce pseudo particles is based on the relationship between the air permeability (JPU) and pseudo particle diameter and pseudo particle moisture (granulated moisture) shown in FIG. It is considered that there are three stages in how granulated water relates to ore particles: absorption (A), adhesion (B), and crosslinking (C). Hereinafter, the concept of each stage and the factors affecting the moisture during granulation will be described.

(1)吸収(A):鉄鉱石粒子への水分の吸収のされ方は、「吸収水分指数」として表される。この吸収水分指数に関しては、以下のように考えられる。
図3のグラフにおいて、鉱石が個々に分散した状態にある(A)の領域においては、水分添加の効果が、擬似粒子径や通気度にはともにあまり影響していないことがわかる。それは、図中の右側に、(A)領域として示すように、鉱石粒子11表面には、微細な開気孔10が存在し、添加された水分12は最初にこの空隙内に浸透するのに使われるからと予想される。このことから、造粒に必要な水分は、気孔量、空隙量が多いほど、内包水分に費やされるため多くなると考えられる。
(1) Absorption (A): How water is absorbed into iron ore particles is expressed as “absorbed water index”. The absorbed water index is considered as follows.
In the graph of FIG. 3, it can be seen that in the region (A) where the ores are dispersed individually, the effect of moisture addition does not significantly affect both the pseudo particle diameter and the air permeability. As shown on the right side of the figure, as (A) region, there are fine open pores 10 on the surface of the ore particles 11, and the added water 12 is used to first penetrate into the voids. It is expected to be. From this, it is considered that the water necessary for granulation increases as the amount of pores and the amount of voids increase, and is consumed in the moisture contained therein.

(2)付着(B):核粒子への微粉の付着作用(付着水分指数)に及ぼす水分のかかわり方は、「粒度分布」、即ち、微粉および核粒子の質量比率として説明することができる。
図3(A)の状態からさらに水分を添加すると、図中の(B)の領域となり、この領域では図中の右側に(B)領域として示すように、鉱石粒子11表面を濡らす付着水15となり、隣接する鉱石粒子11と接触すれば、架橋水14として働く。いわゆるペンジュラー(Pendular)域、ファニキュラー(Fanicular)域、キャピラリー(Capillary)域と呼ばれる充填様式となる。この場合、鉱石粒子11どうしは接触が進み、微粉8が核粒子9の表面に付着するに到り、擬似粒子13の径が増大して焼結原料中の粉率が低下することにより、通気度も上がる。
(2) Adhesion (B): How the moisture affects the adhesion action (adhesion moisture index) of the fine powder to the core particles can be described as “particle size distribution”, that is, the mass ratio of the fine powder and the core particles.
When water is further added from the state of FIG. 3A, an area of (B) in the figure is obtained, and in this area, as shown as (B) area on the right side of the figure, adhering water 15 that wets the surface of the ore particles 11 is obtained. When it comes into contact with the adjacent ore particles 11, it acts as the crosslinking water 14. The so-called pendular, fanicular, and capillary regions are used. In this case, the contact between the ore particles 11 proceeds, and the fine powder 8 adheres to the surface of the core particles 9. As a result, the diameter of the pseudo particles 13 is increased and the powder ratio in the sintered raw material is decreased. Also goes up.

図4は、2種の鉱石(A鉱石、B鉱石)について、浸漬試料の吸引濾過後の含水率に及ぼす粒子径の影響を示す図である。横軸は水没させた試料粒子径の比表面積1/dp[mm−1]を表す。図4から明らかなように、粒径が小さい程、比表面積が大きく、付着水分も増加することがわかる。すなわち、原料中の微粉の質量比率が大きい程、付着水量が多くなり、造粒に必要な水分が多くなることを示している。 FIG. 4 is a diagram showing the influence of the particle diameter on the moisture content after suction filtration of an immersion sample for two types of ores (A ore and B ore). The horizontal axis represents the specific surface area 1 / dp [mm −1 ] of the submerged sample particle diameter. As is apparent from FIG. 4, it can be seen that the smaller the particle size, the larger the specific surface area and the more the adhering moisture. That is, it shows that the larger the mass ratio of the fine powder in the raw material, the larger the amount of attached water and the more water necessary for granulation.

つまり、付着水分の量は、粒子径により異なるものであるから、結局「粒度分布」に影響されるものであるといえる。即ち、焼結原料中に粒径の大きい粒子が多数存在すると、細粒比率が小さくなるので、造粒に必要な水分は減少する。原料によっては、細粒側(一般に−1mm)と粗粒側(+2mm)の構成が大きく異なるため、粗粒比率も重要な指数となる。   In other words, the amount of adhering moisture varies depending on the particle diameter, so it can be said that it is influenced by the “particle size distribution”. That is, when a large number of particles having a large particle size are present in the sintered raw material, the fine particle ratio is reduced, so that the water necessary for granulation is reduced. Depending on the raw material, the composition of the fine grain side (generally -1 mm) and the coarse grain side (+2 mm) are greatly different, so the coarse grain ratio is also an important index.

(3)架橋(C):適正造粒水分量の決定に当たっては、前述の「吸収水分指数」ならびに「付着水分指数」だけではなく、これらの指数による精度をさらに上げるために、例えば補正指数(補正項)として、粉体どうしの架橋水、即ち、粉体の「水との濡れ性」や「化学成分」のいずれか少なくとも一方を考慮することが必要である。
a.以下、まず上記の水との「濡れ性」について説明する。
一般に、擬似粒子を湿潤凝集粉体とみなした時、擬似粒子強度σの推定式は、下記(2)式、(3)式のように表すことができる。
σ=ψ・S・Pc …(2)
Pc=6・(1−ε)/ε・γ/Ds・cosθ …(3)
ここで、各係数は、
σ:造粒物強度[N]、
ψ:液体の充満度[−]、
S:粉体の表面積[m]、
Pc:吸引圧力[Pa]、
ε:造粒物の空隙率[−]、
γ:水の表面張力[N/m]、
Ds:比表面積球相当径[m]、
β:粉体との接触角[°]
である。
(3) Crosslinking (C): In determining the appropriate amount of granulated moisture, not only the above-mentioned “absorbed moisture index” and “adhesion moisture index” but also a correction index ( As the correction term), it is necessary to take into account at least one of the cross-linking water between the powders, that is, the “water wettability” and the “chemical component” of the powder.
a. Hereinafter, the “wettability” with the water will be described first.
In general, when the pseudo particles are regarded as wet agglomerated powder, the estimation formula of the pseudo particle strength σ can be expressed as the following formulas (2) and (3).
σ = ψ · S · Pc (2)
Pc = 6 · (1−ε) / ε · γ / Ds · cos θ (3)
Where each coefficient is
σ: Granule strength [N],
ψ: liquid fullness [−],
S: powder surface area [m 2 ],
Pc: Suction pressure [Pa]
ε: porosity of the granule [−],
γ: surface tension of water [N / m],
Ds: specific surface area sphere equivalent diameter [m],
β: Contact angle with powder [°]
It is.

上記式から判ることは、濡れ易い(接触角が小さい)粉体で構成された擬似粒子の強度は大きく、濡れ難い(接触角が大きい)粉体で構成された擬似粒子の強度は小さくなる。そして、粉体と水との濡れ性が悪いと、凝集粉中に水(架橋水)が保持されずに、凝集粉の外側に水が染み出しやすく、そのための余剰水分によって擬似粒子間の空隙が埋められ、通気性を阻害する。すなわち、濡れ性の悪い原料ほど、適正水分は少なくなると予想される。なお、粉体の水との濡れやすさである水との濡れ性は、種々の物理手法により測定可能である。   It can be seen from the above formula that the strength of the pseudo particles composed of powder that is easy to wet (small contact angle) is large, and the strength of the pseudo particle composed of powder that is difficult to wet (large contact angle) is small. And if the wettability between the powder and water is poor, water (cross-linking water) is not retained in the aggregated powder, and water easily oozes out of the aggregated powder, and the excess moisture for that causes voids between the pseudo particles. Is buried and impairs breathability. That is, it is expected that a raw material with poor wettability will have less appropriate moisture. In addition, wettability with water, which is the wettability of powder with water, can be measured by various physical methods.

b.次に、上記補正指数としての「化学成分」について説明する。
ここでは、鉱石中の粘土組織が適正水分に及ぼす影響を説明する。一般に、鉄鉱石中には粘土鉱物であるカオリン鉱物が微量に含まれている。カオリン鉱物はアルミニウムの含水ケイ酸塩鉱物(粘土鉱物の一種)であり、Al質量比率が30〜40%程度である。カオリン鉱物の粒径は数μmと細かく、吸水性に富んでいる。すなわち、原料中のAl質量比率が増加すると、造粒に必要な水分が余分に多くなると考えられる。
b. Next, the “chemical component” as the correction index will be described.
Here, the influence which the clay structure | tissue in an ore has on appropriate water | moisture content is demonstrated. Generally, iron ore contains a small amount of kaolin mineral, which is a clay mineral. The kaolin mineral is an aluminum hydrated silicate mineral (a kind of clay mineral), and the Al 2 O 3 mass ratio is about 30 to 40%. The particle size of kaolin mineral is as fine as several μm and is highly water-absorbing. That is, it is considered that when the Al 2 O 3 mass ratio in the raw material increases, the moisture necessary for granulation increases excessively.

また、鉱石中のSiOも前記適正水分量に影響を及ぼすと考えられる。焼結鉱は、高炉において安定した原料して使用されなければならず、SiO、Al、MgO、CaO/SiOといったスラグ成分値は厳しく管理される。とくに、SiOは鉱石によって3〜8mass%と異なるため、珪石等の副原料で配合調整する必要がある。即ち、SiO含有量が少ない鉱石では、珪石を増配し、逆の場合には、珪石を減配する。珪石は吸収水に乏しい原料のため、珪石の増配により装入原料の必要水分量が少なくなると考えられる。 Further, SiO 2 in the ore are also believed to affect the proper amount of water. Sinter must be used as a stable raw material in a blast furnace, and slag component values such as SiO 2 , Al 2 O 3 , MgO, and CaO / SiO 2 are strictly controlled. In particular, since SiO 2 differs from 3 to 8 mass% depending on the ore, it is necessary to adjust the blending with auxiliary materials such as silica. That is, in ores with low SiO 2 content, silica is increased, and in the opposite case, silica is reduced. Since silica is a raw material with poor absorption water, it is considered that the required water content of the charging raw material is reduced by increasing the distribution of silica.

なお、図3(B)の状態からさらに水を添加すると、図3(C)の状態となり、図中の右側に(C)領域として示すように、水分が過剰になるために、添加水分16が連続して存在する、いわゆるスラリー(Slurry)域となる。この場合、粒径は増大するものの、過剰水のために装入層の空隙率が低下し、通気度の低下を招く。   When water is further added from the state shown in FIG. 3B, the state shown in FIG. 3C is obtained. As shown in the region (C) on the right side of the drawing, the water becomes excessive, so the added water 16 This is a so-called slurry region in which is continuously present. In this case, although the particle size increases, the porosity of the charging layer decreases due to excess water, leading to a decrease in air permeability.

以上のことから、少なくとも鉄鉱石のみに着目した場合の適正造粒水分量(Wopt)とは、焼結原料粒子の「吸収水分指数」、「付着水分指数」、その他これらの指数の精度を上げるための補正項である水との「濡れ性」や「化学成分」から求められる補正指数を考慮して修正して場合に、より高い精度での造粒時適正水分量を決定することができるようになると考えられる。即ち、焼結原料を混合造粒するときの適正造粒水分量(Wopt)は、下記式のような考え方の下で決定することができる。
(Wopt)=(吸収水分)+(付着水分)+(補正指数)…(4)
From the above, the appropriate amount of granulated water (Wopt) when focusing only on iron ore is the “absorbed moisture index”, “adhesion moisture index” of the sintered raw material particles, and other such indexes are raised. The correct moisture content at the time of granulation can be determined with higher accuracy when correction is made in consideration of the correction index obtained from “wetability with water” and “chemical composition” which are correction terms for It is thought that it will become. That is, the proper granulation moisture amount (Wopt) when mixing and granulating the sintering raw material can be determined under the concept of the following formula.
(Wopt) = (Absorbed moisture) + (Adhered moisture) + (Correction index) (4)

本発明はとくに、配合鉱石種や配合比率が未知の焼結原料、即ちブレンディング鉱石を配合する場合においても、水分の添加前に、予めその焼結原料(ブレンディング鉱石含有原料)および副原料の「吸収水分指数」ならびに「付着水分指数」、ならびに前記「補正指数」(化学成分、水との濡れ性)が与えられれば、上記(4)式に基づいて、焼結原料の適正造粒水分量を求めることができるようになるので、造粒時における水分添加量をより高精度に決定することができるようになる。   In the present invention, in particular, even when a blended ore type or blending ratio is unknown, that is, blending ore, before the addition of moisture, the sintered raw material (blending ore-containing material) and sub-material “ If the “absorption moisture index” and “adhesion moisture index” and the “correction index” (chemical component, wettability with water) are given, the appropriate granulated moisture content of the sintering raw material based on the above equation (4) Therefore, the amount of water added during granulation can be determined with higher accuracy.

その結果、例えば、鉱石の種類や配合比率の不明なブレンディング鉱石の使用にあたっても、適正な造粒(擬似粒子化)が図られるから、常に高強度の擬似粒子(造粒焼結原料)が得られる。ひいては、焼結機による焼成時での装入層の通気性が良好になるので、焼結鉱の品質の向上や生産性、歩留の向上に資するようになる。   As a result, for example, proper blending (pseudo-particle formation) can be achieved even when blending ore with unknown ore type and blending ratio is used. Therefore, high-strength pseudo-particles (granulated sintered raw materials) are always obtained. It is done. As a result, the air permeability of the charging layer at the time of firing by the sintering machine becomes good, which contributes to improvement in quality of the ore, productivity, and yield.

以下、本発明方法において行う適正造粒水分量の推定方法について説明する。まず、使用予定の原料をサンプリングし、物性値測定及び化学分析を実施する。
(a)「吸収水分指数」について、
この吸収水分指数としては、鉄鉱石、副原料とも、LOI(イグニッションロス)やCW(結合水)のような化学分析値を使用することができるが、気孔量を吸収指数として用いてもよい。その気孔量は、乾燥した焼結原料を4〜6.7mm径に整粒した粉状物質について、水銀圧入法により0.003μmから200μmまでの径を有する開気孔の合計体積を求め、これを単位質量あたりに換算した値を用いる。
また、この吸収水分指数としては、各粒度毎に整粒した焼結原料を水中に長時間浸漬させ、脱水後の含水率(浸漬水分)を用いてもよい。例えば、鉱石A、Bについて検証した図4に明らかなように、グラフの切片は、粒子径に無関係の定数項であり、鉱石自体の吸収性を表わしていると見ることができる。
上記の化学分析値、気孔量、吸収水分(浸漬水分)は相互に強い相関があり、使用に際してはいずれかの指標で統一して使用し、上記(4)式の係数を重回帰により再試算すればよい。
Hereinafter, the method for estimating the appropriate granulated moisture content performed in the method of the present invention will be described. First, raw materials to be used are sampled, and physical property measurement and chemical analysis are performed.
(A) About “Absorbed Moisture Index”
As the absorbed moisture index, chemical analysis values such as LOI (ignition loss) and CW (bound water) can be used for both iron ore and auxiliary materials, but the amount of pores may be used as the absorption index. The amount of pores was determined by calculating the total volume of open pores having a diameter of 0.003 μm to 200 μm by a mercury intrusion method for a powdery substance obtained by regulating the dried sintered raw material to a diameter of 4 to 6.7 mm. Use the value converted per unit mass.
In addition, as the absorbed moisture index, a sintered raw material sized for each particle size may be immersed in water for a long time, and a moisture content (immersion moisture) after dehydration may be used. For example, as apparent from FIG. 4 in which the ores A and B are verified, the intercept of the graph is a constant term independent of the particle diameter, and can be regarded as representing the absorbability of the ore itself.
The above chemical analysis values, pore volume, and absorbed moisture (immersion moisture) have a strong correlation with each other. When used, they are unified with any index, and the coefficient of the above equation (4) is recalculated by multiple regression. do it.

(b)「付着水分指数」について
本発明では、この付着水分指数として、図4に基づく前述の理由により粒度分布の値を用いる。その粒度分布としては、微粉の質量比率として、−1mm、−0.5mm、−0.125mm、−0.063mmいずれかの質量比率、各粒子の質量比率として、原料中の+1mm、+2mm、+2.8mm、+4.0mmいずれかの質量比率を付着水分指数として用いる。場合によっては、他の篩目または、ある粒度区間の質量比率(例えば1〜2.8mm比率など)を、該付着水分指数として使用してもよい。
(B) “Adhesion moisture index” In the present invention, the value of the particle size distribution is used as the adhesion moisture index for the above-described reason based on FIG. As the particle size distribution, the mass ratio of fine powder is -1 mm, -0.5 mm, -0.125 mm, -0.063 mm, the mass ratio of each particle is +1 mm, +2 mm, +2 in the raw material. A mass ratio of 0.8 mm or +4.0 mm is used as the adhesion moisture index. In some cases, other sieve meshes or a mass ratio of a certain particle size section (for example, a ratio of 1 to 2.8 mm) may be used as the adhesion moisture index.

(c)次に、補正指数である「化学成分」とくにAl比率、SiO比率について、
Al比率は、吸収性の著しいカオリン系鉱物の指標であるので、原料中1mm以下の粒径試料における分析値を使用する。ただし、鉱石中のAl比率は、−1mm試料と+1mm試料で強い相関があるため、鉄鉱石自体の分析値をそのまま用いても構わない。
SiO比率は、装入原料全体のスラグ成分調整に影響する指標であるので、粉鉱石原料の粒径試料における分析値をそのまま使用すればよい。
(C) Next, regarding the “chemical component” that is the correction index, particularly the Al 2 O 3 ratio and the SiO 2 ratio,
Since the Al 2 O 3 ratio is an index of a kaolin-based mineral with remarkable absorbability, the analytical value in a particle size sample of 1 mm or less in the raw material is used. However, since the Al 2 O 3 ratio in the ore has a strong correlation between the −1 mm sample and the +1 mm sample, the analysis value of the iron ore itself may be used as it is.
Since the SiO 2 ratio is an index that affects the adjustment of the slag component of the entire charged raw material, the analysis value of the particle size sample of the fine ore raw material may be used as it is.

(d)次に、他の補正指数である「水との濡れ性」(水との接触指数)について、
水との濡れやすさの指標として、水の接触角Hを使用する。粉体と水との接触角Hの測定は、鉱石の切り出し研磨面に微小水滴を滴下した時の接触角度を実測する方法、下記のHagen−Poiseuilleの式を活用した浸透法がある。浸透法による測定では、試料として粒径−1mmに整粒した鉱石を供し、鉱石充填層を上昇する水面の上昇速度から接触角θを算出する。
(D) Next, another correction index, “wetability with water” (contact index with water),
The contact angle H of water is used as an index of wettability with water. The measurement of the contact angle H between the powder and water includes a method of actually measuring the contact angle when a fine water droplet is dropped on the cut surface of the ore, and a penetration method using the Hagen-Poiseuille equation below. In the measurement by the infiltration method, ore adjusted to a particle size of −1 mm is used as a sample, and the contact angle θ is calculated from the rising speed of the water surface rising the ore packed bed.

H=(φRγcosθ/2η)0.5・t0.5 …(6)
ここで、各係数は、
H:水の上昇高さ[m]、
R:粒径[m]、
t:時間[sec]、
γ:水の表面張力[N/m]、
η:水の粘度[N/s・m]、
θ:水と粉体の接触角[°]である。
φ:ラビリンスファクター
H = (φRγcos θ / 2η) 0.5 · t 0.5 (6)
Where each coefficient is
H: Height of water rise [m]
R: particle size [m],
t: time [sec],
γ: surface tension of water [N / m],
η: water viscosity [N / s · m 2 ],
θ: Contact angle [°] between water and powder.
φ: Labyrinth factor

なお、水の濡れ性は、原料のFeO濃度と接触角には強い相関があり、FeO濃度が増加すると接触角が増加することから、このFeO濃度を測定して、指数として用いてもよい。   The wettability of water has a strong correlation between the FeO concentration of the raw material and the contact angle. Since the contact angle increases as the FeO concentration increases, this FeO concentration may be measured and used as an index.

本発明方法では、これらの指数を用い、上述した適正造粒水分量[Wopt]を、上掲の(4)式に示す推定式に基づいて決定することで、造粒時の適正水分濃度を正確に推定することができる。   In the method of the present invention, by using these indexes, the above-mentioned appropriate granulated water content [Wopt] is determined based on the estimation formula shown in the above formula (4), thereby determining the proper moisture concentration at the time of granulation. It can be estimated accurately.

なお、上記の説明において推定した水分についての添加は、造粒機、造粒機より上流側、例えばヤード、ヤードから原料層へ搬送するコンベア上、原料層内、および原料層から造粒機へ搬送するコンベア上のいずれか1箇所または複数箇所で、予め水分を添加しておいてもよく、あるいは、この事前の添加と造粒機での添加との併用でもよい。
このようにして、(4)式に基づいて適正造粒水分量[Wopt]に調整された焼結原料を、造粒機に入れて造粒することにより、高強度の擬似粒子(造粒焼結原料)を製造することができる。
In addition, the addition of moisture estimated in the above description is performed on the granulator, on the upstream side of the granulator, for example, on the conveyor that conveys from the yard, the yard to the raw material layer, in the raw material layer, and from the raw material layer to the granulator. Water may be added in advance at any one or a plurality of locations on the conveyor to be conveyed, or a combination of this advance addition and addition in a granulator may be used.
In this way, the sintered raw material adjusted to an appropriate granulation water content [Wopt] based on the formula (4) is put into a granulator and granulated, thereby producing high-strength pseudo particles (granulation and sintering). Can be produced.

次に、本発明における適正造粒水分量の推定式と、従来方法の推定式を用いた場合の造粒焼結鉱原料の製造例を比較して説明する。
図5は、焼結鉱製造工程のフローを示すものである。図7において、17は原料を備蓄・切り出しする原料配合槽、18は原料を運搬するベルトコンベア、19は焼結原料を造粒するドラムミキサーである。焼結原料は、所定の配合割合で配合槽17からベルトコンベア18上に切り出され、ドラムミキサー19へ運搬される。ドラムミキサー19に装入された原料は、ドラム上流側にて水分が添加され、転動造粒されて擬似粒子となり、給鉱ホッパ21を経て焼結機の焼結パレット22上に装入されて焼結され、破砕機で破砕されて焼結鉱となる。
Next, the production formula of the granulated sintered ore raw material in the case of using the estimation formula of the proper granulation moisture amount in the present invention and the estimation formula of the conventional method will be described in comparison.
FIG. 5 shows the flow of the sinter production process. In FIG. 7, 17 is a raw material mixing tank for stocking and cutting out raw materials, 18 is a belt conveyor for transporting the raw materials, and 19 is a drum mixer for granulating the sintered raw materials. The sintered raw material is cut out from the blending tank 17 onto the belt conveyor 18 at a predetermined blending ratio and conveyed to the drum mixer 19. The raw material charged into the drum mixer 19 is added with moisture at the upstream side of the drum, is tumbled and granulated to become pseudo particles, and is charged into a sintering pallet 22 of a sintering machine via a feed hopper 21. Sintered and then crushed by a crusher to become sintered ore.

造粒作業に先んじ、適正造粒水分を実験において与えられた単味鉱石における化学組成、吸収水分指数、付着水分指数(粒度分布)、濡れ性指数から、上記(4)式の係数を重回帰分析により見積もった。操業に使用した各鉱石銘柄の化学成分、粒度分布、浸漬水分、濡れ性(接触角)、気孔量、適正造粒水分(Wopt)の測定結果を表1、表2に示す。   Prior to granulation work, the coefficient of equation (4) above is regressed from the chemical composition, absorbed moisture index, adhesion moisture index (particle size distribution), and wettability index of simple ore given appropriate granulation moisture in the experiment. Estimated by analysis. Tables 1 and 2 show the measurement results of chemical composition, particle size distribution, immersion moisture, wettability (contact angle), pore volume, and appropriate granulation moisture (Wopt) of each ore brand used in the operation.

Figure 0005532986
Figure 0005532986

Figure 0005532986
Figure 0005532986

図6に従来方法、図7に本発明方法を用いて推定した場合における適正造粒水分量の推定値と、適正造粒水分実測値との相関を示す。なお、適正造粒水分の実測値とは、水分量を変えて造粒した際に、通気度が最高となった場合の水分量である   FIG. 6 shows the correlation between the estimated value of the proper granulated water content and the actual measured value of appropriate granulated water when estimated using the conventional method and FIG. 7 using the method of the present invention. In addition, the measured value of appropriate granulation moisture is the moisture content when the air permeability becomes the highest when granulation is performed while changing the moisture content.

また、図6、7において、単味とは原料が単一銘柄からなる場合、ブレンドとは、原料がブレンディング鉱石の場合である。図6と図7とを比較すると、従来方法で推定した適正造粒水分量は、実測値との相関が94%程度であるのに対し、本発明方法で推定した場合は相関が98%と高かった。
また、銘柄が不明なブレンディング鉱石の使用時は、従来方法においては推定値と実測値の乖離が大きく、相関係数88%であるのに対し、本発明方法においては評価指標を選択する事により、相関係数96%となった。
In FIGS. 6 and 7, simple means that the raw material is a single brand, and blending means that the raw material is blending ore. When FIG. 6 and FIG. 7 are compared, the proper granulated water amount estimated by the conventional method has a correlation of about 94% with the actual measurement value, whereas the correlation is 98% when estimated by the method of the present invention. it was high.
In addition, when using blending ores with unknown brands, the difference between the estimated value and the measured value is large in the conventional method, and the correlation coefficient is 88%, whereas in the method of the present invention, the evaluation index is selected. The correlation coefficient was 96%.

図8に、操業期間の原料通気性推移を示す。従来方法を用いて適正造粒水分量を推定し、原料の配合を途中で変更して(配合1→配合2)操業を継続した。その後、同じ原料配合のまま(配合2)、本発明方法で適正造粒水分量を推定して操業を継続し、さらに原料配合を変更して(配合2→配合3)本発明方法で適正造粒水分量を推定する操業を行った。   FIG. 8 shows changes in raw material air permeability during the operation period. Proper granulation water content was estimated using a conventional method, and the operation was continued by changing the blending of raw materials in the middle (mixing 1 → mixing 2). After that, with the same raw material blending (blending 2), the amount of granulated water was estimated by the method of the present invention and the operation was continued, and the raw material blending was changed (blending 2 → blending 3). An operation was performed to estimate the grain moisture content.

その結果、従来方法では、同一原料における通気性の変動幅は15%程度あったのに対し、本発明方法における変動幅は9%程度に抑えられた。
また、配合変更(銘柄変更)時における通気性変動の安定期間に関して、従来方法では銘柄変更後、安定に要する期間を2日程度要したのに対し、本発明方法では1日程度に短縮された。
As a result, in the conventional method, the fluctuation range of the air permeability in the same raw material was about 15%, whereas the fluctuation range in the method of the present invention was suppressed to about 9%.
In addition, regarding the stable period of air permeability change at the time of blending change (brand change), the conventional method required about 2 days after the brand change, but the method of the present invention shortened it to about 1 day. .

本発明に係る造粒焼結原料製造時の適正水分量の調整技術は、焼結原料以外の他の造粒物の適正造粒水分量を推定するような場合においても、有効に用いられる。   The technique for adjusting the appropriate water content during the production of the granulated and sintered raw material according to the present invention is effectively used even in the case where the proper granulated water content of other granulated materials other than the sintered raw material is estimated.

1 オリフイス
2 風箱
3 試験焼結鍋(φ150mm)
4 グレート
5 ピトー管
6 差圧計
7 吸引ブロア
8 微粉
9 核粒子
10 気孔
11 鉱石粒子
12 水分
13 擬似粒子
14 架橋水
15 付着水
16 添加水分
17 原料ホッパ
18 コンベア
19 ドラムミキサー
20 コンベア
21 給鉱ホッパ
22 焼結パレット
27 焼結鉱
1 Orifice 2 Wind box 3 Test sintering pot (φ150mm)
4 Great 5 Pitot tube 6 Differential pressure gauge 7 Suction blower 8 Fine powder 9 Core particle 10 Pore 11 Ore particle 12 Water 13 Pseudo particle 14 Cross-linking water 15 Adhering water 16 Added water 17 Raw material hopper 18 Conveyor 19 Drum mixer 20 Conveyor 21 Feeding hopper 22 Sintered pallet 27 Sintered ore

Claims (2)

鉄鉱石、副原料、雑原料および固体燃料の核粒子および微粉を含む焼結原料に、水分を添加して混合造粒することにより、疑似粒子である造粒焼結原料を製造する際の適正水分量を調整する方法において、
焼結原料への水分添加の前に、該焼結原料の吸収水分指数、付着水分指数、補正指数を求め、これらの指数に基づき、疑似粒子にするために必要な適性造粒水分量を推定し、その推定適正造粒水分量となるように前記水分の添加量を決定することを特徴とする造粒焼結原料製造時の適正水分量調整方法。
Appropriate for producing granulated sintered raw materials that are pseudo particles by adding moisture to the sintered raw materials containing iron ore, auxiliary raw materials, miscellaneous raw materials and solid fuel core particles and fine powders In the method of adjusting the amount of moisture,
Before water addition to the sintering material, moisture absorbed index sintered material, adhering moisture index, obtains a correction index Hazuki group index of these, suitability granulation water necessary for the pseudo-particles A method for adjusting an appropriate amount of water during the production of a granulated and sintered raw material, wherein the amount of water is determined so that the amount is estimated and the estimated appropriate amount of granulated water is obtained.
前記焼結原料のうちの鉄鉱石が、配合鉱石種や配合比率が不明なブレンディング鉱石を少なくとも一部に含有するものであることを特徴とする請求項1に記載の造粒焼結原料製造時の適正水分量調整方法。 2. The granulated sintered raw material according to claim 1, wherein the iron ore in the sintered raw material contains at least part of a blending ore whose mixed ore type and mixing ratio are unknown. The proper moisture content adjustment method.
JP2010024384A 2010-02-05 2010-02-05 Method for adjusting the appropriate amount of moisture during the production of granulated and sintered raw materials Active JP5532986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010024384A JP5532986B2 (en) 2010-02-05 2010-02-05 Method for adjusting the appropriate amount of moisture during the production of granulated and sintered raw materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010024384A JP5532986B2 (en) 2010-02-05 2010-02-05 Method for adjusting the appropriate amount of moisture during the production of granulated and sintered raw materials

Publications (2)

Publication Number Publication Date
JP2011162814A JP2011162814A (en) 2011-08-25
JP5532986B2 true JP5532986B2 (en) 2014-06-25

Family

ID=44593857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010024384A Active JP5532986B2 (en) 2010-02-05 2010-02-05 Method for adjusting the appropriate amount of moisture during the production of granulated and sintered raw materials

Country Status (1)

Country Link
JP (1) JP5532986B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101356058B1 (en) 2011-12-26 2014-01-28 주식회사 포스코 Method and device for treating fine ore for sintering
JP5935979B2 (en) * 2012-03-27 2016-06-15 Jfeスチール株式会社 Method for producing pseudo-particles for producing sinter and method for producing sinter
JP6562226B2 (en) * 2016-12-27 2019-08-21 Jfeスチール株式会社 Method for estimating proper granulated water content during production of sintered raw material and method for producing sintered raw material
EP3550037A4 (en) * 2017-02-16 2020-01-08 JFE Steel Corporation Method for manufacturing sintered ore
CN111426595A (en) * 2020-03-24 2020-07-17 中冶长天国际工程有限责任公司 Moisture granularity detection robot system and sintering mixing granulation control method and system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6220832A (en) * 1985-07-17 1987-01-29 Kobe Steel Ltd Production of iron ore pellet
JPS62116727A (en) * 1985-11-14 1987-05-28 Kobe Steel Ltd Method for controlling pelletization of sintering raw material
JPH03166321A (en) * 1988-10-27 1991-07-18 Kawasaki Steel Corp Method and device for pelletizing sintering raw material

Also Published As

Publication number Publication date
JP2011162814A (en) 2011-08-25

Similar Documents

Publication Publication Date Title
JP5532986B2 (en) Method for adjusting the appropriate amount of moisture during the production of granulated and sintered raw materials
JP5401919B2 (en) Method for producing sintered ore
JP5504644B2 (en) Method for producing granulated and sintered raw materials
JP2009185356A (en) Method for producing sintered ore
JP2008069258A (en) Manufacturing method of high-strength coke
JP6421666B2 (en) Method for producing sintered ore
JP4887611B2 (en) Method for producing sintered ore and granulated particles
JP4852871B2 (en) Method for producing sintered ore and granulation equipment for producing sintered ore
JP5682286B2 (en) Method for producing granulated and sintered raw materials
KR102290001B1 (en) Manufacturing method of sintered ore
JP2008001960A (en) Method for manufacturing sintered ore
JP4996100B2 (en) Method for producing sintered ore
KR100792133B1 (en) Method for producing sintered ore
JP6489092B2 (en) Sinter ore manufacturing method and sintered ore manufacturing equipment line
JPWO2010032466A1 (en) Method for producing sintered ore
KR20220149784A (en) Manufacturing method of sintered ore
JP2000256756A (en) Method for granulating sintering raw material
JP4725230B2 (en) Method for producing sintered ore
WO2018180233A1 (en) Method for manufacturing granular sintered raw material and method for manufacturing sintered ore
Dai et al. Optimized prediction model for the granulation effectiveness of sintering mixtures
JP6978734B2 (en) Manufacturing method of granulated sinter raw material and manufacturing method of sinter
CN111826518B (en) Sintering raw material ratio adjusting method
CN102392127A (en) Pre-humidification method of iron ore powder
JP3952988B2 (en) Method for producing low SiO2 sintered ore
JP7148030B2 (en) Method for producing sintered ore and sintered ore

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

R150 Certificate of patent or registration of utility model

Ref document number: 5532986

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140414

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250