JPS62116727A - Method for controlling pelletization of sintering raw material - Google Patents

Method for controlling pelletization of sintering raw material

Info

Publication number
JPS62116727A
JPS62116727A JP25568485A JP25568485A JPS62116727A JP S62116727 A JPS62116727 A JP S62116727A JP 25568485 A JP25568485 A JP 25568485A JP 25568485 A JP25568485 A JP 25568485A JP S62116727 A JPS62116727 A JP S62116727A
Authority
JP
Japan
Prior art keywords
granulation
conditions
size distribution
pelletization
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25568485A
Other languages
Japanese (ja)
Inventor
Hiroyuki Murata
博之 村田
Shunichi Mizukami
水上 俊一
Kunihiko Tokukasa
徳嵩 国彦
Ryoji Ito
伊藤 良二
Katsuhiko Shibuta
渋田 勝彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP25568485A priority Critical patent/JPS62116727A/en
Publication of JPS62116727A publication Critical patent/JPS62116727A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To quickly find out exact pelletization conditions by solving the material balance equation into which a pelletization speed function is incorporated for each of grain sizes, estimating the change of the grain size distribution of pelletized particles with time and adjusting the conditions for pelletizing raw materials and the conditions for operating pelletization. CONSTITUTION:The pelletization speed function to express the propability at which the particles meeting each other in a pelletizing machine combine each other is incorporated into the material balance equation to express the grain size distribution according to the progression of the pelletization. The equation is solved for each of the grain sizes to estimate the change of the grain size distribution with time according to the growth of the pelletized particles. The grain size distribution after the execution of the prescribed pelletization stage is determined from the estimated value. The conditions for the pelletizing raw materials and the conditions for operating the pelletization are adequate if the grain size distribution obtd. in such a manner coincides with the standard value. The conditions forthe pelletizing raw materials and the conditions for operating the pelletization are returned to a setting stage and the new conditions are set when the grain size distribution does not coincide with the standard value. The similar operations are thereafter carried out and the operations are repeated until the calculated value coinciding with the target grain size distribution is obtd.

Description

【発明の詳細な説明】[Detailed description of the invention]

[a業上の利用分野] 本発明は、製鉄用焼結を製造用原料である粉粒鉱石f?
:造粒するときの造粒制御方法に関し、詳細には、焼結
原料の銘柄や配合組成等の原料的条件成は造粒操業上の
条件によって左右される造粒進行状況を、計″fi釘よ
って推定し・、目標とする粒度構成の造粒物を得ること
のできる様Pi造粒原料条件又は造粒操業条件を的確に
定めることのできる焼結原料の造粒slJ御方法に関す
るものである。 [従来の技術] 高炉製鉄用の鉄源として使用される鉄鉱石は。 高炉操業効率を高め且つ安定化させる上でm1qIな通
風性を改善する為塊状化する必要があり、塊状化の為の
代表的な方法が焼結法である。 即ち焼結法とは@粉粒状態(一般的には全体が8am以
下で125μm以下のものは10%以下であることが望
ましいとされている)の鉄鉱石を焼き・固めて塊状化す
る方法であり、この焼結ムニ先立って行なわれる造粒工
程は、焼結鉱の品質を決定づける重要な工程とされてい
る。この造粒工程では微粉粒状の鉄鉱石にバインダーや
その他の添加材(石灰石、生石灰、コークス粉、返鉱等
)を加え、ドラムミキサーやパンペレタイザー等による
調湿・造粒を行ない、所定の粒径に調整した後焼結工程
に8されるのであるが、このときの造粒効率及び造粒物
々性(殊に焼結時におt3る粉化の程度;造粒物々性は
焼結物々性とも密接な関連を有している)は、原料鉱石
の銘柄やバインダー量等の造粒原料条件或は造粒操作条
件等によって著しく変わ7てくる。その為希望の物性を
備えた造粒物を効率良く得る為には、原料鉱石の造粒性
(造粒され易さ)を正確に把握すると共に、該造粒性に
応じて調節されているバインダー等の添加材:配合!!
2更には造粒機の運転に係る造粒操作条件を適正にコン
トロールする必要がある。 上記した造粒性評価法の一つとして、「第3版鉄鋼便覧
」第1I@、精鉄・製鋼、3484〜86頁(丸善株式
会社発行)に開示されている様な
[Field of Application in Industry A] The present invention is directed to powdered ore f?, which is a raw material for producing sintered steel.
: Regarding the granulation control method during granulation, in detail, the raw material conditions such as the brand and composition of the sintering raw materials are influenced by the granulation operation conditions. This article relates to a sintering raw material granulation SLJ control method that can accurately determine Pi granulation raw material conditions or granulation operation conditions so as to obtain granules with the target particle size composition. [Prior art] Iron ore used as an iron source for blast furnace steelmaking needs to be agglomerated to improve ventilation per m1qI in order to increase and stabilize blast furnace operating efficiency. A typical method for this purpose is the sintering method.In other words, the sintering method is used to reduce the particle size (generally speaking, it is desirable that the total particle size is 8 am or less and 125 μm or less is less than 10%). ) is a method of burning and solidifying iron ore into a lump, and the granulation process that takes place prior to sintering is considered to be an important process that determines the quality of the sintered ore.In this granulation process, fine powder is Binder and other additives (limestone, quicklime, coke powder, return ore, etc.) are added to granular iron ore, and the humidity is controlled and granulated using a drum mixer, pan pelletizer, etc., and the particle size is adjusted to the specified size. During the sintering process, the granulation efficiency and properties of the granules (particularly the degree of pulverization during sintering; the properties of the granules are also closely related to the properties of the sintered substances). ) will vary significantly depending on the brand of raw material ore, the granulation conditions such as the amount of binder, or the granulation operation conditions.Therefore, it is possible to efficiently produce granules with desired physical properties. In order to obtain this, it is necessary to accurately understand the granulation property (easiness of granulation) of the raw material ore, and to mix additives such as binders that are adjusted according to the granulation property.
2. Furthermore, it is necessary to appropriately control the granulation operation conditions related to the operation of the granulator. As one of the above-mentioned granulation property evaluation methods, the method disclosed in "3rd Edition Iron and Steel Handbook", Volume 1 @, Refined Iron and Steel Manufacturing, pp. 3484-86 (published by Maruzen Co., Ltd.) is used.

【疑似粒化指数ノによ
って評価する方法が知られており、この疑似粒化指数は
焼結物の通気性とも高い相関性を有していることが確認
されている。 [発明が解決しようとする問題点] ところがこれらの造粒性評価法は、実際に造粒試験を行
なうことによって得られるデータを基にして造粒性を評
価するものであり、[粕粉粒体そのものの基礎的物性を
割り出しそれに基づいて造粒性な評価するという方法で
はff7いから、鉄鉱石原料の銘柄が変わったり或は原
料配合比を変えた場合等においてはその都度造粒試験を
行12い、試行錯誤を繰り返すことにより造粒i料粉末
の造粒性に応じた最適の造粒条件(水分量等の造粒原料
条件や造粒操作条件を含む)を設定しなければならず、
該造粒条件設定の為に多大な時間と労力を費やしていた
。 本発明はこうした状況を憂慮してなされたものであり、
その目的は、造粒原料粉粒体の基礎的物性を基にしてそ
の造粒性を正確に推定することができ、推定された造粒
性に基づいて造粒条件を通正に設定することのできる技
術を確立しようとするものであり、予備的な造粒実験を
行なわずに的確な造粒条件を迅速に見出すことのできる
造粒制御法が攪供される。 E問題点を解決する為の手段】 本発明に係る造粒制御方法は、造粒の進行に応じて変化
する粒度分布を表現する物質収支式中に、造粒機内で遭
遇した粒子が合体する確率を表わす造粒速度間数を含め
ておき、前記物質収支式を粒径毎に解くことにより、予
め与えられた造粒原料条件や造粒操作条件の下での造粒
々子の粒度分布の時間的変化を推定し、目標とする粒度
分布が得られる様に造粒原料条件又は造粒操作条件を調
整するところに要旨を有するものである。 1作用〕 本発明は、原料粉粒体の造粒の進行(擬似粒子の成長)
に伴なう粒度変化を表わす物質収支式中に造粒機内で遭
遇した粒子が合体する確率を表わす造粒速度間数を含ま
せているが、上記造粒速度関数は原料粉粒体の結合力と
引き履し力の差によって定められるものであるから、上
記物質収支式を粒径毎に解くことにより5造粒条件と造
粒成長の関係、即ち造粒原料側の条件(例えば原料鉱石
の銘柄や配合比、更には水分量やバインダー量等)、並
びに造粒操作側の条件(例えば造粒機の構成や諸元、並
びにfit勤・条件)を特定した場合における造粒物粒
度分布の時間的変化を求めることは、特定造粒時間経過
後における粒度分布を求めることができるが、後記実施
例からも明らかな様に計算によって求められる粒度分布
は造粒実験を行なうことによって得られた実測粒度分布
と良好な対応を示すことを確認している。 従って造粒原料条件や造粒操作条件を種々変更して粒度
分布の再計算を行なうことにより、目標粒度分布に合致
する造粒物を得ることのできる諸条件をほぼ正確に知る
ことができる。 ちなみに造粒時の時間dtにおける大きさXから(x 
+ c! x >に成長する粒子の物質収支は下記[1
1式で表わすことができる。 ・・・[11 ここでx、yは粒子径、s (x、y)は造粒速粒子の
重量割合を夫々示し、s(x、、y)は、前に述べた様
に造粒機内で遭遇したXとyの粒子ベアが合体する確率
を表わしており1例えばパンペレタイザー内で転勤する
間に上記粒子ベアを引き離そうとする応力(a>と、該
応力(σ)に耐える粉体層の引張強度(O7)との差に
比例するものと考えられるから、これらの関係より下記
[11]式が成立する。 s (、x、 、y) =K (σ〒−〇)  ・・−
[,0][11]式において、0丁は粒子層の粒度構成
、水分量、バインダー量、鉄鉱石銘柄(a地別の固有の
付着性や形状因子等を含む)等によって決まるもので、
この値は造粒物の引張試験或は剪断試験により相対的な
値として実測することができる。またK及びσは、当該
造粒機を用いた多数の造粒実験データを非線形多重回帰
解析することにより求めることができる。 従って上記[+1 ’]式にに、σ丁、σの値を代入す
ることによって求められる。s(x、、y)を、造粒速
度関数として朝貢収支式[I]に組み込み、この式を造
粒毎に解くと、当該造粒原料条件及び  −造粒操作条
件下における原料粉粒体の造粒過程における造粒物の粒
度分布を知ることができる。 従って造粒操作完了時点における粒度分布が目標粒度分
布と合致する様に前記造粒原料条件や造粒操作条件を変
更・i*uすれば目標粒度構成を確保するのに最適の造
粒原料条件及び造粒操作条件を設定することができる。 また造粒原料の銘柄や配合比等が予め決められていると
きは、造粒挿作条件のみを変数として上記と同様の計算
を行なうことにより、当該造ね原料を用いる場合におけ
る最適の造粒操作条件を求めることができる。 第1図はこうした造粒原料条件・造粒操作条件を設定す
るとぎの経緯を略伝するブロック図であり、まず第1の
工程では造粒原料条件・造粒操作条件の設定(鉄鉱石銘
柄、初期粒度、配合比率、水分量、バインダーのfi類
や量、更に造粒機の稼動状態の設定)が行なわれ、これ
らの設定条件に応じたに及びσの値が求められる0次い
であらかじめ蓄積されている引張試@或は剪断試験デー
タをもとに20丁の値を選択し、これらの値を前記[1
1]式に代入することにより、当該造粒原料条件や造粒
操作条件下における造粒速度間数[S(x、、y)]が
求められる1次いで該造粒速度関数を府記[1,1式に
組み込んで粒径毎に解くことにより、造粒々子の成長に
伴なう経時的it粒度分布変化を推定する。そして該推
定値を基に、所定の造粒工程を行なった後の粒度分布を
求めることができるので、この粒度分布が造粒物の目標
粒度分布と合致しているときは、前述の造粒原料条件や
造粒挿作条件を適正なものとして実操業に移管する。一
方粒度分布の計算値が目標粒度分布に合致していないと
きは、造粒原料条件や造粒操作条件設定工程に戻して新
たな条件を設定し、以下同様の操作を行ない、目標粒度
分布に合致する計算値が得られるまでこの操作を繰り返
し、粒度分布の計算値が目標粒度分布と合致したときの
当該造粒原料・造粒操作条件を適正なものとして実操業
に移管すればよい、尚新たな条件を設定するに当たって
は、原料銘柄や配合比率を固定して他の条件を種々変更
し、それらの変更だけで対処しきれない場合にはしめて
原料銘柄を変更し、或は良品賞銘柄物の配合量を増大す
るということにより対処するのが好ましい。 〔実施例] 直径50・Ol、IX奥行35011□Iの実験用ドラ
ム型造粒機を用い、製鉄所のブレンディングパイルから
採取した鉱石粉末を造粒原料として造粒を行なうに当た
り、特定配合組成の原料粉末を対象として下記の方法で
に、O7及びaを求めた。 く原料粉末配合組成〉 く造粒原料条件〉 <K、σ7.σの測定法〉 σyニー25・Gμm鉱石粒子に水分5.6%5Ca1
1.・5%を添加した時の引張試験値、lLffg/c
m’ K   パ )造粒試験データの非線形多重回帰値 ・σ   ; 上記の値を前記[11]式に代入してs (x。 y)を求め、更に該s(x、、y)値を前記[111式
に組込んで粒径毎に物買収支式を解き、粒度分布の時間
的変化を計算したところ2第2図に実線で示す結果が得
られた。一方上記の実験用ドラム型造粒損を使用し上記
と同じ条件下に実際造粒実験を行ない、所定時間!!i
a後における造粒物の粒  一度分布を調べたところ第
2図にO2△及びム印で示す実測値が得られ、何れの値
も計算により得た値とよく一致していることが確認され
た。 また本発明者等の経験によると、造粒原料中にwr、m
tt鉱石粉を適量配合することにより擬似粒子化が促進
され造粒性が向上することが確認されているが、こうし
た@粉鉱石の配合効果を本発明法により定量的に把握す
ると共に、該g、粉鉱石の好適添加量を明確にすべく、
上記の方法(但し原料鉱石としては平均粒径250oμ
mのブレンディジグパイル鉱石を用い、添加材としては
水:5.6%、CaO:1.5%、微粉鉱石としては一
250ur++のものを、原料鉱石に対し10〜40%
添加1〕た。また造粒時間は13分とした)に準じて造
粒物の粒度分布を求めた。モして造粒前後における平均
粒子径の比を造粒指数(A 、1 ==DprOd、/
Df、aed )として定義し、−2,50μmの11
粉鉱石の混合率とAiの関係を計算により求めると共に
、実際に造粒実験を行なって上記計算値との対比を行な
った。 結果は第3図に示す通りであり2本発明法に従って得た
計算値と実験値は非常に近似しており、何れの場合も、
−250urnの@粉を20%配合したときに最高のA
i値が得られるという共通した結果が得られた。 また第4図は、3F4の@粉鉱石(a・・・ソフトへマ
タイト鉱石、b・・・リモナイト鉱石2 C・・・ハー
ドへマタイト鉱石)を選択し、上記方法に準じてX 、
Q分間造粒した後の粒度構成を同様にして求めた結果を
示したものである。尚第4図に示す結果を導く為の計算
では、鉱石銘柄の違いを各成形体の引張強度の差として
取扱っているが、これらの計算結果はすでに知られてい
る各鉱石の造粒特性とよく対応している。 [発明の効果] 本発明は以上の様に構成されるが、要するに焼結鉱を得
る為の原料自体の物理的特性及び造粒装置や操作条件等
によって定められる値を基に、造粒過程における造粒々
子の物質Jマ支式から計算によって造粒効率翫び造粒物
の粒度分布をほぼ正確に推定することができる。 従って造粒物の目aX粒度分布が予め決められている様
な場合でも、当該目標粒度分布を確保する為〇造粒原料
条件や造粒操作条件を計算に基づいて決定することがで
き、原料銘柄や配合比等を変更する毎に必要とされてい
た試行錯誤的な造粒実験を省略することかできる。しか
も造粒実験により適正な造粒諸条件を設定する従来法で
は、各種変動要因を対象とする掻めて多くの系統的造粒
実験によらなければ最良の造粒諸条件を見出すことがで
きなかったが、本発明であれば、′a粒装置を含む操作
条件により決まってくるに及びσ、ざらに造粒原料条件
により定まる引張強度のデータσ7を求めておきさえす
れば2後はすべて計算により造粒速度及び粒度分布の変
動を正確に知ることができるので、簡単tti′ji算
機器を使用するだけで原料鉱石の銘柄等に対応する最適
の造粒諸条件を極めて迅速且つ確実に設定することがで
きる。
[A method of evaluating by pseudo-graining index is known, and it has been confirmed that this pseudo-graining index has a high correlation with the air permeability of the sintered material. [Problems to be solved by the invention] However, these methods for evaluating granulation properties evaluate granulation properties based on data obtained by actually conducting granulation tests. The method of determining the basic physical properties of the iron ore itself and evaluating the granulation properties based on that is not effective, so if the brand of iron ore raw material changes or the raw material blending ratio is changed, a granulation test should be carried out each time. Line 12: By repeating trial and error, the optimum granulation conditions (including granulation raw material conditions such as water content and granulation operation conditions) according to the granulation properties of the granulated i-material powder must be set. figure,
A great deal of time and effort was spent on setting the granulation conditions. The present invention was made in consideration of these circumstances, and
The purpose is to be able to accurately estimate the granulation properties of the granulation raw material powder based on its basic physical properties, and to properly set granulation conditions based on the estimated granulation properties. The purpose of this study is to establish a technology that enables granulation control, and provides a granulation control method that can quickly find accurate granulation conditions without conducting preliminary granulation experiments. Means for Solving Problem E] The granulation control method according to the present invention combines particles encountered in a granulator during a mass balance equation that expresses a particle size distribution that changes as granulation progresses. By including the granulation rate interval representing the probability and solving the above mass balance equation for each particle size, the particle size distribution of the granulated particles under pre-given granulation raw material conditions and granulation operation conditions can be determined. The gist of this method is to estimate the temporal change in the granulation material and adjust the granulation raw material conditions or granulation operation conditions so as to obtain the target particle size distribution. 1 Effect] The present invention is directed to the progress of granulation of raw material powder (growth of pseudo particles)
The granulation rate function, which represents the probability that particles encountered in the granulator will coalesce, is included in the mass balance equation that represents the change in particle size due to granulation. Since it is determined by the difference between the force and the drag force, by solving the above material balance equation for each particle size, we can determine the relationship between the 5 granulation conditions and granulation growth, that is, the conditions on the granulation raw material side (for example, the raw material The particle size distribution of the granulated product when the brand and blending ratio, moisture content, binder amount, etc.) and the conditions of the granulation operation (for example, the configuration and specifications of the granulator, and the fit conditions) are specified. By determining the temporal change in granulation, it is possible to determine the particle size distribution after a specific granulation time has elapsed, but as is clear from the examples below, the particle size distribution determined by calculation cannot be obtained by conducting granulation experiments. It has been confirmed that the particle size distribution corresponds well to the measured particle size distribution. Therefore, by variously changing the granulation raw material conditions and granulation operation conditions and recalculating the particle size distribution, it is possible to almost accurately know the various conditions under which a granulated product matching the target particle size distribution can be obtained. By the way, from the size X at time dt during granulation, (x
+c! The mass balance of particles growing to x > is as follows [1
It can be expressed by one equation. ...[11 Here, x and y are the particle diameters, s (x, y) are the weight proportions of the granulation speed particles, and s (x, y) is the inside of the granulator as described above. It represents the probability that the particle bears of It is considered that it is proportional to the difference between the tensile strength (O7) of
[,0] In the [11] formula, 0 is determined by the particle size composition of the particle layer, moisture content, binder content, iron ore brand (including the unique adhesiveness and shape factor of each region), etc.
This value can be actually measured as a relative value by a tensile test or a shear test of the granulated material. Further, K and σ can be determined by performing nonlinear multiple regression analysis on a large number of granulation experiment data using the granulator. Therefore, it can be obtained by substituting the values of σ and σ into the above [+1′] formula. When s(x,, y) is incorporated into the tribute balance equation [I] as a granulation rate function and this equation is solved for each granulation, the raw material powder under the granulation raw material conditions and - granulation operation conditions can be calculated. It is possible to know the particle size distribution of granules during the granulation process. Therefore, if the granulation raw material conditions and granulation operation conditions are changed/i*u so that the particle size distribution at the time of completion of the granulation operation matches the target particle size distribution, the granulation raw material conditions are optimal to ensure the target particle size composition. and granulation operation conditions can be set. In addition, when the brand, blending ratio, etc. of the granulation raw material are determined in advance, the same calculation as above can be performed using only the granulation insertion conditions as a variable to determine the optimal granulation when using the relevant granulation raw material. Operation conditions can be determined. Figure 1 is a block diagram outlining the process of setting the granulation raw material conditions and granulation operation conditions.The first step is to set the granulation raw material conditions and granulation operation conditions (iron ore brand, initial The particle size, blending ratio, moisture content, binder fi type and amount, and the operating state of the granulator are set), and the value of σ and σ are determined according to these setting conditions. 20 values were selected based on the tensile test @ or shear test data, and these values were calculated according to the above [1
By substituting the granulation rate function into the formula [1], the granulation rate function [S(x,,y)] under the granulation raw material conditions and granulation operation conditions can be obtained. , and solving for each particle size, it is possible to estimate the change in the IT particle size distribution over time as the granules grow. Then, based on the estimated value, the particle size distribution after performing the predetermined granulation process can be determined, so if this particle size distribution matches the target particle size distribution of the granulated material, the above-mentioned granulation The raw material conditions and granulation and cutting conditions will be adjusted to suit the conditions and the process will be transferred to actual operation. On the other hand, if the calculated value of the particle size distribution does not match the target particle size distribution, return to the step of setting the granulation raw material conditions and granulation operation conditions, set new conditions, and repeat the same operation to achieve the target particle size distribution. This operation can be repeated until a matching calculated value is obtained, and when the calculated value of the particle size distribution matches the target particle size distribution, the granulation raw material and granulation operation conditions can be considered appropriate and transferred to actual operation. When setting new conditions, fix the raw material brand and blending ratio and make various changes to other conditions, and if these changes alone cannot deal with the problem, then change the raw material brand, or change the raw material brand. It is preferable to deal with this problem by increasing the amount of the compound. [Example] Using an experimental drum-type granulator with a diameter of 50 mm and an IX depth of 35011□I, ore powder collected from a blending pile at a steel mill was used as a granulation raw material. O7 and a were determined using the following method for the raw material powder. Raw material powder blending composition> Granulation raw material conditions><K, σ7. Measuring method of σ〉 σy knee 25・Gμm ore particles with moisture 5.6% 5Ca1
1.・Tensile test value when adding 5%, 1Lffg/c
m' K Pa) Nonlinear multiple regression value of granulation test data σ When incorporating into the above equation [111] and solving the physical acquisition equation for each particle size, and calculating the temporal change in particle size distribution, the results shown by the solid line in FIG. 2 were obtained. On the other hand, using the experimental drum-type granulation loss described above, an actual granulation experiment was conducted under the same conditions as above, and the granulation was completed for a specified period of time. ! i
After examining the particle distribution of the granulated product after a, we obtained the measured values shown by O2△ and square marks in Figure 2, and it was confirmed that both values agreed well with the values obtained by calculation. Ta. Also, according to the experience of the present inventors, wr, m in the granulation raw material
It has been confirmed that by blending an appropriate amount of tt ore powder, pseudo-particle formation is promoted and granulation properties are improved. , In order to clarify the appropriate amount of fine ore to be added,
The above method (however, as a raw material ore, the average particle size is 250μ
m blended jig pile ore is used, the additives are water: 5.6%, CaO: 1.5%, and the fine ore is 1250 ur++, 10 to 40% of the raw ore.
Addition 1] Furthermore, the particle size distribution of the granulated product was determined according to (the granulation time was 13 minutes). The ratio of the average particle diameter before and after granulation is calculated as the granulation index (A, 1 ==DprOd, /
Df, aed ), −2,50 μm 11
The relationship between the mixing ratio of fine ore and Ai was determined by calculation, and a granulation experiment was actually conducted to compare the results with the above calculated values. The results are shown in Figure 3.2 The calculated values obtained according to the method of the present invention and the experimental values are very similar, and in both cases,
-Highest A when 20% of 250urn @ powder is mixed.
A common result was that the i value was obtained. In addition, in Figure 4, 3F4 @ fine ore (a... soft hematite ore, b... limonite ore 2, C... hard hematite ore) is selected, and X is added according to the above method.
This figure shows the results of similarly determining the particle size structure after granulation for Q minutes. In the calculations to derive the results shown in Figure 4, differences in ore brands are treated as differences in the tensile strength of each compact, but these calculation results are based on the already known granulation characteristics of each ore. Responds well. [Effects of the Invention] The present invention is configured as described above, but in short, the granulation process is carried out based on the physical characteristics of the raw material itself and the values determined by the granulation device, operating conditions, etc. for obtaining sintered ore. The granulation efficiency and the particle size distribution of the granules can be almost accurately estimated by calculation from the substance J matrix formula of the granules. Therefore, even if the grain size distribution of the granules is predetermined, the granulation raw material conditions and granulation operation conditions can be determined based on calculations to ensure the target particle size distribution. Trial-and-error granulation experiments that were required each time the brand, blending ratio, etc. are changed can be omitted. Moreover, with the conventional method of setting appropriate granulation conditions through granulation experiments, the best granulation conditions cannot be found unless a large number of systematic granulation experiments are conducted that target various variable factors. However, in the case of the present invention, all that is required is to obtain the tensile strength data σ, which is determined by the operating conditions including the granulation device, and σ, which is roughly determined by the granulation raw material conditions. Since fluctuations in granulation speed and particle size distribution can be accurately determined through calculation, optimal granulation conditions corresponding to the brand of raw material ore can be determined extremely quickly and reliably just by using a simple calculation device. Can be set.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明で採用される条件設定の経緯を例示する
ブロック図、第2〜4図は実施例で得た実験データを示
すグラフである。 出1人 株式会社神戸製鋼所 第1図 Q、、’l     0.5  1      5  
101子17 fl 1 −25.(brn!bF’E石の$im+S)第4図 水分5.6% 0.2         1          5 
  10粒子径(ff)
FIG. 1 is a block diagram illustrating the process of setting conditions employed in the present invention, and FIGS. 2 to 4 are graphs showing experimental data obtained in Examples. 1 person Kobe Steel, Ltd. Figure 1 Q,,'l 0.5 1 5
101 children 17 fl 1 -25. (brn! bF'E stone $im+S) Figure 4 Moisture 5.6% 0.2 1 5
10 particle diameter (ff)

Claims (1)

【特許請求の範囲】[Claims] 造粒の進行に応じて変化する粒度分布を表現する物質収
支式中に、造粒機内で遭遇した粒子が合体する確率を表
わす造粒速度関数を含めておき、前記物質収支式を粒径
毎に解くことにより、予め与えられた造粒原料条件や造
粒操作条件の下での造粒々子の粒度分布の時間的変化を
推定し、目標とする粒度分布が得られる様に造粒原料条
件又は造粒操作条件を調整することを特徴とする焼結原
料の造粒制御方法。
A granulation rate function that represents the probability that particles encountered in the granulator coalesce is included in the mass balance equation that expresses the particle size distribution that changes as granulation progresses, and the mass balance equation can be modified for each particle size. By solving the equation, it is possible to estimate the temporal change in the particle size distribution of the granulated particles under the pre-given granulation raw material conditions and granulation operation conditions, and adjust the granulation raw material so that the target particle size distribution is obtained. A method for controlling granulation of sintered raw materials, characterized by adjusting conditions or granulation operation conditions.
JP25568485A 1985-11-14 1985-11-14 Method for controlling pelletization of sintering raw material Pending JPS62116727A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25568485A JPS62116727A (en) 1985-11-14 1985-11-14 Method for controlling pelletization of sintering raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25568485A JPS62116727A (en) 1985-11-14 1985-11-14 Method for controlling pelletization of sintering raw material

Publications (1)

Publication Number Publication Date
JPS62116727A true JPS62116727A (en) 1987-05-28

Family

ID=17282185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25568485A Pending JPS62116727A (en) 1985-11-14 1985-11-14 Method for controlling pelletization of sintering raw material

Country Status (1)

Country Link
JP (1) JPS62116727A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011162814A (en) * 2010-02-05 2011-08-25 Jfe Steel Corp Method of adjusting adequate water amount in production of raw material for sinter granulation
CN103589862A (en) * 2013-11-05 2014-02-19 首钢总公司 Optimized sintering batching method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011162814A (en) * 2010-02-05 2011-08-25 Jfe Steel Corp Method of adjusting adequate water amount in production of raw material for sinter granulation
CN103589862A (en) * 2013-11-05 2014-02-19 首钢总公司 Optimized sintering batching method
CN103589862B (en) * 2013-11-05 2015-10-28 首钢总公司 A kind of sintering feed proportioning optimization method

Similar Documents

Publication Publication Date Title
RU2699315C2 (en) Method of producing potassium sulphate granules, potassium sulphate granules obtained using said method, as well as use thereof
CN108699623B (en) Method for producing sintered ore
CA2956509C (en) Method for producing pellets and method for producing iron-nickel alloy
CN104451135B (en) Containing microfine coal and the agglomeration method of the pelletizing of ultra-fine calcium lime powder
AU745099B2 (en) Mineral pelletisation
JPS62116727A (en) Method for controlling pelletization of sintering raw material
JP3820132B2 (en) Pretreatment method of sintering raw material
CN105452496A (en) Method for manufacturing briquettes and reduced iron
JP6369113B2 (en) Method for producing sintered ore
WO2013145332A1 (en) Method for manufacturing pseudo-particles for sintered ore manufacture, and method for manufacturing sintered ore
CA2956515A1 (en) Method for smelting nickel oxide ore
EP4048822A1 (en) Compacted calcium-based granules
JP4112827B2 (en) Method for treating Cr-containing sludge
CN108676940A (en) A kind of sinter mixture and preparation method thereof
CN105838874A (en) Method for preparing laterite-nickel ore pellets for shaft furnace
JP4356929B2 (en) Method for producing sintered ore
Ekwebelam et al. Extended testing of a simple granulation model
RU2274664C2 (en) Method of control over the process of the bulk materials pelletizing
JPS59222538A (en) Sintering operation method utilizing estimated grain size distribution of pseudo granule
SU804703A1 (en) Method of slime preparation for agglomeration
JPS6065785A (en) Granular fused phosphate
JPS6245165B2 (en)
JPS62214138A (en) Manufacture of sintered ore
JPH0551654A (en) Pretreatment and granulating method for raw material to be sintered
DE2602628A1 (en) COLD PELLETS