JPS6260826A - Pretreatment of sintering material - Google Patents

Pretreatment of sintering material

Info

Publication number
JPS6260826A
JPS6260826A JP20129485A JP20129485A JPS6260826A JP S6260826 A JPS6260826 A JP S6260826A JP 20129485 A JP20129485 A JP 20129485A JP 20129485 A JP20129485 A JP 20129485A JP S6260826 A JPS6260826 A JP S6260826A
Authority
JP
Japan
Prior art keywords
pseudo
ore
raw material
sintering
pelletizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20129485A
Other languages
Japanese (ja)
Inventor
Mikiro Deguchi
幹郎 出口
Yoshio Kimura
吉雄 木村
Masayoshi Fukuoka
福岡 正能
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP20129485A priority Critical patent/JPS6260826A/en
Publication of JPS6260826A publication Critical patent/JPS6260826A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To improve the permeability of a sintering material layer inexpensively by incorporating, to a starting material for sintering, ore fines with specific grain size having superior pseudo-pelletizing property together with an ore having inferior pseudo-pelletizing property each by a proper quantity and by pelletizing the resulting mixture. CONSTITUTION:To the starting material for sintering, ore fines of Mt. Newman, etc., having an average grain diameter ratio to the above material of <=0.04 and having superior pseudo-pelletizing property are incorporated in an amount ranging between the content of an ore of Yampi Sound, etc., with <=0.5mm grain size having inferior pseudo-pelletizing property and 75wt%, which is subjected to pelletizing by use of a pelletizer such as drum mixer. In this way, pseudo-pelletization of sintering material is accelerated and the permeability of sintering material layer is improved. As a result, the blending amount of expensive binder such as quick lime can be reduced and simultaneously that of inexpensive ore fines having inferior pseudo-pelletizing property can be increased.

Description

【発明の詳細な説明】 [発明の利用分野] 本発明は高炉の主要装入物である焼結鉱をドワイト・ロ
イド焼結機で製造する場合に、該焼結機に装入する焼結
原料をドラムミキサーなどの造粒機で造粒する工程に関
する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention is directed to the production of sintered ore, which is the main charge of a blast furnace, in a Dwight Lloyd sintering machine. It relates to the process of granulating raw materials with a granulator such as a drum mixer.

[発明の背景] 焼結鉱は、粉鉱石、石灰石粉、返鉱、粉コークス、生石
灰等をドラムミキサーに装入し、混合、散水、造粒を行
なった後、焼結機のパレット上に所定の層厚に装入して
焼成されるものである。
[Background of the invention] Sintered ore is produced by charging fine ore, limestone powder, return ore, coke powder, quicklime, etc. into a drum mixer, mixing, watering, and granulating, and then placing it on the pallet of the sintering machine. It is charged and fired to a predetermined layer thickness.

焼成はパレットの下方からファンによって原料上層の空
気を吸引することによって原料層の上部から順次下部へ
行なわれる。原料上層部への着火は原料をパレット上に
装入した直後に行われる。
Firing is carried out sequentially from the top of the raw material layer to the bottom by sucking air from the upper layer of the raw material with a fan from below the pallet. The upper layer of the raw material is ignited immediately after the raw material is loaded onto the pallet.

焼結鉱の生産性はパレット上に装入された着火前の原料
層の通気性に強く依存するため、生石灰などの高価なバ
インダーを1〜2%添加して、造粒することによって焼
結原料の擬似粒子化を促進し、その結果として原料層の
通気性を確保しているのが実情である。
The productivity of sintered ore strongly depends on the permeability of the raw material layer charged on the pallet before ignition, so sintering is done by adding 1 to 2% of an expensive binder such as quicklime and granulating it. The reality is that the formation of pseudo-particles in the raw material is promoted, and as a result, the permeability of the raw material layer is ensured.

また、焼結原料に使用している鉱石の粒度も小さくなる
傾向にあり、しかも、擬似粒子化の困難な安価な鉱石を
多配合する傾向にある0両者とも原料層の通気性を悪化
させる原因であり、このためパンペレタイザーを用いて
造粒した後、ドラムミキサーで再び造粒している例もあ
る。
In addition, the particle size of the ores used as sintering raw materials tends to become smaller, and moreover, there is a tendency to incorporate a large amount of cheap ores that are difficult to make into pseudo-particles.Both of these factors worsen the permeability of the raw material layer. Therefore, in some cases, the product is granulated using a pan pelletizer and then granulated again using a drum mixer.

焼結原料の擬似粒子化はドラムミキサーなどの造粒機で
造粒することにより第3図のような擬似粒子を形成する
程度で表わせる。第3図において、1は核鉱石、2は微
粉鉱石、3は粉コークス、4は造滓剤である。
Pseudo-particle formation of the sintering raw material can be expressed by the extent to which pseudo-particles are formed as shown in FIG. 3 by granulation using a granulator such as a drum mixer. In FIG. 3, 1 is a core ore, 2 is a fine ore, 3 is coke powder, and 4 is a slag forming agent.

第4図は造粒前の真粒子の粒度分布と、造粒後の擬似粒
子の粒度分布を示したものであり、造粒による粒度分布
の変化が分る。第4図に示すように、粒子径0.5mm
以下の微粉粒子が粒子径1.0mm以上の核粒子に付着
することにより擬似粒子が形成されるのである。擬似粒
子化性はこの付着する程度を表わすものであり、擬似粒
子化性の良いものほど擬似粒子径が大きくなり、原料層
の通気性が向上する。したがって、擬似粒子化性は原料
層の通気性によって評価することができる。なお、通気
性は(1)式で表わされるJPUによって示すことがで
きる。
FIG. 4 shows the particle size distribution of true particles before granulation and the particle size distribution of pseudo particles after granulation, and shows changes in particle size distribution due to granulation. As shown in Figure 4, the particle size is 0.5 mm.
Pseudo-particles are formed when the following fine powder particles adhere to core particles with a particle diameter of 1.0 mm or more. Pseudo-particle forming property indicates the degree of this adhesion, and the better the pseudo-particle forming property is, the larger the pseudo particle diameter becomes, and the air permeability of the raw material layer is improved. Therefore, the pseudo-particulate property can be evaluated by the air permeability of the raw material layer. Note that air permeability can be expressed by JPU expressed by equation (1).

JPU=v(h/Δp)”6  (1)但し、Vは空塔
流速、hは原料層厚(mm)、Δpは原料層の圧力損失
(mmH20)である。
JPU=v(h/Δp)”6 (1) However, V is the superficial flow velocity, h is the raw material layer thickness (mm), and Δp is the pressure loss of the raw material layer (mmH20).

[発明の目的] 本発明は、■焼結原料の擬似粒子化性を促進する目的で
添加している生石灰などの高価なバインダーの配合量を
減少させ、かつ■擬似粒子化性の悪い安価な微粉鉱石の
配合量を増加させることができるように、焼結原料の擬
似粒子化を促進して原料層の通気性を向上させることを
目的とするものである。
[Object of the invention] The present invention aims to reduce the amount of expensive binders such as quicklime that are added for the purpose of promoting pseudo-granulation properties of sintering raw materials, and The purpose is to promote the formation of pseudo-particles in the sintering raw material and improve the air permeability of the raw material layer so that the blended amount of fine ore can be increased.

[発明の概要] 上記目的を達成するため、本発明の焼結原料の事前処理
法は、焼結原料に該原料との平均粒子径比が0604以
下で且つ擬似粒子化性の良好な鉱石の微粉を1粒子径が
0.5mm以下で且つ擬似粒子化性の悪い鉱石の含有量
以上、75%(wt%、以下同様とする)以下の範囲で
含有せしめて造粒するものである。
[Summary of the Invention] In order to achieve the above object, the method for pre-processing a sintering raw material of the present invention involves adding ore to the sintering raw material, which has an average particle size ratio of 0604 or less with respect to the raw material and has good quasi-grainability. It is granulated by containing fine powder in a range of 75% (wt%, hereinafter the same shall apply) or more than the content of ore which has a particle size of 0.5 mm or less and has poor pseudo-granulation property.

[発明の実施例] 擬似粒子化性の異なる3種類の鉱石A、 、 B1. 
C。
[Embodiments of the invention] Three types of ores A, B1. with different pseudo-grainability.
C.

を粒子径3mm以下の石灰石粉、粒子径3mm以下の粉
コークスと共に直径300mm、長さ280mmの小型
ドラムミキサーで造粒し、直径1051m、高さ400
 m mの小型焼結鋼で通気性を測定した。鉱石AIは
マウントニューマン(Mt、 Newsan) 、 f
f、石B1はローブリバー(Robe River) 
、鉱石C1はヤンピーサウンド(Ya腸pi 5oun
d )である。
is granulated with limestone powder with a particle size of 3 mm or less and coke powder with a particle size of 3 mm or less in a small drum mixer with a diameter of 300 mm and a length of 280 mm.
Air permeability was measured on small sintered steel pieces of mm. Ore AI is Mount Newman (Mt, Newsan), f
f, stone B1 is Robe River
, Ore C1 is a yampi sound (Ya intestinal pi 5oun
d).

それぞれの粒度分布は同一で、第1表に示すものである
。なお、第1表には、後述する鉱石A2. B2゜C2
,C3ならびに石灰石の粒度分布も示しである。
The particle size distribution of each is the same and is shown in Table 1. In addition, Table 1 shows ore A2. which will be described later. B2゜C2
, C3 and the particle size distribution of limestone are also shown.

上記通気性の測定結果を第5図に示す、第5図には、鉱
石A1. B1. C1のそれぞれのJPUを水分との
関連で示しである。第5図から明らかなように、通気性
はA、 、 B1. G1の順に低下する。したがって
、擬似粒子化性もA1. B1. C1の順に劣化する
The measurement results of the air permeability are shown in FIG. 5. In FIG. 5, ore A1. B1. The respective JPUs of C1 are shown in relation to moisture. As is clear from FIG. 5, the air permeability is A, B1. It decreases in the order of G1. Therefore, the pseudo-particulate property is also A1. B1. It deteriorates in the order of C1.

ところで、原料層の通気性は、焼結原料との平均粒子径
比が0.04以下に、擬似粒子化性の良好な鉱石の微粉
鉱石を添加して造粒することによって飛躍的に向上する
。この事については、既に出願した特許出願(昭和60
年7月25日出願「焼結原料の擬似粒子化性評価法」、
昭和60年7月26日出願「焼結原料の事前処理法」)
の明細書にも示されている。
By the way, the air permeability of the raw material layer can be dramatically improved by adding and granulating fine ore with good pseudo-granulation properties to an average particle size ratio of 0.04 or less with respect to the sintered raw material. . Regarding this matter, please refer to the patent application already filed (1986).
Application filed on July 25, 2015, “Method for evaluating pseudo-particle formation of sintering raw materials”;
(Application filed on July 26, 1985 “Pre-treatment method for sintering raw materials”)
It is also shown in the specification.

第6図は、焼結原料に添加する微粉鉱石の上記平均粒子
径比(概略値)と原料層の通気性との関係を示すグラフ
である。焼結原料には、粒子径が5mm以下の鉱石C1
1粒子径が3 m m以下の石灰石、粒子径が3mm以
下の粉コークス、添加微粉部面A(鉱石A1. A2と
同種の鉱石)で平均粒子径が32pm 、 84JLm
 、 9Bpm 、 384 uLmのものを35%用
いた。造粒は、直径300mm、長さ280mmのドラ
ムミキサーで行ない、通気性の測定は直径105mm、
高さ400mmの焼結鋼で行なった。ここで、第6図に
示される相対通気度と平均粒子径比は、それぞれ下記の
式(2)、式(3)で表わせる。
FIG. 6 is a graph showing the relationship between the average particle diameter ratio (approximate value) of the fine ore added to the sintering raw material and the air permeability of the raw material layer. The sintering raw material includes ore C1 with a particle size of 5 mm or less.
Limestone with a particle size of 3 mm or less, coke powder with a particle size of 3 mm or less, added fine powder part side A (ore A1, same type of ore as A2), average particle size of 32 pm, 84 JLm
, 9 Bpm, and 384 uLm were used for 35%. Granulation was performed using a drum mixer with a diameter of 300 mm and a length of 280 mm, and air permeability was measured using a drum mixer with a diameter of 105 mm.
The experiment was carried out using sintered steel with a height of 400 mm. Here, the relative air permeability and average particle diameter ratio shown in FIG. 6 can be expressed by the following equations (2) and (3), respectively.

微粉鉱石無添加時のJPU 微粉鉱石の平均粒子径(トm) 第6図より明らかなように、原料層の通気性は、添加微
粉鉱石の上記平均粒子径比が0.04以下の場合に特に
向上している。
JPU when fine ore is not added Average particle size of fine ore (tm) As is clear from Figure 6, the permeability of the raw material layer is as follows when the above average particle size ratio of fine ore added is 0.04 or less Especially improved.

同様の実験方法により、微粉鉱石の最適添加量を検討し
た。原料には、第1表に示す鉱石A1. A。
Using the same experimental method, we investigated the optimal amount of fine ore to be added. The raw materials include ore A1. shown in Table 1. A.

B、 、 B2. C,、C2,C3、石灰石、粒子径
3mm以下の粉コークスならびに平均粒子径が32pm
の微粉鉱石Aを用いた。なお、第1表において、A1お
よびA  BおよびBCCおよびC3はそれぞれ同2°
  1       2’   l’   2種の鉄鉱
石A、BおよびCからなり、各添字は粒度分!5の異な
っていることを意味する。上記微粉鉱石無添加時の原料
の配合割合(%)を第2表に示した。第2表中には、下
記第1図に用いた記号に対応する原料について示してい
る。微粉鉱石添加時は石灰石と粉コークスの配合割合を
同一とし、鉱石A、B、C間の配合比率を一定として微
粉鉱石を添加した。このようにして得られた。Wk粉鉱
石の添加量と原料のJPUとの関係を第1図に示す。
B, , B2. C,, C2, C3, limestone, coke powder with a particle size of 3 mm or less and an average particle size of 32 pm
Fine ore A was used. In addition, in Table 1, A1, A B, BCC, and C3 are the same 2°, respectively.
1 2'l' Consisting of two types of iron ore A, B and C, each subscript is the particle size! It means 5 different things. Table 2 shows the mixing ratio (%) of the raw materials without the addition of the fine ore. Table 2 shows raw materials corresponding to the symbols used in FIG. 1 below. When fine ore was added, the blending ratio of limestone and coke powder was the same, and the blending ratio of ores A, B, and C was kept constant. Obtained in this way. Figure 1 shows the relationship between the amount of Wk fine ore added and the JPU of the raw material.

第1図かられかるように、各原料の通気性は、微粉鉱石
の添加と共に徐々に向上し、ある値から急激に向上する
。50%以上添加すると、微粉鉱石主体の擬似粒子とな
って焼結鋼に装入するときに破壊されるため、通気性が
悪化するが、約75%迄は、なお、微粉鉱石を添加しな
い場合よりもすぐれた通気性を示している。
As can be seen from FIG. 1, the air permeability of each raw material gradually improves with the addition of fine ore, and increases rapidly from a certain value. If more than 50% is added, the particles become pseudo-particles mainly composed of fine ore and are destroyed when charged into sintered steel, resulting in poor air permeability; however, up to about 75%, if no fine ore is added. It shows superior breathability.

通気性が急激に向上し始める点は、第1図中の破線で示
され、そのときの全原料中に占める粒子径が0.5mm
以下の鉱石Cの割合(%)を第1図中に数値で示す0粒
度分布の同一の鉱石A、鉱石B、鉱石Cを用いた各原料
層の通気性が、A。
The point at which the air permeability begins to improve rapidly is indicated by the broken line in Figure 1, and the point at which the particle size in the total raw material at that point is 0.5 mm.
The permeability of each raw material layer using the same ore A, ore B, and ore C with a zero particle size distribution is shown in Figure 1 as a numerical value in the following ratio (%) of ore C.

B、Cの順に低下することは、第5図に示した通りであ
る。したがって1通気性を向上させるための必要最小限
の微粉鉱石Aの添加量は、擬似粒子化性の悪い原料鉱石
の粒子径が0.5mm以下のものの割合に等しい、この
両者の関係は第2図に示される通りである。
As shown in FIG. 5, B and C decrease in this order. Therefore, the minimum necessary amount of fine ore A to improve air permeability is equal to the proportion of raw ore with poor pseudo-granulation properties that have a particle size of 0.5 mm or less, and the relationship between the two is As shown in the figure.

第1図のように通気性が向上する原因は、擬似粒子化性
の良い鉱石Aの微粉が擬似粒子化性の悪い原料の粒子径
0.5mm以下の鉱石をまき込んで1粒子径1mm以上
の核原料に付着した擬似粒子を形成するからである。す
なわち、微粉鉱石Aが、生石灰、消石灰などのバインダ
ーと同様な効果を発揮するのである。
The reason why the air permeability improves as shown in Figure 1 is that the fine powder of ore A, which has good pseudo-granulation properties, is mixed with the ore with a particle diameter of 0.5 mm or less, which is a raw material with poor pseudo-granulation properties, and each particle has a diameter of 1 mm or more. This is because pseudo particles are formed that adhere to the core material. That is, the fine ore A exhibits the same effect as binders such as quicklime and slaked lime.

なお、擬似粒子化性の良い鉱石には、例えばオーストラ
リア産のマウントニューマン、ハマスレー、ゴールドワ
ージなどのソフトへマタイト鉱石、オーストラリア産の
ロープリバー、インド産のドニマライ(ソフトへ7タイ
ト鉱石)があり、擬似粒子化性の悪い鉱石には、例えば
オーストラリア産のヤンピーサウンド、ブラジル産のリ
オドセ、MBRなどのハードへマタイト鉱石、カナダ産
のキャロルレイク、タッス(マグネタイト鉱石)や砂鉄
などがある。
Ores with good pseudo-grainability include, for example, soft hematite ores such as Mount Newman, Hammersley, and Goldwage from Australia, Rope River from Australia, and Donimalai (soft hematite ore) from India. Examples of ores with poor pseudo-grainability include hard hematite ores such as Yumpy Sound from Australia, Rio Doce and MBR from Brazil, Carol Lake, Tass (magnetite ore) and iron sand from Canada.

以上のように、焼結原料との平均粒子径比が0゜04以
下の擬似粒子化性の良好な鉱石の微粉を、焼結原料中に
占める粒子径が0.5mm以下の擬似粒子化性の悪い鉱
石の含有量以上、75%までの範囲で、焼結原料中に含
有せしめて造粒することによって、原料層の通気性が飛
躍的に向上することがわかる。
As described above, ore fine powder with good pseudo-granulation properties having an average particle size ratio of 0°04 or less with the sintering raw material can be used as a pseudo-granulation powder with a particle diameter of 0.5 mm or less in the sintering raw material. It can be seen that the air permeability of the raw material layer is dramatically improved by including it in the sintering raw material and granulating it in a range of up to 75% of the content of ores with poor quality.

[発明の効果] 本発明によって以下の効果が得られる。[Effect of the invention] The present invention provides the following effects.

■原料層の通気性を確保するために通常1〜2%添加し
ている生石灰などの高価なバインダーを無くすることが
できる。つまり、生石灰を1〜2%添加すると、通気性
は無添加時の1.1−1.3倍となり、本発明の方法は
この生石灰添加の効果を1n駕しているためである。
(2) Expensive binders such as quicklime, which are usually added in an amount of 1 to 2% to ensure breathability of the raw material layer, can be eliminated. That is, when 1 to 2% of quicklime is added, the air permeability becomes 1.1 to 1.3 times that of no addition, and the method of the present invention surpasses the effect of adding quicklime by 1n.

■擬似粒子化性の悪い安価な微粉鉱石1例えばヤンピー
サウンドを多量に配合させることができる。
(2) A large amount of inexpensive fine powder ore 1 with poor pseudo-granularity, such as Yampi Sound, can be blended.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は原料層の通気性におよぼす微粉鉱石Aの添加量
の影響を示すグラフ、第2図は微粉鉱石Aの必要最小添
加量を示すグラフ、第3図は擬似粒子の構造を示す概略
図、第4図は造粒による粒度分布の変化を示すグラフ、
第5図は原料層の通気性におよぼす鉱石の銘柄と水分の
影響を示すグラフ、第6図は添加微粉鉱石の平均粒子径
比が原料層の通気性におよぼす影響を示すグラフである
。 1・・・核鉱石、2・・・微粉鉱石、3・・・粉コーク
ス、4・・・造滓材。 1/rR 第2図 第3図 第4rI!J ’PL 3 (k (mm) 第5図 木/71′(%) 第6図 4灼肯J怪比(−)
Figure 1 is a graph showing the effect of the amount of fine ore A added on the air permeability of the raw material layer, Figure 2 is a graph showing the required minimum amount of fine ore A to be added, and Figure 3 is a schematic diagram showing the structure of pseudo particles. Figure 4 is a graph showing changes in particle size distribution due to granulation,
FIG. 5 is a graph showing the effect of ore brand and moisture on the air permeability of the raw material layer, and FIG. 6 is a graph showing the effect of the average particle diameter ratio of the added fine ore on the air permeability of the raw material layer. 1... Core ore, 2... Fine ore, 3... Coke powder, 4... Slag forming material. 1/rR Figure 2 Figure 3 Figure 4rI! J 'PL 3 (k (mm) Fig. 5 Wood/71' (%) Fig. 6 4 Roken J Kaihi (-)

Claims (1)

【特許請求の範囲】[Claims] 焼結原料に、該原料との平均粒子径比が0.04以下で
且つ擬似粒子化性の良好な鉱石の微粉を、粒子径が0.
5mm以下で且つ擬似粒子化性の悪い鉱石の含有量以上
、75wt%以下の範囲で含有せしめて造粒することを
特徴とする焼結原料の事前処理法。
Fine ore powder having an average particle size ratio of 0.04 or less with the raw material and having good quasi-grainability is added to the sintering raw material, and the particle size is 0.04.
A method for pre-processing a sintering raw material, characterized by granulating it by granulating it in a range of 5 mm or less and a content of ore having poor pseudo-granulation properties and 75 wt% or less.
JP20129485A 1985-09-11 1985-09-11 Pretreatment of sintering material Pending JPS6260826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20129485A JPS6260826A (en) 1985-09-11 1985-09-11 Pretreatment of sintering material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20129485A JPS6260826A (en) 1985-09-11 1985-09-11 Pretreatment of sintering material

Publications (1)

Publication Number Publication Date
JPS6260826A true JPS6260826A (en) 1987-03-17

Family

ID=16438594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20129485A Pending JPS6260826A (en) 1985-09-11 1985-09-11 Pretreatment of sintering material

Country Status (1)

Country Link
JP (1) JPS6260826A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018180233A1 (en) * 2017-03-31 2018-10-04 Jfeスチール株式会社 Method for manufacturing granular sintered raw material and method for manufacturing sintered ore
JP2020066766A (en) * 2018-10-23 2020-04-30 Jfeスチール株式会社 Method for manufacturing sintered ore
JP2020158889A (en) * 2017-03-31 2020-10-01 Jfeスチール株式会社 Method for manufacturing granular sintered material, and method for manufacturing sintered ore

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018180233A1 (en) * 2017-03-31 2018-10-04 Jfeスチール株式会社 Method for manufacturing granular sintered raw material and method for manufacturing sintered ore
JP2020158889A (en) * 2017-03-31 2020-10-01 Jfeスチール株式会社 Method for manufacturing granular sintered material, and method for manufacturing sintered ore
JP2020066766A (en) * 2018-10-23 2020-04-30 Jfeスチール株式会社 Method for manufacturing sintered ore

Similar Documents

Publication Publication Date Title
CN105002352B (en) A kind of preparation method of high performance pellet binder
JP2012528941A (en) Method for producing aggregate for raw materials charged in blast furnace from metal oxide-containing fine material
WO2001092588A1 (en) Raw material for sintering in form of pseudo grain and method for producing the same
EP3266884B1 (en) Quasiparticles for sintering and method of producing same
JP3755452B2 (en) Method for manufacturing raw materials for sintering
JP2014214334A (en) Method for manufacturing sintered ore
JP2704673B2 (en) Method for producing semi-reduced sintered ore
JPS6260826A (en) Pretreatment of sintering material
JP5398820B2 (en) Processing method of granulated material for sintering
CN104498707B (en) A kind of manufacture method of green pellets
JP4228694B2 (en) Method for manufacturing raw materials for sintering
JP3058015B2 (en) Granulation method of sintering raw material
JP4228678B2 (en) Method for manufacturing raw materials for sintering
JP2000256756A (en) Method for granulating sintering raw material
JP2005171388A (en) Pseudo particle raw material for sintering, sintered ore for blast furnace, and method of producing pseudo particle raw material for sintering
JPS6369926A (en) Pretreatment of sintering raw material
JPH0430442B2 (en)
JPS63149336A (en) Production of burnt agglomerated ore
KR20020084909A (en) sinter manufacture method
JPS627253B2 (en)
SU1468945A1 (en) Method of producing sinter cake with residual carbon
JPS6313475B2 (en)
JP2000290734A (en) Pretreatment of sintering raw material
KR100232299B1 (en) Method for manufacturing high strength agglomerate sinter
JP2004027245A (en) Method for pelletizing sintering material