JPS6245165B2 - - Google Patents

Info

Publication number
JPS6245165B2
JPS6245165B2 JP54146334A JP14633479A JPS6245165B2 JP S6245165 B2 JPS6245165 B2 JP S6245165B2 JP 54146334 A JP54146334 A JP 54146334A JP 14633479 A JP14633479 A JP 14633479A JP S6245165 B2 JPS6245165 B2 JP S6245165B2
Authority
JP
Japan
Prior art keywords
water
granulation
soluble binder
binder
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54146334A
Other languages
Japanese (ja)
Other versions
JPS5669209A (en
Inventor
Kinji Matsumura
Koichiro Nakagawa
Mineharu Shimoda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP14633479A priority Critical patent/JPS5669209A/en
Publication of JPS5669209A publication Critical patent/JPS5669209A/en
Publication of JPS6245165B2 publication Critical patent/JPS6245165B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Glanulating (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はコークス製造工程から発生する粉コー
クスおよび布集塵器に回収される微小コークス
粉、微小石炭粉等の粉炭素を原料とした造粒方法
を提供するものである。 通常、コークスは都市ガス製造時に発生する
が、製鉄用にコークスを製造する場合は、一製鉄
所においても一日約1万屯、月間約30万屯の発生
量におよぶ。この場合用途は高炉用であり、この
高炉への適正粒度以外のものは選別分離しその粒
度に応じて高炉原料の焼結鉱製造用原料または製
鋼工程での加炭剤原料等に供している。 しかしながらこれ等粉炭素は発塵性が高く取扱
いが極めて困難で、この面から実用性に乏しく用
途が限られているのが実状である。 本発明はこれ等の問題点を解消して、余剰的に
発生する粉炭素はもとより、不可避的に副産する
粉炭素をも対象に、実用性、普偏性の向上を目的
に安価に効率よく、必要強度と粒度を簡便に得ら
れる粉炭素の造粒方法を提供するものである。 その要旨とするところは粉炭素を造粒するにあ
たつて水溶性バインダーを用い、予め求めた粉炭
素の造粒粒径と造粒時の全水分との関係から造粒
粒径に応じて必要な全水分を求め、該水分から原
料水分と水溶性バインダー水分を試算して得た不
足水分を上記水溶性バインダーに添加し、原料粉
炭素を混練造粒することにある。 更に本発明の第2発明として、上記不足水分と
水溶性バインダーとをノズル先端で衝突混合して
原料粉炭素に散布し混練造粒することを提起す
る。 本発明者は上記課題解決のため種々実験を重
ね、粉炭素の如き略粒度が揃つており、かつ粘性
も或る範囲内で大きくばらつかず、比較的造粒が
容易であると思われるものが、強度を調整するた
めのバインダー添加量調整によつて造粒製品の粒
度が変化し、恰もバインダー濃度と粒度に相関が
あるが如き様相を呈することを発見した。 これの真因を解明するため各種バインダーを用
いて造粒後製品の圧潰強度を各種設定し、バイン
ダー別に濃度を変化させたものと同一強度をうる
ことができる強度別の各バインダー濃度を設定し
たものとを準備し、造粒試験を行つた。 その結果水溶性バインダーを用いると造粒々度
は、造粒時の全水分で調整でき、非水溶性バイン
ダーは造粒々度を安定させるためには、加温が必
要となり、かつこの非水溶性バインダーの温度・
粘度特性によつては高温加熱を要することとな
り、その結果全水分のみで造粒々度が調整でき
ず、バインダーの温度特性と加熱温度に大きく支
配され、粘度の調整は実用上極めて困難であるこ
とを発見した。 また水溶性バインダーとして水ガラスを用い、
この溶液に全水分として必要な水分を加えて粉炭
素に散布するか、その水分を水ガラスと同時に粉
炭素の同一箇所に散布する場合と、同一水分量を
水ガラスと同時に粉炭素の異る箇所に散布するの
とでは、製品造粒々度と造粒時間および造粒歩留
りに格段の相違があり、前二者は実用上極めて良
好な造粒結果が得られるのに比し、後者は前記非
水溶性バインダーを常温で用いた時と大差ない状
態、即ち造粒々度のバラツキが大きく、かつ造粒
時間を長くしてもその傾向が変らないばかりか、
乾燥後に砕けて粒化しない粉炭素が発生する等全
く実用的工業的な実施は不可能な結果を示した。 本発明者等はこれ等の現象をもとに更に実験調
査を繰り返し、造粒々度を目標粒度と実質的に一
致せしめ、かつその歩留りが高く、しかもその造
粒所要時間が短くなるのはバインダー濃度と全水
分量が常に均等に造粒前の粉炭素の同一箇所に散
布される前者の群であつて、これ等はバインダー
が造粒、乾燥を経て固化し、強度を発揮する過程
全域にわたつて全粉炭素のバインダー濃度と水分
濃度が同じ経過を辿るのに反し、後者はバインダ
ー濃度の偏析と、水分の偏析が各所に発生し、乾
燥後水分濃度の高い粒が砕けて粉化することを見
出した。これは造粒前の粉炭素の別々の位置にバ
インダーと水を添加することにより、粉炭素が添
加物と直ちに粒化作用をおこし、粒化のおくれた
ものがその後添加されるものと粒化作用をおこす
ことによることを突きとめた。 これにより水分濃度の高い粒が、バインダー濃
度が実質的に把握できないまでに低くなつている
ことが理解でき、従つて乾燥時に単に水分によつ
て維持していた粉炭素の粉間結合力が失なわれ、
その結果粉化する経緯が判明したのである。 本発明はこれ等既述した知見をもとに、造粒効
率の高い、(バインダー使用原単位が小さく、造
粒時間が短い造粒)かつ目標粒々度歩留りの高い
造粒法を確立するために、水ガラス、廃糖密、パ
ルプ廃液等の水溶性バインダーを必須とし、かつ
全水分と粒径の関係をもとに目標粒度において必
要な全水分と、原料粉炭素とバインダーの各水分
を比較し、添加を要する水分を粉炭素に添加する
時バインダーと同時に同一箇所に散布することを
必須とするものである。 以下本発明の実施例を比較例と共に図をもとに
説明する。 第1図は本発明を実施する装置の一例を示し、
1は粉コークスホツパー、2は水ガラスタンク、
3は水タンク、4は混合タンク、5は水ガラス水
溶液圧送ポンプ、6は粒度と全水分特性テーブ
ル、7は演算指令器で中性子水分計8からの粉コ
ークス水分と、水ガラス水分設定器9からの水ガ
ラス水分と中性子水分計10からの篩下返送炭素
粒の水分を目標粒度設定器11から設定された粒
度に従つて、テーブル6から出力した必要全水分
から減算し、添加必要水分を演算し、バルブ開度
制御器12に出力する。13は水分調整バルブ、
14は混練機、15は造粒機、16は振動篩、1
7は乾燥機、18はシユート、19はベルトコン
ベヤー、20は成品ホツパーである。 第3図は、第1図例のバインダー水溶液散布方
法の別の態様の実施例で、ノズル21を複合ノズ
ルにし、原料粉炭素に水ガラスと全水分量として
必要な添加水分を同時に同一箇所に散布するもの
で、噴射液衝突型ノズル21を示しているが、そ
の他の実施例としては2重管とし、外管に水ガラ
ス、内管に水を通してノズル端部で水流により水
ガラスを拡散する方法も同等の効果を奏し、これ
等の方法は第1図例の混合タンク4、水ガラス水
溶液圧送ポンプ5を省略することができるので好
ましい。 第2図は比較例を実施した従来装置を示し、第
1図と同一符号のものは同一装置を示し、第1図
例と異るところはノズル22で、比較例では水ガ
ラスと水は全く別の位置で散布する構造となつて
いる。 第4図は0.5mm以下の粉コークスを水ガラスを
バインダーとして第1図の装置で造粒した時の全
水分と造粒々度の特性を示す図である。第1表に
上記第1図装置を用いた本発明例と第2図装置を
用いた比較従来例の各造粒結果を示す。各々の実
施条件は第2表の通りである。
The present invention provides a granulation method using powdered coke generated from a coke manufacturing process and carbon powder such as fine coke powder and fine coal powder collected in a cloth dust collector as raw materials. Coke is normally generated during the production of city gas, but when producing coke for steel manufacturing, a single steelworks generates about 10,000 tons per day, or about 300,000 tons per month. In this case, the intended use is for blast furnaces, and particles other than those suitable for use in blast furnaces are sorted and separated, and depending on their particle size, they are used as raw materials for producing sintered ore as raw materials for blast furnaces, or as raw materials for carburizing agents in the steelmaking process. . However, these powdered carbons have a high dust-emitting property and are extremely difficult to handle, which makes them impractical and has limited applications. The present invention solves these problems and targets not only the surplus carbon powder but also the inevitable by-product powder carbon, with the aim of improving practicality and generality at a low cost and efficiently. The object of the present invention is to provide a method for granulating powdered carbon that can easily obtain the required strength and particle size. The gist of this is that when granulating powdered carbon, a water-soluble binder is used, and based on the relationship between the predetermined granule diameter of powdered carbon and the total water content at the time of granulation, The method involves determining the total required water content, calculating the raw material water content and the water-soluble binder water content from the obtained water content, and adding the insufficient water content to the water-soluble binder to knead and granulate the raw material powder carbon. Furthermore, as a second aspect of the present invention, we propose that the deficient water and a water-soluble binder are collided and mixed at the tip of a nozzle, and then dispersed onto the raw material powder carbon for kneading and granulation. The present inventor has conducted various experiments to solve the above problem, and has found that the particle size is almost uniform like that of powdered carbon, the viscosity does not vary greatly within a certain range, and it is thought to be relatively easy to granulate. However, it was discovered that by adjusting the amount of binder added to adjust the strength, the particle size of the granulated product changes, as if there is a correlation between binder concentration and particle size. In order to elucidate the root cause of this, we set various crushing strengths of the granulated product using various binders, and set binder concentrations for each strength that can obtain the same strength as those obtained by varying the concentration of each binder. A granulation test was conducted using the prepared materials. As a result, when using a water-soluble binder, the degree of granulation can be adjusted by adjusting the total water content during granulation, whereas when using a water-insoluble binder, heating is required to stabilize the degree of granulation, and this non-aqueous binder requires heating. Temperature of the binder
Depending on the viscosity characteristics, high-temperature heating is required, and as a result, the degree of granulation cannot be adjusted using only the total moisture, and is largely controlled by the temperature characteristics of the binder and the heating temperature, making it extremely difficult in practice to adjust the viscosity. I discovered that. In addition, water glass is used as a water-soluble binder,
Add the water required for total water to this solution and sprinkle it on the powdered carbon, or sprinkle the water on the same part of the powdered carbon at the same time as the water glass, or sprinkle the same amount of water on the powdered carbon at the same time as the water glass. There are significant differences in product granulation frequency, granulation time, and granulation yield when spraying the product at different locations, and while the former two provide extremely good granulation results in practical use, the latter Not only is the condition not much different from when the water-insoluble binder is used at room temperature, that is, the degree of granulation varies greatly, and even if the granulation time is increased, this tendency does not change.
The results showed that after drying, powdered carbon that was not pulverized and granulated was generated, making it completely impossible to carry out practical industrial implementation. Based on these phenomena, the present inventors further repeated experimental investigations and found that the degree of granulation substantially matched the target particle size, the yield was high, and the time required for granulation was shortened. The former group is where the binder concentration and total water content are always evenly distributed at the same location on the powdered carbon before granulation, and these are the entire process where the binder solidifies through granulation and drying and exhibits strength. Contrary to the fact that the binder concentration and moisture concentration of whole powder carbon follow the same course over time, in the latter case, segregation of binder concentration and segregation of moisture occur in various places, and after drying, grains with high moisture concentration break and become powder. I found out what to do. This is achieved by adding a binder and water to separate locations on the powdered carbon before granulation, so that the powdered carbon immediately granulates with the additives, and what is delayed in granulation becomes granulated with what is added later. It was discovered that this is due to the effect of This shows that grains with high moisture concentration have a binder concentration so low that it is virtually undetectable, and therefore the interparticle bonding force of the carbon powder, which was maintained simply by moisture during drying, is lost. Naware,
As a result, the reason why it turned into powder was revealed. The present invention is based on the above-mentioned knowledge, and aims to establish a granulation method with high granulation efficiency (granulation with small binder usage unit and short granulation time) and high target granularity yield. In addition, water-soluble binders such as water glass, waste molasses, and pulp waste liquid are required, and based on the relationship between total moisture and particle size, the total moisture required for the target particle size, and each moisture of raw material powder carbon and binder are calculated. In comparison, when water that needs to be added is added to powdered carbon, it is essential to spray it in the same location at the same time as the binder. Examples of the present invention will be described below with reference to the drawings together with comparative examples. FIG. 1 shows an example of an apparatus for implementing the present invention,
1 is a powder coke hopper, 2 is a water glass tank,
3 is a water tank, 4 is a mixing tank, 5 is a water glass aqueous solution pressure pump, 6 is a particle size and total moisture characteristic table, 7 is an arithmetic command unit that measures coke powder moisture from a neutron moisture meter 8, and a water glass moisture setting device 9 According to the particle size set from the target particle size setting device 11, subtract the moisture content of the water glass from the neutron moisture meter 10 and the moisture content of the carbon particles returned under the sieve from the target particle size setting device 11 from the total required moisture output from the table 6, and calculate the required moisture content for addition. It is calculated and output to the valve opening degree controller 12. 13 is a moisture adjustment valve,
14 is a kneading machine, 15 is a granulator, 16 is a vibrating sieve, 1
7 is a dryer, 18 is a chute, 19 is a belt conveyor, and 20 is a finished product hopper. FIG. 3 shows an example of another aspect of the binder aqueous solution dispersion method of the example in FIG. Although a spray liquid impingement type nozzle 21 is shown, other embodiments include a double tube, in which water glass is passed through the outer tube and water is passed through the inner tube, and the water glass is diffused by the water flow at the end of the nozzle. These methods are preferable because they have the same effect and can omit the mixing tank 4 and the water glass aqueous solution pressure pump 5 in the example shown in FIG. Fig. 2 shows a conventional device in which a comparative example was carried out. Items with the same symbols as those in Fig. 1 indicate the same devices, and the difference from the example in Fig. 1 is the nozzle 22. In the comparative example, water glass and water are completely removed. The structure is such that it is dispersed at different locations. FIG. 4 is a diagram showing the characteristics of total moisture and degree of granulation when coke powder of 0.5 mm or less is granulated using the apparatus of FIG. 1 using water glass as a binder. Table 1 shows the granulation results of the present invention example using the apparatus shown in FIG. 1 and the comparative conventional example using the apparatus shown in FIG. The respective implementation conditions are as shown in Table 2.

【表】 第2表 目標粒度:2〜3mm、平均2.5mm 原 料:0.5mm以下粉コークス(水分0%)
…2000Kg 全水分:第4図より20.5% …410Kg 水ガラス:3号(水分62%) …359Kg 添加水分:410−(359×0.62) …188Kg 造粒回転数:40r.p.m 第1表から明らかなように本発明例は目標粒度
歩留は80.4%であつたのに比し、比較従来例は混
練時間を約2倍にしたにもかゝわらず3−2mmと
2−1mmが略同量であり、目標粒度、歩留は29.4
%にとどまり、本発明例は目標粒度歩留が高く、
かつ圧潰強度のばらつきは小さかつた。
[Table] Table 2 Target particle size: 2 to 3 mm, average 2.5 mm Raw material: Coke powder less than 0.5 mm (moisture 0%)
…2000Kg Total moisture: 20.5% from Figure 4 …410Kg Water glass: No. 3 (moisture 62%) …359Kg Added moisture: 410− (359×0.62) …188Kg Granulation rotation speed: 40r.pm Evidently from Table 1 As can be seen, the target particle size yield in the present invention example was 80.4%, while in the comparative conventional example, 3-2 mm and 2-1 mm were approximately the same even though the kneading time was approximately doubled. quantity, target particle size, yield is 29.4
%, the example of the present invention has a high target particle size yield,
Moreover, the variation in crushing strength was small.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の全体フロー、第2図は従来例
の全体フロー、第3図は本発明の他の実施例図、
第4図は粒度と全水分との関係グラフを示す。 1:粉コークス、2:水ガラス、3:水、4:
混合槽、7:演算指令器、14:混練機、15:
造粒機、16:振動篩、21:バインダー水溶液
散布器。
Figure 1 is the overall flow of the present invention, Figure 2 is the overall flow of the conventional example, Figure 3 is another embodiment of the present invention,
FIG. 4 shows a graph of the relationship between particle size and total moisture. 1: Coke powder, 2: Water glass, 3: Water, 4:
Mixing tank, 7: Arithmetic controller, 14: Kneading machine, 15:
Granulator, 16: Vibrating sieve, 21: Binder aqueous solution sprinkler.

Claims (1)

【特許請求の範囲】 1 粉炭素を造粒するにあたつて水溶性バインダ
ーを用い、予め求めた粉炭素の造粒粒径と造粒時
の全水分との関係から造粒粒径に応じて必要な全
水分を求め、該水分から原料水分と水溶性バイン
ダー水分を試算して得た不足水分を上記水溶性バ
インダーに添加し、原料粉炭素を混練造粒するこ
とを特徴とする粉炭素の造粒方法。 2 粉炭素を造粒するにあたつて水溶性バインダ
ーを用い、予め求めた粉炭素の造粒粒径と造粒時
の全水分との関係から造粒粒径に応じて必要な全
水分を求め、該水分から原料水分と水溶性バイン
ダー水分を試算して得た不足水分と水溶性バイン
ダーとをノズル先端で衝突混合して原料粉炭素に
散布し混練造粒する ことを特徴とする粉炭素の造粒方法。
[Scope of Claims] 1. When granulating powdered carbon, a water-soluble binder is used, and the granule size is determined based on the relationship between the granule diameter of the powdered carbon and the total water content at the time of granulation, which is determined in advance. powdered carbon, characterized in that the total water required is determined, and the insufficient water obtained by calculating the raw material water and water-soluble binder water from the water is added to the water-soluble binder, and the raw material powder carbon is kneaded and granulated. granulation method. 2. When granulating powdered carbon, a water-soluble binder is used, and the required total water content is determined according to the granulation diameter based on the relationship between the granulation diameter of the powdered carbon and the total water content during granulation, which has been determined in advance. The carbon powder is characterized in that the water-soluble binder and the water-soluble binder are collision-mixed with the water-soluble binder and the water-soluble binder obtained by calculating the water content of the raw material and the water-soluble binder from the water content, and are dispersed on the raw material powder carbon for kneading and granulation. granulation method.
JP14633479A 1979-11-12 1979-11-12 Pelletizing of carbon powder Granted JPS5669209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14633479A JPS5669209A (en) 1979-11-12 1979-11-12 Pelletizing of carbon powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14633479A JPS5669209A (en) 1979-11-12 1979-11-12 Pelletizing of carbon powder

Publications (2)

Publication Number Publication Date
JPS5669209A JPS5669209A (en) 1981-06-10
JPS6245165B2 true JPS6245165B2 (en) 1987-09-25

Family

ID=15405330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14633479A Granted JPS5669209A (en) 1979-11-12 1979-11-12 Pelletizing of carbon powder

Country Status (1)

Country Link
JP (1) JPS5669209A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SI24501A (en) * 2013-10-21 2015-04-30 Rc Simit, D.O.O. Binder for free flowing material and method of binder use

Also Published As

Publication number Publication date
JPS5669209A (en) 1981-06-10

Similar Documents

Publication Publication Date Title
Kapur Balling and granulation
CN101525686B (en) Method for manufacturing high strength green ball block by coal-based direct reduction and device therefor
AU2015327467A1 (en) Method for the production of sulphate of potash granulates, sulphate of potash granulate obtained thereby, and use thereof
WO2022222355A1 (en) Calcium magnesium phosphate fertilizer granulating agent and application thereof
JP2014148727A (en) Briquette production method
CN104451135B (en) Containing microfine coal and the agglomeration method of the pelletizing of ultra-fine calcium lime powder
CN103154276A (en) Process for production of reduced iron
JP3820132B2 (en) Pretreatment method of sintering raw material
JPS6245165B2 (en)
US2391588A (en) Method of prepaking pellets for
CN109173926A (en) A kind of method of improved drum granulating production granular complex fertilizer
CN103896638A (en) Disc granulation process for livestock and poultry feces organic fertilizer
US2773753A (en) Process for producing ammonium nitrate of any desired size particle
KR102459738B1 (en) A granulated product, a method for manufacturing a granulated product, and a method for manufacturing a sintered ore
US3584098A (en) Method of manufacture of improved sewer and drain cleaner compositions
JPH01104723A (en) Production of sintering raw material from iron making dust
CN215540648U (en) System for preparing compound fertilizer by utilizing molten urea through rotary drum granulator
JP4317316B2 (en) Pretreatment method of sintering raw materials
DE1142843B (en) Process for the production of a porous agglomerate
US4116681A (en) Process for the manufacture of ore pellets
CN207713790U (en) A kind of balling-up system
KR910001305B1 (en) Process for production of granular potassium sulfate
RU2073728C1 (en) Method of preparing carbonizer for carbon alloying of steel on vacuum installations
JP2746030B2 (en) Pre-processing method for sintering raw materials
CN100513362C (en) Method for producing compound mixed fertilizer