JP6978734B2 - Manufacturing method of granulated sinter raw material and manufacturing method of sinter - Google Patents

Manufacturing method of granulated sinter raw material and manufacturing method of sinter Download PDF

Info

Publication number
JP6978734B2
JP6978734B2 JP2020114179A JP2020114179A JP6978734B2 JP 6978734 B2 JP6978734 B2 JP 6978734B2 JP 2020114179 A JP2020114179 A JP 2020114179A JP 2020114179 A JP2020114179 A JP 2020114179A JP 6978734 B2 JP6978734 B2 JP 6978734B2
Authority
JP
Japan
Prior art keywords
raw material
granulated
sinter
sintered
iron ore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020114179A
Other languages
Japanese (ja)
Other versions
JP2020158889A (en
Inventor
健太 竹原
哲也 山本
寿幸 廣澤
友司 岩見
一洋 岩瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017069489A external-priority patent/JP2018172704A/en
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2020114179A priority Critical patent/JP6978734B2/en
Publication of JP2020158889A publication Critical patent/JP2020158889A/en
Application granted granted Critical
Publication of JP6978734B2 publication Critical patent/JP6978734B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、造粒焼結原料の製造方法およびこれを用いて焼結鉱を製造する方法に関する。 The present invention relates to a method for producing a granulated sinter raw material and a method for producing a sinter using the same.

高炉で用いる焼結鉱は、複数銘柄の粉鉄鉱石(例えば、「10mm未満」−以下の説明では「−10mm」のように表示する−の大きさである「シンターフィード」と呼ばれているもの)に、石灰石や珪石、蛇紋岩等の副原料粉と、ダスト、スケール、返鉱等の雑原料粉と、そして粉コークス等の固体燃料を適量ずつ配合した焼結配合原料に水分を添加し、その後、混合−造粒し、このようにして得られた造粒焼結原料をドワイト・ロイド式焼結機に装入して焼成することによって製造される。ここで、上記焼結配合原料は、通常、造粒時に水分を含むために互いに凝集して擬似粒子となる。この擬似粒子化した焼結鉱製造用の造粒焼結原料は、焼結機のパレット上に装入されたとき、焼結原料装入層の良好な通気を確保するのに役立ち、焼結反応を円滑に進める上で有効な存在となる。 The sinter used in the blast furnace is called "sinter feed", which is the size of multiple brands of sinter ore (eg, "less than 10 mm" -indicated as "-10 mm" in the description below. Add water to the sintered compounding raw material, which is a mixture of auxiliary raw material powder such as limestone, blast furnace, and serpentine, miscellaneous raw material powder such as dust, scale, and return ore, and solid fuel such as powdered coke. Then, it is mixed-granulated, and the granulated sintering raw material thus obtained is charged into a Dwight-Lloyd type sintering machine and fired. Here, the sintered compounded raw materials usually aggregate with each other to form pseudo-particles because they contain water during granulation. This granulated sinter raw material for producing pseudo-partitioned sinter is useful for ensuring good aeration of the sinter raw material charging layer when loaded on the pallet of the sinter machine, and is sintered. It will be an effective existence for the smooth progress of the reaction.

擬似粒子化した前記造粒焼結原料は、造粒形状、とくに大きい形状のものほど良好な通気が得られると考えられており、そのために、造粒性の改善に向けた様々な方法が検討されてきた。例えば、粉鉄鉱石の造粒性を改善するために、核粒子となる粗粒に対しこれに付着させる微粉の量を調整する方法(焼結原料の事前処理方法)に関する特許文献1−5のような提案がある。 It is considered that the granulated sintered raw material that has been made into pseudo-particles has a granulated shape, especially a larger shape, and better ventilation can be obtained. Therefore, various methods for improving the granulation property are studied. It has been. For example, Patent Document 1-5 relating to a method for adjusting the amount of fine powder adhering to coarse particles as nuclei particles (pretreatment method for sintering raw material) in order to improve the granulation property of iron ore powder. There is such a suggestion.

ただし、これらの文献に開示された造粒焼結原料の製造技術については、コストが高くなるという問題がある他、細粒鉄鉱石を造粒焼結原料中に混合する際の鉱石粒度の適正値については検討されていない。 However, the techniques for producing granulated and sintered raw materials disclosed in these documents have the problem of high cost, and the appropriate particle size of the ore when mixing fine-grained iron ore into the granulated and sintered raw material. The value has not been considered.

その他、高結晶水含有鉱石を粉砕後、これを他の諸原料と混合し造粒して造粒焼結原料とする技術の提案もある。(特許文献6、7) In addition, there is also a proposal of a technique for crushing a high water of crystallization ore and then mixing it with other raw materials to granulate it into a granulated sintering raw material. (Patent Documents 6 and 7)

しかしながら、高結晶水含有鉱石の使用は、熱量や充填層の観点からその使用は好ましくないのが実情である。 However, the fact is that the use of high water of crystallization ore is not preferable from the viewpoint of calorific value and packed bed.

その他、高気孔率鉄鉱石を粉砕し、他の諸原料と混合した上で造粒を行う技術(特許文献8)の提案もあるが、高気孔率鉄鉱石は、T.Feが低く、結晶水が高いといった特徴を併せ持っており、粉砕しても、成分の面で焼結機の操業に悪影響を与えることが知られている。 In addition, there is a proposal of a technique (Patent Document 8) in which high porosity iron ore is crushed, mixed with other raw materials, and then granulated. It also has the characteristics of low Fe and high water of crystallization, and it is known that even if it is crushed, it adversely affects the operation of the sintering machine in terms of components.

また、その他の方法としては、SiOの含有量が3〜6mass%で、63μmより大きい粒子が微粉鉄鉱石総質量に対して90mass%以上である微粉鉄鉱石を粉砕して用いる事前処理方法(特許文献9)の提案もある。しかし、この技術については、細粒使用時での適正な配合が検討されておらず、焼結での細粒原料の使用方法が不明である。 Another method is a pretreatment method in which fine iron ore having a SiO 2 content of 3 to 6 mass% and particles larger than 63 μm having a mass of 90 mass% or more with respect to the total mass of fine iron ore is crushed and used (a pretreatment method). There is also a proposal of Patent Document 9). However, regarding this technique, proper compounding when using fine granules has not been studied, and the method of using the fine granule raw material in sintering is unknown.

特開2005−350770号公報Japanese Unexamined Patent Publication No. 2005-350770 特開2007−77512号公報Japanese Unexamined Patent Publication No. 2007-77512 特開2008−240159号公報Japanese Unexamined Patent Publication No. 2008-240159 特開2010−242226号公報Japanese Unexamined Patent Publication No. 2010-242226 特開2013−32568号公報Japanese Unexamined Patent Publication No. 2013-32568 特開2014−196548号公報Japanese Unexamined Patent Publication No. 2014-196548 特開2008−261016号公報Japanese Unexamined Patent Publication No. 2008-261016 特開2007−138244号公報Japanese Unexamined Patent Publication No. 2007-138244 特開2016−17211号公報Japanese Unexamined Patent Publication No. 2016-17211

本発明は、従来技術が抱えている前述した課題を克服すること、特に相対的に−500μmという大きさの微粉鉄鉱石を多量に配合した場合であっても、後で詳述する核粉指数を好適に管理することで、造粒性を向上させることができるとともに、さらに焼結鉱の生産性の向上にも効果のある造粒焼結原料の製造方法と、この原料を用いて焼結鉱を製造する方法の提案を目的とするものである。 The present invention overcomes the above-mentioned problems of the prior art, and in particular, even when a large amount of fine iron ore having a relative size of −500 μm is blended, the nuclear powder index described in detail later. A method for producing a granulated sintered raw material, which is effective in improving the productivity of the sintered ore as well as improving the granulation property, and sintering using this raw material. The purpose is to propose a method for producing ore.

本発明は、前述した解決すべき課題に対し、粉粒状の鉄鉱石を含む焼結配合原料を用いて造粒焼結原料を製造し、さらにはその造粒焼結原料を用いて焼結鉱を製造する方法を提案するものである。即ち、まず造粒焼結原料の製造に当たっては、後で詳述する核粉指数に着目し、この核粉指数が2.0以上を示す焼結配合原料を用い、そして、本発明に係る焼結鉱の製造に当たっては、上記のようにして得られた造粒焼結原料を用いて焼結することを特徴としている。 The present invention solves the above-mentioned problems to be solved by producing a granulated sinter raw material using a sinter compounding raw material containing powdery and granular iron ore, and further using the granulated sinter raw material to sinter ore. It proposes a method of manufacturing. That is, first, in the production of the granulated sintered raw material, attention is paid to the nuclear powder index described in detail later, a sintered compound raw material having a nuclear powder index of 2.0 or more is used, and the baking according to the present invention is used. The production of ore is characterized by sintering using the granulation sintering raw material obtained as described above.

即ち、本発明は、第1に、粉粒状鉄鉱石を含む焼結配合原料を造粒して造粒焼結原料とする際に、その焼結配合原料は、−500μmの粒子割合が30mass%超えであり、下記に定義する核粉指数;
核粉指数={(+1mmの粒子割合)+(−20μmの粒子割合)}/(−500μmの粒子割合)
が2.0以上を示すものであることを特徴とする造粒焼結原料の製造方法を提案する。
That is, in the present invention, first, when a sintered compound raw material containing powdered and granular iron ore is granulated to be a granulated sintered raw material, the sintered compound raw material has a particle ratio of −500 μm of 30 mass%. Nuclear powder index that is exceeded and is defined below;
Nuclear powder index = {(+ 1 mm particle ratio) + (-20 μm particle ratio)} / (-500 μm particle ratio)
We propose a method for producing a granulated sintering raw material, which is characterized by having a value of 2.0 or more.

また、本発明は、第2に、粉粒状鉄鉱石を含む焼結配合原料を造粒し、得られたその造粒焼結原料を焼結機にて焼成することにより焼結鉱を製造する方法において、上記焼結配合原料は、−500μmの粒子割合が30mass%超えであり、下記に定義する核粉指数;
核粉指数={(+1mmの粒子割合)+(−20μmの粒子割合)}/(−500μmの粒子割合)
が2.0以上を示すものであることを特徴とする焼結鉱の製造方法を提案する。
Secondly, the present invention produces a sinter by granulating a sinter compounding raw material containing powdered and granular iron ore and calcining the obtained granulated sinter raw material with a sinter. In the method, the sintered compound raw material has a particle ratio of −500 μm exceeding 30 mass%, and has a nuclear powder index defined below;
Nuclear powder index = {(+ 1 mm particle ratio) + (-20 μm particle ratio)} / (-500 μm particle ratio)
We propose a method for producing a sinter, which is characterized by having a value of 2.0 or more.

なお、本発明においてはまた、下記の構成;
(1) 前記造粒焼結原料は、バインダーとして生石灰を用いて造粒されたものであること、
(2) 前記焼結配合原料および生石灰を用いて造粒焼結原料を製造する際に、該生石灰は、造粒後半に外装添加すること、
(3) 前記焼結配合原料中の粉粒状鉄鉱石は、少なくともその一部は、−20μmの大きさの粒子を30mass%以上含むものであること、
が、より好ましい実施形態である。
In addition, in the present invention, the following configuration;
(1) The granulated sintering raw material must be granulated using quicklime as a binder.
(2) When a granulated sintered raw material is produced using the sintered compound raw material and quick lime, the quick lime is added to the exterior in the latter half of the granulation.
(3) At least a part of the powdered iron ore in the sinter compounding raw material contains particles having a size of -20 μm in an amount of 30 mass% or more.
Is a more preferred embodiment.

本発明によれば、+1mm、−20μm、−500μmの粉粒状鉄鉱石の配合割合を示す核粉指数を、2.0以上という好適範囲内にすること、及びバインダーとして生石灰を外装添加することを主とする方法の採用などにより、微粉鉄鉱石の多量配合下でもなお高い造粒性が得られるようにすると共に、最終的には焼結鉱の生産性向上に寄与することができ、このことによって望ましい造粒焼結原料と焼結鉱の製造技術を確立し提案することができる。 According to the present invention, the nuclear powder index indicating the blending ratio of powdered iron ore of +1 mm, -20 μm, and −500 μm should be within a suitable range of 2.0 or more, and calcination should be added as a binder. By adopting the main method, it is possible to obtain high granulation performance even under a large amount of fine iron ore, and finally to contribute to the improvement of sinter productivity. It is possible to establish and propose a desirable granulation sinter raw material and sinter manufacturing technology.

微粉割合の異なる添加鉄鉱石の粒度と風量との関係を示す図である。It is a figure which shows the relationship between the particle size and the air volume of the added iron ore with different fine powder ratios. 最大付着力と−63μm粒子の割合との関係を示す図である。It is a figure which shows the relationship between the maximum adhesive force and the ratio of −63 μm particles. 最大付着力と−20μm粒子の割合との関係を示す図である。It is a figure which shows the relationship between the maximum adhesive force and the ratio of -20 μm particles. −500μmの割合と造粒粒子径との関係を示す図である。It is a figure which shows the relationship between the ratio of −500 μm, and the granulation particle diameter. −20μmの割合と焼結生産率との関係を示す図である。It is a figure which shows the relationship between the ratio of −20 μm, and the sintering production rate. 核粉指数と焼結生産率との関係を示す図である。It is a figure which shows the relationship between the nuclear powder index and the sintering production rate.

発明者らは、「焼結配合原料」を造粒して「造粒焼結原料」を製造するに当たって、まず造粒性に及ぼす原料(鉄鉱石)の粒度の影響を調査した。即ち、この調査は、各粒度に篩った鉄鉱石をベースの配合に振り代えて、造粒試験および通気試験を行った。実験の原料としては、下記の表1に示す原料(鉄鉱石A〜D)を用いた(CW=結晶水)。鉄鉱石Bは、鉄鉱石Aを粉砕して篩って−1mm(1mm未満)にしたものであり、通気性を制御するために一定量を加えるためのものである。この試験では、特に、粗精鉱である鉄鉱石Dを粉砕し、(63〜125/125〜250/250〜500/500〜1000)μmの篩目で篩った鉄鉱石を添加した。そして、下記表2に示すとおり、粗精鉱の粒度影響を調査するため、ベース配合の条件として、該鉄鉱石Dを含まないもの(配合6)についても上記の試験を行った。 The inventors first investigated the influence of the particle size of the raw material (iron ore) on the granulation property when granulating the "sintered compound raw material" to produce the "granulated sintered raw material". That is, in this investigation, iron ore sieved to each particle size was transferred to the base formulation, and a granulation test and an aeration test were performed. As the raw material for the experiment, the raw materials (iron ores A to D) shown in Table 1 below were used (CW = water of crystallization). The iron ore B is obtained by crushing the iron ore A and sieving it to -1 mm (less than 1 mm), and adding a certain amount to control the air permeability. In this test, in particular, iron ore D, which is a crude concentrate, was crushed and iron ore sieved by a (63 to 125/125 to 250/250 to 500/500 to 1000) μm sieve was added. Then, as shown in Table 2 below, in order to investigate the influence of the particle size of the coarse concentrate, the above test was also conducted on the one containing no iron ore D (formulation 6) as a condition for the base formulation.

Figure 0006978734
Figure 0006978734

Figure 0006978734
Figure 0006978734

上記の各試験に当たっては、それぞれの焼結配合原料をコンクリートミキサーで3分間混合し、その後、水を添加して造粒を行ない、さらに、得られた造粒粒子を150mmφ、380mmHの円筒容器に入れ、負圧700mmaqで通気性を示す風量を測定した。なお、この試験では、造粒物の水分は、6〜10mass%の範囲で変更し、配合毎に最も通気がよかったときの水分を用いることとし、配合1〜5は、すべての添加粒度で8mass%が最適であり、配合6では9mass%が最適であった。なお、配合6のもので適正な造粒水分が増加したが、その理由は、結晶水が多い鉱石Cを多く用いたためであった。結晶水が多い鉱石は、一般的に気孔が多く、造粒時に鉱石内部に水分が浸透し、緻密な鉱石よりも多くの水分が必要になる。また、配合1〜5については、粒度は異なるが、鉱石種が変わっていないため、適正水分が変化しなかった。 In each of the above tests, each sintered compound raw material was mixed with a concrete mixer for 3 minutes, then water was added to perform granulation, and the obtained granulated particles were placed in a cylindrical container of 150 mmφ and 380 mmH. The air volume was measured at a negative pressure of 700 mmaq, indicating air permeability. In this test, the water content of the granulated product was changed in the range of 6 to 10 mass%, and the water content at the time of the best ventilation was used for each formulation, and the formulations 1 to 5 were 8 mass at all added particle sizes. % Was optimal, and in formulation 6, 9 mass% was optimal. In addition, the proper granulation water content increased in the compound 6 because of the large amount of ore C having a large amount of water of crystallization. An ore with a large amount of water of crystallization generally has many pores, and water permeates into the ore during granulation, so that more water is required than a dense ore. Further, regarding the formulations 1 to 5, although the particle size was different, the proper water content did not change because the ore type did not change.

その結果、通気性試験では、図1に示すように、−63μm(63μm未満)のものは通気性がベース配合6よりも良い結果となった。しかし、+63μmの粒度のものは通気性の悪化を招くことが判った。従って、+63μmの粒子を配合することは造粒性の低下、ひいては通気性に悪影響が出ることが判った。このことからすると、−63μmの粒子の配合を増やすことは、通気性の改善につながると考えられる。以上を整理すると、−1mm(−1000μm)の粒子を配合する際は、−63μmの粒子、即ち微粉鉄鉱石の配合を増やすことが通気性の改善に有効であると云える。 As a result, in the air permeability test, as shown in FIG. 1, the air permeability of -63 μm (less than 63 μm) was better than that of the base formulation 6. However, it was found that a particle size of +63 μm causes deterioration of air permeability. Therefore, it was found that the addition of +63 μm particles adversely affects the granulation property and the air permeability. From this, it is considered that increasing the composition of the particles of −63 μm leads to the improvement of the air permeability. Summarizing the above, it can be said that when blending -1 mm (-1000 μm) particles, increasing the blending of -63 μm particles, that is, fine iron ore, is effective in improving air permeability.

ところで、粉粒状鉄鉱石などの造粒現象は、微粉鉄鉱石が核粒子表面に逐次的に付着していく現象である。従って、造粒時は核粒子表面への微粉鉄鉱石の付着力が重要になる。そこで、造粒に影響を及ぼす付着力を測定するため、せん断試験を行った。この試験は、500μmの篩で篩った−500μmの粉鉄鉱石を固定金型と可動金型を合わせた容器(43mmφ)内に装入し、上部のピストンにより、200kgfで圧縮し、その後、垂直応力を低下させながら、可動部をプルゲージで水平方向に引っ張ることにより、垂直応力に応じたせん断応力を測定することにより行なった。ここで、付着力は、垂直応力が0kgfになったときの、せん断応力を用いた。試験は、表3中の鉄鉱石A、鉄鉱石C〜Fについて行なった。試料の粒度は、−500μmに篩ったものと、63〜125μmに揃えたサンプルを各鉄鉱石毎に評価し、さらに鉄鉱石Dを粉砕したサンプルについても評価した。 By the way, the granulation phenomenon of powdered iron ore is a phenomenon in which fine iron ore is sequentially attached to the surface of nuclear particles. Therefore, the adhesion of fine iron ore to the surface of nuclear particles is important during granulation. Therefore, a shear test was conducted to measure the adhesive force that affects granulation. In this test, -500 μm powdered iron ore sieved with a 500 μm sieve was placed in a container (43 mmφ) containing a fixed mold and a movable mold, compressed at 200 kgf by an upper piston, and then compressed at 200 kgf. This was done by measuring the shear stress according to the normal stress by pulling the movable part in the horizontal direction with a pull gauge while reducing the normal stress. Here, as the adhesive force, the shear stress when the normal stress became 0 kgf was used. The test was performed on iron ore A and iron ores C to F in Table 3. The particle size of the sample was evaluated for each iron ore, one sieved to −500 μm and a sample prepared to 63 to 125 μm, and further evaluated the sample obtained by crushing iron ore D.

その結果、下記表3、図2、図3に示すとおり、−63μmまたは−20μmの割合が上昇するにつれて、鉄鉱石の付着力が増加することが判った。ここで、−63μm、−20μmの割合は−500μmに篩ったもの、63〜125μmに揃えたもの、粉砕した鉄鉱石Dの粒度をレーザー散乱・分散測定法で測定した結果である。特に、−63μmおよび−20μmの割合と付着力について、2次関数を用いて重回帰分析を行ったところ、相関係数が−63μmの場合、0.93だったところ、−20μmでは0.98であり、−20μmの粒子の割合の方が、付着力に対しての寄与が大きいことが判った。 As a result, as shown in Table 3, FIG. 2 and FIG. 3 below, it was found that the adhesive force of iron ore increased as the ratio of −63 μm or −20 μm increased. Here, the ratios of −63 μm and −20 μm are the results of sieving to −500 μm, aligning to 63 to 125 μm, and measuring the particle size of the crushed iron ore D by the laser scattering / dispersion measurement method. In particular, when multiple regression analysis was performed using a quadratic function for the ratios of -63 μm and -20 μm and the adhesive force, it was 0.93 when the correlation coefficient was -63 μm, and 0.98 at -20 μm. It was found that the proportion of particles of -20 μm contributed more to the adhesive force.

また、鉄鉱石の粒径を揃えた試験結果より、鉄鉱石の銘柄が変わっても、−20μmがなければ付着力は増加しないことも判った。この点、従来の発明(特開2008−261016号)では、粉砕した際に、ゲーサイトまたはカオリナイトが選択的に粉砕されることで、付着力への寄与率が高いと考えられていたが、本発明では、鉄鉱石の粒度を細かくすることで、ゲーサイト、カオリナイトが0.1%以下(XRDで測定)の鉄鉱石Dでも付着力が大きく増加することを見い出した。 In addition, from the test results with the same particle size of iron ore, it was found that even if the brand of iron ore changes, the adhesive strength does not increase without -20 μm. In this respect, in the conventional invention (Japanese Patent Laid-Open No. 2008-261016), it was considered that goethite or kaolinite is selectively crushed when crushed, so that the contribution rate to the adhesive force is high. In the present invention, it has been found that by making the particle size of iron ore finer, the adhesive force is greatly increased even in iron ore D having goethite and kaolinite of 0.1% or less (measured by XRD).

Figure 0006978734
Figure 0006978734

次に、−20μmの割合を変化させた造粒試験、焼結試験を実施した。この試験では、細粒の鉄鉱石ではあるが−20μmのものが少ない鉄鉱石Gと粉砕処理が施してある鉄鉱石Hについて試験を行った。試験の条件および結果については、下記表4に示すとおりである。鉄鉱石Aに関しては、ケース1とケース2とでは核・粉率を変えている。また、この配合では、塩基度が2.1になるようにし、SiOも一定になるようにして試験を行った。試験の実施に当たっては、サンプルをドラムミキサーで6分間造粒し、鍋試験機を用いて焼成を行った。焼結後のシンターケーキを2mの高さから1回落としたときに、粒径が+10mmであるものを成品とし、その重量を(シンターケーキ重量−床敷鉱重量)で除した値を歩留とした。なお、焼結生産率(t/(h・m))は、成品重量を焼成時間および試験鍋の断面積で除した値とした。 Next, a granulation test and a sintering test were carried out in which the ratio of −20 μm was changed. In this test, iron ore G, which is a fine-grained iron ore but has a small amount of -20 μm, and iron ore H, which has been crushed, were tested. The test conditions and results are shown in Table 4 below. Regarding iron ore A, the core / powder ratio is different between Case 1 and Case 2. Further, in this formulation, the test was conducted so that the basicity was 2.1 and the SiO 2 was also constant. In carrying out the test, the sample was granulated with a drum mixer for 6 minutes and calcined using a pan tester. When the sintered sinter cake is dropped once from a height of 2 m, the product has a particle size of +10 mm, and the weight is divided by (sinter cake weight-bedding ore weight) to obtain the yield. And said. The sintering production rate (t / (h · m 2 )) was taken as a value obtained by dividing the weight of the product by the firing time and the cross-sectional area of the test pot.

Figure 0006978734
Figure 0006978734

図4に示すとおり、−20μmが多いケース1では、通常は造粒が困難と考えられている微粉(−500μm)が増加しても造粒粒子径は増加する一方、−20μmが少ないケース2では、微粉の増加により、造粒粒子径が小さくなることが分かった。しかしながら、造粒粒子径が大きくなるケース1では、−20μmが増加して造粒粒子が大きくなるにも拘わらず、図5に示すように、焼結での生産率が低下することが明らかとなった。 As shown in FIG. 4, in case 1 where the amount of -20 μm is large, the granulated particle size increases even if the amount of fine powder (-500 μm), which is usually considered difficult to granulate, increases, while the case 2 where the amount of -20 μm is small. Then, it was found that the granulated particle size became smaller due to the increase in the fine powder. However, in Case 1 where the granulated particle diameter becomes large, it is clear that the production rate in sintering decreases as shown in FIG. 5, even though the granulated particles increase by -20 μm and the granulated particles become large. became.

一般に、核粒子と微粉が混合している鉄鉱石(原料)を造粒して得られる造粒焼結原料となる擬似粒子は、微粉や核粒子よりもやや小さい粒子が核粒子の周りに付着(被覆)した構造をとるのが普通である。このような擬似粒子は、焼結機の湿潤帯では、被覆層の部分が水分を吸収するため、強度が低下し、このことで、充填層(焼結原料装入層)中の空隙を減少させ、通気を阻害することがある。その解決のためには、湿潤帯での造粒粒子(造粒焼結原料)の強度維持が重要となる。 In general, pseudo-particles, which are granulated and sintered raw materials obtained by granulating iron ore (raw material) in which nuclear particles and fine particles are mixed, have fine particles and particles slightly smaller than the nuclear particles attached around the nuclear particles. It usually has a (covered) structure. In the wet zone of the sintering machine, such pseudo-particles have a reduced strength because the coating layer portion absorbs moisture, which reduces voids in the packed bed (sintered raw material charging layer). May interfere with ventilation. In order to solve this problem, it is important to maintain the strength of the granulated particles (granulation and sintering raw material) in the wet zone.

湿潤帯における前記造粒焼結原料の強度維持の方法としては、湿潤帯でも崩壊しない骨材(+1mm核粒子)を、微粉量に対して減らないようにすること、ないしはむしろ、増加させる方が有効であり、このことによって通気性の改善を図ることができるようになる。即ち、+1mm(1mm以上)の粒子は、造粒時はこれが核粒子となって造粒作用を促進し、しかも、粒子自体が大きいため、焼結時には通気性を向上させる作用を担う。また、焼結原料装入層中においては、水分が増加して、造粒粒子の強度が低下する湿潤帯と、原料が溶ける溶融帯で通気抵抗が大きくなるが、+1mmの骨材粒子が存在することで通気性の低下を抑制する働きとなる。 As a method of maintaining the strength of the granulated sintered raw material in the wet zone, it is better to prevent the aggregate (+1 mm nuclei particles) that does not collapse even in the wet zone from decreasing with respect to the amount of fine powder, or rather to increase it. It is effective, and this makes it possible to improve the air permeability. That is, the +1 mm (1 mm or more) particles become nuclear particles during granulation and promote the granulation action, and since the particles themselves are large, they play an action of improving the air permeability during sintering. Further, in the layer in which the sintered raw material is charged, the aeration resistance increases in the wet zone where the water content increases and the strength of the granulated particles decreases and in the molten zone where the raw material melts, but +1 mm aggregate particles are present. By doing so, it works to suppress the decrease in air permeability.

一方で、−500μmの粒子は、これが造粒粒子の一部となるときに湿潤帯においてスラリー状になりやすく、また溶融帯では、細粒であるために溶けやすく、通気抵抗を増大させる要因となる。 On the other hand, the -500 μm particles tend to form a slurry in the wet zone when they become a part of the granulated particles, and in the molten zone, they are easily melted because they are fine particles, which is a factor that increases the aeration resistance. Become.

この点について、発明者らは、造粒時に核となりかつ焼結時には骨材となる+1mmの粒子の割合と、造粒に寄与する−20μmの粒子の割合の和を、通気性に悪影響を与える−500μmの粒子割合で除した値である下記の核粉指数で整理できることを知見した。
即ち、その核粉指数は下記式(1)で示すことができる。
[式1]
核粉指数={(+1mmの粒子割合)+(−20μmの粒子割合)}/(−500μmの粒子割合)
In this regard, the inventors adversely affect the air permeability by adding the ratio of +1 mm particles that become nuclei during granulation and aggregate during sintering and the ratio of -20 μm particles that contribute to granulation. It was found that it can be arranged by the following nuclear powder index, which is the value divided by the particle ratio of −500 μm.
That is, the nuclear powder index can be expressed by the following formula (1).
[Equation 1]
Nuclear powder index = {(+ 1 mm particle ratio) + (-20 μm particle ratio)} / (-500 μm particle ratio)

図6は、上記核粉指数と焼結生産率との関係を示した。この図からも判るように、また、後で述べる実施例からも明らかになるように、造粒粒子の焼結性に悪影響を与える−500μmの粒子に対する、(+1mmおよび−20μmの粒子割合の和)、つまり、核粉指数を2.0以上とすることで、−500μm粒子割合が高い場合であっても、好ましい焼結性維持のための造粒焼結原料の製造が可能であることを見出した。 FIG. 6 shows the relationship between the nuclear powder index and the sintering production rate. As can be seen from this figure and as will be clear from the examples described later, the sum of the particle ratios of (+1 mm and -20 μm) with respect to the −500 μm particles that adversely affect the sinterability of the granulated particles. ), That is, by setting the nuclear powder index to 2.0 or more, it is possible to produce a granulated sintered raw material for maintaining preferable sinterability even when the ratio of -500 μm particles is high. I found it.

また、本発明では、焼結機上の焼結原料装入層の湿潤帯における影響を抑制するために、ドラムミキサーによる造粒処理過程の後半において、バインダーとして生石灰を外装添加する方法を採用する。なお、造粒処理過程において、バインダーとして生石灰を外装添加することには2つの効果がある。その一つは、水と未反応のCaOを残して、湿潤帯において水分を吸収する作用であり、擬似粒子がスラリー化することを抑制するのに有効である。そして、他の1点は、水と反応したCa(OH)が擬似粒子の外面側にあることで、これが排ガス中のCOと反応し、微細なCaCOを生成し、そのために擬似粒子表面に強固な層が形成され、湿潤帯においても潰れにくい充填層(焼結原料装入層)の形成が可能になるのである。 Further, in the present invention, in order to suppress the influence of the sintering raw material charging layer on the sintering machine in the wet zone, a method of externally adding quicklime as a binder in the latter half of the granulation treatment process by the drum mixer is adopted. .. In the granulation treatment process, adding quicklime as a binder to the exterior has two effects. One of them is the action of absorbing water in the wet zone, leaving unreacted CaO with water, and is effective in suppressing the formation of slurry of pseudo particles. The other point is that Ca (OH) 2 that has reacted with water is on the outer surface side of the pseudo particles, which reacts with CO 2 in the exhaust gas to generate fine CaCO 3 and therefore the pseudo particles. A strong layer is formed on the surface, and it is possible to form a packed layer (sintered raw material charging layer) that is not easily crushed even in a wet zone.

[例1]
この実施例では、下記サンプル(塩基度:2.0、SiO:5.0mass%)を、ドラムミキサーで6分間造粒し、鍋試験機を用いて焼結を行った。焼結後のシンターケーキを2mの高さから1回落としたとき、粒径が+10mmであるものを成品とし、その重量を(シンターケーキ重量−床敷鉱重量)で除した値を歩留とした。焼結生産率(t/(h・m))は、成品重量を焼成時間および試験鍋の断面積で除した値とした。
[Example 1]
In this example, the following sample (basicity: 2.0, SiO 2 : 5.0 mass%) was granulated with a drum mixer for 6 minutes and sintered using a pan tester. When the sintered sinter cake is dropped once from a height of 2 m, a product having a particle size of +10 mm is regarded as a product, and the value obtained by dividing the weight by (sinter cake weight-bedding ore weight) is defined as the yield. did. The sintering production rate (t / (h · m 2 )) was taken as a value obtained by dividing the weight of the product by the firing time and the cross-sectional area of the test pot.

その結果、表5、図6で示すように、悪影響を与える−500μmの粒子に対して、+1mmおよび−20μmの粒子割合の和を2.0倍〜2.3倍にしたケース1−1、ケース3−1、ケース3−3では、−500μm粒子割合が高い状態の微粉鉄鉱石が入ったものであっても、他のケース1−2、1−3、3−2、3−4に比べて安定した高い焼結生産率を維持できることが確かめられた。 As a result, as shown in Table 5 and FIG. 6, Case 1-1, in which the sum of the particle ratios of +1 mm and -20 μm was increased 2.0 to 2.3 times with respect to the adversely affecting −500 μm particles. In Cases 3-1 and 3-3, even if fine iron ore containing a high proportion of -500 μm particles is contained, the other cases 1-2, 1-3, 3-2, 3-4 It was confirmed that a stable and high sintering production rate could be maintained.

Figure 0006978734
Figure 0006978734

[例2]
この実施例では、生石灰添加の有無、添加の時期について検討した結果を説明する。下記表6に示すとおりの核粉指数はそれぞれ2.3、2.2、2.2としたものについて、生石灰なしの例と、生石灰あり(内装)、生石灰あり(外装)の例について、生産率への影響を調べた。その他の条件は下記のとおりである。
なお、この実施例では、サンプル(塩基度:2.1、SiO:4.7mass%)を、ドラムミキサーで5分間造粒して、鍋試験機を用いて焼成を行ない、焼結後のシンターケーキを2mの高さから1回落とした際、粒径が+10mmであるものを成品とし、その重量を(シンターケーキ重量−床敷鉱重量)で除した値を歩留とし、焼結生産率(t/(h・m))は、成品重量を焼成時間および試験鍋の断面積で除した値とした。
[Example 2]
In this example, the result of examining the presence or absence of quicklime addition and the timing of addition will be described. As shown in Table 6 below, the nuclear powder index was set to 2.3, 2.2, and 2.2, respectively, and the production was performed for the example without quicklime and the example with quicklime (interior) and with quicklime (exterior). The effect on the rate was investigated. Other conditions are as follows.
In this example, a sample (basicity: 2.1, SiO 2 : 4.7 mass%) is granulated with a drum mixer for 5 minutes, fired using a pan tester, and after sintering. When a sinter cake is dropped once from a height of 2 m, a product having a particle size of +10 mm is used as a product, and the value obtained by dividing the weight by (sinter cake weight-bedding ore weight) is used as the yield, and sintering production is performed. The ratio (t / (h · m 2 )) was the value obtained by dividing the product weight by the firing time and the cross-sectional area of the test pot.

その結果を、生産率に及ぼす生石灰添加の有無による影響について調べたところ、生石灰を添加したものの方がよい結果を示した。 When the results were investigated for the effect of the presence or absence of quicklime on the production rate, the one with quicklime added showed better results.

これは、生石灰によるバインダー効果により、冷間での擬似粒子の強度が上昇し、また、焼結時のCO2により、さらに湿潤帯での充填層を支持できたからであると考えられる。 It is considered that this is because the binder effect of quicklime increases the strength of the pseudo-particles in the cold, and CO2 at the time of sintering further supports the packed bed in the wet zone.

Figure 0006978734
Figure 0006978734

また、この試験では、生石灰を外装する効果についても検証した。即ち、下記サンプル(塩基度およびSiO:一定)を、ドラムミキサーで5分間造粒し、鍋試験機を用いて焼結を行った。生石灰を外装する場合は、ドラムミキサーの造粒時間の1/10の段階で生石灰を添加する外装を行い、その後、焼成を行った。焼結後のシンターケーキを2mの高さから1回落とした際、粒径が+10mmであるものを成品とし、その重量を(シンターケーキ重量−床敷鉱重量)で除した値を歩留とし、焼結生産率(t/(h・m))は、成品重量を焼成時間および試験鍋の断面積で除した値とした。 In this test, the effect of exteriorizing quicklime was also verified. That is, the following sample (basicity and SiO 2 : constant) was granulated with a drum mixer for 5 minutes and sintered using a pan tester. In the case of exteriorizing quicklime, the exterior was added with quicklime at the stage of 1/10 of the granulation time of the drum mixer, and then firing was performed. When the sintered sinter cake is dropped once from a height of 2 m, the product has a particle size of +10 mm, and the value obtained by dividing the weight by (sinter cake weight-bedding ore weight) is used as the yield. The sintering production rate (t / (h · m 2 )) was taken as a value obtained by dividing the weight of the product by the firing time and the cross-sectional area of the test pot.

この結果、生石灰は外装することで、内装した場合のものより生産率が良くなった。即ち、微粉を入れた場合、生石灰を外装することで生産率がさらに向上することが分った。なお、生石灰添加の場合、生産率は、[例1]のものに比べて大きいのは、生石灰添加の効果であることが確かめられた。
As a result, the production rate of quicklime was better than that of the interior by exterior. That is, it was found that when fine powder was added, the production rate was further improved by exteriorizing quicklime. In the case of the addition of quicklime, it was confirmed that the production rate was higher than that of [Example 1] due to the effect of the addition of quicklime.

Claims (5)

粉粒状鉄鉱石を含む焼結配合原料を造粒して造粒焼結原料とする際に、その焼結配合原料は、−500μmの粒子割合が30mass%超えであり、+1mmの粒子割合が58mass%以下であり、下記に定義する核粉指数が2.0以上を示すものであることを特徴とする造粒焼結原料の製造方法。

核粉指数={(+1mmの粒子割合)+(−20μmの粒子割合)}/(−500μmの粒子割合)
When a sintered compounded raw material containing powdered and granular iron ore is granulated into a granulated sintered raw material, the sintered compounded raw material has a particle ratio of −500 μm exceeding 30 mass% and a particle ratio of +1 mm of 58 mass. % Or less, and the nuclear powder index defined below is 2.0 or more, which is a method for producing a granulated sintered raw material.
Nuclear powder index = {(+ 1 mm particle ratio) + (-20 μm particle ratio)} / (-500 μm particle ratio)
前記造粒焼結原料は、バインダーとして生石灰を用いて造粒されたものであることを特徴とする請求項1に記載の造粒焼結原料の製造方法。 The method for producing a granulated sintered raw material according to claim 1, wherein the granulated sintered raw material is granulated using quicklime as a binder. 前記焼結配合原料および生石灰を用いて造粒焼結原料を製造する際に、該生石灰は、造粒後半に外装添加することを特徴とする請求項1または2に記載の造粒焼結原料の製造方法。 The granulated sintered raw material according to claim 1 or 2, wherein when the granulated sintered raw material is produced using the sintered blended raw material and the fresh lime, the fresh lime is added to the exterior in the latter half of the granulation. Manufacturing method. 前記焼結配合原料中の粉粒状鉄鉱石は、少なくともその一部は、−20μmの大きさの粒子を30mass%以上含むものであることを特徴とする請求項1〜3のいずれか1に記載の造粒焼結原料の製造方法。 The structure according to any one of claims 1 to 3, wherein at least a part of the powdered iron ore in the sinter-blended raw material contains particles having a size of −20 μm in an amount of 30 mass% or more. Manufacturing method of grain sintering raw material. 粉粒状鉄鉱石を含む焼結配合原料を造粒し、得られたその造粒焼結原料を焼結機にて焼成することにより焼結鉱を製造する方法において、上記焼結配合原料は、−500μmの粒子割合が30mass%超えであり、+1mmの粒子割合が58mass%以下であり、下記に定義する核粉指数が2.0以上を示すものであることを特徴とする焼結鉱の製造方法。

核粉指数={(+1mmの粒子割合)+(−20μmの粒子割合)}/(−500μmの粒子割合)
In a method for producing a sinter by granulating a sinter compounding raw material containing powdered and granular iron ore and firing the obtained granulated sinter raw material with a sinter machine, the sinter compounding raw material is used. Manufacture of sinter, characterized in that the particle ratio of −500 μm is more than 30 mass%, the particle ratio of +1 mm is 58 mass% or less, and the nuclear powder index defined below is 2.0 or more. Method.
Nuclear powder index = {(+ 1 mm particle ratio) + (-20 μm particle ratio)} / (-500 μm particle ratio)
JP2020114179A 2017-03-31 2020-07-01 Manufacturing method of granulated sinter raw material and manufacturing method of sinter Active JP6978734B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020114179A JP6978734B2 (en) 2017-03-31 2020-07-01 Manufacturing method of granulated sinter raw material and manufacturing method of sinter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017069489A JP2018172704A (en) 2017-03-31 2017-03-31 Manufacturing method of granulated sintering raw material and manufacturing method of sintered ore
JP2020114179A JP6978734B2 (en) 2017-03-31 2020-07-01 Manufacturing method of granulated sinter raw material and manufacturing method of sinter

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017069489A Division JP2018172704A (en) 2017-03-31 2017-03-31 Manufacturing method of granulated sintering raw material and manufacturing method of sintered ore

Publications (2)

Publication Number Publication Date
JP2020158889A JP2020158889A (en) 2020-10-01
JP6978734B2 true JP6978734B2 (en) 2021-12-08

Family

ID=72642106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020114179A Active JP6978734B2 (en) 2017-03-31 2020-07-01 Manufacturing method of granulated sinter raw material and manufacturing method of sinter

Country Status (1)

Country Link
JP (1) JP6978734B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6260826A (en) * 1985-09-11 1987-03-17 Kobe Steel Ltd Pretreatment of sintering material
JP3815234B2 (en) * 2001-03-02 2006-08-30 Jfeスチール株式会社 Operation method for mass injection of pulverized coal into blast furnace
JP5644955B2 (en) * 2011-10-11 2014-12-24 新日鐵住金株式会社 Granulation method of sintering raw material
JP6075115B2 (en) * 2013-02-27 2017-02-08 新日鐵住金株式会社 Evaluation method of granulation treatment agent for sintering raw material, granulation method of sintering raw material, and granulation treatment agent for sintering raw material

Also Published As

Publication number Publication date
JP2020158889A (en) 2020-10-01

Similar Documents

Publication Publication Date Title
KR20190007012A (en) A process for the preparation of briquettes comprising calcium-magnesium compounds and iron-based compounds,
JP6421666B2 (en) Method for producing sintered ore
WO2018180233A1 (en) Method for manufacturing granular sintered raw material and method for manufacturing sintered ore
JP5682286B2 (en) Method for producing granulated and sintered raw materials
JP5168802B2 (en) Method for producing sintered ore
JP6978734B2 (en) Manufacturing method of granulated sinter raw material and manufacturing method of sinter
CN107406905B (en) Sintering in form of pseudo grain and its manufacturing method
JPH02228428A (en) Charging material for blast furnace and its production
JP2000256756A (en) Method for granulating sintering raw material
JP4767388B2 (en) Method for producing sintered ore with excellent high-temperature properties
JP7148030B2 (en) Method for producing sintered ore and sintered ore
JP2020117771A (en) Method for producing carbon-containing non-fired pellet for blast furnace
JP2007031818A (en) Method for manufacturing sintered ore
JP7343768B2 (en) Method of blending raw materials for sintering
JP3952906B2 (en) Ultra-low SiO2, ultra-low Al2O3 high-strength sintered ore and method for producing the same
JP2009114485A (en) Method for manufacturing sintered ore
WO2024157572A1 (en) Sintered ore production method
WO2020137484A1 (en) Sintered ore production method
JP2001234255A (en) Method for manufacturing sintered ore and the sintered ore
JPH06228663A (en) Prepelletizing method for raw material to be sintered enabling use of large amount of fine powder ore
JP2020084252A (en) Manufacturing method of sintered ore
JP3952871B2 (en) Manufacturing method of high-strength sintered ore
JP2019167594A (en) Production method of granular raw material for sintering
JP2022129839A (en) Method of producing sintered ore
JP2020117767A (en) Method for manufacturing sinter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211026

R150 Certificate of patent or registration of utility model

Ref document number: 6978734

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150