JP7343768B2 - Method of blending raw materials for sintering - Google Patents

Method of blending raw materials for sintering Download PDF

Info

Publication number
JP7343768B2
JP7343768B2 JP2019196081A JP2019196081A JP7343768B2 JP 7343768 B2 JP7343768 B2 JP 7343768B2 JP 2019196081 A JP2019196081 A JP 2019196081A JP 2019196081 A JP2019196081 A JP 2019196081A JP 7343768 B2 JP7343768 B2 JP 7343768B2
Authority
JP
Japan
Prior art keywords
raw materials
ore
sintering
particle size
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019196081A
Other languages
Japanese (ja)
Other versions
JP2021070832A (en
Inventor
守利 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2019196081A priority Critical patent/JP7343768B2/en
Publication of JP2021070832A publication Critical patent/JP2021070832A/en
Application granted granted Critical
Publication of JP7343768B2 publication Critical patent/JP7343768B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

本発明は、焼結用原料の配合方法に関する。 The present invention relates to a method for blending raw materials for sintering.

焼結鉱の製造方法は概略以下の通りである。まず、焼結鉱の原料となる焼結用原料を所定の配合比で配合して配合原料とした後、水とともに造粒する。ここに、焼結用原料は、主原料である鉄系原料、焼結反応及び成分調整のために必要な副原料、熱源である炭材(固体燃料)、雑原料、及び返鉱等で構成される。鉄系原料は、例えば粉鉱石、微粉鉱石等の鉄鉱石である。副原料は、例えば石灰石、ドロマイト、転炉スラグ、蛇紋岩、珪石および橄欖岩等である。炭材は、例えばコークス粉および無煙炭等である。雑原料は、例えば製鉄ダスト、製鋼ダスト、スケール等の含鉄リサイクル原料である。これらの焼結用原料のうち、炭材及び返鉱を除く焼結用原料を新原料とも称する。 The method for producing sintered ore is roughly as follows. First, raw materials for sintering, which are raw materials for sintered ore, are blended at a predetermined blending ratio to form a blended raw material, and then granulated with water. Here, the raw materials for sintering consist of iron-based raw materials that are the main raw materials, auxiliary raw materials necessary for the sintering reaction and component adjustment, carbonaceous materials (solid fuel) that are the heat source, miscellaneous raw materials, return ore, etc. be done. The iron-based raw material is, for example, iron ore such as fine ore and fine ore. The auxiliary raw materials include, for example, limestone, dolomite, converter slag, serpentine, silica, and olivine. Examples of the carbonaceous material include coke powder and anthracite. Miscellaneous raw materials are, for example, iron-containing recycled raw materials such as ironmaking dust, steelmaking dust, and scale. Among these raw materials for sintering, raw materials for sintering excluding carbonaceous materials and return ore are also referred to as new raw materials.

ついで、配合原料の造粒物を焼結機の焼結パレットに層状に装入する。ここに、配合原料の造粒物は、粗大な核粒子と、核粒子の表面に付着した付着粉層とを含む。ついで、原料充填層の表面から原料充填層中の固体燃料に着火し、原料充填層の上から下の厚み方向に吸引通風する。これによって、原料充填層の燃焼ゾーンを順次下層側に移行させ、焼結反応を進行させる(焼結過程)。焼成後の焼結パレット内の焼結ケーキは高炉用焼結鉱として適した所定粒度となるように解砕、整粒される。以上の工程により、焼結鉱が作製される。 Next, the granulated material of the blended raw materials is loaded into a sintering pallet of a sintering machine in a layered manner. Here, the granulated material of the compounded raw material includes coarse core particles and an adhering powder layer attached to the surface of the core particles. Then, the solid fuel in the raw material packed bed is ignited from the surface of the raw material packed bed, and the solid fuel is sucked and ventilated from the top to the bottom of the raw material packed bed in the thickness direction. As a result, the combustion zone of the raw material packed bed is sequentially moved to the lower layer side, and the sintering reaction proceeds (sintering process). After firing, the sintered cake in the sintered pallet is crushed and sized to a predetermined particle size suitable for use as sintered ore for blast furnaces. Through the above steps, sintered ore is produced.

配合原料を造粒物としてから焼結機に装入することで、原料充填層の空隙率及び気孔を大きくすることができる。したがって、原料充填層の通気性が向上するので、焼結鉱の生産性が向上することが期待される。 By charging the blended raw materials into granules into a sintering machine, it is possible to increase the porosity and pores of the raw material packed bed. Therefore, since the permeability of the raw material packed bed is improved, it is expected that the productivity of sintered ore will be improved.

ところで、焼結過程では、5~7割程度の体積比率で生成した流体によって残部の固体部分(すなわち非同化部)が結合される液相焼結反応が進行する。一方で、焼結鉱の高炉内での反応性(被還元性)は焼結鉱の気孔構造、および生地部(気孔以外の部分)の反応性に影響される。したがって、被還元性の優れた焼結鉱を製造するためには、焼結過程で生成した流体の特性を制御して、気孔構造及び生地部を造り込むことが重要となる。 By the way, in the sintering process, a liquid phase sintering reaction proceeds in which the remaining solid portion (ie, non-assimilated portion) is bonded by the fluid generated at a volume ratio of about 50 to 70%. On the other hand, the reactivity (reducibility) of sintered ore in a blast furnace is influenced by the pore structure of sintered ore and the reactivity of the dough (parts other than pores). Therefore, in order to produce sintered ore with excellent reducibility, it is important to control the characteristics of the fluid generated during the sintering process to create a pore structure and texture.

特開昭58-039746号公報Japanese Patent Application Publication No. 58-039746

佐々木ら、「焼結反応からみた焼結鉱の組織と品質」(鉄と鋼、1982年、68巻、6号、p.563-571)Sasaki et al., “Sintered ore structure and quality from the perspective of sintering reaction” (Tetsu to Hagane, 1982, Vol. 68, No. 6, p. 563-571) 佐藤ら、「焼結鉱組織と還元性状の関係」(鉄と鋼、1982年、68巻、15号、p.2215-2222)Sato et al., “Relationship between sintered ore structure and reduction properties” (Tetsu to Hagane, 1982, Vol. 68, No. 15, p. 2215-2222) 坂本ら、「焼結鉱組織の被還元性の反応速度論」(鉄と鋼、1984年、70巻、6号、p.504-511)Sakamoto et al., “Reaction kinetics of reducibility of sintered ore structure” (Tetsu to Hagane, 1984, Vol. 70, No. 6, p. 504-511) 肥田ら、「焼結鉱中針状カルシウム・フェライトの生成機構」(鉄と鋼、1987年、73巻、15号、p.1893-1900)Hida et al., “Generation mechanism of acicular calcium ferrite in sintered ore” (Tetsu to Hagane, 1987, Vol. 73, No. 15, p. 1893-1900)

ここに、生地部の組織に関して、幅10μm前後の針状カルシウムフェライト(CF)の反応性は柱状CFの反応性よりも良好であることが知られている(非特許文献1~3)。したがって、生地部内に含まれる針状CFが多いほど、生地部の反応性が高まり、ひいては焼結鉱の被還元性が高まることになる。 Regarding the structure of the fabric part, it is known that the reactivity of acicular calcium ferrite (CF) with a width of around 10 μm is better than that of columnar CF (Non-Patent Documents 1 to 3). Therefore, the more acicular CFs contained in the dough, the higher the reactivity of the dough and, in turn, the higher the reducibility of the sintered ore.

このため、針状CFの生成機構に関する研究が鋭意行われている。例えば、上述した焼結過程において1300℃以下の低温で配合原料を焼成することで針状CFが生成しやすいこと、針状CFの生成には一定量のSiOあるいはAl等の脈石成分が必要であることが知られている(非特許文献1、4)。 For this reason, research on the generation mechanism of acicular CF is being carried out intensively. For example, in the above-mentioned sintering process, acicular CF is easily generated by firing the blended raw materials at a low temperature of 1300°C or less, and a certain amount of veins such as SiO 2 or Al 2 O 3 is required to generate acicular CF. It is known that stone components are required (Non-patent Documents 1 and 4).

しかし、従来の知見はあくまで定性的な評価にとどまっており、生地部中の針状CFの含有量を高めるための定量的な条件は明らかになっていなかった。特に、非特許文献1~4の知見が得られた当時に比べて鉄鉱石の鉱物形態が変化しており、中長期的には鉄鉱石資源の劣質化も進んでいる。このため、焼結鉱の被還元性を高めることは非常に重要な課題となっている。一方、特許文献1には、焼結過程で生成する流体の成分を制御する技術が開示されている。しかし、特許文献1では、流体の各成分が針状CFの生成に及ぼす影響を何ら検討していなかった。 However, the conventional knowledge is limited to qualitative evaluation, and quantitative conditions for increasing the content of acicular CF in the fabric portion have not been clarified. In particular, the mineral form of iron ore has changed compared to when the findings in Non-Patent Documents 1 to 4 were obtained, and the quality of iron ore resources is progressing in the medium to long term. Therefore, increasing the reducibility of sintered ore has become a very important issue. On the other hand, Patent Document 1 discloses a technique for controlling the components of a fluid generated during the sintering process. However, Patent Document 1 does not consider the influence of each component of the fluid on the generation of needle-like CF.

本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、焼結鉱中の針状CFの含有量を高め、ひいては焼結鉱の被還元性を高めることが可能な、新規かつ改良された焼結用原料の配合方法を提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to increase the content of acicular CF in sintered ore, and thereby to improve the reducibility of sintered ore. The object of the present invention is to provide a new and improved method of blending raw materials for sintering.

上記課題を解決するために、本発明のある観点によれば、平均粒度が0.1~1.0mmであり、かつ気孔率が10体積%以下の緻密質鉄鉱石の含有量が新原料の総質量に対して5質量%以上となり、かつ、緻密質鉄鉱石を除く新原料、粒度が1.0mm以下の新原料を含み、粒度が1.0mm以下の新原料が以下の条件(1)及び(2)を満たすように、焼結用原料を配合することを特徴とする、焼結用原料の配合方法が提供される。
(1)塩基度(CaO/SiOの質量比)が1.65以上。
(2)Al濃度が1.5質量%以上、またはMgO濃度が1.0質量%以下。
In order to solve the above problems, according to one aspect of the present invention, the content of dense iron ore having an average particle size of 0.1 to 1.0 mm and a porosity of 10% by volume or less is a new raw material. New raw materials that are 5% by mass or more based on the total mass and excluding dense iron ore include new raw materials with a particle size of 1.0 mm or less , and new raw materials with a particle size of 1.0 mm or less meet the following conditions (1). ) and (2) are provided. A method for blending raw materials for sintering is provided, which is characterized by blending raw materials for sintering so as to satisfy (2).
(1) Basicity (mass ratio of CaO/SiO 2 ) is 1.65 or more.
(2) Al 2 O 3 concentration is 1.5% by mass or more, or MgO concentration is 1.0% by mass or less.

本発明の上記観点によれば、焼結鉱中の針状CFの含有量を高め、ひいては焼結鉱の被還元性を高めることが可能となる。 According to the above aspect of the present invention, it is possible to increase the content of acicular CF in the sintered ore, thereby increasing the reducibility of the sintered ore.

本実施形態に係る造粒ラインの一例を示す模式図である。It is a schematic diagram showing an example of the granulation line concerning this embodiment.

以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described in detail below with reference to the accompanying drawings. Note that, in this specification and the drawings, components having substantially the same functional configurations are designated by the same reference numerals and redundant explanation will be omitted.

<1.本発明者による検討>
本発明者は、生地部中の針状CFの含有量を定量的に評価する方法を見出すために、まず、焼結鉱の生地部組織及び元素分布を画像解析により観察した。ここに、生地部組織は、上述した針状CF、柱状CFの他、シリケートスラグ(SS)等で構成される。この結果、焼結鉱中の針状CFは、Caの濃度勾配が大きい領域で多く生成されていることがわかった。したがって、焼結鉱中にCa濃度勾配が大きい領域を多く形成することができれば、焼結鉱中に多くの針状CFが生成されると推察される。
<1. Study by the inventor>
In order to find a method for quantitatively evaluating the content of acicular CF in the dough, the inventors first observed the texture and element distribution of the dough of sintered ore by image analysis. Here, the fabric part structure is composed of silicate slag (SS), etc. in addition to the above-mentioned needle-like CF and columnar CF. As a result, it was found that many acicular CFs in the sintered ore were generated in areas where the Ca concentration gradient was large. Therefore, it is presumed that if many regions with large Ca concentration gradients can be formed in the sintered ore, many acicular CFs will be generated in the sintered ore.

Caの濃度勾配が大きくなる条件としては、「低温焼成」、「緻密質鉄鉱石(以下、「緻密鉱」とも称する)の添加」、「焼結過程で生成する流体の高粘度化」、「冷却速度上昇」が考えられた。そこで、本発明者は、これらが針状CFの生成に寄与する大きさを知るために、基礎的な実験(タブレット焼成実験)を行った。ここに、タブレット焼成実験では以下の処理を行った。まず、鉄系原料と石灰石とを配合原料の配合比率に基づいて混合した。ついで、混合物をタブレットに成形し、作製されたタブレットを実際の焼結反応を模擬したヒートパターンで焼成した。ついで、焼結体の断面を画像解析することで、焼結鉱の生地部組織及び元素分布を観察した。その結果、本発明者は、緻密鉱の添加が針状CFの生成に大きく寄与すること、緻密鉱の添加に加えて流体粘度を上昇させることにより、さらに針状CFの含有量が増加することを知見した。さらに、本発明者は、緻密鉱の添加量、粒度、及び流体粘度を様々に変更してタブレット焼成実験を行い、得られた焼結体の高温還元性(R1200)を測定することで、これらのパラメータの好適な範囲を特定した。本発明者は、以上の知見に基づいて、本実施形態に係る焼結用原料の配合方法に想到した。 Conditions that increase the concentration gradient of Ca include "low temperature calcination", "addition of dense iron ore (hereinafter also referred to as "compact ore")", "increasing the viscosity of the fluid generated during the sintering process", and " ``Increase in cooling rate'' was considered. Therefore, the present inventor conducted a basic experiment (tablet firing experiment) in order to find out the extent to which these contribute to the generation of acicular CF. In the tablet firing experiment, the following treatments were performed. First, iron-based raw materials and limestone were mixed based on the blending ratio of the blended raw materials. The mixture was then formed into tablets, and the resulting tablets were fired using a heat pattern that simulated an actual sintering reaction. Next, the texture and elemental distribution of the sintered ore were observed by image analysis of the cross section of the sintered body. As a result, the present inventor found that the addition of compact ore greatly contributes to the generation of acicular CF, and that the content of acicular CF can be further increased by increasing fluid viscosity in addition to adding compact ore. I found out. Furthermore, the present inventor conducted tablet firing experiments by varying the amount of compact ore added, particle size, and fluid viscosity, and measured the high temperature reducibility (R1200) of the obtained sintered bodies. A suitable range of parameters was identified. Based on the above findings, the inventors came up with a method for blending raw materials for sintering according to the present embodiment.

<2.焼結用原料の配合方法>
つぎに、本実施形態に係る焼結用原料の配合方法について説明する。ここに、焼結用原料は、上述したように、主原料である鉄系原料、焼結反応及び成分調整のために必要な副原料、熱源である炭材(固体燃料)、雑原料、及び返鉱等で構成される。鉄系原料は、例えば粉鉱石、微粉鉱石等の鉄鉱石である。詳細は後述するが、本実施形態における鉄鉱石には、平均粒度が0.1~1.0mmであり、かつ気孔率が10体積%以下の緻密鉱が含まれる。副原料は、例えば石灰石、ドロマイト、転炉スラグ、蛇紋岩、珪石および橄欖岩等である。炭材は、例えばコークス粉および無煙炭等である。雑原料は、例えば製鉄ダスト、製鋼ダスト、スケール等の含鉄リサイクル原料である。これらの焼結用原料のうち、炭材及び返鉱を除く焼結用原料を新原料とも称する。本実施形態では、以下の条件A、Bが満たされるように、焼結用原料を配合する。
<2. Method of blending raw materials for sintering>
Next, a method for blending raw materials for sintering according to this embodiment will be explained. Here, the raw materials for sintering include, as mentioned above, iron-based raw materials that are the main raw materials, auxiliary raw materials necessary for the sintering reaction and component adjustment, carbonaceous materials (solid fuel) that are the heat source, miscellaneous raw materials, and Consists of return ore, etc. The iron-based raw material is, for example, iron ore such as fine ore and fine ore. Although details will be described later, the iron ore in this embodiment includes compact ore having an average particle size of 0.1 to 1.0 mm and a porosity of 10% by volume or less. The auxiliary raw materials include, for example, limestone, dolomite, converter slag, serpentine, silica, and olivine. Examples of the carbonaceous material include coke powder and anthracite. Miscellaneous raw materials are, for example, iron-containing recycled raw materials such as ironmaking dust, steelmaking dust, and scale. Among these raw materials for sintering, raw materials for sintering excluding carbonaceous materials and return ore are also referred to as new raw materials. In this embodiment, the raw materials for sintering are blended so that the following conditions A and B are satisfied.

(条件A)
本実施形態では、平均粒度が0.1~1.0mmであり、かつ気孔率が10体積%以下の緻密鉱の含有量が新原料の総質量に対して5質量%以上となるように、焼結用原料を配合する。
(Condition A)
In this embodiment, the average particle size is 0.1 to 1.0 mm, and the content of compact ore with a porosity of 10% by volume or less is 5% by mass or more based on the total mass of the new raw material. Mix raw materials for sintering.

ここに、鉄鉱石の平均粒度はJIS-M8706(2008)「鉄鉱石及び還元鉄-ふるい分けによる粒度分布の測定方法」に則り、乾式で段重ね非連続式機械ふるい分けの方法で測定される。使用する篩は、0.25mm、0.5mm、1.0mm、2.0mm、4.0mmの5段とし、6つの粒度区分の代表粒度を細粒から0.125mm、0.375mm、0.75mm、1.5mm、3mm、7mmとする。平均粒度の計算は付属書Jに準じる。すなわち、代表粒度に各粒度区分の質量比率を乗じた算術平均とする。 Here, the average particle size of the iron ore is measured by a dry method of stacked discontinuous mechanical sieving in accordance with JIS-M8706 (2008) "Iron ore and reduced iron - Measuring method of particle size distribution by sieving". The sieve used has five stages of 0.25 mm, 0.5 mm, 1.0 mm, 2.0 mm, and 4.0 mm, and the representative particle sizes of the six particle size categories are from fine to 0.125 mm, 0.375 mm, 0. They are 75mm, 1.5mm, 3mm, and 7mm. Calculation of average particle size follows Annex J. That is, the arithmetic mean is obtained by multiplying the representative particle size by the mass ratio of each particle size category.

鉄鉱石の気孔率はその断面の画像解析で測定される。すなわち、試料埋め研磨して、得られた試料の断面を画像解析し、観察視野の総面積に対する気孔部分の面積率(%)を求める。この面積率を試料の気孔率とする。いくつかの観察視野について同様の処理を行い、得られた面積率の算術平均値を試料の代表気孔率とする。観察視野数は、算術平均として得られる代表値の1の桁が十分精度のあるものとなる数とする。後述する実施例では、これらの方法により平均粒度及び気孔率を測定した。 The porosity of iron ore is measured by image analysis of its cross section. That is, the sample is buried and polished, and the cross-section of the obtained sample is image-analyzed to determine the area ratio (%) of the pores to the total area of the observation field. This area ratio is defined as the porosity of the sample. Similar processing is performed for several observation fields, and the arithmetic mean value of the obtained area ratios is taken as the representative porosity of the sample. The number of observation fields is a number such that the one digit of the representative value obtained as the arithmetic mean has sufficient accuracy. In the Examples described later, the average particle size and porosity were measured using these methods.

このように、本実施形態では、平均粒度が0.1~1.0mmという比較的微細な緻密鉱を使用する。これにより、焼結鉱中にCa濃度勾配が大きい領域を多く形成することができる。より具体的には、Ca濃度勾配が大きい領域の数が多く、かつ当該領域の総面積が大きくなる。焼結過程では、原料充填層の一部が同化して流体となり、この流体が残部の固体部分(すなわち非同化部)同士を結合する(液相焼結反応)。その後、流体は冷却されて凝固し、同化部となる。したがって、焼結鉱中の生地部は流体が凝固した同化部と、流体と同化しなかった非同化部とを含む。平均粒度が0.1~1.0mmである緻密鉱は、液相焼結反応時に流体と同化しにくく、非同化部(言い換えれば残留元鉱部)として生地部内に残留することが多い。したがって、このような緻密鉱の周囲ではFe濃度勾配が大きくなる。つまり、生地部中の各領域のFe濃度は、当該領域が緻密鉱に近いほど高くなる。そして、このようなFe濃度勾配とトレードオフとなる形で、Ca濃度勾配が形成される。つまり、生地部中の各領域のCa濃度は、当該領域が緻密鉱に近いほど低くなる。そして、本実施形態では、大きなCa濃度勾配を形成する緻密鉱が焼結鉱内に分散しているので、焼結鉱中にCa濃度勾配が大きい領域を多く形成することができる。 Thus, in this embodiment, relatively fine compact ore with an average particle size of 0.1 to 1.0 mm is used. Thereby, many regions with a large Ca concentration gradient can be formed in the sintered ore. More specifically, the number of regions where the Ca concentration gradient is large is large, and the total area of these regions is large. In the sintering process, a part of the raw material packed bed is assimilated to become a fluid, and this fluid bonds the remaining solid parts (i.e., non-assimilated parts) (liquid phase sintering reaction). The fluid is then cooled and solidified into the assimilation section. Therefore, the dough portion in the sintered ore includes an assimilated portion where the fluid solidified and a non-assimilated portion where the fluid was not assimilated. Compact ore with an average particle size of 0.1 to 1.0 mm is difficult to assimilate into the fluid during the liquid phase sintering reaction, and often remains in the fabric part as a non-assimilated part (in other words, a residual original ore part). Therefore, the Fe concentration gradient becomes large around such compact ores. In other words, the Fe concentration in each region in the dough portion becomes higher as the region is closer to compact ore. Then, a Ca concentration gradient is formed in a form that is a trade-off with such a Fe concentration gradient. In other words, the Ca concentration in each region in the dough portion becomes lower as the region is closer to compact ore. In the present embodiment, compact ore forming a large Ca concentration gradient is dispersed in the sintered ore, so many regions with a large Ca concentration gradient can be formed in the sintered ore.

緻密鉱の平均粒度は0.1~1.0mmであることが必要である。緻密鉱の平均粒度が0.1mm未満となる場合、焼結過程において緻密鉱が直ちに流体と同化してしまい、Ca濃度勾配がほとんど形成されない。緻密鉱の平均粒度が1.0mmを超える場合、緻密鉱は流体と同化しにくいので、緻密鉱の周囲に大きなCa濃度勾配が形成される。しかし、緻密鉱の粒子の数が少なくなるので、Ca濃度勾配が形成される領域が少なくなる。 The average particle size of compact ore is required to be 0.1 to 1.0 mm. When the average particle size of the compact ore is less than 0.1 mm, the compact ore is immediately assimilated with the fluid during the sintering process, and almost no Ca concentration gradient is formed. When the average particle size of the compact ore exceeds 1.0 mm, the compact ore is difficult to assimilate with the fluid, so a large Ca concentration gradient is formed around the compact ore. However, since the number of particles of compact ore decreases, the area where the Ca concentration gradient is formed decreases.

以下の表1に鉄鉱石の代表例を示す。これらの例のうち、鉄鉱石D、F~Gが緻密鉱に分類される。さらに、鉄鉱石F、Gが本実施形態で使用される緻密鉱となる。なお、表1において、各成分の値は鉄鉱石の総質量に対する質量%を意味する。各成分の質量%は、JIS M8202(2000)の通則に従って測定された値である。なお、Al濃度はM8220:アルミニウム定量方法、SiO濃度はM8214:珪素定量方法、あるいはそれらで更正されたM8205:蛍光X線分析方法に従って測定される。気孔率及び平均粒度の測定方法は上述した通りである。 Table 1 below shows representative examples of iron ore. Among these examples, iron ores D and FG are classified as compact ores. Furthermore, iron ores F and G are compact ores used in this embodiment. In addition, in Table 1, the value of each component means mass % with respect to the total mass of iron ore. The mass % of each component is a value measured according to the general rules of JIS M8202 (2000). Note that the Al 2 O 3 concentration is measured according to M8220: Aluminum quantitative method, and the SiO 2 concentration is measured according to M8214: Silicon quantitative method, or M8205: Fluorescent X-ray analysis method revised therewith. The methods for measuring porosity and average particle size are as described above.

Figure 0007343768000001
Figure 0007343768000001

本実施形態では、平均粒度が0.1~1.0mmである緻密鉱の質量%は、新原料の総質量に対して5質量%以上となる。好ましくは10質量%以上である。緻密鉱の質量%が5質量%未満となる場合、Ca濃度勾配が十分に形成されない。緻密鉱の質量%が5質量%以上、好ましくは10質量%以上となることで、Ca濃度勾配が大きい領域を多く形成することができる。 In this embodiment, the mass % of compact ore having an average particle size of 0.1 to 1.0 mm is 5 mass % or more based on the total mass of the new raw material. Preferably it is 10% by mass or more. When the mass % of compact ore is less than 5 mass %, a sufficient Ca concentration gradient is not formed. When the mass % of the compact ore is 5 mass % or more, preferably 10 mass % or more, many regions with a large Ca concentration gradient can be formed.

(条件B)
本実施形態では、上記緻密鉱を除く新原料、粒度が1.0mm以下の新原料を含み、粒度が1.0mm以下の新原料が以下の条件(1)及び(2)を満たすように、焼結用原料を配合する。
(1)塩基度(CaO/SiOの質量比。所謂C/S)が1.65以上。
(2)Al濃度が1.5質量%以上、またはMgO濃度が1.0質量%以下。
(Condition B)
In this embodiment, the new raw materials excluding the compact ore include new raw materials with a particle size of 1.0 mm or less, and the new raw materials with a particle size of 1.0 mm or less satisfy the following conditions (1) and (2). , blend raw materials for sintering.
(1) Basicity (mass ratio of CaO/SiO 2 , so-called C/S) is 1.65 or more.
(2) Al 2 O 3 concentration is 1.5% by mass or more, or MgO concentration is 1.0% by mass or less.

条件Bは、粒度が1.0mm以下の新原料(ただし緻密鉱除く。以下同じ)が満たすべき条件を規定したものである。焼結過程で生成する流体の体積比率は、原料充填層の総体積に対して概ね5~7割程度であると考えられる。このような流体の体積比率と、一般的な配合原料の粒度分布を考慮すると、粒度が1.0mm以下の新原料は焼結過程でほぼ完全に同化し、流体となると考えられる。したがって、条件Bは、流体となる新原料が満たすべき条件を規定したものであるとも言える。なお、粒度1.0mm以下の新原料は、上記緻密鉱を除く全ての新原料を目開き1.0mmの篩で分級することで取得することができる。 Condition B stipulates the conditions that must be met by a new raw material (excluding compact ores; the same applies hereinafter) having a particle size of 1.0 mm or less. The volume ratio of the fluid generated during the sintering process is considered to be approximately 50 to 70% of the total volume of the raw material packed bed. Taking into consideration the volume ratio of the fluid and the particle size distribution of common mixed raw materials, it is thought that the new raw materials with a particle size of 1.0 mm or less are almost completely assimilated during the sintering process and become a fluid. Therefore, it can be said that condition B defines the conditions that the new raw material that becomes the fluid must satisfy. Note that the new raw material with a particle size of 1.0 mm or less can be obtained by classifying all the new raw materials except the compact ore using a sieve with an opening of 1.0 mm.

条件(1)は、新原料の塩基度を規定したものである。塩基度は、粒度が1.0mm以下の新原料に含まれるCaOとSiOの質量比である。CaO成分の質量はJIS M8221:カルシウム定量方法に従って測定される。SiO成分の質量は上述した方法で測定される。ドイツ鉄鋼協会著「Slag Atlas」等に開示されたCaO-SiO-Fe状態図によれば、塩基度が1.65以上となる場合に、CFが生成する。 Condition (1) defines the basicity of the new raw material. Basicity is the mass ratio of CaO and SiO 2 contained in a new raw material with a particle size of 1.0 mm or less. The mass of the CaO component is measured according to JIS M8221: Calcium quantification method. The mass of the SiO 2 component is measured by the method described above. According to the CaO-SiO 2 -Fe 2 O 3 phase diagram disclosed in "Slag Atlas" by the German Iron and Steel Association, etc., CF is generated when the basicity is 1.65 or more.

条件(2)は、粒度が1.0mm以下の新原料のAl濃度またはMgO濃度が満たすべき条件を規定したものである。なお、Al濃度は上述した方法で測定される。MgO濃度はJIS M8222:マグネシウム定量方法に従って測定される。条件(2)が満たされる場合、焼結過程で生成する流体の粘度が高くなるので、生地部中にCa濃度勾配が大きい領域を多く形成することができる。より具体的に説明すると、条件(2)が満たされる場合、同化しにくい緻密鉱の周囲を高粘度の流体が取り囲むようになる。このような高粘度の流体は、緻密鉱の周囲に形成されたCa濃度勾配を維持した状態で凝固する。したがって、焼結鉱中にCa濃度勾配が大きい領域を多く形成することができ、ひいては、焼結鉱中に多くの針状CFを形成することができる。 Condition (2) stipulates the conditions that the Al 2 O 3 concentration or MgO concentration of the new raw material with a particle size of 1.0 mm or less should satisfy. Note that the Al 2 O 3 concentration is measured by the method described above. The MgO concentration is measured according to JIS M8222: Magnesium quantification method. When condition (2) is satisfied, the viscosity of the fluid generated during the sintering process becomes high, so that many regions with large Ca concentration gradients can be formed in the dough portion. More specifically, when condition (2) is satisfied, a highly viscous fluid surrounds the compact ore, which is difficult to assimilate. Such a high viscosity fluid solidifies while maintaining the Ca concentration gradient formed around the compact ore. Therefore, many regions with large Ca concentration gradients can be formed in the sintered ore, and in turn, many acicular CFs can be formed in the sintered ore.

なお、従来では、焼結鉱の強度を高める等の理由により、流体の粘度をなるべく低くすることが行われていた。これに対し、本発明者は、流体の粘度を高めることで、焼結鉱中に多くの針状CFを形成することができ、ひいては、焼結鉱の被還元性を高めることができることを見出した。したがって、本発明者による知見は従来全く考慮されていなかったものである。 Note that conventionally, for reasons such as increasing the strength of sintered ore, the viscosity of the fluid has been made as low as possible. In contrast, the present inventors have discovered that by increasing the viscosity of the fluid, many acicular CFs can be formed in the sintered ore, and as a result, the reducibility of the sintered ore can be improved. Ta. Therefore, the findings made by the present inventors have not been considered at all in the past.

条件(2)におけるAl濃度の上限値及びMgO濃度の下限値は特に制限されない。ただし、Al濃度が高すぎるか、またはMgO濃度が低すぎる場合、流体の粘度が非常に高くなり、焼結鉱の強度が低下する可能性がある。このような観点から、Al濃度の上限値は2.2%であることが好ましく、MgO濃度の下限値は0.5%であることが好ましい。 The upper limit value of the Al 2 O 3 concentration and the lower limit value of the MgO concentration in condition (2) are not particularly limited. However, if the Al 2 O 3 concentration is too high or the MgO concentration is too low, the viscosity of the fluid may become very high and the strength of the sintered ore may decrease. From this viewpoint, the upper limit of the Al 2 O 3 concentration is preferably 2.2%, and the lower limit of the MgO concentration is preferably 0.5%.

(Al濃度の調整方法)
条件(2)が満たされない場合、例えば以下の処理によりAl濃度を調整してもよい。すなわち、Al成分は主に鉄鉱石から持ち込まれる。したがって、Al濃度が高い鉄鉱石の配合量を増加させるか、または、Al濃度が高い鉄鉱石の粒度が1.0mm以下となるように粉砕してもよい。
(Method for adjusting Al 2 O 3 concentration)
If condition (2) is not satisfied, the Al 2 O 3 concentration may be adjusted, for example, by the following treatment. That is, the Al 2 O 3 components are mainly brought in from iron ore. Therefore, the amount of iron ore with a high Al 2 O 3 concentration may be increased, or the iron ore with a high Al 2 O 3 concentration may be pulverized so that the particle size is 1.0 mm or less.

(MgO濃度の調整方法)
条件(2)が満たされない場合、例えば以下の処理によりMgO濃度を調整してもよい。すなわち、MgO成分は一部のMgO含有副原料(例えば橄欖岩等)に多く含まれる。したがって、MgO含有副原料の配合量を減少させてもよい。あるいは、MgO含有副原料を目開き1.0mmの篩で分級し、粒度1.0mm以下のMgO含有副原料の配合量を低下させてもよい。あるいは、粒度1.0mm以下のMgO含有副原料を塊成化し、粒度を1.0mm超としてもよい。
(How to adjust MgO concentration)
If condition (2) is not satisfied, the MgO concentration may be adjusted, for example, by the following process. That is, the MgO component is contained in a large amount in some MgO-containing auxiliary raw materials (for example, periolite, etc.). Therefore, the amount of the MgO-containing auxiliary raw material may be reduced. Alternatively, the MgO-containing auxiliary raw material may be classified using a sieve with an opening of 1.0 mm to reduce the amount of the MgO-containing auxiliary raw material having a particle size of 1.0 mm or less. Alternatively, MgO-containing auxiliary raw materials with a particle size of 1.0 mm or less may be agglomerated to have a particle size of more than 1.0 mm.

以上述べた通り、本実施形態に係る焼結用原料の配合方法によれば、条件A、Bを満たすように焼結用原料を配合することによって、焼結鉱中にCa濃度勾配が大きい領域を多く形成することができる。この結果、焼結鉱中に多くの針状CFを形成することができ、ひいては、焼結鉱の被還元性を高めることができる。 As described above, according to the method of blending raw materials for sintering according to the present embodiment, by blending raw materials for sintering so as to satisfy conditions A and B, regions where the Ca concentration gradient is large in the sintered ore can be obtained. can be formed in large numbers. As a result, many acicular CFs can be formed in the sintered ore, and as a result, the reducibility of the sintered ore can be improved.

<3.造粒ラインの例>
つぎに、上述した焼結用原料の配合方法を実現するための造粒ラインの例について説明する。図1は本実施形態に係る焼結鉱製造工程の一例である。焼結鉱製造工程(より具体的には、焼結鉱製造工程を実現するための設備)10は、造粒ライン1及び焼結機20を備える。焼結鉱製造工程10では、単一の造粒ラインで焼結用原料を造粒する。
<3. Example of granulation line>
Next, an example of a granulation line for realizing the method of blending raw materials for sintering described above will be described. FIG. 1 is an example of a sintered ore manufacturing process according to this embodiment. A sintered ore production process (more specifically, equipment for realizing the sintered ore production process) 10 includes a granulation line 1 and a sintering machine 20. In the sintered ore manufacturing process 10, a raw material for sintering is granulated in a single granulation line.

造粒ライン1は、複数の原料ホッパ11と、造粒機12と、ベルトコンベア1a、1bを備える。各原料ホッパ11は、それぞれ異なる焼結用原料をベルトコンベア1aに供給する。ここに、焼結用原料は、上述したように、主原料である鉄系原料、焼結反応及び成分調整のために必要な副原料、熱源である炭材(固体燃料)、雑原料、及び返鉱等で構成される。鉄系原料は、例えば粉鉱石、微粉鉱石等の鉄鉱石である。副原料は、例えば石灰石、ドロマイト、転炉スラグ、蛇紋岩、珪石および橄欖岩等である。炭材は、例えばコークス粉および無煙炭等である。雑原料は、例えば製鉄ダスト、製鋼ダスト、スケール等の含鉄リサイクル原料である。 The granulation line 1 includes a plurality of raw material hoppers 11, a granulator 12, and belt conveyors 1a and 1b. Each raw material hopper 11 supplies a different raw material for sintering to the belt conveyor 1a. Here, the raw materials for sintering include, as mentioned above, iron-based raw materials that are the main raw materials, auxiliary raw materials necessary for the sintering reaction and component adjustment, carbonaceous materials (solid fuel) that are the heat source, miscellaneous raw materials, and Consists of return ore, etc. The iron-based raw material is, for example, iron ore such as fine ore and fine ore. The auxiliary raw materials include, for example, limestone, dolomite, converter slag, serpentine, silica, and olivine. Examples of the carbonaceous material include coke powder and anthracite. Miscellaneous raw materials are, for example, iron-containing recycled raw materials such as ironmaking dust, steelmaking dust, and scale.

焼結用の粉鉱石の粒度は、例えば10mm以下である。平均粒度でみると2~3mm程度となる。微粉鉱石は、選鉱処理によって鉄分を高めた鉄鉱石である。その粒度は500μm以下程度である。もちろん、本実施形態に適用可能な粉鉱石及び微粉鉱石はこれらの例に限られず、焼結鉱の分野において粉鉱石及び微粉鉱石と称される鉄鉱石は全て本実施形態に適用可能である。また、本実施形態における鉄系原料には、平均粒度が0.1~1.0mmであり、かつ気孔率が10体積%以下の緻密鉱が含まれる。 The particle size of the fine ore for sintering is, for example, 10 mm or less. The average particle size is about 2 to 3 mm. Fine ore is iron ore whose iron content has been increased through beneficiation. Its particle size is about 500 μm or less. Of course, the fine ore and fine ore applicable to this embodiment are not limited to these examples, and all iron ores called fine ore and fine ore in the field of sintered ore are applicable to this embodiment. Further, the iron-based raw material in this embodiment includes compact ore having an average particle size of 0.1 to 1.0 mm and a porosity of 10% by volume or less.

各原料ホッパ11は、各焼結用原料を所定の配合比でベルトコンベア1aに供給する。ここに、各原料ホッパ11は、上述した条件A、Bが満たされるように各焼結用原料をベルトコンベア1aに供給する。ベルトコンベア1a上では、これらの焼結用原料が配合されて配合原料とされる。 Each raw material hopper 11 supplies each raw material for sintering to the belt conveyor 1a at a predetermined mixing ratio. Here, each raw material hopper 11 supplies each raw material for sintering to the belt conveyor 1a so that the above-mentioned conditions A and B are satisfied. On the belt conveyor 1a, these raw materials for sintering are blended to form a blended raw material.

ついで、ベルトコンベア1aは、配合原料を造粒機12に供給する。造粒機12は、配合原料を造粒することで、配合原料の造粒物を作製する。造粒機12は、配合原料を造粒できる装置であればどのようなものであってもよい。造粒機12の例としては、ドラムミキサー、パンペレタイザ等が挙げられる。造粒機12は、配合原料の造粒物をベルトコンベア1bに排出する。ベルトコンベア1bは、配合原料の造粒物を焼結機20に装入する。焼結機20は、配合原料の造粒物を焼成することで、焼結鉱を作製する。なお、本実施形態における造粒ラインは造粒ライン1に限られず、上述した焼結用原料の配合方法を実現可能な造粒ラインであればどのようなものであってもよい。例えば、複数の造粒ライン(主造粒ライン及び副造粒ライン)を有する造粒ラインを用いてもよい。 Next, the belt conveyor 1a supplies the blended raw materials to the granulator 12. The granulator 12 produces granules of the raw materials by granulating the raw materials. The granulator 12 may be any device that can granulate the blended raw materials. Examples of the granulator 12 include a drum mixer, a pan pelletizer, and the like. The granulator 12 discharges the granulated material of the blended raw materials onto the belt conveyor 1b. The belt conveyor 1b charges the granulated material of the blended raw materials into the sintering machine 20. The sintering machine 20 produces sintered ore by firing granules of mixed raw materials. Note that the granulation line in this embodiment is not limited to the granulation line 1, and may be any granulation line that can implement the above-described method of blending raw materials for sintering. For example, a granulation line having a plurality of granulation lines (a main granulation line and a sub-granulation line) may be used.

つぎに、本実施形態の実施例について説明する。本実施例では、本実施形態の条件A、Bを満たす場合に焼結鉱の被還元性が高まることを確認した。まず、鉄系原料として表1に示す鉄鉱石A~Gを準備した。これらの鉄鉱石A~G、石灰石、生石灰、橄欖岩、返鉱、及び炭材を配合し、配合原料を作製した。各焼結用原料の配合比は表2、3に示す条件が満たされるように調整した。具体的な配合比は表4~6に示すとおりである。ここに、粒度1.0mm以下の新原料中のAl濃度は、Al濃度の高い鉄鉱石Aの配合比を0、10、20、30質量%(新原料中の総質量に対する質量%)のいずれかとすることで調整した。粒度1.0mm以下の新原料中のMgO濃度は、橄欖岩の配合比を1.0、1.5質量%(新原料中の総質量に対する質量%)のいずれかとすることで調整した。炭材の質量%は新原料の総質量に対して4.7質量%とした。表4~6において、各焼結用原料の数値は新原料の総質量に対する質量%である。したがって、新原料の質量%は内数であり、返鉱及びコークス(Coke)の質量%は外数である。 Next, an example of this embodiment will be described. In this example, it was confirmed that the reducibility of sintered ore increases when conditions A and B of this embodiment are satisfied. First, iron ores A to G shown in Table 1 were prepared as iron-based raw materials. These iron ores A to G, limestone, quicklime, periolitic rock, return ore, and carbonaceous material were blended to produce blended raw materials. The blending ratio of each sintering raw material was adjusted so that the conditions shown in Tables 2 and 3 were satisfied. The specific blending ratios are shown in Tables 4 to 6. Here, the Al 2 O 3 concentration in the new raw material with a particle size of 1.0 mm or less is calculated by changing the blending ratio of iron ore A with a high Al 2 O 3 concentration to 0, 10, 20, 30% by mass (total mass in the new raw material). % by mass). The MgO concentration in the new raw material with a particle size of 1.0 mm or less was adjusted by setting the blending ratio of periotite to either 1.0 or 1.5 mass% (mass% relative to the total mass in the new raw material). The mass % of the carbon material was 4.7 mass % based on the total mass of the new raw material. In Tables 4 to 6, the values for each sintering raw material are mass % based on the total mass of the new raw material. Therefore, the mass % of the new raw material is an inner number, and the mass % of return ore and coke (Coke) is an outer number.

Figure 0007343768000002
Figure 0007343768000002

Figure 0007343768000003
Figure 0007343768000003

Figure 0007343768000004
Figure 0007343768000004

Figure 0007343768000005
Figure 0007343768000005

Figure 0007343768000006
Figure 0007343768000006

ついで、ドラムミキサーに配合原料及び7質量%(配合原料の総質量に対する質量%)の水分を投入し、混合1分、造粒4分で造粒した。ついで、鍋試験を行った。鍋試験は、原料充填層の層厚:600mm、負圧:1500mmAq、点火時間:60secの条件で行った。焼成完了後、シンターケーキを2mの高さから4回落下させることで破砕した。破砕後の焼結鉱を篩で分級し、粒度が15mm超20mm以下の鉄鉱石を回収した。ついで、回収した鉄鉱石の被還元性(R1200)を細谷ら、「焼結鉱の軟化溶融性状評価法の開発」(鉄と鋼、1997年、83巻、2号、p.97-102)に記載された測定方法に準拠して測定した。結果を表2、3に示す。 Next, the blended raw materials and 7% by mass (mass% based on the total mass of the blended raw materials) of water were put into a drum mixer, and granulated by mixing for 1 minute and granulation for 4 minutes. Next, I did a pot test. The pot test was conducted under the following conditions: layer thickness of the raw material filling layer: 600 mm, negative pressure: 1500 mmAq, and ignition time: 60 sec. After completion of baking, the sinter cake was crushed by dropping it from a height of 2 m four times. The crushed sintered ore was classified using a sieve, and iron ore with a particle size of more than 15 mm and less than 20 mm was recovered. Next, the reducibility (R1200) of the recovered iron ore was determined by Hosoya et al., "Development of evaluation method for softening and melting properties of sintered ore" (Tetsu to Hagane, 1997, Vol. 83, No. 2, p. 97-102). Measured according to the measurement method described in . The results are shown in Tables 2 and 3.

表2、3から明らかな通り、本実施形態の条件Aを満たさない鉄鉱石D(平均粒度0.057mm)を使用した比較例1~8では、焼結鉱の被還元性(R1200)が60.8~64.5%と低くなった。比較例9、10では、本実施形態の条件Aを満たす鉄鉱石Fを使用しているが、条件Bが満たされない。このため、焼結鉱の被還元性(R1200)が63.5~65.8と低くなった。比較例11~12では、本実施形態の条件Aを満たす鉄鉱石Gを使用しているが、条件Bが満たされない。このため、焼結鉱の被還元性(R1200)が62.8~65.3と低くなった。比較例13~20では、C/Sが1.65未満となっており、条件Bが満たされない。このため、焼結鉱の被還元性(R1200)が62.1~64.3と低くなった。比較例21、22では、C/Sが1.65以上となっているものの、Al濃度及びMgO濃度のいずれもが条件Bを満たさない。一方、条件A、B共に満たす実施例1~18では、焼結鉱の被還元性(R1200)が66.7~67.5と高くなった。したがって、条件A、Bを満たすように焼結用原料を配合することで、被還元性の高い焼結鉱を作製できることが確認できた。 As is clear from Tables 2 and 3, in Comparative Examples 1 to 8 using iron ore D (average particle size 0.057 mm) that does not satisfy condition A of the present embodiment, the reducibility (R1200) of the sintered ore was 60. It was as low as .8 to 64.5%. In Comparative Examples 9 and 10, iron ore F that satisfies condition A of the present embodiment is used, but condition B is not satisfied. Therefore, the reducibility (R1200) of the sintered ore was as low as 63.5 to 65.8. In Comparative Examples 11 and 12, iron ore G that satisfies condition A of the present embodiment is used, but condition B is not satisfied. Therefore, the reducibility (R1200) of the sintered ore was as low as 62.8 to 65.3. In Comparative Examples 13 to 20, C/S was less than 1.65, and Condition B was not satisfied. Therefore, the reducibility (R1200) of the sintered ore was as low as 62.1 to 64.3. In Comparative Examples 21 and 22, although the C/S was 1.65 or more, neither the Al 2 O 3 concentration nor the MgO concentration satisfied Condition B. On the other hand, in Examples 1 to 18 that satisfied both conditions A and B, the reducibility (R1200) of the sintered ore was as high as 66.7 to 67.5. Therefore, it was confirmed that by blending the sintering raw materials so as to satisfy conditions A and B, sintered ore with high reducibility could be produced.

以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。 Although preferred embodiments of the present invention have been described above in detail with reference to the accompanying drawings, the present invention is not limited to such examples. It is clear that a person with ordinary knowledge in the technical field to which the present invention pertains can come up with various changes or modifications within the scope of the technical idea stated in the claims. It is understood that these also naturally fall within the technical scope of the present invention.

10 造粒システム
1 造粒ライン
11 原料ホッパ
12 造粒機
20 焼結機
10 Granulation system 1 Granulation line 11 Raw material hopper 12 Granulator 20 Sintering machine

Claims (1)

平均粒度が0.1~1.0mmであり、かつ気孔率が10体積%以下の緻密質鉄鉱石の含有量が新原料の総質量に対して5質量%以上となり、かつ、
前記緻密質鉄鉱石を除く新原料、粒度が1.0mm以下の新原料を含み、
前記粒度が1.0mm以下の新原料が以下の条件(1)及び(2)を満たすように、焼結用原料を配合することを特徴とする、焼結用原料の配合方法。
(1)塩基度(CaO/SiOの質量比)が1.65以上。
(2)Al濃度が1.5質量%以上、またはMgO濃度が1.0質量%以下。
The content of dense iron ore with an average particle size of 0.1 to 1.0 mm and a porosity of 10% by volume or less is 5% by mass or more based on the total mass of the new raw material, and
The new raw materials excluding the dense iron ore include new raw materials with a particle size of 1.0 mm or less,
A method for blending raw materials for sintering, characterized in that the raw materials for sintering are blended so that the new raw materials having a particle size of 1.0 mm or less satisfy the following conditions (1) and (2).
(1) Basicity (mass ratio of CaO/SiO 2 ) is 1.65 or more.
(2) Al 2 O 3 concentration is 1.5% by mass or more, or MgO concentration is 1.0% by mass or less.
JP2019196081A 2019-10-29 2019-10-29 Method of blending raw materials for sintering Active JP7343768B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019196081A JP7343768B2 (en) 2019-10-29 2019-10-29 Method of blending raw materials for sintering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019196081A JP7343768B2 (en) 2019-10-29 2019-10-29 Method of blending raw materials for sintering

Publications (2)

Publication Number Publication Date
JP2021070832A JP2021070832A (en) 2021-05-06
JP7343768B2 true JP7343768B2 (en) 2023-09-13

Family

ID=75712586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019196081A Active JP7343768B2 (en) 2019-10-29 2019-10-29 Method of blending raw materials for sintering

Country Status (1)

Country Link
JP (1) JP7343768B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005133209A (en) 2003-10-09 2005-05-26 Jfe Steel Kk Method for producing sintered ore, method for producing raw material for sintering, granulated pellet, and sintered ore

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005133209A (en) 2003-10-09 2005-05-26 Jfe Steel Kk Method for producing sintered ore, method for producing raw material for sintering, granulated pellet, and sintered ore

Also Published As

Publication number Publication date
JP2021070832A (en) 2021-05-06

Similar Documents

Publication Publication Date Title
JP5699567B2 (en) Method for producing sintered ore
KR102023040B1 (en) Process for dephosphorization of molten metal during a refining process
JP5954533B2 (en) Method for producing sintered ore
CN107614710B (en) The manufacturing method of reduced iron
US4168966A (en) Agglomerates for use in a blast furnace and method of making the same
UA119756C2 (en) Method for producing manganese ore pellets
KR20110051292A (en) Blast furnace operating method using carbon-containing unfired pellets
JP6273957B2 (en) Sinter ore manufacturing method
JP7343768B2 (en) Method of blending raw materials for sintering
JP7151055B2 (en) How to use steelmaking slag in sintering
KR102288003B1 (en) Manufacturing method of sintered ore
JP6020832B2 (en) Sintering raw material manufacturing method
WO2010032466A1 (en) Sintered ore manufacturing method
JP4725230B2 (en) Method for producing sintered ore
JP2007277594A (en) Sintered ore production method
JP4767388B2 (en) Method for producing sintered ore with excellent high-temperature properties
KR102233326B1 (en) Manufacturing method of carbon material embedded sintered ore
JP6887717B2 (en) Charcoal interior granulated particles for sinter production and sinter production method using them
JP7273305B2 (en) Method for producing sintered ore
JP6004191B2 (en) Sintering raw material manufacturing method
JP2018066046A (en) Manufacturing method of sintered ore
JP5801752B2 (en) Sintered ore
JP7127395B2 (en) Pretreatment method for raw material for sintering
JP7024648B2 (en) Granulation method of raw material for sintering
JP4501656B2 (en) Method for producing sintered ore

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230814

R151 Written notification of patent or utility model registration

Ref document number: 7343768

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151