JP2007277594A - Sintered ore production method - Google Patents

Sintered ore production method Download PDF

Info

Publication number
JP2007277594A
JP2007277594A JP2006101712A JP2006101712A JP2007277594A JP 2007277594 A JP2007277594 A JP 2007277594A JP 2006101712 A JP2006101712 A JP 2006101712A JP 2006101712 A JP2006101712 A JP 2006101712A JP 2007277594 A JP2007277594 A JP 2007277594A
Authority
JP
Japan
Prior art keywords
raw material
sintered
sintering
coarse
charged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006101712A
Other languages
Japanese (ja)
Inventor
Koichi Ichikawa
孝一 市川
Koichi Nushishiro
晃一 主代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006101712A priority Critical patent/JP2007277594A/en
Publication of JP2007277594A publication Critical patent/JP2007277594A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sintered ore production method where a yield is improved by preventing powdering upon crushing when sintered ore is produced. <P>SOLUTION: A sintered ore production method characterized in that the charging raw material of coarse grains with a grain diameter of 10 to 20 mm selected from blast furnace charging raw materials is charged inside a sintering raw material bed in a dispersed state, and is sintered together with the other sintering raw material, is used. Preferably, the charging raw material of coarse grains is iron ore and/or steel making slag, and the charging raw material of coarse grains is charged inside the sintering raw material bed in such a manner that the average spacing is controlled to 40 to 80 mm. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は下方吸引のドワイトロイド式焼結機を用いて焼結鉱を製造する際に使用する焼結鉱製造方法に関するものである。   The present invention relates to a method for producing a sintered ore used when producing a sintered ore using a downward suction droidoid type sintering machine.

粉鉄鉱石などから焼結鉱を製造する際には、粉鉄鉱石に燃料としての炭材である粉コークスおよび副原料として石灰石、などを配合し、これらを混合して造粒した後、焼結パレットに装入して焼結原料ベッドを形成し、焼結原料ベッドの表層に着火して焼結し、これを破砕・整粒して焼結鉱を得ている。破砕は、焼結機により焼結原料の焼結が完了した焼結鉱ケーキ(シンターケーキともいう。)に対して行われ、焼結機の排出端において焼結パレットより焼結鉱ケーキが離脱し、クラッシングガイド上に落下した段階で、これを破砕機により一次破砕してさらに焼結鉱冷却機に供給冷却して焼結鉱とされている。粒径100mm以上の粗大焼結鉱は、還元性遅延の観点や高炉内の充填制御が困難であることから高炉装入に適しないため、通常、ロールクラッシャなどで2次破砕されて、100mm以下の粒径に粒度調製される。また、粒径3〜5mm以下の細粒は高炉内で高密度に充填されて通気性を低減させて還元を阻害するので、高炉には装入されず、返鉱と呼ばれて再度焼結原料として利用される。   When producing sintered ore from powdered iron ore, etc., powdered iron ore is blended with powdered coke, which is a carbonaceous material as fuel, and limestone, as an auxiliary material. A sintered raw material bed is formed by charging into a sintering pallet, the surface layer of the sintered raw material bed is ignited and sintered, and this is crushed and sized to obtain a sintered ore. Crushing is performed on a sintered ore cake (also called a sinter cake) that has been sintered with a sintering machine, and the sintered ore cake is detached from the sintering pallet at the discharge end of the sintering machine. At the stage of dropping onto the crushing guide, this is primarily crushed by a crusher and further supplied to a sinter cooler to be cooled to obtain a sinter. Coarse sintered ore with a particle size of 100 mm or more is not suitable for blast furnace charging because it is difficult to control reductive delay and filling control in the blast furnace. The particle size is adjusted to the particle size. In addition, fine particles with a particle size of 3 to 5 mm or less are filled with high density in the blast furnace to reduce the air permeability and inhibit the reduction. Used as a raw material.

従来係る焼結鉱の製造過程で、上記破砕機による破砕時に、焼結鉱の粉化が多量に発生し歩留りの低下をきたすという問題が発生している。   In the conventional manufacturing process of sintered ore, there is a problem that a large amount of powdered sintered ore occurs during the crushing by the crusher, resulting in a decrease in yield.

そのため、従来、粉化防止の観点から、上記破砕時に、焼結鉱ケーキに破砕を補助する亀裂を発生させるべくさまざまな提案が成されてきた。   Therefore, conventionally, various proposals have been made from the viewpoint of preventing pulverization to generate cracks to assist crushing in the sintered ore cake during the crushing.

例えば、特許文献1では、焼結原料ベッド表面にパレット進行方向に延びた溝を一定間隔で形成し、溝には他の原料を入れて通気性は一定に保ちつつ、焼き締りによる不規則な亀裂は,予め溝にして他の原料を載せた部分に集めて、漏風を抑え、ムラ焼けを抑えて溝を基点にして破砕を容易にして歩留りを向上させる提案が成されている。   For example, in Patent Document 1, a groove extending in the pallet traveling direction is formed at a constant interval on the surface of the sintering raw material bed, and other raw materials are put in the groove to keep the air permeability constant, and irregular by baking Proposals have been made for cracks to be gathered in advance in a groove where other raw materials are placed, to suppress air leakage, to prevent uneven burning, to facilitate crushing from the groove as a starting point, and to improve yield.

また、特許文献2では、凸のついたローラーで、焼結原料ベッド表面に一定間隔の溝を形成し、庄密をかける事で表面部での焼成時間を延長するともに、表面部に生じる亀裂を分散させて、破砕を容易にして歩留りを向上させる提案が成されている。   Moreover, in patent document 2, the groove | channel of a fixed interval is formed in the sintering raw material bed surface with a convex roller, and the firing time in a surface part is extended by applying a closeness, and the crack which arises in a surface part Proposals have been made to disperse the particles to facilitate crushing and improve the yield.

さらに特許文献3では、焼結原料を焼結パレットに装入後、点火炉前までに、焼結原料ベッドの内部に垂直方向および/または水平方向に層状にスリットを形成し、そこに燃料を含まない無機原料を装入して、焼成後にそのスリットで破砕を容易にして粉の発生を抑える提案が成されている。   Further, in Patent Document 3, a slit is formed in a layer in the vertical direction and / or the horizontal direction inside the sintering material bed after charging the sintering material into the sintering pallet and before the ignition furnace, and fuel is supplied to the slit. Proposals have been made to suppress the generation of powder by charging an inorganic raw material not contained and easily crushing with a slit after firing.

一方で、焼結鉱ケーキに破砕を補助する亀裂を発生させるという観点とは異なるが、同様の効果を有する可能性のある方法として、焼結原料ベッド中に10〜20mmの粒径を持つ焼結鉱である床敷鉱を混合する技術が知られている(例えば、特許文献4参照。)。粒径の大きい床敷鉱を焼結原料ベッド中に2.5〜10質量%混合することで、焼結原料ベッドの通気性を改善して、焼結鉱を高い生産性の下で製造できるとされている。
特開昭57−13128号公報 特開平4−259335号公報 特開昭61−195926号公報 特開平10−72627号公報
On the other hand, although different from the viewpoint of generating cracks to assist crushing in the sintered ore cake, as a method that may have the same effect, a sintered raw material bed having a particle diameter of 10 to 20 mm is used. A technique for mixing a floor bedding ore, which is a ore, is known (for example, see Patent Document 4). By mixing 2.5 to 10% by mass of a large-particle-size bedding ore into the sintered raw material bed, the air permeability of the sintered raw material bed can be improved and the sintered ore can be produced with high productivity. It is said that.
JP-A-57-13128 JP-A-4-259335 JP-A 61-195926 Japanese Patent Laid-Open No. 10-72627

しかしながら、特許文献1、2に記載の従来技術は、いずれも焼結原料ベッドの表面の限定された部分でしか破砕を容易にする効果がなく、焼結鉱ケーキの大部分の歩留には影響がない。さらに、実際には、焼結原料ベッドの表面に溝を形成すると、他の原料を溝部に供給した場合であっても、溝部に流入するガス速度の助長を抑えることは困難であり、溝の周辺部はムラ焼けになって歩留りは低下する。加えて、焼結鉱ケーキの表層は下部と比べ強度がおとり、かえって粉化を助長する問題も発生した。   However, the conventional techniques described in Patent Documents 1 and 2 are all effective only in a limited portion of the surface of the sintering material bed, and the yield of most of the sintered ore cake There is no effect. Furthermore, in practice, when grooves are formed on the surface of the sintering material bed, it is difficult to suppress the promotion of the gas velocity flowing into the grooves even when other raw materials are supplied to the grooves. The peripheral part becomes unevenly burned and the yield decreases. In addition, the strength of the surface layer of the sintered ore cake was lower than that of the lower part, and on the contrary, there was a problem of promoting pulverization.

さらにまた、特許文献3に記載の従来技術は、数10cm単位の間隔で焼結原料ベッドを貫通し、焼結機の機長方向に連続した不均一層を形成することとなり、特許文献1、2に記載の従来技術よりも、さらに大きな通気性不均一を焼結原料ベッドにもたらし、スリット周辺部にムラ焼け領域を拡大させ、かえって歩留りを低下させる問題を発生させた。   Furthermore, the prior art described in Patent Document 3 penetrates the sintering raw material bed at intervals of several tens of centimeters and forms a non-uniform layer continuous in the length direction of the sintering machine. In comparison with the prior art described in (1), a larger non-uniform air permeability was introduced into the sintering material bed, and the uneven burn area was enlarged in the periphery of the slit, resulting in a problem of lowering the yield.

このように、特許文献1〜3に記載の技術では、焼結鉱ケーキに破砕を補助する亀裂を発生させて、破砕時の焼結鉱の粉化を防止して、歩留りの低下を防止することが困難であるという問題がある。   As described above, in the techniques described in Patent Documents 1 to 3, a crack that assists crushing is generated in the sintered ore cake, and powdering of the sintered ore at the time of crushing is prevented to prevent a decrease in yield. There is a problem that it is difficult.

一方で、焼結鉱の成品粒度域内である床敷鉱を多量に焼結原料ベッドに混合する手段は、焼結原料ベッドから焼成を経ていない生の新しい原料を排除するものであるから、床敷鉱を混合した量以上に生産速度を増大しなければ有効とならず、強度の維持が困難であるとともに、不経済である。また、粗大粒を多量に導入すれば、焼結成品の粗大塊が増大し、二次破砕工程で処理を行なう比率が増大して、過剰な破砕が必要となり、歩留が改善されないという問題がある。   On the other hand, the means for mixing a large amount of bedstone ore within the product grain size range of the sintered ore into the sintering material bed eliminates raw new raw material that has not been fired from the sintering material bed. If the production rate is not increased beyond the amount of mixed ore, it will be effective, it will be difficult to maintain strength, and it will be uneconomical. In addition, if a large amount of coarse particles are introduced, the coarse lump of the sintered product increases, the ratio of processing in the secondary crushing process increases, excessive crushing is required, and the yield is not improved. is there.

したがって本発明の目的は、このような従来技術の課題を解決し、焼結鉱を製造する際に破砕時の粉化を防止して、歩留りを向上させることができる、焼結鉱製造方法を提供することにある。   Therefore, an object of the present invention is to solve the problems of the prior art, prevent pulverization at the time of crushing when manufacturing sintered ore, and improve the yield. It is to provide.

本発明者らは、前記問題解決にあたり、床敷鉱以外の粗粒を焼結原料ベッドに混合することに着目した。すなわち、高炉装入原料の中から選択される粒径10mm以上、20mm以下の粗粒の装入原料の使用である。本発明においては、粗粒の装入原料を焼結原料ベッド中に混在させることにより、この粗粒の装入原料の存在部を、破砕を容易にする亀裂発生基点とできることに着眼して、本発明を完成した。   The inventors of the present invention focused on mixing coarse particles other than bedding ore into the sintering raw material bed in solving the above problem. That is, it is the use of a coarse charged raw material having a particle size of 10 mm or more and 20 mm or less selected from blast furnace charged raw materials. In the present invention, by mixing the coarse charge raw material in the sintering raw material bed, focusing on the existence of the coarse charge raw material as a crack initiation point that facilitates crushing, The present invention has been completed.

すなわち、本発明は、以下の特徴を有するものである。
(1)高炉装入原料の中から選択される粒径10mm以上、20mm以下の粗粒の装入原料を焼結原料ベッド中に分散状態で装入し、他の焼結原料とともに焼結することを特徴とする焼結鉱製造方法。
(2)粗粒の装入原料が、鉄鉱石および/または製鋼スラグであることを特徴とする(1)に記載の焼結鉱製造方法。
(3)平均間隔が40〜80mmとなるように粗粒の装入原料を焼結原料ベッド中に装入することを特徴とする(1)または(2)に記載の焼結鉱の製造方法。
(4)焼結原料ベッド下方75%層厚の領域で、粗粒の装入原料が40〜70mmの平均間隔となるように分散させて焼結することを特徴とする(1)ないし(3)のいずれかに記載の焼結鉱製造方法。
(5)粗粒の装入原料を含む焼結原料を焼結原料ベッドに装入するに際し、焼結機パレット進行方向に向かって角度50°以上70°未満の俯角で配置されたスローピングシュートを用いて装入することを特徴とする(1)ないし(4)のいずれかに記載の焼結鉱製造方法。
That is, the present invention has the following characteristics.
(1) A coarse charged material having a particle diameter of 10 mm or more and 20 mm or less selected from blast furnace charged raw materials is charged in a dispersed state in a sintered raw material bed and sintered together with other sintered raw materials. A method for producing sintered ore characterized by the above.
(2) The method for producing sintered ore according to (1), wherein the coarsely charged raw material is iron ore and / or steelmaking slag.
(3) The method for producing a sintered ore according to (1) or (2), wherein a coarsely charged raw material is charged into a sintered raw material bed so that an average interval is 40 to 80 mm. .
(4) In the region of 75% layer thickness below the sintering raw material bed, the coarse charged raw materials are dispersed and sintered so as to have an average interval of 40 to 70 mm (1) to (3) ) Or a sintered ore production method according to any one of the above.
(5) When charging a sintering raw material containing a coarse charging raw material into a sintering raw material bed, a sloping chute arranged at a depression angle of 50 ° or more and less than 70 ° toward the sintering machine pallet traveling direction The method for producing a sintered ore according to any one of (1) to (4), wherein the method is used for charging.

本発明によれば、焼結鉱ケーキ破砕後の粒径5mm未満(−5mm)の焼結鉱の発生量を増大させることなく、粒径100mm以上(+100mm)の粗大塊の焼結鉱を低減することができ、2次破砕が必要な粗大塊の焼結鉱量が大幅に低減し、2次破砕で発生する粒径5mm未満の焼結鉱の発生量を減らすことができるので、焼結鉱製造の歩留を大幅に向上できる。   According to the present invention, without increasing the amount of sintered ore having a particle size of less than 5 mm (−5 mm) after crushing the sintered ore cake, the coarse ore of sintered ore having a particle size of 100 mm or more (+100 mm) is reduced. Sintering is possible because the amount of coarse ore sinter required for secondary crushing can be greatly reduced and the amount of sintered ore with a particle size of less than 5 mm generated by secondary crushing can be reduced. The yield of ore production can be greatly improved.

まず、図1を用いて焼結鉱の製造プロセスを説明する。粉鉄鉱石、炭材(粉コークス)、副原料(石灰石等)等を配合した焼結原料を混合して造粒した後、原料装入装置1を用いて、焼結機2の焼結パレットに装入して焼結原料ベッド3を形成し、着火装置4により焼結原料ベッド3の表層に着火して焼結し、焼結鉱ケーキ5とする。焼結機2の排出端において焼結パレットより焼結鉱ケーキ5が離脱し、破砕機6により一次破砕され、焼結鉱冷却機7に供給冷却されて焼結鉱となる。この焼結鉱を一次篩8により分級し、粒径100mm以上の粗大焼結鉱は、ロールクラッシャ等の2次破砕機9で2次破砕され、100mm以下の粒径に粒度調製される。100mm以下の粒径に粒度調製された焼結鉱は、スクリーン10で分級されて、粒径3〜5mm以上のものが製品焼結鉱として、高炉11に装入される。また、粒径3〜5mm以下の細粒は返鉱12として再度焼結原料として利用される。   First, the manufacturing process of a sintered ore is demonstrated using FIG. After mixing and granulating sintered raw materials containing powdered iron ore, carbonaceous material (coke coke), auxiliary raw materials (limestone, etc.), etc., using the raw material charging device 1, the sintering pallet of the sintering machine 2 The sintered raw material bed 3 is formed, and the surface layer of the sintered raw material bed 3 is ignited and sintered by the ignition device 4 to obtain a sintered ore cake 5. The sintered ore cake 5 is detached from the sintering pallet at the discharge end of the sintering machine 2, is primarily crushed by the crusher 6, is supplied to the sinter cooler 7, and is cooled to become sintered ore. The sintered ore is classified by the primary sieve 8, and the coarse sintered ore having a particle size of 100 mm or more is secondarily crushed by a secondary crusher 9 such as a roll crusher, and the particle size is adjusted to a particle size of 100 mm or less. The sintered ore whose particle size is adjusted to a particle size of 100 mm or less is classified by the screen 10, and one having a particle size of 3 to 5 mm or more is charged into the blast furnace 11 as a product sintered ore. Further, fine particles having a particle diameter of 3 to 5 mm or less are reused as the raw material 12 as a sintering raw material.

本発明は、上記の1次破砕における粉化発生量を大きく低減することができるものであり、焼結鉱の製造に際し、高炉装入原料から選択される装入原料を10mm以上、20mm以下の粒径として焼結原料ベッド中に粗粒物として分散状態で装入し、他の焼結原料と混在させ焼結することにより、焼結鉱ケーキ破砕時の破砕を容易にし、粗粒物を基点としては破砕時の亀裂を発生させることにより、破砕の際の粉化発生を抑止して、焼結鉱塊歩留り向上を図るものである。当該粗粒物は、高炉装入原料から選択される。その理由は、従来技術に記載されている床敷鉱のような装入を忌避される原料を焼結原料ベッドへの装入物として用いると、本来の焼結鉱生産量を減少させるためである。本発明においては、焼結鉱と共に高炉に装入されても問題のない、高炉装入原料を粗粒物として焼結原料ベッドへ装入する。   The present invention can greatly reduce the amount of pulverization in the primary crushing described above, and in the production of sintered ore, the charging raw material selected from the blast furnace charging raw material is 10 mm or more and 20 mm or less. As a particle size, it is charged in a dispersed state as coarse particles in the sintering raw material bed, and mixed with other sintering raw materials and sintered to facilitate crushing at the time of crushing the sintered ore cake. As a starting point, by generating cracks at the time of crushing, the occurrence of powdering at the time of crushing is suppressed, and the yield of the sintered ore is improved. The coarse particles are selected from blast furnace charging materials. The reason for this is that when raw materials such as bedding ore described in the prior art are avoided as a charge to the sintering raw material bed, the original production of sinter is reduced. is there. In the present invention, even if charged into the blast furnace together with the sintered ore, there is no problem and the blast furnace charged raw material is charged into the sintered raw material bed as coarse particles.

高炉装入原料から選択される粗粒の装入原料としては、焼結温度で形状を維持できるものが好ましく、高炉装入原料の中から選ばれる1種または2種以上を用いるものとし、緻密鉄鉱石、予備処理および転炉精錬から発生するスラグ中の粒鉄、あるいは副原料として装入される製鋼スラグ(転炉スラグ)、石灰石を使用することが好ましい。鉄鉱石および/または製鋼スラグは、高炉で還元すべき酸化鉄分を多く含み、分級により目的とする粒径の粗粒を容易に得られるため、特に好適に使用できる。   As the coarse-grained charging material selected from the blast furnace charging materials, those capable of maintaining the shape at the sintering temperature are preferable, and one or two or more types selected from the blast furnace charging materials are used. It is preferable to use iron ore, granular iron in slag generated from pretreatment and converter refining, steelmaking slag (converter slag) or limestone charged as an auxiliary material. Iron ore and / or steelmaking slag can be used particularly suitably because it contains a large amount of iron oxide to be reduced in a blast furnace and can easily obtain coarse particles having a desired particle size by classification.

また、粗粒の装入原料としては、後述する理由から10mm以上、20mm以下の粒径として焼結原料ベッド中に粗粒物として装入して使用するものである。10mm以上の粒径を持つ原料は、焼結原料中では粗粒に該当するが、この粗粒を利用すると焼結においては下記現象を生じる。   Moreover, as a coarse-grained charging raw material, it inserts and uses it as a coarse-grained material in a sintering raw material bed as a particle size of 10 mm or more and 20 mm or less for the reason mentioned later. A raw material having a particle size of 10 mm or more corresponds to coarse particles in the sintered raw material. However, if this coarse particle is used, the following phenomenon occurs in sintering.

すなわち、粗粒を焼結原料ベッド内に分散させると、粗粒周辺は焼成状況が変化して、反応性が低い粗粒を用いた場合には粗粒下部に焼成時の融液が回り込まないため、粗粒下に空隙を残留させる。   That is, when the coarse particles are dispersed in the sintering material bed, the firing condition changes around the coarse particles, and when coarse particles with low reactivity are used, the melt at the time of firing does not enter the lower portion of the coarse particles. Therefore, voids remain under the coarse particles.

粗粒の周囲もしくは反応後の痕跡として残った大気孔が適度に分散した焼結鉱ケーキの場合、その空隙間を伝搬する様に亀裂が進行して破砕される確率が増大するため、粗粒の存在により焼結鉱ケーキ内に亀裂発生点を導入することで、焼結鉱ケーキの粉砕性を向上させて、粉化を抑制することが可能となる。このように成品焼結鉱の粒度分布が焼結鉱ケーキ内の空隙の分散状況に影響されることを、本発明者等は鋭意実験の結果から見出したものである。このように本発明において、焼結ケーキ破砕時の粉化(粉率)が低下する理由は、粗粒の存在により焼結鉱ケーキ内に亀裂発生点を導入することで、前記空隙間を伝搬する様に亀裂が進行して破砕されることである。   In the case of a sintered ore cake in which atmospheric pores remaining around the coarse grains or as traces after the reaction are moderately dispersed, the probability that the cracks progress and crushed so as to propagate through the voids increases. By introducing crack generation points in the sintered ore cake due to the presence of the sinter, it becomes possible to improve the grindability of the sintered ore cake and suppress powdering. As described above, the present inventors have found that the particle size distribution of the product sinter is influenced by the dispersion state of the voids in the sinter cake, as a result of intensive experiments. As described above, in the present invention, the reason why powdering (powder rate) at the time of crushing the sintered cake is reduced is that the cracks are introduced into the sintered ore cake due to the presence of coarse particles, and propagated through the air gap. As the crack progresses, it is crushed.

本発明者等はさらに検討を重ねた結果、粗粒を、粗粒間の平均間隔40mm〜80mmとなる様に焼結原料ベッドに分散させると、分散の無い場合と比較して、焼結鉱ケーキの1次破砕後の粒度分布において、粒径5mm未満(−5mm)の粉の発生比率は変化せずに、粒径100mm以上(+100mm)の粗大粒が低減することを見出した。この粗粒間の平均間隔は粗粒を焼結原料ベッド内に想定した立方格子の格子点に配置した場合にとれる格子間隔のことを指し、対象となる装入容積と粗粒の個数から算出する。   As a result of further studies, the inventors have dispersed coarse particles in the sintering raw material bed so that the average interval between coarse particles is 40 mm to 80 mm. In the particle size distribution after primary crushing of the cake, it was found that the generation ratio of powder having a particle size of less than 5 mm (−5 mm) did not change, and coarse particles having a particle size of 100 mm or more (+100 mm) were reduced. The average interval between the coarse particles refers to the lattice interval obtained when the coarse particles are arranged at the lattice points of the cubic lattice assumed in the sintering material bed, and is calculated from the target charging volume and the number of coarse particles. To do.

粗粒の分散状態は均一分散に近い状態であるほど好ましく、焼結原料ベッド層厚のどの領域、例えば層厚10cm幅ごとに分散状況を分析しても、各領域でこの平均間隔に相当する個数の粗粒が分散されているということであり、ベッド全体で見た場合に相当数の粗粒が含まれていることではない。   The dispersion state of the coarse particles is preferably as close to uniform dispersion as possible, and even if the dispersion state is analyzed for every region of the sintering raw material bed layer thickness, for example, the layer thickness of 10 cm, it corresponds to this average interval in each region. This means that a large number of coarse particles are dispersed, and it does not mean that a considerable number of coarse particles are contained when viewed in the whole bed.

先に説明したように、+100mmの粗大塊は2次破砕過程を経るため、その破砕で必然的に−5mmの返鉱も発生し、成品焼結鉱の歩留を低減する。しかし、本発明では1次破砕段階で−5mm発生量を変えずに+100mmを低減できるために、追加の破砕による返鉱の発生が無くなり、焼結成品歩留を大幅に改善することが可能となる。   As described above, since the +100 mm coarse block undergoes a secondary crushing process, the crushing inevitably generates a return of -5 mm, thereby reducing the yield of the product sintered ore. However, in the present invention, since +100 mm can be reduced without changing the generation amount of −5 mm in the primary crushing stage, there is no occurrence of return ore due to additional crushing, and the yield of sintered products can be greatly improved. Become.

高炉装入原料から選択される粗粒の装入原料としては、反応性の低い原料を用いることが好ましく、緻密質の鉱石の粗粒分(粒径10〜15mm)や、製鉄所内でリサイクル原料として加えられる製鋼スラグ(いわゆる転炉スラグ)を粗粒化して用いることが好ましい。本発明で製造する焼結鉱は高炉装入用であるため、成分としては、酸化鉄(Fe23、Fe34、FeO)および金属鉄、CaO、SiO2、Al23、MgO、C以外の成分の含有量が10mass%以下である材料を用いることが望ましい。 It is preferable to use a raw material having low reactivity as a raw material charged with coarse particles selected from blast furnace raw materials, and coarse particles of fine ore (particle size 10 to 15 mm) or recycled materials in steelworks. It is preferable to use the steelmaking slag (so-called converter slag) added as Since the sintered ore produced in the present invention is for blast furnace charging, the components include iron oxide (Fe 2 O 3 , Fe 3 O 4 , FeO) and metallic iron, CaO, SiO 2 , Al 2 O 3 , It is desirable to use a material whose content of components other than MgO and C is 10 mass% or less.

高炉装入原料から選択される粗粒の装入原料は、粒径として10〜20mm、特に好ましくは10〜15mmが適している。これは、粒径20mm超えの粗粒では粒子のもつ質量のために装入時に粗粒に掛かる慣性力が大きく、下方に偏析する傾向が抑制しきれず、分散状態を達成するのが困難であるためと、焼結原料ベッド内水平断面を想定したとき、通気を妨げる緻密粒子の断面の占有面積が増大してベッドの通気性を低下させるためである。また、粒径が10mmより小さい場合は、周囲で発生した融液との反応が進行して、未反応粒子として残留して粒子下に空隙を形成する機能が失われるためである。   The coarse-grained charging material selected from the blast furnace charging materials has a particle size of 10 to 20 mm, particularly preferably 10 to 15 mm. This is because coarse particles having a particle size exceeding 20 mm have a large inertial force applied to the coarse particles during charging, and the tendency to segregate downward cannot be suppressed, making it difficult to achieve a dispersed state. For this reason, when the horizontal cross section in the sintered raw material bed is assumed, the occupied area of the cross section of the dense particles that hinders the air flow increases and the air permeability of the bed is lowered. On the other hand, when the particle size is smaller than 10 mm, the reaction with the melt generated in the surroundings proceeds, and the function of remaining as unreacted particles and forming voids under the particles is lost.

粗粒の分散間隔として、40〜80mmを適正とするのは、80mm超えでは実質的に粗粒部に生成した空隙間距離が長く、破砕時のクラック伝搬に影響を与えられない場合があるため効果が現れないためである。   The reason why 40 to 80 mm is appropriate as the dispersion interval of the coarse particles is that if the distance exceeds 80 mm, the gap distance generated in the coarse particle portion is substantially long, and the crack propagation during crushing may not be affected. This is because the effect does not appear.

また、40mm未満の間隔に近接すると、焼成中の空隙形成時に隣接した空隙同志で合体して空隙数を減らして巨大な連続空隙を生成しやすくなる。そのため、巨大連続空隙間の相互距離が増大するとともに、巨大連続空隙間には、小空隙(例えば球相等径10mm以下)が低減した緻密で強固な組織を生成して、空隙間を伝搬するようにクラックが進展しなくなり、かえって1次破砕後に粗大塊を増大させる結果となる場合があるためである。   Further, when the gap is close to less than 40 mm, the adjacent gaps are combined at the time of gap formation during firing, and the number of voids is reduced to easily generate huge continuous voids. For this reason, the mutual distance between the large continuous voids increases, and a dense and strong structure in which small voids (for example, a spherical phase equal diameter of 10 mm or less) are reduced is generated between the huge continuous voids so as to propagate through the voids. This is because cracks do not progress and may result in an increase in coarse lumps after primary crushing.

粗粒は、焼結鉱の配合原料の混合、造粒前に他原料に加えても良いが、粗粒への付着粉は少ない方が良く、他原料の1次混合造粒過程の後、例えば2次ミキサーに投入される前時点で加えることが望ましい。また、ミキサー1機のみで造粒する場合はミキサーの内部に造粒の後半の過程で加えることも可能である。   Coarse grains may be added to other raw materials before mixing and granulation of the blended raw materials of sintered ore, but less adhering powder to the coarse grains is better, after the primary mixed granulation process of other raw materials, For example, it is desirable to add it before it is put into the secondary mixer. In addition, when granulating with only one mixer, it can be added to the inside of the mixer in the latter half of the granulation.

粗粒の装入原料を含む焼結原料を焼結原料ベッドに装入するに際し、焼結機パレット進行方向に向かって角度50°以上70°未満の俯角で配置されたスローピングシュートを用いて装入することが好ましい。   When charging the sintering raw material including the coarse charging raw material into the sintering raw material bed, the charging is performed using a sloping chute disposed at a depression angle of 50 ° or more and less than 70 ° toward the sintering machine pallet moving direction. It is preferable to enter.

焼結機の焼結原料装入部で、焼結原料をパレット進行方向と反対方向にすべり落としながら所定層厚に積上げる方式を用いている場合、堆積する原料斜面を原料が滑落する速度を低減しないと、原料中の粒度偏析が増大して粗大粒子がベッドの最下部に偏在する傾向があることが知られている。   When using a method in which the sintering raw material is stacked in a predetermined layer thickness while sliding down the sintering raw material in the direction opposite to the pallet moving direction at the sintering raw material charging part of the sintering machine, the speed at which the raw material slides down the deposited raw material slope If not reduced, it is known that the particle size segregation in the raw material increases and the coarse particles tend to be unevenly distributed at the bottom of the bed.

この偏析を低減する方法として、焼結原料をパレット進行方向に装入する方法を用いることができる。この方法では細粒が粒子間間隙を抜けて下方に落下し、粗粒は上方に偏析する作用を生じることから、下方偏析を相殺して粗粒を均一に分散して装入することができる。装入シュートの俯角は50〜70°とすることが望ましい。湿潤状態の原料では安息角が45°以上になるので連続的に安定装入するにはそれ以上の俯角が必要であるためである。また70°以下にするのは、垂直に近づくほど、原料装入時に原料が重力による圧密を受けてベッド内の空隙率を低下させ、通気性を悪化させるため、最低限の落下速度の加速抑制が望まれるからである。   As a method of reducing this segregation, a method of charging the sintering raw material in the pallet traveling direction can be used. In this method, fine particles fall through the interparticle gap and fall down, and the coarse particles segregate upward, so that the lower particles can be offset and the coarse particles can be uniformly dispersed and charged. . The depression angle of the charging chute is desirably 50 to 70 °. This is because the angle of repose is 45 ° or more in the raw material in a wet state, and a further depression angle is necessary for continuous stable charging. In addition, the lower the angle is, the closer to the vertical, the more the raw material is compressed by gravity when the raw material is charged, and the porosity in the bed is lowered and the air permeability is deteriorated. This is because it is desired.

焼結原料ベッド下方75%層厚の領域で、粗粒の装入原料が40〜70mmの平均間隔となるように分散して焼結することが好ましい。粗粒の装入原料の分散間隔が、40〜80mmの範囲であれば、焼結原料ベッド下方部分に粗粒が多く分散していることが上層部からの焼成熱量の蓄積を受けて高温となり、緻密で高強度の組織を形成して100mm以上の粗大粒を生成させやすい下層部で有効に作用させられるため好ましく、特に焼結原料ベッド下方の領域で、粗粒の装入原料が40〜70mmの平均間隔となるように分散していることが好ましい。焼結原料ベッド下方75%層厚の領域で、粗粒の装入原料の平均間隔を40〜70mmとする理由は、上方25%層厚部分は、下方に比較して強度が低く、下方より粗大粒を生成しにくいので、粗粒の存在密度を下方より低減してよく、逆に過剰強度となりやすい下方75%層厚域で粗粒の存在密度を増大させることが、焼結層全体の返鉱を低減するのに有効だからである。しかし、下方でも粗粒間隔を35mm以下に低減すれば+100mmの粗大粒が増大するのは、先に記したとおりである。   It is preferable to disperse and sinter the coarse charged raw material at an average interval of 40 to 70 mm in the region of 75% layer thickness below the sintered raw material bed. If the dispersion interval of the coarsely charged raw material is in the range of 40 to 80 mm, a large amount of coarse particles are dispersed in the lower portion of the sintering raw material bed, resulting in a high temperature due to accumulation of calorific heat from the upper layer part. It is preferable because it is effective in the lower layer part that forms a dense and high-strength structure and easily generates coarse grains of 100 mm or more, and particularly in the region below the sintered raw material bed, It is preferable to disperse so as to have an average interval of 70 mm. The reason why the average interval between the coarsely charged raw materials is 40 to 70 mm in the region of 75% layer thickness below the sintering material bed is that the upper 25% layer thickness portion is lower in strength than the lower part, Since it is difficult to generate coarse grains, the density of coarse grains may be reduced from below, and conversely, increasing the density of coarse grains in the lower 75% layer thickness range, which tends to be excessive strength, This is because it is effective in reducing return ore. However, as described above, the coarse grains of +100 mm increase if the coarse interval is reduced to 35 mm or less even in the lower part.

図2を用いて、上記の本発明の一実施形態を説明する。図2は粗粒の装入原料を焼結原料ベッド中に分散させて装入する方法を説明する図であり、装入原料として製鋼スラグの破砕物を用いる場合の例である。製鋼スラグ20は、篩い21により分級し、粒径10mm以上のものを粗粒スラグ槽22に、粒径10mm未満のものを鉱石・副原料槽23に装入する。24は石灰槽、25はコークス槽である。鉱石・副原料槽23、石灰槽24、コークス槽25から切り出して配合した焼結原料を、一次ミキサー26に投入して混合して造粒した後、粗粒スラグ槽22から粗粒の製鋼スラグを混合して、2次ミキサー27で2次造粒を行う。造粒物をサージホッパ28に装入し、ロールフィーダ29で切り出しながら、シュート30を用いて焼結機の焼結パレット31に装入して、焼結原料ベッド3を形成する。シュート30を焼結パレット31の進行方向に対して図2に示す向きに配置することで、粗粒の装入原料を焼結原料ベッド3中に分散状態で装入することができる。   With reference to FIG. 2, one embodiment of the present invention will be described. FIG. 2 is a diagram for explaining a method of charging a coarse raw material dispersed in a sintered raw material bed, and is an example in the case of using crushed steel slag as the raw material. The steelmaking slag 20 is classified by a sieve 21, and those having a particle diameter of 10 mm or more are charged into the coarse slag tank 22 and those having a particle diameter of less than 10 mm are charged into the ore / auxiliary material tank 23. 24 is a lime tank, and 25 is a coke tank. Sintered raw materials cut out from the ore / auxiliary raw material tank 23, the lime tank 24, and the coke tank 25 are mixed into the primary mixer 26, mixed and granulated, and then the coarse steelmaking slag from the coarse slag tank 22. And secondary granulation is performed by the secondary mixer 27. The granulated material is charged into the surge hopper 28 and cut out by the roll feeder 29 while being charged into the sintering pallet 31 of the sintering machine using the chute 30 to form the sintering material bed 3. By arranging the chute 30 in the direction shown in FIG. 2 with respect to the traveling direction of the sintering pallet 31, the coarse charged raw material can be charged into the sintered raw material bed 3 in a dispersed state.

また、他の実施形態として、粗粒の装入原料をサージホッパ28内の焼結パレット31の進行方向下流側に装入したり、サージホッパ28の焼結パレット31の進行方向下流側に粗粒の装入原料用のホッパを設置する等したりすることで、焼結原料を焼結パレット31に装入する際に粗粒を装入斜面の下側に滑り込ませるように装入することでも、粗粒の装入原料を焼結原料ベッド3中に分散させることができる。   In another embodiment, the coarsely charged raw material is charged downstream of the sintering pallet 31 in the traveling direction of the sintering pallet 31 in the surge hopper 28, By installing a hopper for charging raw materials or the like, even when charging the sintered raw materials into the sintering pallet 31, the coarse particles can be charged so as to slide under the charging slope, The coarsely charged raw material can be dispersed in the sintered raw material bed 3.

表1に示す化学組成を有する原料を用い、図1、図2に示すものと同様の設備を用いて焼結鉱製造試験A〜Cを行なった。原料の基本の配合比率を表2に示す。   Using raw materials having the chemical composition shown in Table 1, sinter ore production tests A to C were performed using the same equipment as shown in FIGS. Table 2 shows the basic mixing ratio of the raw materials.

Figure 2007277594
Figure 2007277594

Figure 2007277594
Figure 2007277594

本実施例においては、粗粒の装入原料として転炉スラグを用いた。表1、表2において、転炉スラグは「LDスラグ」として示されている。転炉スラグを用いる際には、各試験の条件に合わせて粒度を調整した。また、分散させる粗粒分以外の転炉スラグは、−10mmとして使用した。ただし、焼結原料ベッド全体平均での粗粒平均間隔が40mm以下の条件の場合は、転炉スラグの配合率をあげ、他の副原料の操作により、組成を調整した。   In this example, converter slag was used as a raw material for coarse particles. In Tables 1 and 2, the converter slag is shown as “LD slag”. When using converter slag, the particle size was adjusted according to the conditions of each test. Moreover, converter slag other than the coarse particle part to disperse | distribute was used as -10 mm. However, in the case where the average average coarse particle interval of the sintered raw material bed was 40 mm or less, the composition ratio was adjusted by increasing the blending ratio of the converter slag and operating other auxiliary raw materials.

下方吸引のドワイトロイド式焼結機を用いて、焼結パレット幅4.0m、焼結原料ベッド層厚580mmとし、基準パレットスピード3.0m/minで焼成時間に応じて調整して焼結を行なった。   Using a downward suction droidoid type sintering machine, the sintering pallet width is 4.0 m, the sintering raw material bed layer thickness is 580 mm, and the sintering is adjusted according to the firing time at a standard pallet speed of 3.0 m / min. I did it.

(試験A)粗粒の平均間隔60mmの条件で、粗粒の粒径を表3に示すように変化させて、焼結原料ベッド内で分散させて、焼結鉱を焼成し、焼結鉱ケーキを一次破砕・冷却後の−5mmと+100mmの焼結鉱の発生量を測定した。結果を表3と、図3に示す。焼成時間も表3に併せて示す。   (Test A) Under the condition of an average interval of coarse particles of 60 mm, the coarse particle size is changed as shown in Table 3, dispersed in the sintering material bed, the sintered ore is fired, and the sintered ore The amount of -5 mm and +100 mm sintered ore after primary crushing and cooling of the cake was measured. The results are shown in Table 3 and FIG. The firing time is also shown in Table 3.

Figure 2007277594
Figure 2007277594

粗粒として5〜10mmの転炉スラグを分散させた場合は、+100mmの量が多かった。粗粒として20〜25mmを分散させた場合は、+100mmの量が多く、焼結時間の延長が見られた。粗粒として10〜15、15〜20mmを分散させた場合は、−5mm分の量がほとんど変化しないまま、+100mm分が低減され、2次破砕量が大幅に低減された。   When 5-10 mm converter slag was dispersed as coarse particles, the amount of +100 mm was large. When 20 to 25 mm was dispersed as coarse particles, the amount of +100 mm was large, and the sintering time was extended. When 10-15 and 15-20mm were disperse | distributed as a coarse particle, + 100mm part was reduced and the amount of secondary crushing was reduced significantly, with the amount for -5mm hardly changing.

(試験B)転炉スラグ粗粒の粒径を10〜15mmとし、表4に示すように、粗粒の平均間隔が30〜100mmとなるように変化させて粗粒の配合量を調整して焼成した。粗粒を分散させない場合についても「装入なし」として焼成した。また、全体としての粗粒の平均間隔は60mmであるが、焼結原料ベッドの層厚方向で下部75%では平均間隔が57mmであり、上部25%では平均間隔を70%とした、粗粒が下部に偏析した場合についても「60mm上部緩和」として焼成した。一次破砕・冷却後の−5mmと+100mmの焼結鉱の発生量を測定した。結果を表4と、図4に示す。   (Test B) The grain size of the converter slag coarse particles is 10 to 15 mm, and as shown in Table 4, the blending amount of the coarse particles is adjusted by changing the average interval of the coarse particles to 30 to 100 mm. Baked. The case where the coarse particles were not dispersed was fired as “no charge”. In addition, although the average interval of the coarse particles as a whole is 60 mm, the average interval is 57 mm in the lower portion 75% in the layer thickness direction of the sintering material bed, and the average interval is 70% in the upper portion 25%. In the case where segregates in the lower part, it was fired as “60 mm upper relaxation”. The amount of -5 mm and +100 mm sintered ore after primary crushing and cooling was measured. The results are shown in Table 4 and FIG.

Figure 2007277594
Figure 2007277594

粗粒の転炉スラグが40〜80mmの平均間隔で分散された場合は、−5mm分の量が変化しないまま、+100mm分が低減され、粗大塊焼結鉱が低減した。粗粒が平均間隔40〜80mmの範囲内で下部に偏析した場合は、均一分散の場合よりも−5mm分が減少する傾向が見られた。   When coarse-grained converter slag was dispersed at an average interval of 40 to 80 mm, the amount of −5 mm was not changed and the amount of +100 mm was reduced, and the coarse ingot sintered ore was reduced. When coarse particles segregated in the lower part within an average interval of 40 to 80 mm, a tendency to decrease by -5 mm was observed compared to the case of uniform dispersion.

(試験C)焼結原料を焼結原料パレットに装入する際に、装入法を通常行なわれる焼結原料パレット進行方向と反対方向に滑り落として装入した場合(パレット反対方向)と、パレット進行方向と同じ方向に装入した場合(パレット方向)についての比較を行なった。焼結原料ベッド全体での粗粒の平均間隔は約40mmで同じであるが、図5に示すように、パレット反対方向の装入では焼結原料ベッドの下部に粗粒が偏析し、パレット方向の装入では焼結原料ベッドの高さ方向で粗粒がほぼ均一に分散した。なお、図5における層厚は、焼結原料パレットの床敷き面からの高さの、全焼結原料層厚に対する比率である。各装入条件で焼結原料を装入し、焼成して、一次破砕・冷却後の−5mmと+100mmの焼結鉱の発生量を測定した。結果を図6に示す。   (Test C) When charging the sintering raw material into the sintering raw material pallet, when the charging method is carried out by sliding down in the direction opposite to the direction of the sintering raw material pallet which is normally performed (in the opposite direction of the pallet), A comparison was made for the case of loading in the same direction as the pallet traveling direction (pallet direction). The average interval of coarse particles in the entire sintering material bed is about 40 mm, which is the same. However, as shown in FIG. In this charging, coarse particles were almost uniformly dispersed in the height direction of the sintering material bed. In addition, the layer thickness in FIG. 5 is a ratio with respect to the total sintering raw material layer thickness of the height from the flooring surface of a sintering raw material pallet. Sintering raw materials were charged under each charging condition, fired, and the amounts of -5 mm and +100 mm sintered ore after primary crushing and cooling were measured. The results are shown in FIG.

パレット反対方向での装入では、粗粒の焼結原料ベッド層下部への装入偏析が大きく、粗粒の平均間隔が40〜80mmの範囲外で偏析した部分が存在するため、−5mm分も、+100mmの粗大塊の生成も多いが、パレット方向の装入により焼結原料ベッドの層厚方向に粗粒が均一に分散して、+100mmの粗大塊の生成は低減した。   In the charging in the opposite direction to the pallet, the segregation of the coarse particles in the lower part of the sintered raw material bed layer is large, and there is a segregated portion outside the range where the average interval of the coarse particles is 40 to 80 mm. However, although the coarse lumps of +100 mm are often produced, the coarse particles are uniformly dispersed in the layer thickness direction of the sintering raw material bed by charging in the pallet direction, and the production of coarse lumps of +100 mm is reduced.

焼結プロセスの説明図。Explanatory drawing of a sintering process. 本発明の一実施形態の説明図。Explanatory drawing of one Embodiment of this invention. 試験Aの結果を示すグラフ。The graph which shows the result of the test A. 試験Bの結果を示すグラフ。The graph which shows the result of the test B. 焼結原料ベッド内高さ方向での粗粒の平均間隔の分布を示すグラフ(試験C)。The graph which shows distribution of the average space | interval of the coarse grain in the height direction in a sintering raw material bed (test C). 試験Cの結果を示すグラフ。The graph which shows the result of the test C.

符号の説明Explanation of symbols

1 原料装入装置
2 焼結機
3 焼結原料ベッド
4 着火装置
5 焼結鉱ケーキ
6 破砕機
7 焼結鉱冷却機
8 一次篩
9 2次破砕機
10 スクリーン
11 高炉
12 返鉱
20 製鋼スラグ
21 篩い
22 粗粒スラグ槽
23 鉱石・副原料槽
24 石灰槽
25 コークス槽
26 一次ミキサー
27 2次ミキサー
28 サージホッパ
29 ロールフィーダ
30 シュート
31 焼結パレット
DESCRIPTION OF SYMBOLS 1 Raw material charging apparatus 2 Sintering machine 3 Sintering raw material bed 4 Ignition apparatus 5 Sintered ore cake 6 Crushing machine 7 Sintered ore cooling machine 8 Primary sieve 9 Secondary crushing machine 10 Screen 11 Blast furnace 12 Return ore 20 Steelmaking slag 21 Sieve 22 Coarse grain slag tank 23 Ore and auxiliary material tank 24 Lime tank 25 Coke tank 26 Primary mixer 27 Secondary mixer 28 Surge hopper 29 Roll feeder 30 Chute 31 Sinter pallet

Claims (5)

高炉装入原料の中から選択される粒径10mm以上、20mm以下の粗粒の装入原料を焼結原料ベッド中に分散状態で装入し、他の焼結原料とともに焼結することを特徴とする焼結鉱製造方法。   A coarse charged material having a particle size of 10 mm or more and 20 mm or less selected from blast furnace charged materials is charged in a dispersed state in a sintered material bed and sintered together with other sintered materials. A method for producing sintered ore. 粗粒の装入原料が、鉄鉱石および/または製鋼スラグであることを特徴とする請求項1に記載の焼結鉱製造方法。   The method for producing a sintered ore according to claim 1, wherein the coarsely charged raw material is iron ore and / or steelmaking slag. 平均間隔が40〜80mmとなるように粗粒の装入原料を焼結原料ベッド中に装入することを特徴とする請求項1または請求項2に記載の焼結鉱の製造方法。   The method for producing a sintered ore according to claim 1 or 2, wherein a coarsely charged raw material is charged into a sintering raw material bed so that an average interval is 40 to 80 mm. 焼結原料ベッド下方75%層厚の領域で、粗粒の装入原料が40〜70mmの平均間隔となるように分散させて焼結することを特徴とする請求項1ないし請求項3のいずれかに記載の焼結鉱製造方法。   4. The sintered raw material bed is sintered by being dispersed so that the coarsely charged raw material has an average interval of 40 to 70 mm in a region of 75% layer thickness below the sintered raw material bed. A method for producing sinter ore. 粗粒の装入原料を含む焼結原料を焼結原料ベッドに装入するに際し、焼結機パレット進行方向に向かって角度50°以上70°未満の俯角で配置されたスローピングシュートを用いて装入することを特徴とする請求項1ないし請求項4のいずれかに記載の焼結鉱製造方法。   When charging the sintering raw material including the coarse charging raw material into the sintering raw material bed, the charging is performed using a sloping chute disposed at a depression angle of 50 ° or more and less than 70 ° toward the sintering machine pallet moving direction. The method for producing a sinter according to any one of claims 1 to 4, wherein the sinter is produced.
JP2006101712A 2006-04-03 2006-04-03 Sintered ore production method Pending JP2007277594A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006101712A JP2007277594A (en) 2006-04-03 2006-04-03 Sintered ore production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006101712A JP2007277594A (en) 2006-04-03 2006-04-03 Sintered ore production method

Publications (1)

Publication Number Publication Date
JP2007277594A true JP2007277594A (en) 2007-10-25

Family

ID=38679339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006101712A Pending JP2007277594A (en) 2006-04-03 2006-04-03 Sintered ore production method

Country Status (1)

Country Link
JP (1) JP2007277594A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012117082A (en) * 2010-11-29 2012-06-21 Jfe Steel Corp Method for production of sintered ore
JP2013245377A (en) * 2012-05-25 2013-12-09 Jfe Steel Corp Method for producing sintered ore
JP2014001438A (en) * 2012-06-20 2014-01-09 Jfe Steel Corp Production method for sintered ore
CN117233043A (en) * 2023-11-10 2023-12-15 北京科技大学 Method for determining cooperative wetting behavior of iron-slag on surface of carbonaceous material and application of method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012117082A (en) * 2010-11-29 2012-06-21 Jfe Steel Corp Method for production of sintered ore
JP2013245377A (en) * 2012-05-25 2013-12-09 Jfe Steel Corp Method for producing sintered ore
JP2014001438A (en) * 2012-06-20 2014-01-09 Jfe Steel Corp Production method for sintered ore
CN117233043A (en) * 2023-11-10 2023-12-15 北京科技大学 Method for determining cooperative wetting behavior of iron-slag on surface of carbonaceous material and application of method
CN117233043B (en) * 2023-11-10 2024-02-02 北京科技大学 Method for determining cooperative wetting behavior of iron-slag on surface of carbonaceous material and application of method

Similar Documents

Publication Publication Date Title
JP5699567B2 (en) Method for producing sintered ore
KR20120130260A (en) Method for producing sintered ore
JP5954533B2 (en) Method for producing sintered ore
JP5950098B2 (en) Method for producing sintered ore
JP2007277594A (en) Sintered ore production method
WO1994005817A1 (en) Method for producing sintered ore
JP6519036B2 (en) Blast furnace operation method
JP4984488B2 (en) Method for producing semi-reduced sintered ore
JP5124969B2 (en) Sinter ore manufacturing method
US20200102627A1 (en) Method of operating a sinter plant
JP6198649B2 (en) Raw material charging method for blast furnace
JP6874780B2 (en) Sintered ore manufacturing method
WO2019187997A1 (en) Method for loading raw materials into blast furnace
JP6020840B2 (en) Sintering raw material manufacturing method
JP2010150643A (en) Method for charging raw material to blast furnace
JP6264517B1 (en) Method for producing carbonaceous interior sinter
JP5338308B2 (en) Raw material charging method to blast furnace
RU2815956C1 (en) Method of producing cast iron
JP6558519B1 (en) Raw material charging method for blast furnace
JPH07278684A (en) Production of sintered ore
JP6004191B2 (en) Sintering raw material manufacturing method
JP7047645B2 (en) Sintered ore manufacturing method
JP5187473B2 (en) Method for producing sintered ore
JP2010150644A (en) Method for charging raw material to blast furnace
JP2006307320A (en) Method for producing sintered ore