JP2012117082A - Method for production of sintered ore - Google Patents
Method for production of sintered ore Download PDFInfo
- Publication number
- JP2012117082A JP2012117082A JP2010264937A JP2010264937A JP2012117082A JP 2012117082 A JP2012117082 A JP 2012117082A JP 2010264937 A JP2010264937 A JP 2010264937A JP 2010264937 A JP2010264937 A JP 2010264937A JP 2012117082 A JP2012117082 A JP 2012117082A
- Authority
- JP
- Japan
- Prior art keywords
- steelmaking slag
- granulated
- raw material
- slag
- derived
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 36
- 239000002893 slag Substances 0.000 claims abstract description 160
- 238000009628 steelmaking Methods 0.000 claims abstract description 144
- 239000002994 raw material Substances 0.000 claims abstract description 114
- 239000002245 particle Substances 0.000 claims abstract description 42
- 238000002156 mixing Methods 0.000 claims abstract description 27
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 26
- 239000000463 material Substances 0.000 claims abstract description 17
- 229910052742 iron Inorganic materials 0.000 claims abstract description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 8
- 239000004449 solid propellant Substances 0.000 claims abstract description 6
- 239000011361 granulated particle Substances 0.000 claims description 90
- 238000000034 method Methods 0.000 claims description 21
- 239000008187 granular material Substances 0.000 claims description 5
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 3
- 230000008569 process Effects 0.000 claims description 3
- -1 add moisture Substances 0.000 claims 1
- 238000005245 sintering Methods 0.000 abstract description 50
- 238000005469 granulation Methods 0.000 abstract description 20
- 230000003179 granulation Effects 0.000 abstract description 20
- 238000002844 melting Methods 0.000 abstract description 4
- 230000008018 melting Effects 0.000 abstract description 4
- 238000004064 recycling Methods 0.000 abstract description 4
- 241000024192 Aloa Species 0.000 abstract 1
- 230000000593 degrading effect Effects 0.000 abstract 1
- 230000002708 enhancing effect Effects 0.000 abstract 1
- 239000000203 mixture Substances 0.000 description 21
- 230000000694 effects Effects 0.000 description 17
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 14
- 230000002411 adverse Effects 0.000 description 13
- 238000002474 experimental method Methods 0.000 description 8
- 239000010410 layer Substances 0.000 description 8
- 235000019738 Limestone Nutrition 0.000 description 4
- 239000006028 limestone Substances 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000000571 coke Substances 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- 239000010459 dolomite Substances 0.000 description 2
- 229910000514 dolomite Inorganic materials 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 229910018516 Al—O Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- WETINTNJFLGREW-UHFFFAOYSA-N calcium;iron;tetrahydrate Chemical compound O.O.O.O.[Ca].[Fe].[Fe] WETINTNJFLGREW-UHFFFAOYSA-N 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000009770 conventional sintering Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229910052598 goethite Inorganic materials 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- AEIXRCIKZIZYPM-UHFFFAOYSA-M hydroxy(oxo)iron Chemical compound [O][Fe]O AEIXRCIKZIZYPM-UHFFFAOYSA-M 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Glanulating (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
本発明は、主要鉄源として高炉に装入する焼結鉱の製造方法に関し、具体的には、上記焼結鉱を製造する際の焼結原料の一部として製鋼スラグを用いる焼結鉱の製造方法に関するものである。 The present invention relates to a method for producing a sintered ore charged into a blast furnace as a main iron source, specifically, a sintered ore using steelmaking slag as a part of a sintering raw material when producing the sintered ore. It relates to a manufacturing method.
高炉の主要な鉄原料である焼結鉱は、一般に、次のような工程に従って製造されている。先ず、原料として、約10mm以下の粉鉱石に、返鉱と、フラックス源として石灰石、ドロマイト、製鋼スラグなどのCaO系副原料、珪石、蛇紋岩などのSiO2系副原料および固体燃料(炭材)としての粉コ−クス等を造粒原料とし、これらを均一に混合し、適量の水分を加えて造粒し、造粒粒子とする。 Sinter ore, which is the main iron raw material for blast furnaces, is generally manufactured according to the following process. First, as a raw material, powder ore of about 10 mm or less, return ore, CaO-based auxiliary materials such as limestone, dolomite, and steelmaking slag as flux sources, SiO 2- based auxiliary materials such as silica and serpentine, and solid fuel (carbon material) ) Is used as a granulation raw material, and these are uniformly mixed and granulated by adding an appropriate amount of water to obtain granulated particles.
次いで、上記のようにして擬似粒化した造粒粒子を焼結原料としてグレート式の焼結機のパレット上に充填して焼結原料層(装入層)を形成し、その表層部の固体燃料(コークス等)に点火し、パレット下方に設置されたウインドボックスで空気を吸引しながらコークスを燃焼させ、その燃焼熱で焼結原料を1200〜1380℃の温度に加熱・溶融して焼結し、次いで、得られた焼結ケーキをクラッシャー等にて粉砕し、5mm篩でスクリーニングし、+5mmは成品として高炉に送り、−5mmは返鉱として繰り返し、造粒粒子の原料として使用される。 Next, the granulated particles pseudo-granulated as described above are filled as a sintering raw material on a pallet of a great-type sintering machine to form a sintering raw material layer (charging layer), and the surface layer portion solids The fuel (coke etc.) is ignited, the coke is burned while sucking air in the wind box installed under the pallet, and the sintering raw material is heated and melted to a temperature of 1200 to 1380 ° C. with the combustion heat to sinter Then, the obtained sintered cake is pulverized with a crusher or the like, screened with a 5 mm sieve, +5 mm is sent as a product to a blast furnace, and -5 mm is repeatedly used as a return to be used as a raw material for granulated particles.
このようにして製造した焼結鉱の特性としては、冷間強度、被還元性、還元粉化性などに優れることが要求されている。そして、この品質を確保するため、各種鉄鉱石の性状に合わせて副原料の配合割合やコークス粉添加量の調整をしている。また、最近では、高炉の生産性を高めるため、より高品質の焼結鉱が要求されるようになってきている。また、焼結機には、より高い生産性が要求されるようになっている。したがって、高品質の焼結鉱を生産性よく製造することが課題となっている。 The properties of the sintered ore thus produced are required to be excellent in cold strength, reducibility, reduced powdering properties, and the like. And in order to ensure this quality, the mixing | blending ratio of an auxiliary material and the amount of coke powder addition are adjusted according to the property of various iron ores. Recently, in order to increase the productivity of the blast furnace, a higher quality sintered ore has been required. Moreover, higher productivity is required for the sintering machine. Therefore, it is an issue to produce high-quality sintered ore with high productivity.
ところで、上記造粒粒子の原料の一部となる製鋼スラグは、従来、生産量の約40%が埋立てや廃棄処分されていたが、その後の環境規制の強化に伴い、埋立廃棄量は徐々に減少してきている。また、セメント原料としても使用されているが、その量はわずかでしかない。このため、製鋼スラグの有効利用は、土木用を中心に積極的に検討され、進められてはいるものの、高炉スラグ程には有効利用されていない。 By the way, about 40% of the production amount of steelmaking slag, which is a part of the raw material of the granulated particles, has been landfilled or disposed of in the past, but with the subsequent strengthening of environmental regulations, the amount of landfill waste is gradually increased. It has been decreasing. It is also used as a raw material for cement, but the amount is very small. For this reason, effective use of steelmaking slag has been actively studied and promoted mainly for civil engineering, but not as effectively as blast furnace slag.
製鋼スラグの活用については、従来から、製鋼スラグ中にCaO分が多いことに着目し、これを焼結鉱製造プロセスでフラックスとして利用すること行われており、また、その研究も数多くなされている。例えば、特許文献1には、焼結配合原料に転炉スラグを用いるに際して、ミルスケールを混合することで焼結鉱の品質を向上する技術が、特許文献2には、ゲーサイト成分の多い鉄鉱石に、鉄鉱石との反応性の低い転炉スラグを混合することで、焼結鉱の強度を弱める反応を抑制する技術が開示されている。また、特許文献3には、石灰石と比較して鉄鉱石との反応性に劣る転炉スラグの粒度を細かくすることで反応面積を大きくし、反応速度を改善することで、フラックスとして使用する技術が開示されている。また、特許文献4には、焼結鉱の品質低下を招く難焼結性のドロマイトを易焼結性の製鋼スラグと選択的に組み合わせることで、焼結鉱の品質低下を防止しつつ、効率的に製鋼スラグをリサイクルする技術が開示されている。 With regard to the use of steelmaking slag, it has traditionally been noted that steelmaking slag contains a large amount of CaO, and this has been used as a flux in the sinter production process, and many studies have been conducted. . For example, Patent Document 1 discloses a technique for improving the quality of sintered ore by mixing a mill scale when converter slag is used as a sintered blending raw material, and Patent Document 2 discloses iron ore having a large number of goethite components. The technique which suppresses the reaction which weakens the intensity | strength of a sintered ore by mixing the converter slag with low reactivity with an iron ore with a stone is disclosed. In addition, Patent Document 3 discloses a technique used as a flux by increasing the reaction area by reducing the particle size of the converter slag, which is inferior in reactivity with iron ore compared with limestone, and improving the reaction rate. Is disclosed. Further, Patent Document 4 discloses that by selectively combining sinterable dolomite that causes deterioration of the quality of the sintered ore with easily sinterable steelmaking slag, the quality of the sintered ore is prevented from being reduced. In particular, a technique for recycling steelmaking slag has been disclosed.
しかしながら、表1に、転炉スラグと脱硫スラグの成分組成の一例を鉄鉱石と比較して示したように、製鋼スラグは、CaO以外にAl2O3を多く含んでいるのが特徴である。このAl2O3は、焼結鉱を焼成する際に必要な溶融相の溶解温度を上昇させて流動性を低下するため、焼結鉱の生産性を著しく害することが知られている。また、転炉スラグはPが高く、高炉では脱Pができないため、製鋼での脱Pコストが上昇するという問題もある。そのため、製鋼スラグを焼結原料として使用することは積極的に行われていないのが実情である。 However, as shown in Table 1 as an example of the composition of the converter slag and desulfurization slag in comparison with iron ore, the steelmaking slag is characterized by containing a large amount of Al 2 O 3 in addition to CaO. . This Al 2 O 3 is known to significantly impair the productivity of the sintered ore because it raises the melting temperature of the molten phase necessary for firing the sintered ore and lowers the fluidity. Moreover, since converter slag has high P and cannot be removed in a blast furnace, there is also a problem that the cost of removing P in steelmaking increases. Therefore, the actual situation is that steelmaking slag is not actively used as a sintering raw material.
そこで、本発明の目的は、Al2O3を多量に含有する製鋼スラグの上記問題点を解決し、製鋼スラグを、焼結機の生産率を低下させることなく、焼結原料の一部として有効活用するとともに、製鋼スラグのリサイクル率を高めることができる焼結鉱の製造方法を提案することにある。 Therefore, the object of the present invention is to solve the above-mentioned problems of steelmaking slag containing a large amount of Al 2 O 3, and to make steelmaking slag as a part of the sintering raw material without reducing the production rate of the sintering machine. The purpose is to propose a method for producing sintered ore that can be effectively utilized and can increase the recycling rate of steelmaking slag.
発明者らは、上記課題の解決に向けて鋭意検討を重ねた結果、以下のことに想到した。
従来、焼結原料(造粒粒子)を製造するに際しては、製鋼スラグを鉄鉱石や石灰石などと均一に混合することだけを考えていた。しかし、均一に混合した場合には、Al2O3の弊害が焼結原料全体に及んでしまう。そこで、製鋼スラグと、製鋼スラグ以外の他の原料とを別々に造粒し、造粒した造粒粒子を焼結機のパレット上に混在して装入してやれば、Al2O3による弊害を製鋼スラグ由来の造粒粒子内に封じ込めることができ、製鋼スラグ以外の原料由来の造粒粒子にまで悪影響を及ぼすことがないことに想到し、本発明を完成させた。
As a result of intensive studies aimed at solving the above problems, the inventors have come up with the following.
Conventionally, when producing sintered raw materials (granulated particles), only the steelmaking slag was uniformly mixed with iron ore or limestone. However, when uniformly mixed, the adverse effect of Al 2 O 3 affects the entire sintered raw material. Therefore, if steelmaking slag and other raw materials other than steelmaking slag are separately granulated, and the granulated particles are mixed and charged on the pallet of the sintering machine, the adverse effects caused by Al 2 O 3 can be avoided. The present invention has been completed by conceiving that it can be contained in granulated particles derived from steelmaking slag and does not adversely affect the granulated particles derived from raw materials other than steelmaking slag.
すなわち、本発明は、鉄鉱石、CaO系およびSiO2系副原料、返鉱および固体燃料から主に構成される造粒原料を混合し、水分を添加し、造粒して造粒粒子とし、これを焼結原料としてパレット上に装入して焼結原料層を形成し、次いで、上記焼結原料層の上層に点火し、パレット下方に配設されたウインドボックスで空気を吸引し、焼結原料を燃焼・溶融して焼結鉱を製造する方法において、上記造粒原料の一部として製鋼スラグを用いる際、上記造粒原料を製鋼スラグとそれ以外の原料とに分けてそれぞれを別々に造粒し、製鋼スラグ由来の造粒粒子を、製鋼スラグ以外の原料由来の造粒粒子中に混在させてことを特徴とする焼結鉱の製造方法である。 That is, the present invention mixes granulated raw materials mainly composed of iron ore, CaO-based and SiO 2 -based auxiliary materials, return ore and solid fuel, added moisture, granulated into granulated particles, This is charged as a sintering raw material on a pallet to form a sintering raw material layer, then the upper layer of the sintering raw material layer is ignited, air is sucked in a wind box arranged below the pallet, In the method of producing sintered ore by burning and melting the raw material for sintering, when using steelmaking slag as part of the granulated raw material, the granulated raw material is divided into steelmaking slag and other raw materials. It is the manufacturing method of the sintered ore characterized by mixing the granulated particle derived from steelmaking slag in the granulated particle derived from raw materials other than steelmaking slag.
本発明の焼結鉱の製造方法における上記製鋼スラグ由来の造粒粒子の粒径は、製鋼スラグ以外の原料由来の造粒粒子より大きいことを特徴とする。 In the method for producing a sintered ore of the present invention, the granulated particles derived from the steelmaking slag are larger than the granulated particles derived from raw materials other than the steelmaking slag.
また、本発明の焼結鉱の製造方法における上記製鋼スラグ由来の造粒粒子の粒径は、製鋼スラグ以外の原料由来の造粒粒子の2倍以上であることを特徴とする。 Moreover, the particle diameter of the granulated particles derived from the steelmaking slag in the method for producing sintered ore of the present invention is twice or more that of the granulated particles derived from raw materials other than the steelmaking slag.
また、本発明の焼結鉱の製造方法における上記製鋼スラグ由来の造粒粒子は、製鋼スラグをいったん破砕し、製鋼スラグ粒子内部のフリーCaOを露出させ、それを造粒したものであることを特徴とする。 The granulated particles derived from the steelmaking slag in the method for producing sintered ore of the present invention are obtained by crushing the steelmaking slag once, exposing free CaO inside the steelmaking slag particles, and granulating it. Features.
また、本発明の焼結鉱の製造方法における上記製鋼スラグの破砕は、1mm以下に細粒化する破砕処理であることを特徴とする。 Moreover, the crushing of the steelmaking slag in the method for producing a sintered ore according to the present invention is a crushing process for reducing the particle size to 1 mm or less.
また、本発明の焼結鉱の製造方法における上記製鋼スラグ由来の造粒粒子は、製鋼スラグ以外の原料由来の造粒粒子より含水率が低いことを特徴とする。 Moreover, the granulated particles derived from the steelmaking slag in the method for producing a sintered ore of the present invention are characterized in that the water content is lower than the granulated particles derived from raw materials other than the steelmaking slag.
本発明によれば、製鋼スラグと他の造粒原料とを別々に造粒し、得られた製鋼スラグ由来の造粒粒子をその他の原料由来の造粒粒子中に混在させて焼結機のパレット上に装入するようにしたので、Al2O3を多く含む製鋼スラグの弊害を、製鋼スラグ由来の造粒粒子内に封じ込め、他の原料由来の造粒粒子に及ぼす悪影響を最小限に抑制することができる。したがって、本発明を適用することにより、製鋼スラグを、焼結鉱の原料として積極的に利用することが可能となり、製鋼スラグのリサイクル率の向上に大きく寄与する。 According to the present invention, the steelmaking slag and other granulated raw materials are separately granulated, and the obtained steelmaking slag-derived granulated particles are mixed in the granulated particles derived from the other raw materials. Since it is placed on a pallet, the adverse effects of steelmaking slag containing a large amount of Al 2 O 3 are contained in the granulated particles derived from steelmaking slag, and the adverse effects on the granulated particles derived from other raw materials are minimized. Can be suppressed. Therefore, by applying the present invention, steelmaking slag can be actively used as a raw material for sintered ore, which greatly contributes to an improvement in the recycling rate of steelmaking slag.
また、製鋼スラグ由来の造粒粒子は、製鋼スラグ以外の原料由来の造粒粒子より粒径を大きく造粒して用いるので、通気性を妨げることなく焼結操業することが可能となる。さらに、製鋼スラグをいったん破砕して造粒するため、露出した製鋼スラグ粒子内部のフリーCaO(未反応CaO)が造粒時のバインダーとなって、製鋼スラグ由来の造粒粒子強度を高めることができる。さらにまた、製鋼スラグ以外の他の造粒原料に対しては、その造粒原料の外側に製鋼スラグ由来の未反応CaOが存在することになるため、焼結時にカルシウムフェライトの生成が促進されるという効果も得られる。 Moreover, since the granulated particles derived from steelmaking slag are used after granulated to have a larger particle size than the granulated particles derived from raw materials other than steelmaking slag, it is possible to perform a sintering operation without impeding air permeability. Furthermore, since the steelmaking slag is once crushed and granulated, the free CaO (unreacted CaO) inside the exposed steelmaking slag particles serves as a binder during granulation, which increases the strength of the granulated particles derived from the steelmaking slag. it can. Furthermore, for other granulated raw materials other than the steelmaking slag, unreacted CaO derived from the steelmaking slag is present outside the granulated raw material, so that the formation of calcium ferrite is promoted during sintering. The effect is also obtained.
まず、本発明の基本的な技術思想について説明する。
発明者らは、Al2O3を多く含む製鋼スラグを焼結原料として有効活用する方策について鋭意検討を重ねた。その結果、従来、焼結原料としての造粒粒子を造粒する際、鉄鉱石や石灰石などと一緒に添加していた製鋼スラグを、製鋼スラグ以外の他の原料と別々に造粒し、製鋼スラグ由来の造粒粒子を、その他の原料由来の造粒粒子中に混在させて焼結機のパレットに装入すれば、Al2O3の弊害を製鋼スラグ由来の造粒粒子内の局部に封じ込めることができるのではないかと考えた。すなわち、従来は、製鋼スラグを他の造粒原料と一緒に混合して用いていたため、Al2O3の弊害が焼結原料全体にまで及んでいたが、製鋼スラグを他の原料とは別にして分割造粒し、他の原料から得られた造粒粒子から隔離してやれば、Al2O3の弊害はその造粒粒子内に収まり、他に悪影響を及ぼすことがなくなるのではないかと考えた。
First, the basic technical idea of the present invention will be described.
The inventors conducted extensive studies on measures for effectively utilizing steelmaking slag containing a large amount of Al 2 O 3 as a sintering raw material. As a result, steelmaking slag that has been added together with iron ore and limestone when granulating the granulated particles as a sintering raw material is granulated separately from other raw materials other than steelmaking slag, and steelmaking If the granulated particles derived from slag are mixed in the granulated particles derived from other raw materials and charged into the pallet of the sintering machine, the adverse effects of Al 2 O 3 will be localized in the granulated particles derived from steelmaking slag. I thought it could be contained. That is, in the past, steelmaking slag was used by mixing with other granulated raw materials, so the adverse effects of Al 2 O 3 had spread to the entire sintered raw material, but steelmaking slag was separated from other raw materials. If it is divided and granulated and separated from the granulated particles obtained from other raw materials, the adverse effect of Al 2 O 3 will be contained in the granulated particles, and other adverse effects will no longer be adversely affected. It was.
発明者らは、上記考えを確認するため、表2に示したように、造粒原料の配合割合を変えた配合1〜3の造粒原料を準備し、以下の方法で造粒粒子とした。なお、表2には、得られた造粒粒子経も併記した。また、表3には、造粒原料として使用した転炉スラグの成分組成を示した。
・配合T1:図1に示したように、製鋼スラグを含まないすべての原料をミキサーに投入して均一に混合し、適量の水分を添加して、ドラムミキサーで、算術平均粒径で3.3mm、調和平均径で1.10mmの大きさに造粒した。
・配合T2:図1に示したように、製鋼スラグを含むすべての原料をミキサーに投入して均一に混合し、適量の水分を添加して、ドラムミキサーで、算術平均粒径で3.2mm、調和平均径で0.90mmの大きさに造粒した。
・配合T3:図2に示しように、製鋼スラグ以外の原料は、配合T1と同様、ミキサーおよびドラムミキサーで、算術平均粒径で3.3mmに造粒し、製鋼スラグは、1mm以下に粉砕した後、ペレタイザを用いて、算術平均粒径で3.0〜6.7mmの大きさに造粒し、上記2種類の造粒粒子を混合して調和平均径が1.10mmとなるように調整した。
・配合T4:図2に示しように、製鋼スラグ以外の原料は、配合T1と同様、ミキサーおよびドラムミキサーで、算術平均粒径で3.3mmに造粒し、製鋼スラグは、1mm以下に粉砕した後、ペレタイザを用いて、算術平均粒径で3.0〜6.7mmの大きさに造粒し、上記2種類の造粒粒子を混合して調和平均径が1.20mmとなるように調整した。
In order to confirm the above idea, as shown in Table 2, the inventors prepared granulated raw materials of blends 1 to 3 in which the blending ratio of the granulated raw materials was changed, and made granulated particles by the following method. . In Table 2, the obtained granulated particle diameter is also shown. Table 3 shows the composition of the converter slag used as a granulation raw material.
Formulation T1: As shown in FIG. 1, all raw materials not containing steelmaking slag are put into a mixer and mixed uniformly, an appropriate amount of water is added, and a drum mixer is used to obtain an arithmetic average particle size of 3. Granulation was performed to a size of 3 mm and a harmonic average diameter of 1.10 mm.
Formulation T2: As shown in FIG. 1, all raw materials including steelmaking slag are put into a mixer and mixed uniformly, an appropriate amount of water is added, and an arithmetic average particle diameter is 3.2 mm with a drum mixer. Granulated to a harmonic average diameter of 0.90 mm.
· Blending T3: As shown in Fig. 2, raw materials other than steelmaking slag are granulated to an arithmetic average particle size of 3.3 mm using a mixer and a drum mixer, as in Blending T1, and steelmaking slag is crushed to 1 mm or less Then, using a pelletizer, granulate to an arithmetic average particle size of 3.0 to 6.7 mm, and mix the two types of granulated particles so that the harmonic average diameter becomes 1.10 mm. It was adjusted.
· Blending T4: As shown in Fig. 2, raw materials other than steelmaking slag were granulated to an arithmetic average particle size of 3.3 mm using a mixer and a drum mixer, as in Blending T1, and steelmaking slag was pulverized to 1 mm or less. Then, using a pelletizer, granulate to an arithmetic average particle size of 3.0 to 6.7 mm, and mix the two types of granulated particles so that the harmonic average diameter is 1.20 mm. It was adjusted.
次いで、上記のようにして得た配合T1〜T4由来の造粒粒子を焼結原料として、焼結実験を行った。焼結実験は、内径が290mmφ、高さが400mmの試験鍋を用い、配合T1およびT2由来の造粒粒子の場合には、造粒粒子をそのまま焼結原料として試験鍋に充填して焼結実験行った。一方、配合T3およびT4由来の造粒粒子の場合には、図3に示したように、製鋼スラグ以外の原料由来の造粒粒子中に、製鋼スラグ由来の造粒粒子が混在するように試験鍋に充填して焼結実験を行った。 Next, a sintering experiment was performed using the granulated particles derived from the blends T1 to T4 obtained as described above as a sintering raw material. In the sintering experiment, a test pan having an inner diameter of 290 mmφ and a height of 400 mm was used. In the case of granulated particles derived from the blends T1 and T2, the granulated particles were directly filled into the test pan as a sintering raw material and sintered. An experiment was conducted. On the other hand, in the case of the granulated particles derived from the blends T3 and T4, as shown in FIG. 3, the granulated particles derived from the raw materials other than the steelmaking slag are tested so that the granulated particles derived from the steelmaking slag are mixed. A pot was filled and a sintering experiment was conducted.
上記焼結試験の結果を図4に示した。図4から、製鋼スラグを含む全ての造粒原料を均一に混合して造粒した配合T2の場合には、製鋼スラグを含まない造粒原料を造粒した配合T1の場合よりも、造粒後の擬似粒径(調和平均径)は、製鋼スラグが造粒を阻害するため粒径が小さくなっている。
これに対して、製鋼スラグとその他の原料を別々に分割造粒した場合には、製鋼スラグ以外の造粒原料は、通常造粒T1の粒径をそのまま維持でき、製鋼スラグも、いったん破砕して製鋼スラグ粒子内部の未反応CaOを露出させてから造粒することで、CaOがバインダーとなって造粒が容易となり、粒径を大きくできるので、混合後の調和平均径を大きくすることができる。また、製鋼スラグと製鋼スラグ以外の原料とを別々に造粒することで、高Al2O3原料である製鋼スラグを製鋼スラグ由来の造粒粒子内に封じ込めることができるので、得られる成品焼結鉱の冷間強度を高めることができる。すなわち、製鋼スラグ由来のAl2O3による強度低下を抑制できる。
その結果、混合後の調和平均径をT1と同じとした配合T3の場合には、焼結時の平均風量は、製鋼スラグを含まない配合T1と比較して配合T2ほど低下しないため、焼結時間は配合T2より短縮される。また、配合T3の場合には、得られる成品焼結鉱の冷間強度も配合T2に比べて向上し、生産率も配合T2よりも上昇するため、製鋼スラグを添加していない配合T1に近い生産率を確保できている。
さらに、混合後の調和平均径をT1より大きい1.20mmとした配合T4の場合には、平均風量、冷間強度、生産率のいずれも、製鋼スラグを利用しているにもかかわらず、配合T1を超えており、焼結操業において製鋼スラグの有効活用に成功している。
上記のように、製鋼スラグを造粒原料として使用する場合には、他の原料と均一に混合して造粒するのではなく、分割して造粒し、得られた造粒粒子を他の原料から得られた造粒粒子中に混在させて装入することにより、焼結鉱の生産率を大きく低下することなく、製鋼スラグを有効活用することが可能となる。
本発明は、上記の新規知見に基づいて完成したものである。
The result of the sintering test is shown in FIG. From FIG. 4, in the case of the blend T2 in which all the granulated raw materials including steelmaking slag are uniformly mixed and granulated, the granulation is performed more than in the case of the blended T1 obtained by granulating the granulated raw material not including the steelmaking slag. The subsequent pseudo particle size (harmonic average diameter) has a small particle size because steelmaking slag inhibits granulation.
On the other hand, when the steelmaking slag and other raw materials are separately divided and granulated, the granulation raw materials other than the steelmaking slag can normally maintain the particle size of the granulated T1, and the steelmaking slag is once crushed. By granulating after exposing unreacted CaO inside the steelmaking slag particles, CaO becomes a binder to facilitate granulation and increase the particle size, so that the harmonic average diameter after mixing can be increased. it can. In addition, by separately granulating steelmaking slag and raw materials other than steelmaking slag, it is possible to contain steelmaking slag, which is a high Al 2 O 3 raw material, in granulated particles derived from steelmaking slag. The cold strength of the ore can be increased. That is, strength reduction due to steelmaking slag-derived Al 2 O 3 can be suppressed.
As a result, in the case of the blend T3 in which the harmonic mean diameter after mixing is the same as that of T1, the average air volume at the time of sintering does not decrease as much as the blend T2 compared with the blend T1 that does not include steelmaking slag. Time is shortened compared to formulation T2. In addition, in the case of the blend T3, the cold strength of the obtained product sintered ore is improved as compared with the blend T2, and the production rate is also higher than the blend T2, so that it is close to the blend T1 to which no steelmaking slag is added. The production rate is secured.
Furthermore, in the case of the blending T4 in which the harmonic mean diameter after mixing is 1.20 mm larger than T1, all of the average air volume, cold strength, and production rate are blended even though the steelmaking slag is used. T1 has been exceeded, and steelmaking slag has been effectively used in sintering operations.
As described above, when steelmaking slag is used as a granulation raw material, it is not mixed and granulated uniformly with other raw materials, but divided into granules and the resulting granulated particles are mixed with other raw materials. By making it mix in the granulated particles obtained from the raw material, steelmaking slag can be effectively utilized without greatly reducing the production rate of sintered ore.
The present invention has been completed based on the above novel findings.
上記に説明したように、本発明は、鉄鉱石、CaO系やSiO2系副原料、返鉱および固体燃料(粉コークス等の炭材)から主として構成される造粒原料を混合し、適量の水分を添加し、造粒して造粒粒子とし、これを焼結原料としてパレット上に充填して焼結原料層(装入層)を形成し、その後、上記焼結原料層中の固体燃料に点火し、パレット下方に配設されたウインドボックスで空気を吸引して焼結原料を燃焼・溶融して焼結鉱を製造する方法に関するものであり、この点においては、従来技術との違いはない。 As described above, the present invention mixes granulated raw materials mainly composed of iron ore, CaO-based and SiO 2 -based auxiliary materials, return minerals and solid fuel (carbonaceous materials such as powdered coke), and provides an appropriate amount. Moisture is added and granulated to form granulated particles, which are filled into a pallet as a sintered raw material to form a sintered raw material layer (charge layer), and then the solid fuel in the sintered raw material layer This is related to a method for producing sintered ore by burning and melting the sintering raw material by sucking air in a wind box arranged below the pallet, and in this respect, the difference from the prior art There is no.
しかし、本発明は、上記焼結原料となる造粒原料を、製鋼スラグと、製鋼スラグ以外の原料とに分けてそれぞれを別々に分割造粒するとともに、製鋼スラグ由来の造粒粒子を、製鋼スラグ以外の原料由来の造粒粒子と合流させ、混合することにより分散させてパレット上に装入し、焼結することに特徴がある。これによって、製鋼スラグに含まれるAl2O3による弊害を、製鋼スラグ由来の造粒粒子内に封じ込め、他の原料由来の造粒粒子にまで及ぶのを防止することが可能となる。 However, the present invention divides the granulation raw material to be the sintering raw material into a steelmaking slag and a raw material other than the steelmaking slag and separates and granulates each separately, and the granulated particles derived from the steelmaking slag are made into steel. It is characterized in that it is combined with granulated particles derived from raw materials other than slag, dispersed by mixing, charged on a pallet, and sintered. This makes it possible to prevent the adverse effects caused by Al 2 O 3 contained in the steelmaking slag from being contained in the granulated particles derived from the steelmaking slag and to extend to the granulated particles derived from other raw materials.
なお、上記封じ込め効果をより高めるためには、製鋼スラグ以外の原料由来の造粒粒子中に分散装入する製鋼スラグ由来の造粒粒子の間隔を大きくしてやることが好ましく、そのためには、製鋼スラグ由来の造粒粒子の粒径(算術平均粒子径)を製鋼スラグ以外の原料由来の造粒粒子より大きくしてやるのが好ましく、より好ましくは2倍以上とするのが望ましい。これによって、製鋼スラグのAl2O3による悪影響の発生箇所を低減することができるので、製鋼スラグ以外の原料由来の造粒粒子に及ぼす悪影響を最小限に留めることができる。 In order to further enhance the containment effect, it is preferable to increase the interval between the granulated particles derived from steelmaking slag dispersed and charged in the granulated particles derived from raw materials other than steelmaking slag. The particle diameter (arithmetic average particle diameter) of the derived granulated particles is preferably made larger than that of the raw material-derived granulated particles other than steelmaking slag, and more preferably twice or more. Thus, it is possible to reduce the occurrence location of adverse effects of Al 2 O 3 of steel slag, the adverse effects on the granulation particles from materials other than steel slag can be minimized.
本発明によれば、上記製鋼スラグの封じ込め効果によって、従来技術では造粒原料中に5mass%程度しか添加できなかった製鋼スラグを、生産率を大きく低下させることなく、8mass%を超えて添加することが可能となる。 According to the present invention, the steelmaking slag, which could only be added to the granulated raw material by about 5 mass% in the prior art due to the containment effect of the steelmaking slag, is added in excess of 8 mass% without greatly reducing the production rate. It becomes possible.
また、焼結原料として製鋼スラグを用いる理由は、製鋼スラグ中に含まれるフリーCaOによって造粒性を高めたり、CaO源として使用すること、および、製鉄所内で発生した製鋼スラグをリサイクルするためである。製鋼スラグ中のフリーCaOの効果をより発現させるためには、製鋼スラグをいったん破砕し、製鋼スラグ粒子内部のフリーCaOを露出させ、それを造粒したものであることが好ましく、また、上記製鋼スラグの破砕は、1mm以下に細粒化することが好ましい。 Moreover, the reason for using steelmaking slag as a sintering raw material is to increase the granulation property by using free CaO contained in the steelmaking slag, to use it as a source of CaO, and to recycle the steelmaking slag generated in the steelworks. is there. In order to further develop the effect of free CaO in steelmaking slag, it is preferable that the steelmaking slag is once crushed to expose the free CaO inside the steelmaking slag particles and granulated. The slag is preferably crushed to 1 mm or less.
表4は、脱硫スラグ全体についての成分分析値と、粒度毎の製鋼スラグ粒子の成分分析値を比較して示したものであり、−0.25mm以下の粒子のフリーCaOは20mass%以上であるのに対して、2.8mm以上の粒子のフリーCaOは10mass%以下である。これは、脱硫スラグ中のフリーCaOは、粒子の細粒部に偏析していることを示している。また、製鋼スラグは、Ca成分が粒子内部に偏析し、その周囲がCaSやCa−Si−Al−Oなどで覆われていることが、電子線マイクロアナライザーによる粒子断面観察の結果から明らかとなった。したがって、製鋼スラグ中に含まれるフリーCaOの効果を最大限に発現させるためには、製鋼スラグをいったん破砕し、製鋼スラグ中のフリーCaOを露出させてやることが重要であり、そのためには、製鋼スラグを1mm以下に破砕して、細粒化した上で、造粒粒子とするのが好ましい。 Table 4 shows a comparison of component analysis values for the entire desulfurized slag and component analysis values of steelmaking slag particles for each particle size, and free CaO of particles of −0.25 mm or less is 20 mass% or more. On the other hand, free CaO of particles of 2.8 mm or more is 10 mass% or less. This indicates that free CaO in the desulfurized slag is segregated in the fine particle part of the particles. Moreover, as for steelmaking slag, it becomes clear from the result of the particle | grain cross-sectional observation by an electron beam microanalyzer that Ca component segregates inside the particle | grains and the circumference | surroundings are covered with CaS, Ca-Si-Al-O, etc. It was. Therefore, in order to maximize the effect of free CaO contained in the steelmaking slag, it is important to first crush the steelmaking slag and expose the free CaO in the steelmaking slag. It is preferable that the steelmaking slag is crushed to 1 mm or less and finely granulated, and then made into granulated particles.
また、本発明において、生産性向上効果をより高めるためには、製鋼スラグ由来の造粒粒子は、製鋼スラグ以外の原料由来の造粒粒子より含水率が低いものであることが好ましい。その理由は、製鋼スラグには、フリーCaOが多く含まれており、粉鉱石に比べて細粒のものが多いことから、造粒水分は粉鉱石の場合に比べて高くなる。このような高水分のスラグ造粒粒子を粉鉱石主体の造粒粒子に混合すると、焼結原料全体の持ち込み水分が増加し、湿潤帯での圧損増加を招くという問題があるからである。なお、製鋼スラグ由来の造粒粒子の含水率は、好ましくは7mass%以下、より好ましくは5mass%である。 Moreover, in this invention, in order to raise the productivity improvement effect more, it is preferable that the granulated particle derived from steelmaking slag has a lower moisture content than the granulated particle derived from raw materials other than steelmaking slag. The reason is that the steelmaking slag contains a large amount of free CaO, and the amount of granulated water is higher than that of powdered ore because there are more fine particles than powdered ore. This is because, when such high moisture slag granulated particles are mixed with granulated particles mainly composed of fine ore, the amount of moisture brought into the entire sintered raw material increases, resulting in an increase in pressure loss in the wet zone. The water content of the granulated particles derived from steelmaking slag is preferably 7 mass% or less, and more preferably 5 mass%.
なお、製鋼スラグ由来の造粒粒子を、製鋼スラグ以外の原料由来の造粒粒子中に混在させて、焼結機に装入する方法について説明する。
製鋼スラグ以外の造粒原料は、図1に示したように、混合ミキサーでいったん混合し、その後、造粒用ドラムミキサーに供給して、造粒粒子(擬似粒子)とし、ドラムミキサーから排出された造粒粒子は、ベルトコンベアで焼結機側に搬送する。
また、製鋼スラグは、図2に示したように、ペレタイザで造粒して造粒粒子とし、ベルトコンベアで焼結機側に搬送する。
上記のようにして得られた2種類の造粒粒子を混合して焼結機のパレット上に装入する方法としては、たとえば、ベルトコンベア上に搭載された製鋼スラグ以外の原料由来の造粒粒子上に、製鋼スラグ由来の造粒粒子を払い出して積層状態とした後、あるいは、ベルトコンベア上に搭載された製鋼スラグ由来の造粒粒子上に、製鋼スラグ以外の原料由来の造粒粒子を払い出して積層状態とした後、焼結機のパレットに原料を装入するサージホッパに搬送し、このサージホッパ内で混合する方法、あるいは、別途、混合用ドラムミキサーを設置し、このミキサーに上記2種類の造粒粒子を供給し、混合処理を行った後、サージホッパに供給する方法等の方法を挙げることができる。また、積層状態にしてベルトコンベアで搬送中に、ジャンクション部分でのベルト乗り継ぎの際に2種類の造粒粒子を混合させる方法でも、比較的均一な混在状態とすることができる。
なお、上記に説明した造粒方法や混合方法は、単なる例示であり、他の方法を用いてもよいことは勿論である。
In addition, the method to mix the granulated particle derived from steelmaking slag in the granulated particle derived from raw materials other than steelmaking slag, and to insert in a sintering machine is demonstrated.
As shown in FIG. 1, the raw materials for granulation other than steelmaking slag are mixed once with a mixing mixer, then supplied to a drum mixer for granulation to form granulated particles (pseudo particles), which are discharged from the drum mixer. The granulated particles are conveyed to the sintering machine side by a belt conveyor.
Further, as shown in FIG. 2, the steelmaking slag is granulated with a pelletizer to form granulated particles, and is conveyed to the sintering machine side with a belt conveyor.
As a method of mixing the two types of granulated particles obtained as described above and charging them onto a pallet of a sintering machine, for example, granulation derived from raw materials other than steelmaking slag mounted on a belt conveyor After the granulated particles derived from steelmaking slag are dispensed on the particles to form a laminated state, or the granulated particles derived from raw materials other than steelmaking slag are placed on the granulated particles derived from steelmaking slag mounted on the belt conveyor. After being dispensed and laminated, it is transported to a surge hopper where raw materials are charged into the pallet of the sintering machine and mixed in the surge hopper, or a mixing drum mixer is installed separately. A method such as a method of supplying the granulated particles and supplying the granulated particles to a surge hopper after mixing treatment can be given. A relatively uniform mixed state can also be achieved by a method in which two types of granulated particles are mixed at the time of belt transfer at a junction portion while being conveyed by a belt conveyor in a stacked state.
It should be noted that the granulation method and mixing method described above are merely examples, and it is needless to say that other methods may be used.
表5に示した配合1〜3の3水準に配合率を変えた、製鋼スラグを含む造粒原料を準備し、これらの原料を用いて、製鋼スラグとそれ以外の原料を均一に混合してから造粒する方法(混合造粒)と、製鋼スラグとそれ以外の原料とを別々に造粒する方法(分割造粒)の2つの方法で造粒粒子とした後、先述した内径が290mmφ、高さが400mmの試験鍋を用いて焼結実験を行った。なお、造粒した粒子の粒径(算術平均粒径)は、表5中に併記した。 Prepare the granulation raw material including steelmaking slag, changing the mixing ratio to the three levels of mixing 1 to 3 shown in Table 5, and use these raw materials to uniformly mix steelmaking slag and other raw materials. After granulating particles by two methods, a method of granulating from (granulated granulation) and a method of separately granulating steelmaking slag and other raw materials (divided granulation), the aforementioned inner diameter is 290 mmφ, Sintering experiments were performed using a test pan having a height of 400 mm. The particle size (arithmetic average particle size) of the granulated particles is also shown in Table 5.
試験鍋への焼結原料の装入は、混合造粒した造粒粒子を焼結原料とする場合は、従来技術と同様、そのまま試験鍋に装入し、分割造粒した造粒粒子を焼結原料とする場合は、図3に示したように、試験鍋中に、製鋼スラグ由来の造粒粒子を、製鋼スラグ以外の原料由来の造粒粒子中に混在させて装入した。また、焼結実験では、焼結に要した時間と、得られた焼結鉱(焼結ケーキ)の成品歩留り(焼結試験で得られた焼結ケーキを破砕し、篩い分けしたときの粒径が10mm以上の粒子の質量%)を測定し、これらの値から生産率を求めることで、各試験条件を評価した。 When the mixed granulated particles are used as the sintering raw material, as in the prior art, the sintered raw material is charged into the test pan as it is and charged into the test pan as it is, and the divided granulated particles are sintered. When using it as a raw material, as shown in FIG. 3, the granulated particle derived from steelmaking slag was mixed and mixed in the granulated particle derived from raw materials other than steelmaking slag in the test pan. Also, in the sintering experiment, the time required for sintering and the product yield of the obtained sintered ore (sintered cake) (the grains when the sintered cake obtained in the sintering test was crushed and sieved) Each test condition was evaluated by measuring the mass% of particles having a diameter of 10 mm or more and determining the production rate from these values.
上記焼結実験の結果を表5中に併記した。この結果から、造粒原料の配合水準が1〜3のいずれの場合にも、製鋼スラグをそれ以外の原料と均一に混合して造粒した従来例1〜3と比較して、製鋼スラグとそれ以外の原料とを分割して造粒した発明例1〜4の方が、生産率が向上していることがわかる。
また、発明例1と発明例2との比較から、製鋼スラグ由来の造粒粒子径Aを、製鋼スラグ以外の原料由来の粒子径Bの2倍以上の大きさとすることにより、生産率をさらに高めることができることがわかる。
また、発明例1と発明例5との比較から、本発明例の中でも、製鋼スラグをいったん1mm以下に細粒化した後、造粒粒子とすることにより、生産率がさらに高められることがわかる。
さらに、発明例1と発明例6との比較から、本発明例の中でも、製鋼スラグ由来の造粒粒子の含水率を、製鋼スラグ以外の原料由来の造粒粒子より低くすることにより、生産率がさらに高められることがわかる。
The results of the sintering experiment are also shown in Table 5. From this result, in any case where the blending level of the granulated raw material is 1 to 3, compared to Conventional Examples 1 to 3 in which the steelmaking slag is uniformly mixed with other raw materials and granulated, the steelmaking slag and It can be seen that the production rates of Invention Examples 1 to 4 in which the other raw materials are divided and granulated are improved.
Moreover, from the comparison between Invention Example 1 and Invention Example 2, the production rate is further increased by setting the granulated particle diameter A derived from steelmaking slag to be twice or more the particle diameter B derived from raw materials other than steelmaking slag. It can be seen that it can be increased.
Moreover, it can be seen from comparison between Invention Example 1 and Invention Example 5 that, among the examples of the present invention, the steelmaking slag is once refined to 1 mm or less and then granulated particles can further increase the production rate. .
Furthermore, from the comparison between Invention Example 1 and Invention Example 6, among the examples of the present invention, by making the moisture content of the granulated particles derived from steelmaking slag lower than the granulated particles derived from raw materials other than steelmaking slag, the production rate It can be seen that is further enhanced.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010264937A JP5699567B2 (en) | 2010-11-29 | 2010-11-29 | Method for producing sintered ore |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010264937A JP5699567B2 (en) | 2010-11-29 | 2010-11-29 | Method for producing sintered ore |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012117082A true JP2012117082A (en) | 2012-06-21 |
JP5699567B2 JP5699567B2 (en) | 2015-04-15 |
Family
ID=46500273
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010264937A Active JP5699567B2 (en) | 2010-11-29 | 2010-11-29 | Method for producing sintered ore |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5699567B2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013245377A (en) * | 2012-05-25 | 2013-12-09 | Jfe Steel Corp | Method for producing sintered ore |
JP2014001438A (en) * | 2012-06-20 | 2014-01-09 | Jfe Steel Corp | Production method for sintered ore |
CN104060083A (en) * | 2013-06-20 | 2014-09-24 | 攀钢集团攀枝花钢铁研究院有限公司 | Sintering method of vanadium titanium magnetite |
JP2015120963A (en) * | 2013-12-24 | 2015-07-02 | 新日鐵住金株式会社 | Method of producing sinter by using desulfurization slag |
JP2015151585A (en) * | 2014-02-17 | 2015-08-24 | Jfeスチール株式会社 | Production method of raw material for sintering |
CN105316478A (en) * | 2014-06-11 | 2016-02-10 | 鞍钢股份有限公司 | Sintering production method for improving limonite proportion |
US20160160302A1 (en) * | 2013-07-08 | 2016-06-09 | Ecofer, S.R.O. | Fluxing agent, process of its production, agglomeration mixture and use of slug from secondary metallurgy |
CN106090978A (en) * | 2016-06-23 | 2016-11-09 | 山东钢铁股份有限公司 | A kind of method improving solid fuel utilization ratio and the application in the production technology of sintering deposit thereof |
CN106480307A (en) * | 2015-08-31 | 2017-03-08 | 鞍钢股份有限公司 | Method for improving homogeneity of sinter |
CN106480308A (en) * | 2015-08-31 | 2017-03-08 | 鞍钢股份有限公司 | Method for reducing burnup of sintered solid |
CN108822896A (en) * | 2018-06-29 | 2018-11-16 | 新奥科技发展有限公司 | A kind of gasification process and gasification installation |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001192741A (en) * | 2000-01-13 | 2001-07-17 | Nisshin Steel Co Ltd | Method for utilizing steel making slag |
JP2005231947A (en) * | 2004-02-19 | 2005-09-02 | Nippon Magnetic Dressing Co Ltd | Method of treating steel slag to make aggregate |
JP2005314156A (en) * | 2004-04-28 | 2005-11-10 | Jfe Steel Kk | Granule and its manufacturing process |
JP2007277594A (en) * | 2006-04-03 | 2007-10-25 | Jfe Steel Kk | Sintered ore production method |
-
2010
- 2010-11-29 JP JP2010264937A patent/JP5699567B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001192741A (en) * | 2000-01-13 | 2001-07-17 | Nisshin Steel Co Ltd | Method for utilizing steel making slag |
JP2005231947A (en) * | 2004-02-19 | 2005-09-02 | Nippon Magnetic Dressing Co Ltd | Method of treating steel slag to make aggregate |
JP2005314156A (en) * | 2004-04-28 | 2005-11-10 | Jfe Steel Kk | Granule and its manufacturing process |
JP2007277594A (en) * | 2006-04-03 | 2007-10-25 | Jfe Steel Kk | Sintered ore production method |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013245377A (en) * | 2012-05-25 | 2013-12-09 | Jfe Steel Corp | Method for producing sintered ore |
JP2014001438A (en) * | 2012-06-20 | 2014-01-09 | Jfe Steel Corp | Production method for sintered ore |
CN104060083A (en) * | 2013-06-20 | 2014-09-24 | 攀钢集团攀枝花钢铁研究院有限公司 | Sintering method of vanadium titanium magnetite |
US20160160302A1 (en) * | 2013-07-08 | 2016-06-09 | Ecofer, S.R.O. | Fluxing agent, process of its production, agglomeration mixture and use of slug from secondary metallurgy |
US10435760B2 (en) * | 2013-07-08 | 2019-10-08 | Ecofer, S.R.O. | Fluxing agent, process of its production, agglomeration mixture and use of slug from secondary metallurgy |
JP2015120963A (en) * | 2013-12-24 | 2015-07-02 | 新日鐵住金株式会社 | Method of producing sinter by using desulfurization slag |
JP2015151585A (en) * | 2014-02-17 | 2015-08-24 | Jfeスチール株式会社 | Production method of raw material for sintering |
CN105316478A (en) * | 2014-06-11 | 2016-02-10 | 鞍钢股份有限公司 | Sintering production method for improving limonite proportion |
CN106480307A (en) * | 2015-08-31 | 2017-03-08 | 鞍钢股份有限公司 | Method for improving homogeneity of sinter |
CN106480308A (en) * | 2015-08-31 | 2017-03-08 | 鞍钢股份有限公司 | Method for reducing burnup of sintered solid |
CN106090978A (en) * | 2016-06-23 | 2016-11-09 | 山东钢铁股份有限公司 | A kind of method improving solid fuel utilization ratio and the application in the production technology of sintering deposit thereof |
CN106090978B (en) * | 2016-06-23 | 2018-07-31 | 山东钢铁股份有限公司 | A kind of method improving solid fuel utilization rate and its application in sinter production |
CN108822896A (en) * | 2018-06-29 | 2018-11-16 | 新奥科技发展有限公司 | A kind of gasification process and gasification installation |
Also Published As
Publication number | Publication date |
---|---|
JP5699567B2 (en) | 2015-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5699567B2 (en) | Method for producing sintered ore | |
JP5954533B2 (en) | Method for producing sintered ore | |
JP5950098B2 (en) | Method for producing sintered ore | |
JP6102463B2 (en) | Method for producing sintered ore | |
JP6273957B2 (en) | Sinter ore manufacturing method | |
JP6020832B2 (en) | Sintering raw material manufacturing method | |
JP4781807B2 (en) | Manufacturing method of dephosphorizing agent for steel making using sintering machine | |
AU2011381317B2 (en) | Process for the manufacture of ferrochrome | |
JP5477170B2 (en) | Method for producing sintered ore | |
JP2009019224A (en) | Method for manufacturing sintered ore | |
JP2007327096A (en) | Method for manufacturing sintered ore using brucite | |
JP6020840B2 (en) | Sintering raw material manufacturing method | |
JP2001348623A (en) | METHOD FOR PRODUCING HIGH QUALITY AND LOW SiO2 SINTERED ORE FOR BLAST FURNACE | |
JP4725230B2 (en) | Method for producing sintered ore | |
JP2014159622A (en) | Method of producing reduced iron | |
JP6004191B2 (en) | Sintering raw material manufacturing method | |
JP5995005B2 (en) | Sintering raw material manufacturing method | |
JP5995004B2 (en) | Sintering raw material manufacturing method | |
JPH0583620B2 (en) | ||
JP2009185315A (en) | Method for granulating raw material to be sintered | |
JP2009114485A (en) | Method for manufacturing sintered ore | |
JP2008088533A (en) | Method for manufacturing sintered ore | |
JP5187473B2 (en) | Method for producing sintered ore | |
JP4238401B2 (en) | Method for producing low SiO2 sintered ore | |
JP2017172020A (en) | Carbonaceous inner package granulation particle for manufacturing sintered ore and manufacturing method of sintered ore using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20131010 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20141002 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20141014 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141204 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150120 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150202 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5699567 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |