JP2003277838A - High crystal water ore used for sintering raw material for blast furnace, sintering raw material for blast furnace and its producing method - Google Patents

High crystal water ore used for sintering raw material for blast furnace, sintering raw material for blast furnace and its producing method

Info

Publication number
JP2003277838A
JP2003277838A JP2002080883A JP2002080883A JP2003277838A JP 2003277838 A JP2003277838 A JP 2003277838A JP 2002080883 A JP2002080883 A JP 2002080883A JP 2002080883 A JP2002080883 A JP 2002080883A JP 2003277838 A JP2003277838 A JP 2003277838A
Authority
JP
Japan
Prior art keywords
raw material
ore
crystal water
sintering
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002080883A
Other languages
Japanese (ja)
Inventor
Katsuhiro Yamashita
勝宏 山下
Hideaki Sato
秀明 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002080883A priority Critical patent/JP2003277838A/en
Publication of JP2003277838A publication Critical patent/JP2003277838A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To develop such a technique as to reduce the absorbing amount of water which does not contribute to a granulation function, for the purpose of performing a sintering operation using ore with a large amount of high crystal water and keeping high productivity. <P>SOLUTION: The ore with high crystal water 1 containing ≥4 mass% crystal water is blended with ≥5 mass% new raw material in a sintering raw material. In this case, the ratio of the grain having ≤1 mm diameter is adjusted so as to come into the range of 50-70 mass% by applying a prescribed treatment to the ore with high crystal water, e.g. a grading treatment with a crusher 2 and a screen, and this is mixed with the remained new raw material 3, powdery coke 5 (solid fuel) and returned ore 4, and granulated to prepare pseudo grain 18, and the sintering raw material is used and sintered by using a fire grate moving sintering machine 19. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、高炉製銑法にお
いて使用する焼結鉱原料として高結晶水鉱石を使用し、
且つ焼結操業における高生産性を維持するための、高炉
用焼結鉱の製造技術に関するものである。
TECHNICAL FIELD The present invention uses a high crystal water ore as a raw material for sinter ore used in a blast furnace ironmaking method,
In addition, the present invention relates to a technique for producing a sinter for a blast furnace in order to maintain high productivity in a sintering operation.

【0002】[0002]

【従来の技術】高炉原料として使用される焼結鉱は、一
般に、次の方法により製造される。約10mm以下の鉄
鉱石粉を銘柄ごとに粉鉱ヤードに山積みする。山積みさ
れた各種粉鉱石、含CaO副原料、含SiO2 副原料及
び、ダスト等を予め設定している割合でベッディング法
により混合し、ブレンディング粉とする。このブレンデ
ィング粉、石灰石及び/又は生石灰、珪石及び/又は蛇
紋岩、粉コークス等の固体燃料、並びに返鉱と、場合に
よっては更に、単味の粉鉱石等の各原料を、焼結工場の
それぞれ別の原料配合槽に入れ、それぞれの原料配合槽
から各原料を所定量連続的に切り出して配合し、配合さ
れた原料に適量の水分を添加して混合し、更に適宜水分
を添加して混合・造粒し、擬似粒子に造粒する。
2. Description of the Related Art Sinter ore used as a blast furnace raw material is generally produced by the following method. Iron ore powder of about 10 mm or less is piled up in a powder ore yard for each brand. A pile of various powdered ores, CaO-containing auxiliary raw material, SiO 2 -containing auxiliary raw material, dust and the like are mixed by a bedding method at a preset ratio to obtain a blending powder. This blending powder, solid fuel such as limestone and / or quick lime, silica stone and / or serpentine, coke powder, etc., and return ores, and in some cases, each raw material such as plain powder ore, etc. Put in another raw material mixing tank, cut out a predetermined amount of each raw material continuously from each raw material mixing tank and mix, add an appropriate amount of water to the mixed raw material and mix, and further add appropriate water and mix・ Granulate into pseudo particles.

【0003】このようにして造粒された擬似粒子状の焼
結鉱原料をホッパーより火格子移動式焼結機(ドワイト
ロイド式焼結機)のパレット上に連続的に供給し、50
0〜700mm程度の高さの原料充填層(焼結ベッド)
を形成する。次いで点火炉にて原料充填層の表層部中の
コークス等固体燃料に点火し、下方に向けて強制的に空
気を吸引しながら固体燃料を燃焼させ、この時発生する
燃焼熱によって焼結原料を焼結し、塊成化する。焼結過
程では、パレット上の焼結ベッド内部に、原料中の固体
燃料の燃焼と下方吸引により、通気性が確保されたガス
流れと上方から下方に移動する燃焼面の移動による熱移
動とを、適切に与えることが基本的操作である。このよ
うに、焼結原料充填層の通気性を良好に保持すること
は、焼結鉱の生産性及び品質の向上にとって必要不可欠
である。
The pseudo-granular sinter raw material thus granulated is continuously fed from the hopper onto the pallet of the grate moving type sintering machine (Dwightroid type sintering machine), and 50
Raw material packed bed (sintered bed) with a height of 0 to 700 mm
To form. Next, in the ignition furnace, the solid fuel such as coke in the surface layer of the raw material packed bed is ignited, the solid fuel is burned while forcibly sucking air downward, and the combustion heat generated at this time converts the sintering raw material into Sinter and agglomerate. In the sintering process, the gas flow of which the air permeability is ensured by the combustion of the solid fuel in the raw material and the downward suction inside the sintering bed on the pallet and the heat transfer due to the movement of the combustion surface moving from the upper side to the lower side are performed. , The basic operation is to give it properly. Thus, maintaining good air permeability of the sintering raw material packed bed is essential for improving the productivity and quality of the sintered ore.

【0004】こうして焼成された焼結ケーキを破砕し、
冷却後整粒して3〜5mm以上の粒子を調製し、品質基
準を満たすものを「成品焼結鉱」として高炉に装入す
る。なお、品質基準を満たさない不合格品及び焼結ケー
キの破砕・整粒過程で発生した3〜5mm以下の粉焼結
鉱は、返鉱として再度焼結用原料として使用される。
The sintered cake thus fired is crushed,
After cooling, the particles are sized to prepare particles having a size of 3 to 5 mm or more, and those satisfying the quality standard are charged into a blast furnace as “product sinter”. The rejected product that does not meet the quality standard and the powdered ore of 3 to 5 mm or less generated in the process of crushing and sizing the sintered cake are used again as a raw material for sintering as return ore.

【0005】なお、こうして製造された焼結鉱の品質
は、高炉操業における炉内荷下がり状態の安定性や通気
性及び通液性、還元効率及び高温性状等に対して大きな
影響を及ぼす。従って、焼結鉱の製造においては、焼結
鉱の高品質確保のための製造条件が要求され、またその
製造コスト低減のために、焼結鉱の成品歩留向上が要請
され、更に、焼結鉱の生産性の向上が要請される。
The quality of the sinter produced in this manner has a great influence on the stability of the unloading state in the furnace during blast furnace operation, the air permeability and liquid permeability, the reduction efficiency and the high temperature properties. Therefore, in the production of sinter, the production conditions for securing high quality of the sinter are required, and in order to reduce the production cost, it is required to improve the product yield of the sinter, and further Improving productivity of mine is required.

【0006】このようにして得られる高炉用焼結鉱は、
高炉の安定操業及び生産性確保のために、一般にその品
質特性が所定の水準を確保している必要がある。即ち、
成品焼結鉱は、その強度、還元性及び耐還元粉化性が確
保されていることが要請され、また、それにより高炉内
における通気性確保の重要な因子が確保されることにな
り、高炉の安定操業及び溶銑の生産性確保がなされる。
The sinter for blast furnace thus obtained is
In order to ensure stable operation and productivity of the blast furnace, it is generally necessary that its quality characteristics have a predetermined level. That is,
The product sinter is required to secure its strength, reducing property and reduction pulverization resistance, and this also secures important factors for ensuring air permeability in the blast furnace. Stable operation and hot metal productivity will be secured.

【0007】一方、鉄鉱石の供給面においては、近年特
に赤鉄鉱(Fe23、ヘマタイト)や磁鉄鉱(Fe
34、マグネタイト)等の良質な鉄鉱石が減少し、これ
に伴いゲーサイト(Fe23・nH2O)を多く含むピ
ソライト鉱石あるいはマラマンバ鉱石のように結晶水含
有量が高い、所謂「高結晶水鉱石」が増加している。結
晶水の鉱石中含有率は高いものでは10mass%程度
に達する。このような高結晶水鉱石を高炉用焼結鉱とし
て大量に、しかも有利に使用する技術が強く要請される
に至った。
On the other hand, in terms of iron ore supply, hematite (Fe 2 O 3 , hematite) and magnetite (Fe
High quality iron ores such as 3 O 4 and magnetite are reduced, and along with this, high crystal water content is high, such as pisolite ore or mara mamba ore that contains a lot of goethite (Fe 2 O 3 · nH 2 O). The number of “high crystal water ores” is increasing. If the content of crystal water in the ore is high, it will reach about 10 mass%. There has been a strong demand for a technique of using such highly crystallized water ore in a large amount as a sinter for a blast furnace and advantageously.

【0008】ところが、上述した高結晶水鉱石はその性
状、特にその結晶水含有率が上記の通り高いこと及び多
孔質で気孔率が高いことに起因して、一般にこれを焼結
鉱製造原料として使用するに際し種々の問題がある。こ
の問題を、焼結鉱製造工程にいて高結晶水鉱石を使用す
るために起こる特有の、焼成過程や原料調製過程におけ
る不利性の面から大別すると、下記2点にまとめること
ができる。
However, the above-mentioned high crystal water ore is generally used as a raw material for producing a sintered ore due to its properties, particularly its high water content of crystallization as described above and its high porosity. There are various problems in use. This problem can be roughly classified into the following two points from the viewpoint of the disadvantages in the firing process and the raw material preparation process, which are peculiar to using the high crystal water ore in the sinter production process.

【0009】第1の問題点は、高結晶水鉱石は焼成過程
における、初期融液生成時期の局部的過溶融現象に起因
するものである。高結晶水鉱石は、約400〜500℃
に加熱すると、結晶水を除去するために多量の熱量を消
費し、更に、この水分の分解・脱水時に粗大気孔や亀裂
が発生し、多孔質的な性状が付加される。そのために高
結晶水鉱石は、焼結過程における反応性が高くなり、1
200℃近傍において高流動性のカルシウム・フェライ
ト(CaO・2Fe23)系融液が局部的に過剰に生成
し、また、粗大気孔や亀裂内への流入・固化により焼結
過程での焼結ベッド内の通気性が悪化し、焼成後の焼結
鉱に不均一な気孔残留を発生させ、その結果焼結鉱強度
を劣化させる。そのため成品焼結鉱の歩留を悪化させ
る。また、焼結ベッド内の通気性悪化により、焼結速度
が遅延して、焼結鉱の生産性低下を招く。
The first problem is that the highly crystallized water ore is caused by a local overmelting phenomenon at the time of initial melt formation in the firing process. Highly crystalline water ore is about 400-500 ℃
When it is heated to a large amount, a large amount of heat is consumed to remove the water of crystallization, and further, when the water is decomposed and dehydrated, coarse air holes and cracks are generated, and a porous property is added. Therefore, high crystal water ores have high reactivity in the sintering process, and
At around 200 ° C, highly fluid calcium-ferrite (CaO · 2Fe 2 O 3 ) -based melt was locally produced excessively, and it also burned in the sintering process due to inflow and solidification into coarse air holes and cracks. The air permeability in the binding bed deteriorates, and non-uniform pores remain in the sintered ore after firing, resulting in deterioration of the strength of the sintered ore. Therefore, the yield of the product sintered ore is deteriorated. Further, the air permeability in the sintering bed is deteriorated, so that the sintering rate is delayed and the productivity of the sintered ore is reduced.

【0010】第2の問題点は、高結晶水鉱石は、原料配
合後の混合・造粒工程で調製される擬似粒子の造粒性に
劣ることに起因するものである。前述した通り、焼結工
程においては、焼結原料充填層(焼結ベッド)中の通気
性を良好に保持することが、焼結鉱の生産性及び品質の
向上にとって極めて重要である。そのために、焼結ベッ
ドを構成する擬似粒子は、適度の粒度を確保することが
必要である。ところが、高結晶水鉱石は気孔率が高いた
めに、上述した原料配合後の混合・造粒工程で調製され
る擬似粒子の造粒性に劣る。その理由は、一般に、混合
原料中の水分含有率は、造粒バインダーとして過不足な
く適正量の水分が添加されることが必要であり、こうし
て適切粒度の擬似粒子に造粒されると同時に、更に焼結
過程において擬似粒子が崩壊しないことが、焼結ベッド
の通気性確保に必要である。バインダー機能を発揮させ
るための適正量の水分を添加した場合には、気孔中に吸
水されたためにバインダーとして機能しない水分が多量
に高結晶水鉱石の組織内部に入り込むことになる。その
ために、焼結ベッドの通気性が悪くなり、焼成反応が遅
延して生産性が低下し、また、余分な水分を蒸発させる
ために焼結燃料比の増加を招く。
The second problem is that the highly crystallized water ore is inferior in the granulation property of the pseudo particles prepared in the mixing / granulation step after the raw material is blended. As described above, in the sintering step, maintaining good air permeability in the sintering raw material packed bed (sintered bed) is extremely important for improving the productivity and quality of the sintered ore. Therefore, it is necessary for the pseudo particles forming the sintering bed to have an appropriate particle size. However, since the high crystal water ore has a high porosity, it is inferior in the granulation property of the pseudo particles prepared in the mixing / granulation step after blending the raw materials described above. The reason is that, in general, the water content in the mixed raw material requires that an appropriate amount of water is added as a granulation binder without excess or deficiency, and thus, at the same time as the pseudo particles having an appropriate particle size are granulated, Further, it is necessary for ensuring the air permeability of the sintering bed that the pseudo particles do not collapse during the sintering process. When an appropriate amount of water for exhibiting the binder function is added, a large amount of water that does not function as a binder because it is absorbed in the pores enters the inside of the structure of the high crystal water ore. Therefore, the air permeability of the sintering bed is deteriorated, the firing reaction is delayed, the productivity is reduced, and the excess fuel is evaporated to increase the sintering fuel ratio.

【0011】焼結鉱の製造は、第1及び第2の両方の問
題を解決することにより、高品質の焼結鉱を安定して低
コストで、高生産性を確保しつつ行なうことができる。
従来、第1の問題点に主眼をおいた解決方法は多数提案
されているが、第2の問題点に主眼をおいた解決方法の
提案は少ない。
By solving both the first and second problems, the production of sinter can be carried out stably and at low cost with high quality sinter while ensuring high productivity. .
Conventionally, many solutions have been proposed that focus on the first problem, but few solutions that focus on the second problem.

【0012】第1の問題点(局部的過溶融)に対して
は、例えば、特公平5−83620号公報には、下記技
術が提案されている。粗粒の高結晶水鉱石の周囲に、高
結晶水鉱石粉と蛇紋岩等の含MgO−SiO2系副原料
粉と適量の微粉コークス等の固体炭素粉とからなる被覆
層を形成させた予備造粒物を調製するに当たり、固体炭
素粉の混合割合を、−1mmの高結晶水鉱石中の結合水
含有率を変数とする二つの特定関数で算出される値を
上、下限と定め、その範囲内に設定し、且つ、含MgO
−SiO2系副原料の重量%と−1mmの高結晶水鉱石
中の結合水を除く重量%との比が所定の定数の範囲内に
入るように、高結晶水鉱石と含MgO−SiO2系副原
料と固体炭素粉との混合割合を決めて配合し、調湿、造
粒して他の原料に配合するという方法が開示されてい
る。この方法によれば、核となる高結晶水鉱石を主体と
するこの予備造粒物を、その他の残部原料(これは原料
配合のバランス上から高CaO/SiO2原料となる)
と混合し、当該予備造粒物の表面に付着させて擬似粒子
を調製する。このように事前処理をすることにより、上
記擬似粒子の外層部を構成する高CaO/SiO2原料
からは、1200℃近辺においてCaO−Fe23系融
液が生成する。このCaO−Fe23系融液は、上記予
備造粒物表層の被覆層を構成する含MgO・SiO2
副原料と反応すると、この融液の融点は上昇して流動性
が低下するので、当該融液は予備造粒物の内部へ侵入し
難くなる。こうして、焼結過程における粗粒高結晶水鉱
石と上記CaO−Fe23系融液との接触を抑制し、そ
の間の高温において、核を構成する粗粒高結晶水鉱石の
組織の緻密化が粉コークスの燃焼により促進されて、融
液による高結晶水鉱石の同化反応を阻止する。このよう
にして、上述した多量の粗大気孔の生成による耐還元粉
化性の劣化を防止し、焼結機ベッド内における通気性を
確保して成品焼結鉱の歩留向上及び焼結鉱の生産性維持
を図るというものである(以下、「先行技術1」とい
う)。
Regarding the first problem (local overmelting), for example, Japanese Patent Publication No. 5-83620 proposes the following technique. Around the coarse grained high crystal water ore, a coating layer formed of high crystal water ore powder, MgO-SiO 2 -based auxiliary raw material powder such as serpentine, and an appropriate amount of solid carbon powder such as fine coke is formed. In preparing the granulated product, the mixing ratio of the solid carbon powder, the value calculated by the two specific functions with the bound water content in the -1 mm high crystal water ore as a variable is set as the lower limit, Set within the range and contain MgO
The high-crystal water ore and the MgO-SiO 2 containing high-crystal water ore so that the ratio of the weight% of the —SiO 2 -based auxiliary material and the weight% of the high-crystal-water ore of −1 mm excluding the bound water falls within a predetermined constant range. A method is disclosed in which the mixing ratio of the system auxiliary material and the solid carbon powder is determined and mixed, and then the humidity is controlled and granulated and then mixed with another material. According to this method, this pre-granulated product, which is mainly composed of a highly crystallized water ore serving as a nucleus, is used as the other remaining raw material (this is a high CaO / SiO 2 raw material in terms of the balance of raw material composition)
Pseudo-particles are prepared by mixing with the pre-granulated product and adhering it to the surface of the preliminary granulated product. By performing the pretreatment in this way, a CaO—Fe 2 O 3 -based melt is generated at around 1200 ° C. from the high CaO / SiO 2 raw material forming the outer layer portion of the pseudo particles. When this CaO-Fe 2 O 3 -based melt reacts with the MgO-SiO 2 -based auxiliary raw material that constitutes the coating layer of the preliminary granulated product surface layer, the melting point of this melt increases and the fluidity decreases. Therefore, it becomes difficult for the melt to enter the inside of the preliminary granulated product. Thus, the contact between the coarse-grained high-crystal water ore and the CaO—Fe 2 O 3 -based melt in the sintering process is suppressed, and the structure of the coarse-grained high-crystal water ore forming the nuclei is densified at a high temperature in the meantime. Is promoted by the combustion of powder coke and prevents the assimilation reaction of highly crystallized water ore by the melt. In this way, it is possible to prevent the reduction powdering resistance from deteriorating due to the generation of a large amount of coarse air holes described above, to ensure the air permeability in the bed of the sintering machine, and to improve the yield of the product sintered ore and the sintered ore. This is to maintain productivity (hereinafter referred to as "Prior Art 1").

【0013】また、特開平8−60258号公報には、
下記技術が提案されている。高結晶水鉱石を所定時間
(2分間)以上予備造粒して、その高結晶水鉱石中の微
粉を核粒子に付着させて擬似粒子を形成させる事前処理
を行ない、これに結晶水含有率の少ない一般鉱石、焼結
鉱用副原料及び固体燃料を混合し、適宜水分を添加した
混合原料を調製し、造粒して焼結原料にする。この方法
は、高結晶水鉱石が石灰石と反応することにより、多量
のカルシウム・フェライト系融液が生成し、融液の焼結
ベッド内における滴下距離が大きくなり、赤熱帯よりも
下方の未だ温度が十分上昇していない領域まで融液が到
達し、急冷されて緻密な凝固シェルが形成される結果、
原料充填層内に焼成むらが発生し、その結果、成品焼結
鉱の歩留が低下するのを防止するというものである(以
下、「先行技術2」という)。
Further, Japanese Patent Laid-Open No. 8-60258 discloses that
The following technologies have been proposed. The high crystal water ore is pre-granulated for a predetermined time (2 minutes) or more, and the fine powder in the high crystal water ore is attached to the core particles to perform a pretreatment to form pseudo particles. A small amount of general ore, an auxiliary raw material for sinter ore, and a solid fuel are mixed, and a mixed raw material to which water is appropriately added is prepared and granulated into a sintering raw material. In this method, high-crystal water ore reacts with limestone to generate a large amount of calcium-ferrite melt, and the dropping distance of the melt in the sintering bed becomes large. Melt reaches a region that has not risen sufficiently, is rapidly cooled to form a dense solidified shell,
It is intended to prevent the firing unevenness from occurring in the raw material packed bed, resulting in a decrease in the yield of the product sintered ore (hereinafter referred to as "prior art 2").

【0014】第2の問題点(造粒性)に対しては、配合
原料の混合・造粒工程においてバインダーとして添加す
る水分の適性量を決定し、その通り制御する技術が提案
されている。例えば、特開平11−61281号公報に
は、擬似粒子の形成メカニズムをモデル化し、微粉鉱石
が粗粒鉱石に吸着して擬似粒子を形成するために下記制
御をする。即ち、微粉が粗粒へ付着する能力を有する下
限の水分濃度値Wlmcを、当該銘柄鉱石の吸水率(吸水
可能な最大水分濃度)とその粒度構成とから算出して当
該Wlmc以上になるように配合原料中の水分濃度を制御
し、更に、擬似粒子の粒度分布形状として、2〜10m
mの範囲内の擬似粒子の量が最大となるときの配合原料
中の水分が得られるように、水分添加量を制御するとい
うものである。当該公報における開示技術においては、
高結晶水鉱石を含む全ての鉄鉱石を対象として、焼結用
配合原料に対する造粒ミキサーにおける適切な水分添加
量についてのかかる提案がなされている(以下、「先行
技術3」という)。
With respect to the second problem (granulation property), a technique has been proposed in which an appropriate amount of water added as a binder is determined in the mixing / granulation process of blended raw materials and the flow rate is controlled accordingly. For example, in Japanese Unexamined Patent Publication No. 11-61281, the formation mechanism of pseudo particles is modeled, and the following control is performed in order to form fine particles by adsorbing fine ore to coarse ores. That is, the lower limit water concentration value W lmc , which has the ability of fine powder to adhere to coarse particles, is calculated from the water absorption rate (maximum water concentration capable of absorbing water) of the brand ore and its particle size composition, and is equal to or greater than the W lmc. As described above, the water concentration in the blended raw material is controlled, and the particle size distribution shape of the pseudo particles is 2 to 10 m.
The amount of water added is controlled so that the water in the blended raw material is obtained when the amount of pseudo particles within the range of m is maximized. In the technology disclosed in this publication,
For all iron ores including high crystal water ores, such a proposal has been made regarding an appropriate amount of water added in the granulation mixer to the compounding raw material for sintering (hereinafter, referred to as "prior art 3").

【0015】[0015]

【発明が解決しようとする課題】高結晶水鉱石を焼結原
料として完全に使いこなすためには、前述した第1及び
第2の問題点を解決しなければならないが、先ず第1の
問題点に対する先行技術1及び2では、焼結原料の調製
工程が煩雑であり、コストもかかること、また先行技術
2では、粗粒の高結晶水鉱石が依然として残存するた
め、造粒に寄与しない余分な水分が持ち込まれ、焼結鉱
の生産性低下や燃料比の増加を招く恐れがある。そし
て、特に、第2の問題点の解決が遅れており、その第2
の問題点に対する先行技術3では、焼結原料の水分含有
率を精度よく制御するには多くの手数がかかり、相当に
煩雑であり、その現実的な実施効果にも疑問が残る。
In order to fully utilize the highly crystalline water ore as a sintering raw material, the above-mentioned first and second problems must be solved. First, the first problem is solved. In the prior arts 1 and 2, the process for preparing the sintering raw material is complicated and costly. In the prior art 2, since the coarse-grained highly crystallized water ore still remains, excess moisture that does not contribute to granulation is obtained. May be introduced, resulting in a decrease in sinter productivity and an increase in fuel ratio. And in particular, the solution of the second problem is delayed,
In the prior art 3 for the problem of (1), it takes a lot of trouble to control the water content of the sintering raw material with high accuracy, and it is considerably complicated, and the practical effect thereof remains questionable.

【0016】そこで、本発明者等は先行技術1〜3のす
べてよりも、より一層簡単な原料調製操作で、高結晶水
鉱石の焼結原料使用時における原料の初期溶融時の問題
及び過剰な水分吸収の問題が解消される方法、特に、高
結晶水鉱石を多量に使用した場合でも、造粒に寄与しな
い余分の水分の持込みを防止して、焼結ベッドの通気性
悪化を防ぎ、また余分な燃料添加の必要性を解消するこ
とにより、焼結鉱の生産性の低下及び燃料比の増加を抑
制し、あるいはそれらを改善することができる、高炉用
焼結鉱の製造技術を提供することを目的とした。
Therefore, the inventors of the present invention have a simpler raw material preparation operation than all of the prior arts 1 to 3 and have a problem in the initial melting of the raw material when using the raw material for sintering the highly crystallized water ore and an excessive amount of the raw material. A method that solves the problem of water absorption, in particular, even when a large amount of high crystal water ore is used, it prevents the carry-in of extra water that does not contribute to granulation and prevents the deterioration of air permeability of the sintering bed. (EN) Provided is a technique for producing a sinter for a blast furnace, which can suppress a decrease in the productivity of the sinter ore and an increase in the fuel ratio by eliminating the need for an extra fuel addition, or improve them. It was intended.

【0017】本発明者等はこのようにより簡単な原料調
製操作で、高結晶水鉱石の焼結原料使用時における問題
点が解消され、コストも低く抑えられる方法を検討する
ために、高結晶水鉱石への水分添加とその吸収現象の問
題点を整理した。
The inventors of the present invention can solve the problems of using a raw material for sintering highly crystallized water ore by a simpler raw material preparation operation in this way, and in order to investigate a method that can keep the cost low, The problems of water addition to ore and its absorption phenomenon were summarized.

【0018】1.配合原料中の高結晶水鉱石に対して
は、添加した水分の多くがその高結晶水鉱石が有する多
孔質部分に吸収されていくので、造粒バインダーとして
当初適正量添加された水分が不足する傾向が生ずる。こ
れは、多孔質性状を有する高結晶水鉱石は、吸水能力は
高いにもかかわらず、吸水速度が遅いので、鉱石の組織
内部まで十分に吸水し、造粒バインダー機能を発揮する
のに必要・十分な量の水分を吸水させるためには、長時
間を要する。従って、造粒作用に寄与しない余分の水分
が混合原料中に多量に持ち込まれることになる。この余
分な水分量は、高結晶水鉱石の配合割合を多くするほど
多くなる。
1. As for the high crystal water ore in the blended raw material, most of the added water is absorbed by the porous part of the high crystal water ore, so the amount of water initially added as an appropriate amount as a granulation binder is insufficient. A tendency arises. This is because highly crystalline water ore with a porous property has a high water absorption capacity, but its water absorption rate is slow, so it is necessary to sufficiently absorb water to the inside of the ore structure and to exhibit the granulation binder function. It takes a long time to absorb a sufficient amount of water. Therefore, a large amount of extra water that does not contribute to the granulation action is brought into the mixed raw material. This extra water content increases as the blending ratio of the high crystal water ore increases.

【0019】2.従って、高結晶水鉱石に対して水分を
均一に添加することが困難である場合が多い。
2. Therefore, it is often difficult to uniformly add water to the high crystal water ore.

【0020】そこで、本発明者等は、適正な水分量を配
合原料の混合・造粒段階で添加する方法を課題として取
り上げた。この課題解決に際しては、簡単な操作で且つ
効果的な水分調整方法を見出すことを課題とし、こうし
て添加水分量が調整された高結晶水鉱石の焼結原料中に
おける適切な使用方法を見出すことを課題とした。
Therefore, the present inventors have taken up a method of adding a proper amount of water at the mixing / granulating stage of the blended raw materials. In solving this problem, the task is to find an effective water adjustment method with a simple operation, and thus to find an appropriate usage method in the sintering raw material of the high crystal water ore with the added water content adjusted. It was an issue.

【0021】[0021]

【課題を解決するための手段】本発明者等は、上記問題
を解決するために、高結晶水鉱石に適正量の水分を安定
して速やかに添加する方法を検討した。その結果、従来
とは異なった逆の発想、即ち、高結晶水鉱石に適切な破
砕処理を施して、高結晶水鉱石中の気孔を破壊し、高結
晶水鉱石の粒度を適切に調節することにより、造粒機能
に寄与しない水分の高結晶水鉱石組織内部への吸収量を
減らすことができると同時に、速やかに安定した水分添
加をすることが可能となることを見出した。
In order to solve the above problems, the present inventors have examined a method of stably and promptly adding an appropriate amount of water to a highly crystallized water ore. As a result, the reverse idea different from the conventional one, namely, performing appropriate crushing treatment on the high crystal water ore to destroy the pores in the high crystal water ore and appropriately adjust the particle size of the high crystal water ore. As a result, it was found that it is possible to reduce the amount of water that does not contribute to the granulation function absorbed into the highly crystallized water ore structure, and at the same time, to quickly and stably add water.

【0022】この発明は、上記知見に基づきなされたも
のでり、その要旨は次の通りである。請求項1記載の発
明に係る高炉用焼結原料に用いる高結晶水鉱石は、結晶
水を4mass%以上含む高結晶水鉱石であって、1m
m以下の粒子部分が50〜70mass%の範囲内に入
るように整粒されていることに特徴を有するものであ
る。
The present invention was made based on the above findings, and the gist thereof is as follows. The high crystal water ore used for the sintering raw material for blast furnace according to the invention of claim 1 is a high crystal water ore containing 4 mass% or more of crystal water,
The feature is that the particle portion of m or less is sized so as to fall within the range of 50 to 70 mass%.

【0023】請求項2記載の発明に係る高炉用焼結原料
は、1mm以下の粒子部分が50〜70mass%の範
囲内に入るように整粒されている、結晶水を4mass
%以上含む高結晶水鉱石を、焼結原料中の新原料の5m
ass%以上に用い、これを当該焼結原料中の上記新原
料の残部並びに固体燃料及び返鉱と混合し、造粒して得
られたものであることに特徴を有するものである。
In the sintering raw material for blast furnace according to the second aspect of the present invention, 4 mass of crystal water is sized so that the particle portion of 1 mm or less falls within the range of 50 to 70 mass%.
% Of high crystal water ore containing more than 5% of new raw material in sintering raw material
It is characterized in that it is obtained by mixing at least ass% and mixing it with the rest of the new raw material in the sintering raw material, solid fuel and return ore, and granulating.

【0024】なお、この発明において「新原料」とは、
焼結原料である鉄鉱石等の主原料、SiO2、CaOあ
るいはMgO等含有物質である副原料、諸スラグやダス
ト類等の雑原料、コークス等の固体燃料及び添加水分等
の内から、焼結機からリターンされる返鉱、焼成用の固
体燃料及び適宜添加される水分の3種を除いたものを指
す。
In the present invention, "new raw material" means
From raw materials such as iron ore, which is a sintering raw material, auxiliary raw materials, which are substances containing SiO 2 , CaO, MgO, etc., miscellaneous raw materials such as various slags and dusts, solid fuels such as coke and added water, etc. It refers to the one obtained by removing the three types of return ore returned from the binder, solid fuel for firing, and water added as appropriate.

【0025】請求項3記載の発明に係る高炉用焼結鉱
は、請求項2記載の発明に係る高炉用焼結原料が、火格
子移動式焼結機を用いて焼成されたものであることに特
徴を有するものである。
In the blast furnace sinter according to the third aspect of the present invention, the blast furnace sintering raw material according to the second aspect of the present invention is obtained by firing using a grate moving type sintering machine. It is characterized by

【0026】請求項4記載の発明に係る高炉用焼結鉱の
製造方法は、結晶水を4mass%以上含む高結晶水鉱
石を、焼結原料中の新原料の5mass%以上配合する
高炉用焼結鉱の製造方法であって、その高結晶水鉱石に
所定の処理を施して1mm以下の粒子の割合が50〜7
0mass%の範囲内に入るように調製し、このように
粒度調整された上記高結晶水鉱石を、上記新原料中の当
該高結晶水鉱石を除く残部、並びに固体燃料及び返鉱と
混合し、造粒して焼結原料を調製する。こうして得られ
た焼結原料を用いて焼成することに特徴を有するもので
ある。
According to a fourth aspect of the present invention, there is provided a method for producing a sinter for a blast furnace, which comprises mixing a high crystal water ore containing 4 mass% or more of crystallization water with 5 mass% or more of a new raw material in a sintering raw material. A method for producing calcination, wherein the high crystal water ore is subjected to a predetermined treatment so that the proportion of particles of 1 mm or less is 50 to 7
The high crystal water ore, which was prepared so as to fall within the range of 0 mass% and whose particle size was adjusted in this way, was mixed with the rest of the new raw material excluding the high crystal water ore, and solid fuel and return ore, Granulate to prepare a sintering raw material. It is characterized by firing using the sintering raw material thus obtained.

【0027】この発明において、結晶水を4mass%
以上含む鉄鉱石を高結晶水鉱石として取り上げたのは、
通常4ないし5mass%以上の結晶水を含むものを用
いた場合に、前述した通りの種々の問題を引き起こすか
らである。また、このような高結晶水鉱石を、新原料中
に5mass%以上含む場合に上記問題を引き起こし、
5mass%未満ではかかる高結晶水鉱石の吸水性に起
因する問題が殆どみられない。
In the present invention, the water of crystallization is 4 mass%.
The iron ore containing above was taken up as a high crystal water ore,
This is because when the one containing 4 to 5 mass% or more of crystallization water is used, various problems as described above are usually caused. Further, when such a high crystal water ore is contained in the new raw material in an amount of 5 mass% or more, the above problem is caused,
If it is less than 5 mass%, there is almost no problem due to the water absorption of the high crystal water ore.

【0028】また、上記結晶水含有率及び配合割合の要
件を備えた高結晶水鉱石を、適切な手段により破砕処理
をし、粒径1mmアンダー(−1mm)の粒子割合が5
0〜70mass%の範囲内に入るように調製した理由
は次による。即ち、−1mmの粒子割合が50mass
%未満になると、高結晶水鉱石の破砕処理による気孔破
壊による吸水性の低下が小さく、一方、それが70ma
ss%を超えると、核粒子に対する付着粒子の割合が多
くなり過ぎて造粒が困難になることや、造粒のための水
分を過多に必要とするようになり、所期の目的達成が困
難となる。従って、この発明において使用される高結晶
水鉱石は、−1mmの粒子部分の割合が50〜70ma
ss%の範囲内に入るように、破砕され、粒度調整され
たものであることが必要である。ここで、事前に、破砕
対象とする鉱石銘柄等による高結晶水鉱石の性状と破砕
条件との関係に基づき、破砕処理をするだけで当該高結
晶水鉱石に占める−1mmの粒子割合が、本発明の粒度
分布条件範囲内(50〜70mass%の範囲内)に入
ることが明らかとなっている場合には、破砕処理のみで
よく、敢えて整粒処理を施す必要はない。
Further, a high crystal water ore having the above requirements for the content of water of crystallization and the mixing ratio is crushed by an appropriate means, and the particle ratio of particle diameter 1 mm under (-1 mm) is 5
The reason for the preparation to fall within the range of 0 to 70 mass% is as follows. That is, the particle ratio of -1 mm is 50 mass.
If it is less than 70%, the decrease in water absorption due to the pore destruction due to the crushing treatment of the highly crystallized water ore is small, while it is 70 ma.
If it exceeds ss%, the ratio of adhered particles to core particles becomes too large, making granulation difficult, and excessive water is required for granulation, making it difficult to achieve the intended purpose. Becomes Therefore, the high crystal water ore used in the present invention has a ratio of the particle portion of -1 mm of 50 to 70 ma.
It must be crushed and the particle size adjusted so that it falls within the range of ss%. Here, based on the relationship between the properties of the high crystal water ore by the ore brand to be crushed and the crushing conditions, the particle ratio of -1 mm occupying in the high crystal water ore only by crushing is When it is clear that the particle size distribution falls within the range of the particle size distribution condition of the invention (in the range of 50 to 70 mass%), only the crushing process is required, and the sizing process is not necessary.

【0029】なお、高結晶水鉱石には、その銘柄によ
り、例えばマラマンバ鉱石のように、微粉部分の割合が
比較的多いものがあるが、一般に高結晶水鉱石の平均粒
度は3〜3.5mm程度であるので、適切に破砕処理す
ることにより、もともと微粉鉱石である部分の破砕は抑
制されるので、過度に粒径の小さい微粉、例えば、−
0.125mm粒子部分の割合が著しく増加して不適当
となることもない。従って、この発明は各種銘柄の高結
晶水鉱石に対して広く適用することができる。また、整
粒後の粒度分布において、−1mm粒子の割合について
特定したのは、−1mmが高結晶水鉱石の気孔破壊の観
点から境界粒径として適しているからである。
Some high crystal water ores have a relatively large proportion of fine powder, depending on the brand, such as Mara Mamba ore, but the average particle size of high crystal water ores is generally 3 to 3.5 mm. Since it is a degree, by appropriately crushing the crushing of the part which is originally a fine powder ore, crushing is suppressed, so a fine powder having an excessively small particle size, for example, −
The proportion of the 0.125 mm particle portion does not significantly increase and becomes unsuitable. Therefore, the present invention can be widely applied to various brands of high crystal water ores. Further, in the particle size distribution after sizing, the ratio of -1 mm particles was specified because -1 mm is suitable as the boundary particle size from the viewpoint of pore destruction of the highly crystallized water ore.

【0030】[0030]

【発明の実施の形態】次に、この発明の実施形態を、図
面を参照しながら説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described with reference to the drawings.

【0031】図1に、この発明の高炉用焼結原料の製造
方法を説明するフロー図を示す。高結晶水鉱石(結晶水
含有率≧4wt%)1を破砕機2で破砕・整粒処理す
る。処理条件は高結晶水鉱石の銘柄別・ロット別の粒度
分布に応じた予備試験により、−1mmの粒子部分が5
0〜70mass%の範囲内に入るような破砕・整粒条
件を把握し設定しておく。こうして所定粒度分布の高結
晶水鉱石1’を調製する。一方、上記高結晶水鉱石1以
外の残部新原料3、返鉱4及び固体燃料としての粉コー
クス5を、各原料配合槽6から切り出す。ここで、残部
新原料3は、結晶水4mass%未満の鉄鉱石である通
常鉱石24からなるブレンディング粉鉱石7、CaO含
有物質としての石灰石8や生石灰9、SiO2含有物質
としてのニッケルスラグ10等、及び雑原料としてのス
ケール11等からなる。
FIG. 1 shows a flow chart for explaining the method for producing the sintering raw material for blast furnace of the present invention. High crystal water ore (crystal water content ≧ 4 wt%) 1 is crushed and sized by a crusher 2. The treatment condition was a preliminary test according to the grain size distribution of high crystal water ore by brand and lot.
Understand and set the crushing and sizing conditions so that they fall within the range of 0 to 70 mass%. In this way, a high crystal water ore 1'having a predetermined particle size distribution is prepared. On the other hand, the remaining new raw material 3 other than the highly crystallized water ore 1, return ore 4 and powder coke 5 as a solid fuel are cut out from each raw material mixing tank 6. Here, the remaining new raw material 3 is a blending powdered ore 7 consisting of a normal ore 24 which is an iron ore with a crystallization water of less than 4 mass%, limestone 8 or quicklime 9 as a CaO-containing substance, nickel slag 10 as a SiO 2 -containing substance, etc. , And a scale 11 as a miscellaneous raw material.

【0032】但し、上記において、特定の条件の場合、
即ち、高結晶水鉱石1の新原料中配合率を比較的高めに
設定する場合(例えば、50〜80mass%程度)に
は、残部新原料3中のブレンディング粉鉱石7中には、
結晶水含有率が比較的低い高結晶水鉱石(例えば、4〜
6mass%程度)が若干の割合(例えば、10mas
s%程度以下)含まれていても問題はなく、この発明の
作用・効果は発揮される。
However, in the above, in the case of specific conditions,
That is, when the blending ratio in the new raw material of the high crystal water ore 1 is set relatively high (for example, about 50 to 80 mass%), the blending powder ore 7 in the remaining new raw material 3 contains:
A high crystal water ore (for example, 4 to
6 mass% is a small percentage (for example, 10 mass)
There is no problem even if it is contained (about s% or less), and the action and effect of the present invention are exhibited.

【0033】上記新原料3、返鉱4及び粉コークス5を
所定の割合で配合する。配合は、新原料中の高結晶水鉱
石1が5mass%以上となるように、各原燃料を所定
の割合で配合し、バインダーとして水分12を添加し、
ドラムミキサー13等で混合する。次いで水分14を適
宜添加し、ディスクペレタイザー15あるいはドラム型
造粒機16で造粒する。粉コークスは造粒後、ドラムミ
キサー23で外装し粒子表面を覆ってもよい。こうして
焼結原料である擬似粒子18を調製する。得られた焼結
原料を火格子移動式焼結機19に装入して焼成し、焼結
ケーキ20を製造する。焼結ケーキ20を破砕・整粒し
て焼結鉱成品21を得て、原料として高炉22へ搬送す
る。なお、所定粒度以下の焼結鉱は返鉱4として原料配
合槽6へリターンする。
The above new raw material 3, return ore 4 and powder coke 5 are mixed in a predetermined ratio. As for the blending, each raw fuel is blended in a predetermined ratio so that the high crystal water ore 1 in the new raw material is 5 mass% or more, and the moisture 12 is added as a binder.
Mix with a drum mixer 13 or the like. Then, water 14 is appropriately added and granulated by the disk pelletizer 15 or the drum type granulator 16. The coke powder may be granulated and then covered with a drum mixer 23 to cover the particle surface. In this way, the pseudo particles 18 which are the sintering raw material are prepared. The obtained sintering raw material is charged into a grate moving type sintering machine 19 and fired to produce a sintered cake 20. The sintered cake 20 is crushed and sized to obtain a sintered mineral product 21, which is conveyed to the blast furnace 22 as a raw material. In addition, the sintered ore having a predetermined grain size or less is returned to the raw material mixing tank 6 as the return ore 4.

【0034】上記焼結原料の調製フローにおいて、高結
晶水鉱石1の破砕・整粒操作を予め行ない、得られた高
結晶水鉱石1を鉱石ヤードにおいて他の鉱石とブレンデ
ィングして、高結晶水鉱石1が含まれたブレンディング
鉱石粉を調製し、これを別途原料配合槽6に搬入して、
その他の新原料3等と配合してもよい。あるいは、高結
晶水鉱石1を単味で焼結工場へ搬送し、焼結工場ライン
内でこれを破砕・整粒して原料配合槽6へ装入してもよ
い。また、高結晶水鉱石1の破砕・整粒の手法、及び配
合後原料の混合、造粒の手法については、この発明の要
件を満たす限り特定する必要はない。そして、焼結鉱の
品質確保と生産性の維持を図ることができる範囲内にお
いて、混合原料から造粒された擬似粒子18の水分含有
率及び粉コークス5、17の添加量、並びに粒度につい
ても特に限定する必要はない。
In the flow of preparing the sintering raw material, the high crystal water ore 1 is crushed and sized in advance, and the obtained high crystal water ore 1 is blended with other ores in the ore yard to obtain the high crystal water. Prepare blending ore powder containing ore 1 and bring it into raw material mixing tank 6 separately,
You may mix with other new raw materials 3 grade. Alternatively, the highly crystallized water ore 1 may be transported to the sinter plant alone, crushed and sized in the sinter plant line, and charged into the raw material mixing tank 6. Further, the method of crushing and sizing the highly crystallized water ore 1 and the method of mixing the raw materials after blending and granulating do not need to be specified as long as the requirements of the present invention are satisfied. In addition, the water content of the pseudo particles 18 granulated from the mixed raw material, the addition amount of the powder cokes 5 and 17, and the particle size are also within a range in which the quality of the sinter and the productivity can be maintained. There is no particular limitation.

【0035】なお、破砕・整粒操作の対象とする高結晶
水鉱石1が複数銘柄ある場合は、それぞれの銘柄の高結
晶水鉱石について処理をしてもよいし、その複数銘柄の
内の2種以上をブレンディングした後の高結晶水鉱石に
ついて処理をしてもよい。いずれにしても、造粒機15
または16で造粒するまでに所定の破砕・整粒処理を施
しておけばよい。
If there are a plurality of high crystal water ores 1 to be subjected to the crushing and sizing operations, the high crystal water ores of each brand may be treated, or 2 of the plural brands may be treated. The high crystal water ore after blending the seeds or more may be treated. In any case, granulator 15
Alternatively, a predetermined crushing and sizing treatment may be performed before granulation in 16.

【0036】また、この発明においては、破砕・整粒後
のすべての高結晶水鉱石1’に対する水分添加操作は、
その高結晶水鉱石1’が所定粒度に調整された後のもの
に対して行なうことが必要である。破砕による気孔破壊
前の高結晶水鉱石に水分を添加すると、造粒に寄与しな
い余分な水分が高結晶水鉱石の組織中に吸収されるから
である。従って、粉鉱ヤードにおいて高結晶水鉱石から
の発塵防止のための散水は行なってもよいが、破砕前の
高結晶水鉱石を粉鉱ヤードから上記破砕処理前の貯留槽
(図示せず)へ搬送中の搬送装置(図示せず)上や、そ
の貯留槽内において水分を添加すべきではない。
Further, in the present invention, the operation of adding water to all highly crystallized water ores 1'after crushing and sizing is
It is necessary to do it after the high crystal water ore 1'has been adjusted to a predetermined grain size. This is because, if water is added to the high crystal water ore before crushing the pores due to crushing, excess water that does not contribute to granulation is absorbed in the structure of the high crystal water ore. Therefore, sprinkling water may be performed in the fine ore yard to prevent dust generation from the high crystal water ore, but the high crystal water ore before crushing may be sprayed from the fine yard to the storage tank (not shown) before the crushing process. No water should be added on the transfer device (not shown) during transfer to or in the reservoir.

【0037】[0037]

【実施例】この発明を実施例により更に詳細に説明す
る。
EXAMPLES The present invention will be described in more detail by way of examples.

【0038】本発明の範囲内の焼結原料の調製方法を採
用した焼結鉱の製造試験である実施例1−1及び1−2
と、本発明の範囲外のそれによる焼結鉱の製造試験であ
って、従来法に属する比較例1−1及び1−2、並びに
高結晶水鉱石を破砕して過度に細粒化した鉱石を焼結原
料に用いた比較例2−1及び2−2を行なった。これら
の試験はすべて、焼結鍋試験装置を用いて行なった。
Examples 1-1 and 1-2 which are production tests of sinter using the method for preparing a sintering raw material within the scope of the present invention.
And a comparative example 1-1 and 1-2 belonging to a conventional method, which is a production test of a sintered ore according to the invention outside the scope of the present invention, and an ore obtained by crushing a high crystal water ore into excessively fine particles. Comparative Examples 2-1 and 2-2 were performed using as a sintering raw material. All of these tests were performed using a sintering pot tester.

【0039】すべての試験において、表1に示す通りの
結晶水を約10mass%含有する高結晶水鉱石であっ
て、ピソライト系鉱石のローブリバー(ROB)及びヤ
ンディ(YAN)を用いた。これら高結晶水鉱石の新原
料中配合率は、全ての試験において同じとし、ROBと
YANとの合計で40.3mass%の一定水準とし、
固体燃料としての粉コークス添加率を、4.5及び4.
3mass%(但し、新原料に対する外数割合)の2水
準に設定し、混合原料水分(擬似粒子調製後、焼結機装
入前における焼結原料中の水分)をそれぞれ7.0及び
6.5mass%になるよう調節した2水準で試験し
た。
In all the tests, high crystal water ores containing about 10 mass% of water of crystallization as shown in Table 1, and pisolite ores Lobe River (ROB) and Yandy (YAN) were used. The compounding ratio of these high crystal water ores in the new raw material is the same in all tests, and the total of ROB and YAN is a constant level of 40.3 mass%,
The coke powder addition rate as a solid fuel is 4.5 and 4.
It is set to two levels of 3 mass% (however, the ratio of the external number to the new raw material), and the mixed raw material water content (water content in the sintering raw material after preparation of the pseudo particles and before charging into the sintering machine) is 7.0 and 6.0, respectively. The test was conducted at two levels adjusted to be 5 mass%.

【0040】[0040]

【表1】 [Table 1]

【0041】一方、高結晶水鉱石の粒度に関しては、実
施例1−1及び1−2においては、破砕・整粒して、R
OB及びYANのそれぞれに占める−1mmの粒子部分
が、58及び51mass%に調製したものを用いた。
これに対して、従来法の例である比較例1−1及び1−
2においては、高結晶水鉱石ROB及びYANのいずれ
に対しても破砕・整粒処理を施さずにそのまま用い、そ
して、比較例2−1及び2−2においてはいずれも、高
結晶水鉱石ROB及びYANのそれぞれに占める−1m
mの粒子部分が、74及び75mass%であって、本
発明の条件範囲外に高率に調製したものを用いた。表2
に、これら各試験において用いた高結晶水鉱石ROB及
びYANのそれぞれの粒度分布例を示す。そして、表3
に、各試験における焼結原料の配合割合、混合原料水
分、及び高結晶水鉱石ROB及びYANのそれぞれに占
める−1mmの粒子部分の割合を示す。
On the other hand, regarding the particle size of the highly crystallized water ore, in Examples 1-1 and 1-2, it was crushed and sized to obtain R
The -1 mm particle portion in each of OB and YAN was adjusted to 58 and 51 mass%.
On the other hand, Comparative Examples 1-1 and 1- which are examples of the conventional method
In No. 2, high crystal water ore ROB and YAN were used as they were without crushing and sizing treatment, and in Comparative Examples 2-1 and 2-2, high crystal water ore ROB was used. -1m in each of YAN and YAN
The particle portion of m was 74 and 75 mass%, and those prepared at a high rate outside the condition range of the present invention were used. Table 2
The examples of particle size distributions of the high crystal water ores ROB and YAN used in these tests are shown in FIG. And Table 3
Shows the mixing ratio of the sintering raw material, the water content of the mixed raw material, and the ratio of the -1 mm particle portion in each of the high crystal water ores ROB and YAN in each test.

【0042】[0042]

【表2】 [Table 2]

【0043】[0043]

【表3】 [Table 3]

【0044】上記の通り新原料、返鉱及び粉コークスが
配合された原料25に、適宜水分を添加して水分含有率
を調節し、図2に模式図で焼結鍋試験装置を示すよう
に、試験ディスクペレタイザー26により混合・造粒し
て擬似粒子27を調製し、得られた焼結原料を焼結鍋試
験機28に装入した。
As described above, the water content is adjusted by appropriately adding water to the raw material 25 containing the new raw material, the return ore and the coke powder, and the sintering pot test apparatus is shown in the schematic diagram of FIG. Then, a pseudo disc 27 was prepared by mixing and granulating with a test disc pelletizer 26, and the obtained sintering raw material was loaded into a sintering pot tester 28.

【0045】焼結鍋試験機28は、原料装入部分の内容
積が280mmφ×450mm高さのポット炉28aを
備え、ポット内焼結原料ベッドへの点火条件は、90秒
間で原料ベッド上面温度が900℃に到達するように調
節した。引き続く焼成中は、原料ベッドの上下面の大気
圧差を、9800N/m2に保持した。
The sintering pot testing machine 28 is equipped with a pot furnace 28a having an internal volume of the raw material charging portion of 280 mmφ × 450 mm height, and the sintering raw material bed inside the pot is ignited for 90 seconds at the upper surface temperature of the raw material bed. Was adjusted to reach 900 ° C. During the subsequent firing, the atmospheric pressure difference between the upper and lower surfaces of the raw material bed was maintained at 9800 N / m 2 .

【0046】上記焼結試験過程において、焼結鍋試験機
への装入直前に、擬似粒子をサンプリングし、その混合
原料擬似粒径を測定した。そして、焼結後の焼結鉱成品
歩留及び生産率を調査し、また焼結鉱の品質試験を行な
った。
In the above-mentioned sintering test process, the pseudo particles were sampled just before charging into the sintering pot tester, and the pseudo particle size of the mixed raw material was measured. Then, the yield and production rate of the sintered mineral product after sintering were investigated, and the quality test of the sintered ore was performed.

【0047】表4に、混合原料擬似粒径及び生産率をま
とめた。
Table 4 summarizes the mixed raw material pseudo-particle size and the production rate.

【0048】[0048]

【表4】 [Table 4]

【0049】上記試験より、下記事項がわかる。From the above test, the following matters can be understood.

【0050】実施例1−1及び1−2では、高結晶水鉱
石を微細化することにより、従来粗粒状態のままの高結
晶水鉱石部分に吸収されていたために、焼結原料の造粒
に寄与していなかった水分を有効に利用することによ
り、混合原料擬似粒度を向上させることができた。それ
により原料焼結時の焼結ベッドの通気性向上効果が発揮
され、従来法による高結晶水鉱石の使用方法に採用した
比較例1−1及び1−2よりも高結晶水鉱石の配合率を
大幅に増やしても、焼結鉱の品質水準を確保しつつ、し
かも焼結鉱生産率が向上している。そして、本発明にお
いて混合原料水分とコークス配合率とを同時に減らした
場合(実施例1−2)でも、焼結鉱生産率は従来法にお
いて、混合原料水分とコークス配合率とを減らさなかっ
た比較例1−1における焼結鉱生産率よりも高い。
In Examples 1-1 and 1-2, since the highly crystallized water ore was made finer and was absorbed by the highly crystallized water ore portion in the conventional coarse grain state, the granulation of the sintering raw material was performed. It was possible to improve the pseudo particle size of the mixed raw material by effectively utilizing the water that did not contribute to the. Thereby, the effect of improving the air permeability of the sintering bed at the time of sintering the raw materials is exhibited, and the compounding ratio of the high crystal water ore is higher than that of Comparative Examples 1-1 and 1-2 used in the conventional method of using the high crystal water ore. Even if the number of sinters is increased significantly, the sinter ore production rate is improving while ensuring the quality level of sinter. And, even when the mixed raw material water content and the coke blending ratio were simultaneously reduced in the present invention (Example 1-2), the sinter ore production rate was not reduced in the conventional method when the mixed raw material water content and the coke blending ratio were not reduced. Higher than the sinter production rate in Example 1-1.

【0051】これに対して、比較例2−1及び2−2で
は、本発明の範囲外にまで高結晶水鉱石を微細化したた
めに、造粒が十分に行なわれず、従って焼結鉱生産率が
むしろ従来法による比較例1−1及び1−2よりも低下
する結果となった。
On the other hand, in Comparative Examples 2-1 and 2-2, since the highly crystallized water ore was refined to the extent that it was outside the scope of the present invention, the granulation was not sufficiently performed, and therefore the sinter production rate was high. However, the result was lower than Comparative Examples 1-1 and 1-2 by the conventional method.

【0052】このように、高結晶水鉱石の気孔破壊によ
り焼結原料の造粒性を向上せしめて、焼結鉱の生産率を
向上させるためには、その気孔破壊の程度を適切な範囲
内に収めることが必要であることがわかる。
As described above, in order to improve the granulation property of the sintering raw material by the pore destruction of the highly crystallized water ore and improve the production rate of the sintered ore, the degree of the pore destruction is within an appropriate range. It turns out that it is necessary to fit in.

【0053】[0053]

【発明の効果】上述したように、この発明によれば、結
晶水含有率が4mass%以上含まれている高結晶水鉱
石を、事前に適切な粒度条件を満たすように、破砕・整
粒するかあるいは破砕し、これを焼結原料に使用するこ
とによって、その高結晶水鉱石を5mass%以上の多
量に使用した場合でも、焼結鉱の品質を確保しつつ焼結
の生産性の低下や燃料比の増加を抑制したり、あるいは
改善することが可能となる。このような高炉用焼結鉱の
製造方法を提供することができ、工業上極めて有益な効
果がもたらされる。
As described above, according to the present invention, a high crystal water ore having a crystal water content of 4 mass% or more is crushed and sized in advance so as to satisfy an appropriate particle size condition. Alternatively, by crushing and using this as a sintering raw material, even if the high crystal water ore is used in a large amount of 5 mass% or more, the productivity of the sintering is reduced while ensuring the quality of the sintered ore. It is possible to suppress or improve the increase in the fuel ratio. It is possible to provide a method for producing such a sinter for blast furnace, and to bring about an extremely beneficial effect industrially.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施形態を説明する焼結鉱製造工程全
体の概略フロー図である。
FIG. 1 is a schematic flow chart of an entire sinter ore manufacturing process for explaining an embodiment of the present invention.

【図2】焼結鍋試験装置を示す模式図である。FIG. 2 is a schematic diagram showing a sintering pot testing device.

【符号の説明】[Explanation of symbols]

1 高結晶水鉱石 1’ 高結晶水鉱石(破砕・整粒後) 2 破砕機石灰石 3 残部新原料 4 返鉱 5 粉コークス 6 原料配合槽 7 ブレンディング粉鉱石 8 石灰石 9 生石灰 10 ニッケルスラグ 11 スケール 12 水分 13 ドラムミキサー 14 水分 15 ディスクペレタイザー 16 ドラム型造粒機 17 粉コークス 18 擬似粒子 19 火格子移動式焼結機 20 焼結ケーキ 21 焼結鉱成品 22 高炉 23 ドラムミキサー 24 通常鉱石 25 原料 26 試験ディスクペレタイザー 27 擬似粒子 28 焼結鍋試験機 28a ポット炉 28b 点火バーナー 28c 吸引ブロアー 1 Highly crystalline water ore 1'Highly crystalline water ore (after crushing and sizing) 2 crusher limestone 3 balance new raw material 4 Return ore 5 powder coke 6 raw material mixing tank 7 Blending powder ore 8 limestone 9 quicklime 10 Nickel slag 11 scale 12 Moisture 13 drum mixer 14 Moisture 15 Disc pelletizer 16 drum type granulator 17 powder coke 18 pseudo particles 19 Grate moving sintering machine 20 Sintered cake 21 Sintered mineral products 22 Blast furnace 23 Drum mixer 24 Normal ore 25 raw materials 26 Test Disc Pelletizer 27 pseudo particles 28 Sintering pot tester 28a pot furnace 28b ignition burner 28c Suction blower

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 結晶水を4mass%以上含む高結晶水
鉱石であって、1mm以下の粒子部分が50〜70ma
ss%の範囲内に入るように整粒されていることを特徴
とする、高炉用焼結原料に用いる高結晶水鉱石。
1. A high crystal water ore containing 4 mass% or more of crystal water, wherein a particle portion of 1 mm or less is 50 to 70 ma.
A highly crystallized water ore used as a sintering raw material for a blast furnace, characterized by being sized to fall within the range of ss%.
【請求項2】 1mm以下の粒子部分が50〜70ma
ss%の範囲内に入るように整粒されている、結晶水を
4mass%以上含む高結晶水鉱石を、焼結原料中の新
原料の5mass%以上に用い、これを当該焼結原料中
の前記新原料の残部並びに固体燃料及び返鉱と混合し、
造粒して得られたものであることを特徴とする高炉用焼
結原料。
2. The particle portion of 1 mm or less is 50 to 70 ma.
A high crystal water ore containing 4 mass% or more of crystal water, which is sized so as to fall within the range of ss%, is used for 5 mass% or more of the new raw material in the sintering raw material. Mixing with the balance of the new raw material and solid fuel and return ore,
A sintering raw material for a blast furnace, which is obtained by granulation.
【請求項3】 請求項2記載の高炉用焼結原料が、火格
子移動式焼結機を用いて焼成されたことを特徴とする高
炉用焼結鉱。
3. A blast furnace sinter, wherein the blast furnace sintering raw material according to claim 2 is fired using a grate moving type sintering machine.
【請求項4】 結晶水を4mass%以上含む高結晶水
鉱石を、焼結原料中の新原料の5mass%以上配合す
る高炉用焼結鉱の製造方法であって、当該高結晶水鉱石
に所定の処理を施して1mm以下の粒子の割合が50〜
70mass%の範囲内に入るように調製し、このよう
に粒度調整された当該高結晶水鉱石を、前記新原料中の
残部並びに固体燃料及び返鉱と混合し、造粒して焼結原
料を調製し、こうして得られた焼結原料を用いて焼成す
ることを特徴とする、高炉用焼結鉱の製造方法。
4. A method for producing a sinter for a blast furnace, which comprises blending a high crystal water ore containing 4 mass% or more of crystal water in an amount of 5 mass% or more of a new raw material in a sintering raw material. And the ratio of particles of 1 mm or less is 50 to
The high crystal water ore, which was prepared so as to fall within the range of 70 mass% and whose particle size was adjusted in this way, was mixed with the rest of the new raw material, solid fuel and return ore, and granulated to obtain a sintering raw material. A method for producing a sintered ore for a blast furnace, which comprises preparing and sintering the thus obtained sintering raw material.
JP2002080883A 2002-03-22 2002-03-22 High crystal water ore used for sintering raw material for blast furnace, sintering raw material for blast furnace and its producing method Pending JP2003277838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002080883A JP2003277838A (en) 2002-03-22 2002-03-22 High crystal water ore used for sintering raw material for blast furnace, sintering raw material for blast furnace and its producing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002080883A JP2003277838A (en) 2002-03-22 2002-03-22 High crystal water ore used for sintering raw material for blast furnace, sintering raw material for blast furnace and its producing method

Publications (1)

Publication Number Publication Date
JP2003277838A true JP2003277838A (en) 2003-10-02

Family

ID=29229731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002080883A Pending JP2003277838A (en) 2002-03-22 2002-03-22 High crystal water ore used for sintering raw material for blast furnace, sintering raw material for blast furnace and its producing method

Country Status (1)

Country Link
JP (1) JP2003277838A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005307253A (en) * 2004-04-20 2005-11-04 Jfe Steel Kk Method for producing sintered ore
JP2007100150A (en) * 2005-10-03 2007-04-19 Jfe Steel Kk Method for producing sintered ore
JP2007100149A (en) * 2005-10-03 2007-04-19 Jfe Steel Kk Method for producing sintered ore
JP2007138244A (en) * 2005-11-17 2007-06-07 Nippon Steel Corp Method for producing sintered ore
JP2014196548A (en) * 2013-03-29 2014-10-16 株式会社神戸製鋼所 Method for producing sintered ore for iron manufacture

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005307253A (en) * 2004-04-20 2005-11-04 Jfe Steel Kk Method for producing sintered ore
JP2007100150A (en) * 2005-10-03 2007-04-19 Jfe Steel Kk Method for producing sintered ore
JP2007100149A (en) * 2005-10-03 2007-04-19 Jfe Steel Kk Method for producing sintered ore
JP2007138244A (en) * 2005-11-17 2007-06-07 Nippon Steel Corp Method for producing sintered ore
JP2014196548A (en) * 2013-03-29 2014-10-16 株式会社神戸製鋼所 Method for producing sintered ore for iron manufacture

Similar Documents

Publication Publication Date Title
JP4840524B2 (en) Method for manufacturing raw materials for sintering
JP2007284744A (en) Method for manufacturing sintered ore
JP2009097027A (en) Method for producing sintered ore
JP2012528941A (en) Method for producing aggregate for raw materials charged in blast furnace from metal oxide-containing fine material
JPH0127133B2 (en)
JP2006291277A (en) Method for manufacturing sintered ore, and pelletizing equipment for manufacturing sintered ore
TWI480380B (en) Production method of pseudo-particles for sintering production and method for manufacturing sintered ore
JP2003277838A (en) High crystal water ore used for sintering raw material for blast furnace, sintering raw material for blast furnace and its producing method
JPH02228428A (en) Charging material for blast furnace and its production
JP4228694B2 (en) Method for manufacturing raw materials for sintering
CN107674971B (en) Raw material treatment method
JP2000063960A (en) Production of sintered ore
JP2000290732A (en) Method for granulating raw material for sintering, excellent in combustibility
JPH05339653A (en) Pretreatment of sintered ore raw material and sintered ore raw material for iron making
JP4767388B2 (en) Method for producing sintered ore with excellent high-temperature properties
JP6805672B2 (en) Manufacturing method of carbonaceous interior granulated particles and manufacturing method of carbonaceous interior agglomerate
JP6992734B2 (en) Method for manufacturing charcoal interior particles and method for manufacturing charcoal interior sintered ore
JP2007031818A (en) Method for manufacturing sintered ore
JP6885386B2 (en) Manufacturing method of carbon material interior particles and manufacturing method of carbon material interior sintered ore
JP6996485B2 (en) Method for manufacturing charcoal interior particles and method for manufacturing charcoal interior sintered ore
JP7227053B2 (en) Method for producing sintered ore
JP2001254127A (en) Method of producing sintered ore for blast furnace
JP6809446B2 (en) Manufacturing method of carbon material interior particles and manufacturing method of carbon material interior sintered ore
JP2001348622A (en) METHOD FOR PRODUCING HIGH QUALITY AND LOW SiO2 SINTERED ORE FOR BLAST FURNACE
JP2017172020A (en) Carbonaceous inner package granulation particle for manufacturing sintered ore and manufacturing method of sintered ore using the same