JP2007138244A - Method for producing sintered ore - Google Patents

Method for producing sintered ore Download PDF

Info

Publication number
JP2007138244A
JP2007138244A JP2005333341A JP2005333341A JP2007138244A JP 2007138244 A JP2007138244 A JP 2007138244A JP 2005333341 A JP2005333341 A JP 2005333341A JP 2005333341 A JP2005333341 A JP 2005333341A JP 2007138244 A JP2007138244 A JP 2007138244A
Authority
JP
Japan
Prior art keywords
ore
raw material
iron
sintered
granulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005333341A
Other languages
Japanese (ja)
Other versions
JP4746410B2 (en
Inventor
Jun Okazaki
潤 岡崎
Akira Gushima
昭 具島
Tsuneo Ikeda
恒男 池田
Kenichi Yatsugayo
健一 八ケ代
Shunji Kasama
俊次 笠間
Tsutomu Okada
務 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005333341A priority Critical patent/JP4746410B2/en
Publication of JP2007138244A publication Critical patent/JP2007138244A/en
Application granted granted Critical
Publication of JP4746410B2 publication Critical patent/JP4746410B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing sintered ore with which, when a large amount of porous iron ores inexpensive and abundant in resources such as maramanba ores are used as sintering raw materials, without requiring prliminary granulation or the like using special equipment, the granulation properties of the sintering raw materials are improved with a small addition amount of water while improving gas permeability upon sintering, and the yield of formed products in the sintered ores and productivity can be satisfactorily maintained. <P>SOLUTION: In the method for producing sintered ores, before at least iron-containing raw materials among sintering raw materials are mixed and granulated, among iron ores blended into the iron-containing raw materials, at least porous iron ores in which the amount of fine pores measured by a mercury pressure process is ≥0.05 cc/g are pulverized to have grain sizes so that fine powders having a grain diameter of ≤45 μm are included by ≥15% in the porous iron ores. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、焼結鉱の製造方法に関し、特に焼結原料に配合する多孔質鉄鉱石を事前粉砕処理することで焼結原料の造粒性を改善し、焼結の生産性を向上するための焼結鉱の製造方法に関する。   The present invention relates to a method for producing sintered ore, and in particular to improve the granulation property of the sintered raw material and improve the productivity of sintering by pre-grinding the porous iron ore to be mixed with the sintered raw material. The present invention relates to a method for producing a sintered ore.

一般に、高炉製鉄法の主原料として用いられる焼結鉱は、以下のように製造される。   Generally, the sintered ore used as a main raw material of the blast furnace iron manufacturing method is manufactured as follows.

先ず、焼結原料の主原料となる約10mm以下の鉄鉱石粉、焼結返鉱、焼結篩下粉、製鉄ダスト(製鉄ダスト、製鋼ダスト、スケール等)などからなるその他鉄含有原料、石灰石、ドロマイト、転炉スラグ、蛇紋岩、珪石、かんらん岩などの副原料、コークス粉、無煙炭などの炭材を配合後、ドラムミキサー、ペレタイザー等の造粒機で適量水分となるように水分添加量を調節しながら混合、造粒を行い、焼結原料を擬似粒子化した後、焼結機に装入し焼成する。焼成後の焼結ケーキは解砕、整粒して所定粒径の焼結鉱となる。なお、所定粒径より粒径の小さい焼結鉱や高炉までの搬送中に崩壊して生じた焼結粉は、それぞれ焼結返鉱、焼結篩下粉と呼ばれ、焼結原料に配合する鉄含有原料として使用される。   First, iron ore powder of about 10 mm or less, which is the main raw material of the sintered raw material, sintered reverse sinter, sintered sieving powder, iron-containing dust (iron-making dust, steel-making dust, scale, etc.) and other iron-containing raw materials, limestone, After adding dolomite, converter slag, serpentine, quartzite, peridotite and other carbonaceous materials such as coke powder and anthracite, the amount of water added is adjusted to a suitable amount in a granulator such as a drum mixer or pelletizer. Mixing and granulation are performed while adjusting the above, and the sintered raw material is converted into pseudo particles, and then charged into a sintering machine and fired. The sintered cake after firing is crushed and sized to form a sintered ore with a predetermined particle size. In addition, sintered powder with a particle size smaller than a predetermined particle size and sintered powder produced by disintegration during transportation to a blast furnace are called sintered refining and sintered sieve powder, respectively. Used as an iron-containing raw material.

ここで、通常の焼結原料を造粒して得られる擬似粒子は、主に、粒径0.5mm以下の微粉粒子が粒径1〜3mmの核粒子に付着した構造となっており、焼結原料をこのような擬似粒子とすることにより焼結機内の焼結原料充填層(焼結ベッド)中の微粉粒子による通気性悪化を抑制し、焼結機の生産性向上を図ることができる。   Here, the pseudo particles obtained by granulating a normal sintered raw material mainly have a structure in which fine particles having a particle size of 0.5 mm or less adhere to core particles having a particle size of 1 to 3 mm. By using such pseudo particles as the sintering raw material, it is possible to suppress the deterioration of air permeability due to fine powder particles in the sintering raw material packed layer (sintering bed) in the sintering machine and to improve the productivity of the sintering machine. .

また、近年、鉄資源の有効利用の点から、焼結用原料としてペレット用微粉鉄鉱石(ペレットフィード)、マラマンバ鉱石などの微粉割合が高い焼結用粉鉄鉱石、さらに、製鉄プロセスで発生する製鉄ダストを多く配合することが行なわれている。   In recent years, from the viewpoint of effective utilization of iron resources, fine iron ore for pellets (pellet feed) as a raw material for sintering, fine iron ore for sintering with a high proportion of fine powder such as maramanba ore, and further generated in the iron making process. A lot of steelmaking dust is blended.

このような微粉鉄鉱石の割合が高い焼結原料を造粒するために、従来から焼結原料に生石灰などの造粒剤を添加し混練機(ミキサー)で混合した後、ドラムミキサー、さらには、ドラムミキサーに較べて造粒能力が高いディスクペレタイザーなどの造粒能力が高い造粒機を用いて造粒する方法が行なわれている。この造粒方法により得られる微粉割合が高い焼結原料からなるペレット状の造粒物は、比較的密度が高い造粒物となるため、通常の焼結機を用いて焼成する際に、造粒物内部への酸素の拡散が阻害され、内部の炭材の燃焼が遅れる。このため、上記造粒方法(1次造粒)により炭材及び生石灰の含有割合を比較的少なく制限したペレット状の造粒物を得た後、さらに、炭材および生石灰(CaO含有副原料)を添加して、ドラムミキサーまたはディスクペレタイザーによる2次造粒により前記造粒物表面に炭材およびCaO含有副原料を外装し、通常の焼結機を用いて焼成する際に、造粒物表面での炭材の燃焼性を高め、還元性に優れたカルシウムフェライト主体の結合相を生成させる方法も提案されている(例えば非特許文献1、特許文献5〜7、参照)。   In order to granulate a sintering raw material having a high proportion of fine iron ore, a granulating agent such as quick lime is added to the sintering raw material and mixed with a kneader (mixer), and then a drum mixer, A granulation method using a granulator having a high granulation capability such as a disk pelletizer having a higher granulation capability than that of a drum mixer has been performed. The pellet-like granulated product made of a sintering raw material having a high fine powder ratio obtained by this granulation method becomes a granulated product having a relatively high density. Therefore, when it is fired using a normal sintering machine, Oxygen diffusion into the particles is hindered, and combustion of the internal carbon material is delayed. For this reason, after obtaining the pellet-shaped granulated material which restricted the content rate of carbonaceous material and quicklime comparatively few by the said granulation method (primary granulation), further, carbonaceous material and quicklime (CaO containing auxiliary material) When the carbonaceous material and CaO-containing auxiliary material are sheathed on the surface of the granulated material by secondary granulation with a drum mixer or a disk pelletizer, and fired using a normal sintering machine, the surface of the granulated material There has also been proposed a method for improving the combustibility of carbonaceous materials and generating a binder phase mainly composed of calcium ferrite having excellent reducibility (see, for example, Non-Patent Document 1 and Patent Documents 5 to 7).

焼結原料の造粒処理工程では、焼結原料中の微粉粒子を核粒子の周りに付着させる度合い、つまり、焼結原料の擬似粒化性を向上させるとともに、造粒で得られた擬似粒子が焼結機までの搬送中および焼結ベッドにおいて崩壊し難い擬似粒子の強度を有すること等が求められる。また、一般に、このような焼結原料の擬似粒化性や擬似粒子の強度(崩壊し難さ)は焼結原料の配合原料の性状や粒度構成、特に、焼結原料の主要部分を占める鉄鉱石の性状や粒度構成によって大きく左右されることが知られている。   In the granulation treatment process of the sintering raw material, the degree of adhesion of fine powder particles in the sintering raw material around the core particles, that is, the pseudo-granulating property of the sintering raw material is improved, and the pseudo particles obtained by granulation However, it is required to have the strength of pseudo particles that are difficult to collapse during conveyance to the sintering machine and in the sintering bed. In general, the pseudo-granulating property and the strength of pseudo-particles (difficult to collapse) of such a sintered raw material are the properties and grain size composition of the mixed raw material of the sintered raw material, particularly iron ore that occupies the main part of the sintered raw material. It is known that it is greatly influenced by the properties and particle size composition of stone.

一方、焼結原料の主要原料である鉄鉱石は、成分、特性が多種多様な銘柄の鉄鉱石が世界には存在し、一般的にはこれらの複数銘柄の鉄鉱石を鉄含有原料として焼結原料中に配合して使用している。このような鉄鉱石のうち、これまで焼結原料として多く使用されてきた良質なヘマタイト鉱石は、世界の鉄鉱石資源をみても枯渇の方向にあり、現状の生産が続くと主要鉱山は近年中にも掘り尽くしてしまうと予測されており、これに替わる銘柄の鉄鉱石の利用が望まれている。   On the other hand, iron ore, which is the main raw material of sintering raw materials, has iron ores of various brands with various components and characteristics in the world, and generally these multiple ores of iron ore are sintered as iron-containing raw materials. Used in the raw material. Among these iron ores, high-quality hematite ore, which has been widely used as a raw material for sintering, is in the direction of depletion in terms of the world's iron ore resources. It is predicted that it will be dug up, and the use of an iron ore of an alternative brand is desired.

このような中で、近年、将来の主要な焼結用原料として、良質なヘマタイト鉱石に比べて、安価でかつ資源的にも豊富なマラマンバ鉱石が焼結原料として注目されている。   Under these circumstances, in recent years, as a main raw material for sintering, Maramamba ore, which is cheaper and more abundant in resources compared to high-quality hematite ore, has attracted attention as a raw material for sintering.

マラマンバ鉱石とは、豪州のマラマンバ鉄鉱床から産出する鉄鉱石の総称であり、ゲーサイト(Fe2O3・H2O)とマータイト(マグネタイト結晶形状を有するFe2O3)を主要鉄鉱物とし、表1に示す産地銘柄名(通称名)でウェストアンジェラス鉱がその代表的な鉄鉱石である。   Maramamba ore is a general term for iron ore produced from the Maramamba iron ore deposit in Australia, with goethite (Fe2O3 · H2O) and martite (Fe2O3 having a magnetite crystal shape) as the main iron minerals. West Angelus ore is a typical iron ore.

表1に日本国内で焼結用原料として使用している代表的な鉄鉱石の化学的および物理的な特徴を示す。ウェストアンジェラス鉱石は、豪州のマラマンバ鉄鉱床から産出する主要鉱石(以下、マラマンバ鉱石という)であり、豪州のブロックマン鉄鉱床から産出される主要鉱石であるハマスレー、ニューマンなどの良質なヘマタイト主要鉱石と比較して結晶水(CW)の含有量が5%程度と高いが、その含有量は、一般に高結晶水鉱石として知られる豪州のピソライト鉄鉱床から産出される主要鉱石(以下、ピソライト鉱石という)であるローブリバー、ヤンディなどに比較して低いのが特徴である。また、0.25mm以下の微粉部分が多い粒度分布を有することを特徴とする。マラマンバ鉱石がピソライト鉱と同様に結晶水(CW)の含有量が高い理由は、これらの鉄鉱石の主要鉄鉱物としてゲーサイト(Fe2O3・H2O)を多く含有することに起因する。また、後述するように、マラマンバ鉱石は主要鉄鉱物として、マータイト(マグネタイト結晶形状を有するFe2O3)を多く含有する多孔質構造の鉱物組織であることを発明者らは確認している。   Table 1 shows the chemical and physical characteristics of typical iron ore used as a raw material for sintering in Japan. West Angelus ore is a major ore from the Australian Maramamba iron ore (hereinafter referred to as the Maramamba ore) and is a major hematite ore such as Hamasley and Newman, which are the major ores from the Australian Blockman iron deposit. The content of crystal water (CW) is as high as about 5%, compared to the main ore (hereinafter referred to as pisolite ore) produced from the Australian pisolite iron deposit, commonly known as high crystal water ore. ) Is low compared to Robe River and Yandi. Moreover, it has the particle size distribution with many fine powder parts of 0.25 mm or less. The reason why the Mara Mamba ore has a high content of crystallization water (CW) like the pyrolite ore is due to the fact that the main iron mineral of these iron ores contains a large amount of goethite (Fe2O3 · H2O). Further, as will be described later, the inventors have confirmed that maramamba ore has a porous mineral structure containing a large amount of martite (Fe2O3 having a magnetite crystal shape) as a main iron mineral.

マラマンバ鉱石は資源的に安定供給が可能で、かつ安価な鉄鉱石として焼結原料への適用が検討され、現在、一部焼結原料として使用されている。しかし、マラマンバ鉱石は、主要鉄鉱物として、多孔質構造を有するマータイトを多く含有するため、吸水性が高く、造粒の際の水分添加量が高くなることに加えて、微粉が多い粒度分布を有することに起因して造粒性が悪いという問題があった。また、マラマンバ鉱石の高い吸水性に起因して良好な造粒物を得るために必然的に焼結原料の造粒物の水分含有量が高くなるとともに、マラマンバ鉱石の高い結晶水の含有量にも起因して、焼結原料の充填層内に持ち込まれる水分量が増加するため、焼結時の通気性を悪化させ、炭材の燃焼効率を低下させるため、燃料原単位を悪化させる原因となる。さらに、焼結原料の充填層内に持ち込まれる水分は、焼結原料充填層の上部から下部に向かって炭材が順次燃焼し焼結していく過程で一旦蒸発した後、温度が低い焼結原料層の下部で凝縮し、水分凝縮帯を形成する。この水分凝縮帯においては、装入時の擬似粒子は周囲の多量水分を吸収し、構造変形、崩壊するため、焼結時の焼結原料層全体の通気性を悪化させ、その結果、焼結鉱の生産性や成品歩留を低下させる主な要因となる。   Maramamba ore is available as a stable raw material and is considered to be an inexpensive iron ore that is used as a raw material for sintering. However, because Mara Mamba ore contains a large amount of martite having a porous structure as the main iron mineral, in addition to high water absorption, the amount of water added during granulation is high, and the particle size distribution is high in fine powder. There was a problem that the granulation property was bad due to having. In addition, in order to obtain a good granulated product due to the high water absorption of Mara Mamba ore, the water content of the granulated product of the sintering raw material is inevitably increased, and the content of crystal water of the Mara Mamba Ore is increased. As a result, the amount of moisture brought into the packed bed of the sintering raw material increases, which deteriorates the air permeability during sintering and reduces the combustion efficiency of the carbonaceous material. Become. Furthermore, the moisture brought into the packing layer of the sintering raw material evaporates in the process of burning and sintering the carbon material sequentially from the upper part to the lower part of the sintering raw material packing layer, and then the sintering is performed at a low temperature. It condenses in the lower part of the raw material layer to form a moisture condensation zone. In this moisture condensation zone, the pseudo particles at the time of charging absorb a large amount of surrounding moisture, and the structure deforms and collapses, so the air permeability of the entire sintering raw material layer at the time of sintering deteriorates, resulting in sintering. It is the main factor that decreases the productivity and product yield of the ore.

このため、マラマンバ鉱石を焼結原料として使用する場合は、焼結鉱の生産性や成品歩留を維持するために、その配合割合は10%程度以下に制限し、その他の鉄鉱石として良質なヘマタイト主要鉱石を配合して使用しているのが現状である。   For this reason, when maramamba ore is used as a sintering raw material, in order to maintain the productivity and product yield of the sintered ore, the blending ratio is limited to about 10% or less, and it is of good quality as other iron ore. Currently, hematite main ore is used in combination.

しかしながら、上述のように、現在の日本国内で使用する鉄鉱石の主要産出国である豪州でも、ブロックマン鉱床の良質なヘマタイト主要鉱石は枯渇し、ピソライト鉱床、さらには、マラマンバ鉱床へと生産が移行する動きがあり、近い将来マラマンバ鉱石が今後の豪州産鉄鉱石の主力となることが予想される。したがって、マラマンバ鉱石を多量に配合した焼結原料を造粒する際に添加水分量を増加することなく造粒性を向上させることが望まれている。   However, as mentioned above, Australia, which is the main producer of iron ore used in Japan, is depleted of high-quality hematite ore from the Brockman deposit and is produced into the pisolite deposit and further to the Maramamba deposit. There is a move to move, and in the near future Mara Mamba ore is expected to become the mainstay of future Australian iron ore. Therefore, it is desired to improve the granulation property without increasing the amount of added water when granulating a sintered raw material containing a large amount of maramamba ore.

上記マラマンバ鉱石などの多孔質の鉄鉱石の造粒性低下に起因する問題を解決するために、例えば、特許文献1には「多孔質の鉄鉱石または鏡鉄鉱のような表面が平滑で、かつ緻密な鉱石を焼結原料の一部として使用するに際し、通常の造粒ラインにおけるミキサーによる混合、造粒を行う前に、該多孔質の鉄鉱石または鏡鉄鉱のような表面が平滑で緻密な鉱石を別ラインで各々個別にその物理性状に適した造粒を施し、しかる後他の一般銘柄鉱石と共にミキサーで混合、造粒することを特徴とする焼結原料の予備処理方法」が記載されている。   In order to solve the problem caused by the decrease in the granulating property of porous iron ore such as the above-mentioned maramanba ore, for example, Patent Document 1 discloses that “a porous iron ore or a surface like a goethite is smooth and When using a dense ore as a part of the sintering raw material, the surface of the porous iron ore or goethite is smooth and dense before mixing and granulating with a mixer in a normal granulation line. `` Sintering raw material pretreatment method characterized in that ore is individually granulated on separate lines according to its physical properties, then mixed with other general brand ores in a mixer and granulated '' ing.

マラマンバ鉱石などの高結晶水・低脈石鉄鉱石は多孔質で造粒性が他の一般鉄鉱石より劣るので、特許文献1記載のように別ラインで個別にその物理性状に適した造粒を施すことは有効であるが、製造コストの上昇を招くと共に、造粒物全体の強度を大幅に向上できない欠点がある。   High crystal water and low gangue iron ore, such as maramamba ore, are porous and inferior to other general iron ores. Therefore, as described in Patent Document 1, granulation suitable for the physical properties is individually provided in a separate line. However, there are disadvantages in that the manufacturing cost is increased and the strength of the whole granulated product cannot be significantly improved.

また、特許文献2には、「多孔質の鉄鉱石(例えば豪州産マラマンバ鉱石)を焼結原料の一部として用いる際に、通常の造粒ラインにおけるミキサーによる混合、造粒を行なう前に、該多孔質の鉄鉱石を別ラインで含水処理を施し、しかる後他の一般銘柄鉱石と共にミキサーで混合・造粒することを特徴とする焼結原料の予備処理方法」が開示されている。   Patent Document 2 states that “when using porous iron ore (for example, Australian maramamba ore) as part of the sintering raw material, before mixing and granulating with a mixer in a normal granulation line, There is disclosed a “sintering raw material pretreatment method” characterized in that the porous iron ore is treated with water in a separate line, and then mixed and granulated with another general brand ore by a mixer.

特許文献2記載のような含水処理を施すことも有効であるが、造粒物全体の強度を大幅に向上することは難しい。また、造粒物中の水分含有量の増加は、マラマンバ鉱石の高い結晶水含有量に加えて、焼結時の焼結原料充填層の水分持ち込み量が増加し、水分凝縮帯の範囲を広げるため、水分凝集帯での擬似粒子崩壊による通気性悪化を招き、焼結鉱の生産性や成品歩留を低下させる主な要因となる。   Although it is effective to perform a water treatment as described in Patent Document 2, it is difficult to significantly improve the strength of the entire granulated product. In addition, the increase in moisture content in the granulated product increases the amount of moisture brought into the sintered raw material packed bed during sintering in addition to the high crystallization water content of maramanba ore, thereby expanding the range of moisture condensation zones. For this reason, the air permeability deteriorates due to the pseudo particle collapse in the water agglomeration zone, which is a main factor for reducing the productivity and product yield of the sintered ore.

また、特許文献3には、「焼結原料を混合・造粒して事前処理する造粒ラインを、鉄鉱石・コークス等の主原料群を処理するCaO成分の低い一方の造粒ラインと、その他の鉱石等のその他原料群を処理するCaO成分の高い他方の造粒ラインとの二系列造粒ラインに分けてなり、前記他方の造粒ラインにおけるその他原料群の鉱石に、マラマンバ鉱等の高結晶水の微粉鉱石を使用すると共に、前記両造粒ラインに生石灰を分割添加し、主原料群、およびその他原料群を、生石灰バインダーで造粒することを特徴とする焼結原料の事前処理方法」が記載されている。   Patent Document 3 states that “a granulation line in which sintered raw materials are mixed and granulated and pretreated, and one granulation line having a low CaO component for treating a main raw material group such as iron ore and coke; It is divided into two series granulation lines with the other granulation line with a high CaO component to process other raw material groups such as other ores, and the ore of the other raw material group in the other granulation line includes maramamba ore etc. Pretreatment of sintered raw materials characterized by using finely divided ore of high crystal water, adding quick lime separately to both granulation lines, and granulating main raw material group and other raw material groups with quick lime binder Method "is described.

特許文献3記載の方法では、複数の鉱石槽に加えて副原料槽、石灰石槽、バインダー槽を新たに設置して事前に造粒するので、新たな造粒処理設備を設置するに等しい極めて大きな設備投資が必要になり、製造コストの上昇を招く。   In the method described in Patent Document 3, a secondary raw material tank, a limestone tank, and a binder tank are newly installed in addition to a plurality of ore tanks and granulated in advance, so that it is extremely large equivalent to installing a new granulation processing facility. Capital investment is required, leading to an increase in manufacturing costs.

特許文献4には、軟質/多孔性鉄鉱石を焼結原料の一部として用いる際に、砂糖あるいは糖蜜等の添加剤を添加することで、軟質/多孔性鉄鉱石への水の吸収を抑制する方法が開示されている。
特許文献4記載の方法では、砂糖あるいは糖蜜等の添加剤を添加して使用すると、これらは一般に高価であるために製造コストの上昇を招くと共に、造粒物の強度を大幅に向上できない。また、上記添加剤は焼結原料の造粒時に粘性を高めて造粒物の強度を高める効果はあるものの、焼結時の焼結原料充填層下部で形成される水分凝縮帯において擬似粒子が周囲からの多量水分の吸収を抑制し、擬似粒子の崩壊を抑制する効果は低いため、焼結時の通気性悪化を招き、焼結鉱の生産性や成品歩留を低下させる主な要因となる。
In Patent Document 4, when soft / porous iron ore is used as part of the sintering raw material, the absorption of water into the soft / porous iron ore is suppressed by adding an additive such as sugar or molasses. A method is disclosed.
In the method described in Patent Document 4, when an additive such as sugar or molasses is added and used, these are generally expensive, so that the production cost increases and the strength of the granulated product cannot be significantly improved. Although the additive has the effect of increasing the viscosity at the time of granulation of the sintered raw material and increasing the strength of the granulated product, the pseudo particles are formed in the moisture condensation zone formed at the bottom of the sintered raw material packed layer at the time of sintering. Since the effect of suppressing the absorption of a large amount of moisture from the surroundings and suppressing the collapse of the pseudo particles is low, it causes the deterioration of air permeability during sintering, and the main factor that decreases the productivity and product yield of sintered ore Become.

また、特許文献8には、結晶水を多く含有するリモナイト鉱石などを石灰粉やスケールとともに混合し、リグニンスルホン酸を有効成分として含むパルプ廃液を添加して造粒した後、残りの原料と混合し、その後再度造粒する方法が開示されており、マラマンバ鉱石の使用が例示されている。   In Patent Document 8, limonite ore containing a large amount of crystal water is mixed with lime powder and scale, and pulp waste liquid containing lignin sulfonic acid as an active ingredient is added and granulated, and then mixed with the remaining raw materials. Then, a method of granulating again is disclosed, and the use of maramamba ore is exemplified.

特許文献8記載の方法では、リグニンスルホン酸の造粒性の向上効果は十分ではないため、マラマンバ鉱石を多く配合した場合、生産性が著しく低下することになる。   In the method described in Patent Document 8, since the effect of improving the granulating property of lignin sulfonic acid is not sufficient, when a large amount of maramamba ore is blended, the productivity is significantly reduced.

また、従来のマラマンバ鉱の使用例としては、日本鋼管(株)福山製鉄所においてHPS法(非特許文献1)の適用により多量のマラマンバ鉱を使用した実績はあるが、特許文献5、特許文献6および特許文献7等で開示されるHPS法は、造粒工程に皿型造粒設備を導入し、従来以上の石灰石を添加することで粒径の小さい微粉鉱石の多量使用を可能とした技術であり、既設のドラムミキサーを中心とする造粒を考慮した方法ではない。また、既設焼結機への皿型造粒設備の導入には莫大な設備投資及びランニングコストを要するものである。
特開昭52−49905号公報(公開日1977年4月21日) 特開昭52−49906号公報(公開日1977年4月21日) 特開平5−9601号公報(公開日1993年1月19日) 特表平10−502417号公報(公開日1998年3月3日) 特開昭63−149333号公報(公開日1988年6月22日) 特開昭63−149334号公報(公開日1988年6月22日) 特開昭63−149336号公報(公開日1988年6月22日) 特開平5−25556号公報(公開日1993年2月2日) 坂本登、外4名,「高炉用新塊成鉱の製造条件に関する基礎的検討及び品質の評価」,鉄と鋼,社団法人 日本鉄鋼協会,第73年(1987)第11号,p62
In addition, as an example of use of conventional maramamba ore, there is a track record of using a large amount of maramamba ore by applying the HPS method (Non-Patent Document 1) at Fukuyama Steel Works, Japan Patent Pipe Co., Ltd. The HPS method disclosed in No. 6 and Patent Document 7 and the like is a technology that enables a large amount of fine ore with a small particle size to be introduced by introducing dish-type granulation equipment into the granulation process and adding more limestone than before. However, this is not a method considering granulation centering on an existing drum mixer. In addition, the introduction of the plate-type granulation equipment to the existing sintering machine requires a huge capital investment and running cost.
Japanese Laid-Open Patent Publication No. 52-49905 (Publication Date: April 21, 1977) JP 52-49906 A (published on April 21, 1977) Japanese Patent Laid-Open No. 5-9601 (Publication date: January 19, 1993) JP 10-502417 A (publication date March 3, 1998) JP 63-149333 A (publication date June 22, 1988) JP 63-149334 A (publication date June 22, 1988) JP 63-149336 A (publication date June 22, 1988) JP-A-5-25556 (publication date February 2, 1993) Noboru Sakamoto, 4 others, “Fundamental examination and quality evaluation on production conditions of new agglomerates for blast furnace”, Iron and Steel, Japan Iron and Steel Institute, 73rd (1987) No. 11, p62

以上の特許文献等で開示されているような従来の焼結原料の造粒処理方法では、他の鉱石に比べて造粒性が悪いマラマンバ鉱石を多量に配合した焼結原料への適用は困難であり、実用性は低いものである。   Conventional granulation methods for sintered raw materials as disclosed in the above-mentioned patent documents are difficult to apply to sintered raw materials containing a large amount of maramanba ore, which has poor granulation properties compared to other ores. And practicality is low.

本発明は、安価でかつ資源的にも豊富なマラマンバ鉱石などの多孔質鉄鉱石を焼結原料として多量に使用する際に、特殊な設備を用いた事前造粒等を必要とせずに、少ない水分添加量で焼結原料の造粒性を向上し、かつ焼結時の通気性を改善させ、焼結鉱の成品歩留および生産性を良好に維持できる焼結鉱の製造方法を提供することを目的とする。   The present invention is less expensive and does not require pre-granulation using special equipment when using a large amount of porous iron ore such as maramamba ore as a sintering raw material, which is abundant in resources. Provided is a method for producing a sintered ore which can improve the granulation property of the sintering raw material with the amount of water added, improve the air permeability during sintering, and maintain good product yield and productivity of the sintered ore. For the purpose.

本発明に係る焼結原料及び焼結鉱の製造方法は、上述した目的を達成するため、以下の特徴点を備えている。
(1)鉄含有原料、副原料、および、炭材からなる焼結原料を焼結機に装入し焼結する焼結鉱の製造方法において、前記焼結原料のうちの少なくとも鉄含有原料を混合、造粒する前に、該鉄含有原料に配合された鉄鉱石のうち、少なくとも水銀圧入法で測定される微細気孔量が0.05cc/g以上である多孔質鉄鉱石を、該多孔質鉄鉱石中の粒径45μm以下の微粉が15%以上含有する粒度となるように粉砕することを特徴とする焼結鉱の製造方法。
(2)前記多孔質鉄鉱石は、粉砕する前に2〜7mmの篩目で篩分けし、該多孔質鉄鉱石の篩下を粉砕することを特徴とする請求項1記載の焼結鉱の製造方法。
(3)前記多孔質鉄鉱石の粉砕は、該多孔質鉄鉱石以外の粒径3mm以下の鉄鉱石、および、副原料とともに行うことを特徴とする上記(1)または(2)記載の焼結鉱の製造方法。
(4)前記多孔質鉄鉱石以外の粒径3mm以下の鉄鉱石は、ペレット用微粉鉄鉱石であることを特徴とする上記(3)記載の焼結鉱の製造方法。
(5)前記多孔質鉄鉱石は、マラマンバ鉱石、高燐ブロックマン鉱石、ピソライト鉱石、低隣ブロックマン鉱石の1種または2種以上からなることを特徴とする上記(1)〜(4)の何れかに記載の焼結鉱の製造方法。
(6)前記混合、造粒は、水を添加してドラムミキサーで混合と造粒を行うことを特徴とする上記(1)〜(5)の何れかに記載の焼結鉱の製造方法。
(7)前記混合、造粒は、水とともに分散剤を添加してドラムミキサーで混合と造粒を行うことを特徴とする上記(1)〜(5)の何れかに記載の焼結鉱の製造方法。
(8)前記混合、造粒は、水とともに分散剤を添加して混練機で混合した後、ドラムミキサー、ディスクペレタイザー、または、パンペレタイザーのいずれかで造粒を行うことを特徴とする上記(1)〜(5)の何れかに記載の焼結鉱の製造方法。
(9)前記造粒において、水、または、水と分散剤を添加することを特徴とする上記(8)に記載の焼結鉱の製造方法。
(10)前記混合、造粒は、水とともに分散剤を添加して混練機で混合し、ドラムミキサー、ディスクペレタイザー、または、パンペレタイザーのいずれかで1次造粒し、さらに、該造粒物に炭材または炭材とCaO含有副原料を添加し、ドラムミキサー、ディスクペレタイザー、または、パンペレタイザーのいずれかで2次造粒することで前記造粒物表面に炭材または炭材とCaO含有副原料を外装することを特徴とする上記(1)〜(5)の何れかに記載の焼結鉱の製造方法。
(11)前記1次造粒または2次造粒の何れかかまたは両方において、水、または、水と分散剤を添加することを特徴とする上記(10)に記載の焼結鉱の製造方法。
(12)前記混練機としてレディゲミキサーを用いることを特徴とする上記(8)〜(11)の何れかに記載の焼結鉱の製造方法。
(13)前記混練機で混合する際に、炭材およびCaO含有副原料の1種または2種を添加することを特徴とする上記(10)〜(12)の何れかに記載の焼結鉱の製造方法。
(14)前記分散剤は、前記混合、造粒する少なくとも鉄含有原料を含み、かつ炭材を除いた焼結原料の合計量に対して0.001質量%〜1質量%の範囲で添加することを特徴とする特徴とする上記(7)〜(13)の何れかに記載の焼結鉱の製造方法。
(15)前記分散剤と、前記混合、造粒する少なくとも鉄含有原料を含み、かつ炭材を除いた焼結原料を混合した後、該混合組成物を100mlのメスシリンダーに固形分で10gとなるように採取し、これに全量で100mlとなるようにイオン交換水を加えて10秒間攪拌した後、10分間放置後に水中に浮遊している微粒子の量が、前記混合組成物の固形分の2重量%以上となるように、前記混合、造粒する少なくとも鉄含有原料を含み、かつ炭材を除いた焼結原料の合計量に対する前記分散剤の添加量を調整することを特徴とする上記(14)記載の焼結鉱の製造方法。
(16)前記分散剤が酸基および/またはその塩を有する高分子化合物であることを特徴とする上記(7)〜(15)の何れかに記載の焼結鉱の製造方法。
The method for producing a sintered raw material and sintered ore according to the present invention has the following features in order to achieve the above-described object.
(1) In the manufacturing method of the sintered ore which inserts and sinters the sintering raw material which consists of an iron-containing raw material, an auxiliary raw material, and a carbonaceous material to a sintering machine, at least iron-containing raw material of the said sintering raw materials Before mixing and granulating, among the iron ores blended in the iron-containing raw material, at least a porous iron ore having a fine pore amount measured by a mercury intrusion method of 0.05 cc / g or more is used. A method for producing a sintered ore, comprising pulverizing the iron ore so that the fine particle having a particle size of 45 μm or less in the iron ore has a particle size of 15% or more.
(2) The porous iron ore according to claim 1, wherein the porous iron ore is sieved with a sieve of 2 to 7 mm before pulverization, and the sieving of the porous iron ore is pulverized. Production method.
(3) The sintering according to (1) or (2) above, wherein the pulverization of the porous iron ore is performed together with iron ore having a particle size of 3 mm or less other than the porous iron ore and an auxiliary material. Manufacturing method of ore.
(4) The method for producing a sintered ore according to (3) above, wherein the iron ore having a particle size of 3 mm or less other than the porous iron ore is a fine iron ore for pellets.
(5) The porous iron ore is composed of one or more of maramamba ore, high phosphorus blockman ore, pisolite ore, and low adjacent blockman ore, according to the above (1) to (4) The manufacturing method of the sintered ore in any one.
(6) The method for producing a sintered ore according to any one of (1) to (5), wherein the mixing and granulation are performed by adding water and mixing and granulating with a drum mixer.
(7) The mixing or granulation is performed by adding a dispersant together with water, and mixing and granulating with a drum mixer, wherein the sintered ore according to any one of (1) to (5) above Production method.
(8) The above mixing and granulation are characterized in that after adding a dispersant together with water and mixing with a kneader, granulation is performed with any of a drum mixer, a disk pelletizer, or a pan pelletizer ( The manufacturing method of the sintered ore as described in any one of 1)-(5).
(9) In the granulation, water or water and a dispersant are added. The method for producing a sintered ore according to (8) above, wherein
(10) The mixing and granulation are performed by adding a dispersant together with water, mixing with a kneader, and performing primary granulation with any of a drum mixer, a disk pelletizer, or a pan pelletizer, and the granulated product. Carbonaceous material or carbonaceous material and CaO-containing auxiliary material are added to the material, and secondary granulation is performed with either a drum mixer, a disk pelletizer, or a pan pelletizer, so that the surface of the granulated material contains carbonaceous material or carbonaceous material and CaO. The method for producing a sintered ore according to any one of (1) to (5) above, wherein an auxiliary material is packaged.
(11) The method for producing a sintered ore according to (10) above, wherein water or water and a dispersant are added in either or both of the primary granulation and the secondary granulation. .
(12) The method for producing a sintered ore according to any one of (8) to (11), wherein a Redige mixer is used as the kneader.
(13) The sintered ore according to any one of (10) to (12) above, wherein one or two of carbonaceous material and CaO-containing auxiliary raw material are added when mixing with the kneader. Manufacturing method.
(14) The dispersant is added in the range of 0.001% by mass to 1% by mass with respect to the total amount of the sintered raw material excluding the carbonaceous material, including at least the iron-containing raw material to be mixed and granulated. The method for producing a sintered ore according to any one of (7) to (13), wherein the method is characterized in that.
(15) After mixing the dispersing agent and the sintering raw material including at least the iron-containing raw material to be mixed and granulated and excluding the carbonaceous material, the mixed composition is mixed with a solid content of 10 g in a 100 ml measuring cylinder. After adding ion-exchanged water so that the total amount becomes 100 ml and stirring for 10 seconds, the amount of fine particles floating in water after standing for 10 minutes is the solid content of the mixed composition. Adjusting the addition amount of the dispersant with respect to the total amount of the sintered raw material excluding the carbonaceous material and including at least the iron-containing raw material to be mixed and granulated so as to be 2% by weight or more. (14) The method for producing a sintered ore according to (14).
(16) The method for producing a sintered ore according to any one of (7) to (15), wherein the dispersant is a polymer compound having an acid group and / or a salt thereof.

安価でかつ資源的にも豊富なマラマンバ鉱石などの多孔質鉄鉱石を焼結原料として多量に使用して焼結鉱を製造する際に、特殊な設備を用いた事前造粒等を行なわずに、少ない水分添加量で焼結原料の造粒性および付着力を向上でき、その結果、焼結時の通気性を改善させ、焼結鉱の成品歩留および生産性を向上させることができる。   When producing sintered ore using a large amount of porous iron ore, such as cheap and resource-rich maramamba ore, as a sintering raw material, without prior granulation using special equipment, etc. In addition, the granulation property and adhesion of the sintered raw material can be improved with a small amount of water added. As a result, the air permeability during sintering can be improved, and the product yield and productivity of the sintered ore can be improved.

まず、本発明の技術思想について説明する。   First, the technical idea of the present invention will be described.

従来から磁鉄鉱や赤鉄鉱に比べて褐鉄鉱は多孔質構造のため、吸水性が高く、適正な造粒を行うために必要な水分も増加する傾向があることは知られている。発明者らは、日本国内で焼結原料として使用される代表的な鉄鉱石銘柄の微細気孔量、吸水性、および、造粒性を測定し、鉄鉱石の微細気孔量や吸水性が造粒性に与える影響について調査検討した。   Conventionally, limonite has a porous structure compared to magnetite and hematite, and thus has a high water absorption and is known to have a tendency to increase moisture necessary for proper granulation. The inventors measured the fine pore volume, water absorption, and granulation properties of typical iron ore brands used as sintering raw materials in Japan, and the fine pore volume and water absorption of iron ore were granulated. The effect on sex was investigated.

図10は各種鉄鉱石の微細気孔量と吸水性の関係を示す図であり、図11は各種鉄鉱石の吸水性とGI値(擬似粒子化指数)の関係を示す図である。   FIG. 10 is a diagram showing the relationship between the amount of fine pores of various iron ores and water absorption, and FIG. 11 is a diagram showing the relationship between the water absorption of various iron ores and the GI value (pseudoparticle index).

なお、鉄鉱石中の微細気孔量は、気孔径が0.1〜10μm程度の微細気孔量を水銀圧入式ポロシメータを用いて測定したものである。   In addition, the amount of fine pores in iron ore is obtained by measuring the amount of fine pores having a pore diameter of about 0.1 to 10 μm using a mercury intrusion porosimeter.

また、鉄鉱石の吸水性は、200gの鉄鉱石の試料を水に20分間浸漬した後、遠心分離機で15分間800rpmで回転させ、鉱石試料中に残留した水分量を鉄鉱石の質量当りにの水分量に換算した値である。   The iron ore absorbs 200 g of iron ore sample in water for 20 minutes, and then rotates at 800 rpm for 15 minutes in a centrifuge to determine the amount of water remaining in the ore sample per mass of iron ore. It is the value converted into the amount of water.

また、鉄鉱石のGI値(擬似粒子化指数)とは、下記式で求められる疑似粒化の評価指数の一つであり(例えば、製鉄研究288号(1976)9頁、参照)、核粒子の表面に付着する微粉粒子の割合を示す。このGI値が大きいほど、微粉粒子を核粒子の表面に付着させる効果に優れ、焼結層の通気性を良好に維持し、焼結鉱の生産性を向上させることができる。鉄鉱石の疑似粒化のために添加する水分量は7%(一定)で行なった。   Moreover, the GI value (pseudo-particleization index) of iron ore is one of the evaluation indexes of pseudo-granulation obtained by the following formula (for example, refer to page 9 of Steelmaking Research No. 288 (1976)), and nuclear particles The ratio of fine powder particles adhering to the surface of is shown. The larger this GI value, the better the effect of adhering fine powder particles to the surface of the core particles, the better the air permeability of the sintered layer, and the improved productivity of the sintered ore. The amount of water added for pseudo-granulation of iron ore was 7% (constant).

GI(%)=(造粒前の0.25mm以下の原料の比率−造粒後の0.25mm以下の原料の比率)/(造粒前の0.25mm以下の原料の比率)×100
図10から鉄鉱石中の微細気孔量の増加とともに鉄鉱石の吸水性は増加し、図11から鉄鉱石の吸水性の増加とともに鉄鉱石のGI値(擬似粒子化指数)は低下することが判る。また、これらの図から、鉄鉱石中の微細気孔量が0.05cc/gを超える場合には、鉄鉱石の吸水性は5(g−H2O/g−Ore)以上となり、添加水分量が一定(7%)の条件では水分が鉄鉱石中の微細気孔に奪われるため、適正な造粒に寄与する水分量が低下する結果、鉄鉱石のGI値(擬似粒子化指数)で80以下にまで造粒性は低下する。
GI (%) = (ratio of raw material of 0.25 mm or less before granulation−ratio of raw material of 0.25 mm or less after granulation) / (ratio of raw material of 0.25 mm or less before granulation) × 100
FIG. 10 shows that the water absorption of iron ore increases as the amount of fine pores in the iron ore increases, and FIG. 11 shows that the GI value (pseudo-particleization index) of iron ore decreases as the water absorption of iron ore increases. . From these figures, when the amount of fine pores in the iron ore exceeds 0.05 cc / g, the water absorption of the iron ore becomes 5 (g-H 2 O / g-Ore) or more, and the amount of added water Is constant (7%), the moisture is lost to the fine pores in the iron ore, resulting in a decrease in the amount of water that contributes to proper granulation. As a result, the iron ore has a GI value (pseudoparticle index) of 80 or less. The granulating property is lowered to the point.

図10および図11において、微細気孔量が0.05cc/g未満の鉄鉱石は、例えば、リオドセ(ヘマタイト鉱石、図10中H1)、カラジャス(ヘマタイト鉱石、図10中H2)が該当し、微細気孔量が0.05cc/g以上の鉄鉱石は、マウントニューマン(ヘマタイト鉱石、図10中H3)、ヤンディ(ピソライト鉱石、図10中P1)、ローブ(ピソライト鉱石、図10中P2)、MAC(マラマンバ鉱石、図10中M1)、ウェストアンジェラス鉱石(マラマンバ鉱石、図10中M2)、サルガオンカ(ゲーサイト鉱石、図10中G)が該当する。   10 and 11, the iron ores having a fine pore volume of less than 0.05 cc / g correspond to, for example, riodose (hematite ore, H1 in FIG. 10) and carajas (hematite ore, H2 in FIG. 10). Iron ores having a pore volume of 0.05 cc / g or more are Mount Newman (hematite ore, H3 in FIG. 10), Yandi (pisolite ore, P1 in FIG. 10), Robe (pisolite ore, P2 in FIG. 10), MAC ( This corresponds to the Mara Mamba Ore, M1 in FIG. 10, West Angelus Ore (Mala Manba Ore, M2 in FIG. 10), and Salgaonka (Goesite Ore, G in FIG. 10).

なお、微細気孔量が0.05cc/g以上の多孔質鉄鉱石を焼結原料として用いて造粒する場合に添加水分量を増加し、造粒に有効に寄与する水分を確保することによって、ある程度までは造粒性を改善することはできる。しかし、造粒時の添加水分量の増加は、造粒物を焼結する際に水分の蒸発潜熱の増加に起因して燃料原単位を悪化するだけでなく、焼結原料充填層の燃焼帯下方に形成される水分凝縮帯の範囲を拡げ、水分凝縮帯において擬似粒子が周囲からの多量水分を吸収し、擬似粒子が崩壊することより、焼結時の通気性悪化を招き、焼結鉱の生産性や成品歩留を低下させる原因となる。   In addition, when granulating using a porous iron ore having a fine pore amount of 0.05 cc / g or more as a sintering raw material, the amount of added water is increased, and by ensuring moisture that contributes effectively to granulation, To a certain extent, granulation can be improved. However, an increase in the amount of added water during granulation not only deteriorates the fuel consumption rate due to an increase in the latent heat of vaporization of the water when the granulated product is sintered, but also increases the combustion zone of the sintered raw material packed bed. Expanding the range of the moisture condensation zone formed below, the pseudo particles absorb a large amount of moisture from the surroundings in the moisture condensation zone, and the pseudo particles collapse, leading to deterioration in air permeability during sintering, and sintering ore Cause a decrease in productivity and product yield.

本発明者らは、上記の各鉄鉱石の微細気孔量及び吸水性の造粒性(GI値)への影響を踏まえ、添加水分量が一定の条件で造粒する場合にGI値(擬似粒子化指数)の造粒性の低下が著しい微細気孔量が0.05cc/g以上である多孔質鉄鉱石を対象とし、当該鉄鉱石を焼結原料として使用する場合の造粒性を向上させるための方法を検討した。   Based on the influence on the fine pore volume and water absorption granulation property (GI value) of each iron ore described above, the present inventors have developed a GI value (pseudoparticles) when granulation is performed under a constant amount of added water. In order to improve the granulation property when the iron ore is used as a sintering raw material for porous iron ore with a fine pore volume of 0.05 cc / g or more, which is markedly reduced in granulation property) The method of was examined.

本発明者らは、図10に示すようにマラマンバ鉱石などの多孔質鉄鉱石が造粒性(GI値)が低い大きな原因が、これらの鉄鉱石は微細気孔量が多く、吸水性を高めることにあると考え、これらの鉄鉱石の多孔質組織構造を破壊するための事前粉砕処理について検討した。   As shown in FIG. 10, the inventors of the present invention have a large cause that the porous iron ore such as maramamba ore has a low granulation property (GI value). These iron ores have a large amount of fine pores and increase water absorption. Therefore, the pre-grinding treatment to destroy the porous structure of these iron ores was examined.

従来、マラマンバ鉱石やピソライト鉱石などの多孔質鉄鉱石を焼結原料として使用する場合は、粒径0.5mm以下の微粉粒子が多くなると、粒径1〜3mmの核粒子が相対的に少なくなり、擬似造粒子化は困難となるため、マラマンバ鉱石やピソライトなどの多孔質鉄鉱石を粉砕することは、焼結原料の造粒性を悪化させ、焼結時の通気性および生産性を低下させると考えられ、採用されていなかった。   Conventionally, when porous iron ores such as maramamba ore and pisolite ore are used as a sintering raw material, if fine particles with a particle size of 0.5 mm or less increase, core particles with a particle size of 1 to 3 mm are relatively reduced. Because it becomes difficult to make pseudo-granulated particles, pulverizing porous iron ores such as maramamba ore and pisolite deteriorates the granulation property of the sintering raw material and reduces the air permeability and productivity during sintering. It was thought that it was not adopted.

特にマラマンバ鉱石は、表1に示されるようにピソライト鉱石と同様に高結晶水鉄鉱石であることに加えて、ピソライト鉱石に較べて0.25mm以下の微粉粒子を多く含有するため、焼結原料の造粒性および焼結時の通気性を維持するために、焼結原料への配合割合を低く制限されていた。   As shown in Table 1, in particular, maramamba ore is a highly crystalline hydrous iron ore as well as pisolite ore, and contains a large amount of fine particles of 0.25 mm or less compared to pisolite ore. In order to maintain the granulation property and air permeability during sintering, the blending ratio to the sintering raw material was limited to be low.

しかし、発明者らの検討によれば、マラマンバ鉱石などの多孔質鉄鉱石は、主要鉄鉱物として、多孔質構造組織(マータイト組織(マグネタイト結晶形状を有するFe2O3)など)を多く含有し、このような多孔質鉄鉱石を粉砕処理すると、多孔質構造組織が選択的に粉砕されて微粒子化され、それ以外の鉱物組織は粉砕されず残存することが判った。また、マータイト組織などの多孔質鉄鉱石が粉砕される際には構造的に脆弱な気孔部分から破壊され、その破壊後の粒子は、非常に粒径小さい超微細粒子となることを確認した。   However, according to the study by the inventors, porous iron ores such as maramamba ore contain a large amount of porous structure (such as martite structure (Fe2O3 having a magnetite crystal shape)) as the main iron mineral. It was found that when the porous iron ore was pulverized, the porous structure was selectively pulverized to form fine particles, and the other mineral structures remained without being pulverized. Moreover, it was confirmed that when porous iron ore such as a martite structure was pulverized, it was destroyed from pores that were structurally fragile, and the particles after the destruction became ultrafine particles having a very small particle size.

図1に、多孔質鉄鉱石であるマラマンバ鉱石(微細気孔量:0.091(cc/g)のウェストアンジェラス鉱石)の粉砕前(図1(a):粒径45μm以下が12%)と、粉砕後(図1(b):粒径45μm以下が20%)のそれぞれについて顕微鏡観察をした際の断面組織写真を示す。また、図2は、図1の粉砕前および粉砕後のマラマンバ鉱石中のマータイト組織(多孔質構造組織)について高倍率で顕微鏡観察した際の断面組織写真を示す。   FIG. 1 shows that before the pulverization of maramamba ore (West Angelus ore with a fine pore volume: 0.091 (cc / g)), which is a porous iron ore (FIG. 1 (a): particle size of 45 μm or less is 12%). The cross-sectional structure | tissue photograph at the time of carrying out the microscope observation about each after grinding | pulverization (FIG.1 (b): The particle size of 45 micrometers or less is 20%) is shown. FIG. 2 shows photographs of a cross-sectional structure of the martite structure (porous structure structure) in the maramamba ore before and after pulverization shown in FIG.

粉砕前の多孔質鉄鉱石試料(図1(b))には、大きさが50−100μmの多孔質構造を有するマータイト組織(図中M)が多く観察されるのに対し、粉砕後の同試料(図1(b))では、粉砕前の多孔質構造を有するマータイト組織(図1(a)中M)が破砕されて微細なマータイト組織(図1(b)中M1)となることが判る。つまり、マラマンバ鉱石などの多孔質鉄鉱石を粉砕処理することにより、吸水性を高め、造粒性を低下させる原因となる多孔質構造組織(マータイト組織など)を選択的に粉砕し微細化しつつ、良好な擬似粒子化を行なうために必要な核粒子(粒径1〜3mm)は維持できることが判った。   In the porous iron ore sample before pulverization (FIG. 1 (b)), many martite structures (M in the figure) having a porous structure with a size of 50-100 μm are observed, whereas the same after pulverization. In the sample (FIG. 1 (b)), the martite structure (M in FIG. 1 (a)) having a porous structure before pulverization may be crushed into a fine martite structure (M1 in FIG. 1 (b)). I understand. In other words, by pulverizing porous iron ore such as maramamba ore, while selectively pulverizing and refining porous structure structures (such as martite structures) that increase water absorption and reduce granulation, It was found that the core particles (particle size 1 to 3 mm) necessary for good pseudo-particle formation can be maintained.

また、図2から判るように、多孔質構造組織(マータイト組織)が粉砕される際には、構造的に脆弱な気孔部分から破壊され、その破壊後の粒子は、粒径45μm以下の粒径が非常に小さい超微粒子が多く生成されることが判った。一般に擬似粒子を構成する核粒子(粒径1〜3mm)の周囲に付着する微粉粒子は粒径0.5mm以下であることが知られ、粒径が0.5〜1mmの中間粒子は擬似粒子を構成する上での寄与が少ないと考えられる。   Further, as can be seen from FIG. 2, when the porous structural structure (martite structure) is crushed, it is broken from the structurally fragile pores, and the broken particles have a particle size of 45 μm or less. It was found that a large number of ultrafine particles having a very small diameter were produced. In general, fine particles adhering to the periphery of core particles (particle size 1 to 3 mm) constituting pseudo particles are known to have a particle size of 0.5 mm or less, and intermediate particles having a particle size of 0.5 to 1 mm are pseudo particles. It is thought that there is little contribution in constructing.

また、発明者らの検討によれば、粒径0.5mm以下の微粒子の中でも、特に粒径45μm以下の超微粒子は、水分中での分散性が高いため、造粒時に少ない添加水分で容易に移動し核粒子と有効かつ効率的に付着することができ、さらに、当該超微粒子が水分中で均一分散する際に水の凝集力を高めるため、擬似粒子化性および付着力が向上することがわかった。   Further, according to the study by the inventors, among the fine particles having a particle size of 0.5 mm or less, the ultrafine particles having a particle size of 45 μm or less are particularly easily dispersed with a small amount of added water during granulation because of high dispersibility in water. In addition, it is possible to effectively and efficiently adhere to the core particles and to increase the cohesion of water when the ultrafine particles are uniformly dispersed in the water, thereby improving the pseudo-particle property and adhesion. I understood.

なお、超微粒子の水分中での分散性は、粒径が小さいほど高く、粒径10μm以下の超微粒子は、さらに水分中での分散性が高い。   In addition, the dispersibility of the ultrafine particles in water is higher as the particle size is smaller, and the ultrafine particles having a particle size of 10 μm or less are further highly dispersible in water.

また、発明者らの検討によれば、粒径45μm以下の超微粒子一部は、水中で互いに凝集してクラスター化し、見かけ上の粒径が大きいものとして存在するが、水中での分散性を高める作用を有する分散剤を添加することにより、クラスター化していた超微粒子は乖離し、上記超微粒子の作用により向上する水分中で均一に分散するため、擬似粒子化性および付着力はさらに向上することも確認している。
なお、従来から造粒時に添加水分の粘性を高めるために添加していた糖蜜など(例えば特許文献4、参照)の造粒添加剤は、逆に粒径45μm以下の超微粒子の水分中での分散性を阻害するため好ましくない。
Further, according to the study by the inventors, some of the ultrafine particles having a particle size of 45 μm or less are aggregated and clustered with each other in water and have a large apparent particle size. By adding a dispersing agent having an enhancing effect, the ultrafine particles that have been clustered are separated and dispersed uniformly in the moisture that is improved by the action of the ultrafine particles, so that the pseudoparticulateness and adhesion are further improved. I have also confirmed that.
Incidentally, granulation additives such as molasses that have been conventionally added to increase the viscosity of the added water during granulation (for example, see Patent Document 4) are conversely in ultrafine particles having a particle size of 45 μm or less in the water. Since dispersibility is inhibited, it is not preferable.

図3は、図1および図2に示した多孔質鉄鉱石であるマラマンバ鉱石を粉砕後、水分(7%)を添加して造粒して得られた造粒物(図3(a))および水分(7%)と分散剤(ポリアクリル酸ナトリウム(PA):0.04%)を添加して造粒して得られた造粒物の表面を顕微鏡観察した際の顕微鏡写真を示す。図3から多孔質鉄鉱石であるマラマンバ鉱石を粉砕することにより、当該鉱石中の多孔質構造組織(マータイト組織)が選択的に粉砕する際に生成された粒径45μm以下の超微粒子は水分中での分散性が高いため、水分中で容易に移動し、粉砕されずに残存した粒径1〜3mmの核粒子の周囲に凝集し付着し、かつ付着粉を構成する微粉粒子間、微粉粒子と核粒子との付着力を高めることにより、強固な擬似粒子が生成されることが判る。また、造粒時に水分と分散剤を添加することにより、粒径45μm以下の超微粒子の水分中での分散性の向上効果はより高まる結果、水分添加のみによる造粒物に比べ、超微粒子が核粒子周囲に移動し凝集することにより、より強固な擬似粒子が生成されることが判る。   FIG. 3 is a granulated product obtained by pulverizing the maramamba ore which is the porous iron ore shown in FIGS. 1 and 2 and adding water (7%) and granulating (FIG. 3 (a)). And the micrograph at the time of carrying out the microscope observation of the surface of the granulated material obtained by granulating by adding a water | moisture content (7%) and a dispersing agent (sodium polyacrylate (PA): 0.04%) is shown. From FIG. 3, by pulverizing Mara Mamba ore, which is a porous iron ore, ultrafine particles having a particle size of 45 μm or less generated when the porous structural structure (martite structure) in the ore is selectively pulverized are contained in water. Because of its high dispersibility, it is easy to move in water, agglomerate and adhere around the core particles having a particle diameter of 1 to 3 mm that remain without being pulverized, and between the fine particles constituting the adhered powder, It can be seen that strong pseudo-particles are generated by increasing the adhesion between the particles and the core particles. In addition, by adding moisture and a dispersing agent during granulation, the effect of improving the dispersibility of ultrafine particles having a particle size of 45 μm or less in water is further enhanced. It can be seen that stronger pseudo-particles are generated by moving around and agglomerating around the core particles.

本発明は、以上の知見および技術思想を基になされたものであり、鉄含有原料、副原料、および、炭材からなる焼結原料を焼結機に装入し焼結する焼結鉱の製造方法において、前記焼結原料のうちの少なくとも鉄含有原料を混合、造粒する前に、該鉄含有原料に配合された鉄鉱石のうち、少なくとも水銀圧入法で測定される微細気孔量が0.05cc/g以上である多孔質鉄鉱石を粒径45μm以下の微粉が所定量以上となるように粉砕処理することを特徴とする。これにより、焼結原料の造粒性を低下させる微細気孔量が0.05cc/g以上である多孔質鉄鉱石に多く含有する多孔質構造組織を選択的に破壊し吸水性を抑制するとともに、擬似粒子化に必要な核粒子を残存しつつ少ない添加水分でも分散性が高く、水分の凝集力を高める作用をもつ粒径45μm以下の超微粉粒子を増加させることができ、焼結原料の造粒性および付着力を格段に向上することができる。   The present invention has been made on the basis of the above knowledge and technical idea, and is a sintered ore that charges and sinters a sintered raw material comprising an iron-containing raw material, an auxiliary raw material, and a carbonaceous material into a sintering machine. In the manufacturing method, before mixing and granulating at least the iron-containing raw material among the sintered raw materials, among the iron ores blended in the iron-containing raw material, the amount of fine pores measured by at least the mercury intrusion method is 0. The porous iron ore having a particle size of 0.05 cc / g or more is pulverized so that the fine powder having a particle size of 45 μm or less becomes a predetermined amount or more. Thereby, while selectively destroying the porous structural structure contained in a large amount of porous iron ore having a fine pore amount of 0.05 cc / g or more which lowers the granulation property of the sintered raw material, the water absorption is suppressed, It is possible to increase the number of ultrafine powder particles with a particle size of 45 μm or less, which has high dispersibility even with a small amount of added water while retaining the core particles necessary for pseudo-particle formation, and has the effect of increasing the cohesive strength of water. Graininess and adhesion can be remarkably improved.

また、上記粒径45μm以下の超微粉粒子の添加水分中での分散性をより向上させ、少ない添加水分でより有効かつ効率的に焼結原料の造粒性及び付着力を向上させるために、造粒時に水分とともに粒径45μm以下の微粉粒子の水分中での分散性を高める作用を有する分散剤を添加することが好ましい。   Moreover, in order to further improve the dispersibility in the added water of the ultrafine particles having a particle size of 45 μm or less, and to improve the granulation and adhesion of the sintered raw material more effectively and efficiently with a small amount of added water, It is preferable to add a dispersant having an effect of enhancing the dispersibility of fine powder particles having a particle size of 45 μm or less together with moisture during granulation.

以下に本発明の詳細について説明する。   Details of the present invention will be described below.

本発明は、焼結原料の造粒性を低下させる微細気孔量が0.05cc/g以上である多孔質鉄鉱石を粉砕する際に、該鉄鉱石中の多孔質構造組織を選択的に破壊し吸水性を抑制するとともに、擬似粒子化に必要な核粒子を残存しつつ少ない添加水分でも分散性の高い粒径45μm以下の超微粉粒子を増加させることにより、焼結原料の造粒性を向上させる必要がある。   The present invention selectively destroys the porous structure in the iron ore when pulverizing the porous iron ore having a fine pore amount of 0.05 cc / g or more which lowers the granulation property of the sintered raw material. In addition to suppressing water absorption and increasing the number of ultrafine powder particles with a particle size of 45 μm or less, which is highly dispersible even with a small amount of added water while retaining the core particles necessary for pseudo-particle formation, the granulation properties of the sintering raw material are increased. There is a need to improve.

本発明者らは、多孔質鉄鉱石であるマラマンバ鉱石(微細気孔量:0.091(cc/g)のウェストアンジェラス鉱石)を粉砕後、該粉砕物に水分を添加して造粒する際に、粉砕後の粒径45μm以下の超微粉粒子の含有量および造粒時の添加水分量を変化させて、造粒物の付着力および擬似造粒化性(GI値)の測定結果から、多孔質鉄鉱石の最適な粉砕条件を検討した。   When the present inventors pulverize Mara Mamba ore (West Angelus ore with a fine pore volume: 0.091 (cc / g)), which is a porous iron ore, and then add water to the pulverized product and granulate In addition, by changing the content of ultrafine particles having a particle size of 45 μm or less after pulverization and the amount of added water during granulation, from the measurement results of the adhesion force and pseudo-granulating property (GI value) of the granulated product, The optimum grinding condition of porous iron ore was studied.

図4は多孔質鉄鉱石であるマラマンバ鉱石(微細気孔量:0.091(cc/g)のウェストアンジェラス鉱石))を造粒する際の添加水分量及び粉砕後の粒径45μm以下の微粉含有量と造粒物の付着力との関係を示し、図5は同造粒時の添加水分量及び粉砕後の粒径45μm以下の微粉含有量と造粒物の擬似造粒化性(GI値)との関係を示す。   FIG. 4 shows the amount of added water when granulating maramamba ore (a fine pore amount: 0.091 (cc / g) West Angelus ore), which is a porous iron ore, and a fine powder having a particle size of 45 μm or less after pulverization FIG. 5 shows the relationship between the content and the adhesion of the granulated product. FIG. 5 shows the amount of added water during granulation, the content of fine powder having a particle size of 45 μm or less after pulverization, and the pseudo-granulating property of the granulated product (GI Value).

なお、図4の造粒物の付着力は、引張破断法により測定した。   In addition, the adhesive force of the granulated material of FIG. 4 was measured by the tensile fracture method.

図4および図5から、造粒物の付着力および擬似造粒化性(GI値)がほぼ最大となる添加水分量が5〜7%の条件で比較すると、多孔質鉄鉱石の粉砕後の粒径45μm以下の微粉粒子の含有量が増加するとともに、造粒物の付着力および擬似造粒化性(GI値)は向上することが判る。通常、焼結時に通気性を良好に維持し、焼結鉱の生産性および成品歩留を確保するために必要とされる造粒物の付着力は30g/cm2以上であり、擬似造粒化性(GI値)は80%以上である。また、造粒時の添加水分量の増加は、造粒物を焼結する際に水分の蒸発潜熱の増加に起因して燃料原単位を悪化するだけでなく、焼結原料充填層の燃焼帯下方に形成される水分凝縮帯の範囲を拡げ、水分凝縮帯において擬似粒子が周囲からの多量水分を吸収し、擬似粒子が崩壊することにより、焼結時の通気性悪化を招き、焼結鉱の生産性や成品歩留を低下させる原因となるため、できる限り少ない添加水分で造粒することが好ましい。   From FIG. 4 and FIG. 5, when the amount of added water at which the adhesion force and pseudo-granulating property (GI value) of the granulated product are almost maximized is compared with the condition of 5 to 7%, It can be seen that, as the content of fine particles having a particle size of 45 μm or less increases, the adhesion and pseudo-granulating property (GI value) of the granulated product are improved. Usually, the adhering force of the granulated material required to maintain good air permeability during sintering and ensure the productivity and product yield of sintered ore is 30 g / cm 2 or more, and pseudo granulation The property (GI value) is 80% or more. In addition, the increase in the amount of added water during granulation not only deteriorates the fuel consumption rate due to the increase in the latent heat of vaporization of the water when the granulated product is sintered, but also the combustion zone of the sintered raw material packed bed. Expanding the range of the moisture condensation zone formed below, the pseudo particles absorb a large amount of moisture from the surroundings in the moisture condensation zone, and the pseudo particles collapse, leading to deterioration in air permeability during sintering, and sintering ore Therefore, it is preferable to perform granulation with as little added water as possible.

したがって、図4及び図5の検討結果を基に、本発明では、造粒時の添加水分量5%と比較的少ない水分でも付着力が40g/cm2以上で、擬似造粒化性(GI値)が80%以上となる、強度および造粒性に優れた造粒物が製造できる粉砕条件として、0.05cc/g以上である多孔質鉄鉱石を粉砕後に、粒径45μm以下の微粉含有量が15%以上となるような条件に限定した。   Therefore, based on the examination results of FIGS. 4 and 5, in the present invention, the adhering force is 40 g / cm 2 or more even with a relatively small amount of water added at the time of granulation of 5%, and the pseudo-granulating property (GI value). ) Is 80% or more, and as a pulverization condition for producing a granulated product excellent in strength and granulation property, a fine iron content with a particle size of 45 μm or less is obtained after pulverizing a porous iron ore of 0.05 cc / g or more. Is limited to a condition such that is 15% or more.

これにより、焼結原料の造粒性を低下させる原因となる多孔質構造組織(マータイト組織など)を選択的に破壊し吸水性を抑制するとともに、少ない添加水分でも分散性の高い粒径45μm以下の微粉粒子を増加させ、核粒子への付着力および擬似造粒子化性(GI値)を向上することができ、焼結時の通気性、生産性及び成品歩留を向上することができる。   As a result, a porous structure (such as a martite structure) that causes a decrease in the granulation property of the sintering raw material is selectively destroyed to suppress water absorption, and a particle size of 45 μm or less with high dispersibility even with a small amount of added water. The fine powder particles can be increased, the adhesion to the core particles and the pseudo-particle formation property (GI value) can be improved, and the air permeability, productivity and product yield during sintering can be improved.

次に、図6〜図9を用いて本発明の実施形態を説明する。   Next, an embodiment of the present invention will be described with reference to FIGS.

図6は、鉄含有原料、副原料、および、炭材からなる焼結原料を混合、造粒する焼結鉱の製造において、前記混合、造粒する前に、前記鉄含有原料に配合された鉄鉱石のうち、水銀圧入法で測定される微細気孔量が0.05cc/g以上である多孔質鉄鉱石を粉砕してこの多孔質鉄鉱石中の粒径45μm以下の微粉が15%以上含有する粒度とする場合の実施形態を示す。   FIG. 6 shows the composition of a sintered ore that mixes and granulates a sintered raw material composed of an iron-containing raw material, an auxiliary raw material, and a carbonaceous material, and is mixed with the iron-containing raw material before the mixing and granulating. Among iron ores, porous iron ore with a fine pore volume measured by mercury porosimetry of 0.05 cc / g or more is pulverized, and fine powder with a particle size of 45 μm or less in the porous iron ore contains 15% or more An embodiment in the case of a granularity is shown.

図6に示されるように、先ず、水銀圧入法で測定される微細気孔量が0.05cc/g以上である多孔質鉄鉱石1は、多孔質鉄鉱石1以外のその他鉄含有原料、副原料、および、炭材3と混合、造粒する前に、例えばローラプレス、ボールミル等の粉砕機2を用いて予め粉砕して粉砕物とする。粉砕機の種類および粉砕条件は特に限定する必要はなく、上記本発明で規定する微細気孔量が0.05cc/g以上である多孔質鉄鉱石中の粒径45μm以下の微粉が15%以上含有する粒度となるように粉砕できれば、本発明の目的および効果を達成することができる。例えば、前記の図1に示されたマラマンバ鉱石(微細気孔量:0.091(cc/g)のウェストアンジェラス鉱石)の粉砕前および粉砕後の顕微鏡写真の例では、粉砕機にローラプレスを用い、粒径125mm以下を粒径45μm以下を12%含有するマラマンバ鉱石をロール幅当たり15〜35KN/cm程度の圧力を加えながら、粉砕処理を行うことにより、粒径45μm以下を20%含有する粉砕物とした。   As shown in FIG. 6, first, the porous iron ore 1 having a fine pore volume measured by the mercury intrusion method is 0.05 cc / g or more includes other iron-containing raw materials and auxiliary raw materials other than the porous iron ore 1. And before mixing with the carbonaceous material 3 and granulating, it is pulverized in advance using a pulverizer 2 such as a roller press or a ball mill to obtain a pulverized product. The type of pulverizer and the pulverization conditions are not particularly limited, and 15% or more of fine powder having a particle size of 45 μm or less in the porous iron ore having the fine pore amount specified in the present invention of 0.05 cc / g or more is contained. If it can grind | pulverize so that it may become the particle size to achieve, the objective and effect of this invention can be achieved. For example, in the example of the microphotograph before and after pulverization of the Maramamba ore (West Angelus ore having a fine pore amount: 0.091 (cc / g)) shown in FIG. Using a Maramamba ore containing a grain size of 125 mm or less and a grain size of 45 μm or less, 12%, while applying a pressure of about 15 to 35 KN / cm per roll width, a particle size of 45 μm or less is contained by 20%. A pulverized product was obtained.

前記多孔質鉄鉱石1の粉砕物は、多孔質鉄鉱石1以外のその他鉄含有原料、副原料、および、炭材3とともに造粒機4に供給して混合、造粒した後、焼結機5を用いて焼結を行うことで焼結鉱とすることが出来る。   The pulverized material of the porous iron ore 1 is supplied to the granulator 4 together with other iron-containing raw materials other than the porous iron ore 1, auxiliary materials, and the carbonaceous material 3, mixed and granulated, and then sintered. 5 can be used to make a sintered ore.

なお、図6に示した実施形態は、前記多孔質鉄鉱石1の粉砕物は、これ以外のその他鉄含有原料、副原料、および、炭材3とともに混合、造粒する例を示したが、焼結原料のうち、副原料および炭材は、必ずしも混合、造粒する必要はない。つまり、前記多孔質鉄鉱石1の粉砕物と、これ以外のその他鉄含有原料を混合、造粒した後、副原料および炭材を添加して、造粒機4で焼結する場合、または、前記多孔質鉄鉱石1の粉砕物と、これ以外のその他鉄含有原料と、副原料を混合、造粒した後、炭材を添加して、造粒機4で焼結する場合でも、前記多孔質鉄鉱石1の粉砕により、上述した本発明の目的および効果が発揮される。
また、前記多孔質鉄鉱石1の粉砕は、当該多孔質鉄鉱石1のみを単独で粉砕機2で粉砕する場合の他、前記多孔質鉄鉱石1と、これ以外の鉄含有原料、さらには、副原料を一緒に粉砕機2で粉砕する場合でも、本発明で規定する、前記多孔質鉄鉱石を、該多孔質鉄鉱石中の粒径45μm以下の微粉が15%以上含有する粒度となるように粉砕することで、上述した本発明の目的および効果が発揮される。
The embodiment shown in FIG. 6 shows an example in which the pulverized product of the porous iron ore 1 is mixed and granulated together with other iron-containing raw materials, auxiliary raw materials, and the carbonaceous material 3. Of the sintered raw materials, the auxiliary raw material and the carbonaceous material are not necessarily mixed and granulated. That is, when the pulverized product of the porous iron ore 1 and other iron-containing raw materials other than this are mixed and granulated, the auxiliary raw material and the carbonaceous material are added and sintered by the granulator 4, or Even when the pulverized product of the porous iron ore 1, other iron-containing raw materials other than this, and auxiliary materials are mixed and granulated, and then added with a carbonaceous material and sintered by the granulator 4, By pulverizing the iron ore 1, the above-described objects and effects of the present invention are exhibited.
Moreover, the pulverization of the porous iron ore 1 is not limited to the case where only the porous iron ore 1 is pulverized alone by the pulverizer 2, the porous iron ore 1 and other iron-containing raw materials, Even when the auxiliary raw materials are pulverized together by the pulverizer 2, the porous iron ore specified in the present invention has a particle size containing 15% or more of fine powder having a particle size of 45 μm or less in the porous iron ore. The purpose and effect of the present invention described above are exhibited.

焼結原料を混合、造粒するために用いられる造粒機4としては、一般に焼結鉱プロセスで広く用いられているドラムミキサーや、さらには、パンペレタイザー、ディスクペレタイザーなどの造粒能力が高い造粒機が用いられる。図6に示めすように上記多孔質鉄鉱石1の粉砕物、その他鉄含有原料、副原料、および、炭材3に水を添加して1台の造粒機4のみで良好な混合、造粒を行なうためには、造粒機4としてドラムミキサーを用いることが好ましい。   As the granulator 4 used for mixing and granulating the sintering raw material, the granulating ability of a drum mixer, a pan pelletizer, a disk pelletizer, etc. that are generally widely used in the sintered ore process is high. A granulator is used. As shown in FIG. 6, by adding water to the pulverized product of the porous iron ore 1, other iron-containing raw materials, auxiliary raw materials, and the carbonaceous material 3, only one granulator 4 is used for good mixing and production. In order to perform granulation, it is preferable to use a drum mixer as the granulator 4.

また、上記混合、造粒の際に水とともに分散剤を添加することにより、上記多孔質鉄鉱石1の粉砕物中に含有する粒径45μm以下の超微粉粒子の水分中での分散性を高めることができ、焼結原料の造粒性および付着力がさらに向上するため好ましい。   Moreover, the dispersibility in the water | moisture content of the ultrafine particle | grains of 45 micrometers or less of particle size contained in the ground material of the said porous iron ore 1 is improved by adding a dispersing agent with water at the time of the said mixing and granulation. This is preferable because the granulation property and adhesion of the sintered raw material are further improved.

本発明において、上記分散剤とは、焼結原料の造粒時に水とともに添加することで、粉砕物中に含有する粒径45μm以下の超微粉粒子の水分中での分散性を促進させる作用を有するものであればよく、無機化合物、有機化合物、低分子化合物あるいは高分子化合物に限らず、特に限定されるものではない。   In the present invention, the dispersant is an effect of promoting dispersibility in water of ultrafine particles having a particle diameter of 45 μm or less contained in the pulverized product by adding together with water at the time of granulating the sintered raw material. As long as it has, it is not limited to an inorganic compound, an organic compound, a low molecular compound or a high molecular compound, and is not particularly limited.

本発明において、上記分散剤の効果、つまり、造粒時に前記多孔質鉄鉱石の粉砕物中に含有する粒径45μm以下の微粉粒子の水分中での分散性を促進させ、焼結原料の造粒性および付着力を向上させる効果を得るためには、前記分散剤は、前記混合、造粒する少なくとも鉄含有原料を含み、かつ炭材を除いた焼結原料、例えば、図6に示す場合は、多孔質鉄鉱石1の粉砕物、その他鉄含有原料、および、副原料の合計量に対して0.001質量%〜1質量%の範囲で添加することが好ましい。本発明において、分散剤の使用量は、用いる分散剤の種類並びに使用する製鉄用原料の種類や組み合わせに応じて、前記した分散微粒子量が得られるように適宜設定すればよく、特に限定されるものではないが、製鉄用原料に対し、0.001重量%以上、1重量%以下の範囲内が好ましく、0.005重量%以上、0.5重量%以下の範囲内がより好ましい。上記分散剤の使用量が0.001重量%よりも少ない場合は分散剤の効果が発揮されず、擬似粒化性及び付着力が十分に向上しない。また、分散剤を1重量%以上使用すると、粘性が高くななり、結果的に造粒がうまく行かないことがあるため好ましくない。   In the present invention, the effect of the dispersing agent, that is, the dispersibility in water of fine particles having a particle size of 45 μm or less contained in the pulverized product of the porous iron ore during granulation is promoted, and the sintering raw material is produced. In order to obtain the effect of improving the grain property and adhesion, the dispersant contains at least an iron-containing raw material to be mixed and granulated, and is a sintered raw material excluding carbonaceous materials, for example, as shown in FIG. Is preferably added in the range of 0.001% by mass to 1% by mass with respect to the total amount of the pulverized product of the porous iron ore 1, other iron-containing raw materials, and auxiliary raw materials. In the present invention, the amount of the dispersant used may be set as appropriate so as to obtain the amount of dispersed fine particles according to the type of dispersant used and the type and combination of the raw materials for iron making used, and is particularly limited. Although not intended, it is preferably in the range of 0.001% by weight or more and 1% by weight or less, more preferably in the range of 0.005% by weight or more and 0.5% by weight or less with respect to the raw material for iron making. When the amount of the dispersant used is less than 0.001% by weight, the effect of the dispersant is not exhibited, and the pseudo-granulating property and the adhesive force are not sufficiently improved. Moreover, when 1 weight% or more of a dispersing agent is used, since viscosity becomes high and granulation may not be performed as a result, it is not preferable.

本発明者らは、焼結原料中に含有する200μm以下、特に粒径45μm以下の超微粒子、さらには粒径10μm以下の超微粒子が水分中に均一に分散することで造粒時に添加水分の凝集力を高め、擬似粒子化性および付着力が向上することを実験的に確認し、この超微粒子の水分中での分散し易さを評価するための分散性試験を既に提案している。   The inventors of the present invention have found that ultrafine particles having a particle size of 200 μm or less, particularly 45 μm or less, and even ultrafine particles having a particle size of 10 μm or less contained in the sintering raw material are uniformly dispersed in the water, so Experimentally confirming that the cohesive force is increased and the pseudo-particle property and adhesion force are improved, a dispersibility test for evaluating the ease of dispersion of the ultrafine particles in water has already been proposed.

この分散性試験は、焼結原料を所定の割合で水に分散させ、所定時間経過後、水中に浮遊(分散)している微粒子の量(分散微粒子量)を測定する方法であり、このときの分散微粒子量が、水に分散させた上記焼結原料の合計に対して2重量%以上となる場合に擬似粒化性および付着力が向上することを確認している。   This dispersibility test is a method in which a sintering raw material is dispersed in water at a predetermined ratio, and the amount of fine particles suspended (dispersed) in water after a predetermined time (dispersed fine particle amount) is measured. It has been confirmed that when the amount of dispersed fine particles is 2% by weight or more based on the total amount of the sintered raw materials dispersed in water, the pseudo-granulating property and the adhesion force are improved.

上記分散性試験は、具体的には、以下の方法により実施される。先ず、焼結原料を100mlのメスシリンダーに固形分で10gとなるように採取し、これに全量で100mlとなるようにイオン交換水を加えて10秒間撹拌した後、10分間放置後に水中に浮遊(分散)している微粒子の量(分散微粒子量)を測定する。焼結原料中に含有する粒径の大きな粒子や分散安定化していない粒子は10分間放置する間に沈降するため、10分間放置後の分散液を全て抜き取り、この残りの沈降堆積した粒子を110℃の乾燥機を用いて蒸発乾固させ、その乾燥重量を測定し、減量分を計算することで、上記分散液中に浮遊(分散)していた微粒子の重量(分散微粒子量)が求められる。   Specifically, the dispersibility test is carried out by the following method. First, a sintering raw material is collected in a 100 ml measuring cylinder so that the solid content becomes 10 g, and ion-exchanged water is added to this so that the total amount becomes 100 ml and stirred for 10 seconds. The amount of dispersed fine particles (dispersed fine particle amount) is measured. Since the particles having a large particle size and the particles which are not dispersion-stabilized contained in the sintering raw material settle while being left to stand for 10 minutes, all of the dispersion liquid after being left for 10 minutes is extracted, and the remaining sedimented particles are set to 110. By evaporating to dryness using a drier at 0 ° C., measuring the dry weight, and calculating the weight loss, the weight of the fine particles suspended (dispersed) in the dispersion can be obtained. .

この分散性試験により、本発明における上記多孔質鉄鉱石の粉砕物中に含有する粒径45μm以下の微粉粒子の水分中での分散性を評価することができる。   By this dispersibility test, the dispersibility in water of fine powder particles having a particle diameter of 45 μm or less contained in the pulverized product of the porous iron ore in the present invention can be evaluated.

したがって、本発明において、上記分散剤の添加による造粒性向上効果をより確実なものとするためには、上記分散性試験、つまり、分散剤と、前記混合、造粒する少なくとも鉄含有原料を含み、かつ炭材を除いた焼結原料、例えば、図6に示す場合は、多孔質鉄鉱石1の粉砕物、その他鉄含有原料、および、副原料とを混合した後、該混合組成物を100mlのメスシリンダーに固形分で10gとなるように採取し、これに全量で100mlとなるようにイオン交換水を加えて10秒間攪拌した後、10分間放置後に水中に浮遊している微粒子の量を測定し、該微粒子の量が前記混合組成物の固形分の2重量%以上となるように、前記混合、造粒する少なくとも鉄含有原料を含み、かつ炭材を除いた焼結原料、例えば、図6に示す場合は、多孔質鉄鉱石1の粉砕物、その他鉄含有原料、および、前記副原料の合計量に対する前記分散剤の添加量を調整することが望ましい。   Therefore, in the present invention, in order to ensure the effect of improving the granulation property by the addition of the dispersant, the dispersibility test, that is, at least the iron-containing raw material to be mixed and granulated is used. Sintering raw material including and excluding the carbonaceous material, for example, in the case shown in FIG. 6, after mixing the pulverized porous iron ore 1, other iron-containing raw material, and auxiliary raw material, The amount of fine particles floating in water after being collected in a 100 ml graduated cylinder so that the solid content is 10 g, adding ion-exchanged water so that the total amount is 100 ml and stirring for 10 seconds. Sintered raw material including at least an iron-containing raw material to be mixed and granulated and excluding carbonaceous material, for example, so that the amount of the fine particles is 2% by weight or more of the solid content of the mixed composition, In the case shown in FIG. Pulverized porous iron ore 1, other iron-containing material, and, it is desirable to adjust the amount of the dispersing agent to the total amount of the auxiliary raw material.

また、本発明における上記分散剤として、酸基および/またはその塩を有する高分子化合物が好適である。この中でも、カルボキシメチルセルロース(CMC)、リグニン(LG)、重量平均分子量が1000以上、10万以下のポリアクリル酸ナトリウム(PA)またはポリアクリル酸アンモニウムが微粒子の分散性が高く、価格的にも安価なため、最も好適に使用できる。   In addition, as the dispersant in the present invention, a polymer compound having an acid group and / or a salt thereof is preferable. Among these, carboxymethyl cellulose (CMC), lignin (LG), sodium polyacrylate (PA) having a weight average molecular weight of 1,000 or more and 100,000 or less, or ammonium polyacrylate has high dispersibility of fine particles and is inexpensive in price. Therefore, it can be used most preferably.

また、図6に示された本発明の実施形態は、多孔質鉄鉱石1の粉砕物、その他鉄含有原料、副原料、および、炭材3に水、好ましくは水と分散剤を添加して1台の造粒機4、好ましくはドラムミキサーで混合、造粒する例を示した。本発明では、焼結原料のうちの少なくとも鉄含有原料、例えば、図6に示す場合は、多孔質鉄鉱石1の粉砕物、その他鉄含有原料、副原料、および、炭材3に、水とともに分散剤を添加して混合、造粒する場合には、多孔質鉄鉱石1の粉砕物中に含有する粒径45μm以下の超微粉粒子と分散剤および水を焼結原料中で均一化させ、造粒機4による造粒の際に粒径45μm以下の超微粉粒子の水分中での分散性を高め、焼結原料の造粒性および付着力を向上させるために、造粒機4の前に混練機を設けてもよい。この場合、造粒時に粒径45μm以下の超微粉粒子の水分中での分散性を高めるためには、分散剤は少なくとも混練機で混合する際に、水とともに添加する必要がある。さらに、造粒機4で造粒する際に、水、または、水と分散剤を添加することは、前記粒径45μm以下の超微粉粒子による効果を向上させるために好ましい。   In the embodiment of the present invention shown in FIG. 6, water, preferably water and a dispersant are added to the pulverized product of porous iron ore 1, other iron-containing raw materials, auxiliary raw materials, and carbonaceous material 3. An example of mixing and granulating with one granulator 4, preferably a drum mixer was shown. In the present invention, at least the iron-containing raw material among the sintered raw materials, for example, in the case shown in FIG. 6, the pulverized product of the porous iron ore 1, other iron-containing raw materials, auxiliary materials, and the carbonaceous material 3 together with water. In the case of adding a dispersant and mixing and granulating, the ultrafine powder particles having a particle size of 45 μm or less, the dispersant and water contained in the pulverized porous iron ore 1 are homogenized in the sintering raw material, In order to increase the dispersibility of ultrafine powder particles having a particle size of 45 μm or less in moisture during granulation by the granulator 4 and to improve the granulation properties and adhesion of the sintered raw material, A kneader may be provided. In this case, in order to improve the dispersibility of ultrafine particles having a particle diameter of 45 μm or less in water during granulation, it is necessary to add the dispersant together with water at least when mixing with a kneader. Furthermore, when granulating with the granulator 4, it is preferable to add water or water and a dispersing agent in order to improve the effect of the ultrafine particles having a particle diameter of 45 μm or less.

混練機としては、レディゲミキサー、ドラムミキサーが用いられる。造粒機4としてドラムミキサーを用い、この造粒機4の前に混練機を設ける場合は、ドラムミキサーは造粒専用として使用することができる。この場合、造粒機4としてドラムミキサーを用い、この造粒機4の前に混練機としてドラムミキサーを設けること、つまり、2台のドラムミキサーを直列に設けて、先のドラムミキサーを混合専用として使用し、後のドラムミキサーを造粒専用として使用することも勿論可能である。   As the kneader, a Redige mixer and a drum mixer are used. When a drum mixer is used as the granulator 4 and a kneader is provided in front of the granulator 4, the drum mixer can be used exclusively for granulation. In this case, a drum mixer is used as the granulator 4, and a drum mixer is provided as a kneader before the granulator 4, that is, two drum mixers are provided in series, and the previous drum mixer is dedicated for mixing. Of course, it is also possible to use the later drum mixer exclusively for granulation.

また、焼結原料中にペレット用微粉鉄鉱石(ペレットフィード)や製鉄ダストなどの微粉鉄原料を多く配合し、0.5mm以下の微粉粒子の含有量が多い焼結原料を造粒する場合には、造粒機4を2台以上直列にして造粒を強化してもよい。この場合の好ましい実施形態は後述する図8で説明する。   In addition, when many fine iron materials such as fine iron ore for pellets (pellet feed) and ironmaking dust are blended in the sintered raw material, and a sintered raw material with a high content of fine powder particles of 0.5 mm or less is granulated May strengthen granulation by connecting two or more granulators 4 in series. A preferred embodiment in this case will be described later with reference to FIG.

また、本発明において、上記多孔質鉄鉱石1は、水銀圧入法で測定される微細気孔量が0.05cc/g以上ある多孔質鉄鉱石であり、この条件に該当する鉄鉱石であれば、鉄鉱石銘柄によらず、本発明における粉砕対象とすることができる。前記微細気孔量が0.05cc/g以上ある多孔質鉄鉱石に該当する鉄鉱石としては、例えば、前記の図10に示される、マウントニューマン(低隣ブロックマン(ヘマタイト鉱石)、図10中H3)、ヤンディ(ピソライト鉱石、図10中P1)、ローブ(ピソライト鉱石、図10中P2)、MAC(マラマンバ鉱石、図10中M1)、ウェストアンジェラス鉱石(マラマンバ鉱石、図10中M2)、サルガオンカ(ゲーサイト鉱石、図10中G)の他、高燐ブロックマン鉱石(ヘマタイト鉱石)、ヘマタイトとマラマンバ鉱石をブレンドしているハマスレーの鉱石などが該当する。   Moreover, in the present invention, the porous iron ore 1 is a porous iron ore having a fine pore amount measured by a mercury intrusion method of 0.05 cc / g or more, and if it is an iron ore corresponding to this condition, Regardless of the iron ore brand, it can be the object of grinding in the present invention. Examples of the iron ore corresponding to the porous iron ore having the fine pore amount of 0.05 cc / g or more include, for example, Mount Newman (low adjacent block man (hematite ore), H3 in FIG. ), Jandi (Pisolite Ore, P1 in FIG. 10), Robe (Pisolite Ore, P2 in FIG. 10), MAC (Malamanba Ore, M1 in FIG. 10), West Angelus Ore (Malamanba Ore, M2 in FIG. 10), Salgaonka In addition to (goethite ore, G in FIG. 10), high phosphorus Brockman ore (hematite ore), Hamasley ore in which hematite and maramamba ore are blended, and the like.

上記のその他鉄含有原料は、本発明において、事前粉砕処理の対象とする上記多孔質鉄鉱石1以外の鉄鉱石、つまり、水銀圧入法で測定される微細気孔量が0.05cc/g未満である鉄鉱石、焼結返鉱、焼結篩下粉、および、製鉄ダストのうちの1種または2種以上からなるものが好ましい。ここで、焼結返鉱および焼結篩下粉は、焼結プロセスで製造された焼結鉱のうちで、所定サイズより小さく成品とならない粉状焼結鉱、および、成品焼結鉱を高炉まで搬送する過程で崩壊した粉状焼結鉱を意味する。また、製鉄ダストとは、製鉄プロセスで発生した製鋼ダストやミルスケールなどの鉄分含有ダストを意味する。   In the present invention, the other iron-containing raw material is an iron ore other than the porous iron ore 1 to be pre-ground in the present invention, that is, the amount of fine pores measured by a mercury intrusion method is less than 0.05 cc / g. What consists of 1 type (s) or 2 or more types among a certain iron ore, sintered refining, sintered under sieve powder, and iron-making dust is preferable. Here, the sintered ore and sintered sieving powder are powdered ores that are smaller than a predetermined size among the sintered ores manufactured by the sintering process, and the product sintered ore is a blast furnace. It means powdered sinter collapsed in the process of transporting up to. Moreover, iron-making dust means iron-containing dusts such as steel-making dust and mill scale generated in the iron-making process.

また、本発明の他の実施形態として、図7に示すように、粉砕機2の前に篩6を配置し、上記多孔質鉄鉱石1を粉砕する前に2〜7mmの篩目で篩い分けし、前記多孔質鉄鉱石の篩下(2〜7mmの篩目以上の粒径)を粉砕機2で粉砕し、粒径45μm以下の微粉が15%以上含有する粒度の粉砕物とし、前記多孔質鉄鉱石の篩上(2〜7mmの篩目以上の粒径)は、そのままの状態で、それぞれ、その他の鉄含有原料、副原料、および、炭材3に配合し、造粒機4に供給して混合、造粒した後、焼結機5を用いて焼結を行うことも出来る。この実施形態によれば、粉砕機2の負荷の軽減が図られることに加え、造粒時に擬似粒子を構成する上での寄与が少ない粒径が0.5〜1mmの中間粒子を粉砕し、粒径45μm以下の微粉粒子を増加することで焼結原料の擬似粒子化性および付着力を向上するために好ましい。図7に示す実施形態として、2未満の篩目で篩い分けした場合にも上記効果は得られるが、篩目が2未満になると、篩い分けする際に、目詰まりが発生し、篩い分けの歩留が低下するか、或いは、作業効率が低下するため、好ましくない。一方、7mm超の篩目で篩い分けした場合には、上記効果は得られなくなる。   As another embodiment of the present invention, as shown in FIG. 7, a sieve 6 is arranged in front of the pulverizer 2, and sieved with a 2 to 7 mm sieve before the porous iron ore 1 is crushed. Then, the sieve of the porous iron ore (particle diameter of 2 to 7 mm or more) is pulverized by a pulverizer 2 to obtain a pulverized product having a particle size of 15% or more of fine powder having a particle size of 45 μm or less, and the porous The fine iron ore sieve (particle diameter of 2-7 mm or more) is blended in the other iron-containing raw material, auxiliary raw material, and carbonaceous material 3 as it is. After supplying, mixing, and granulating, sintering can be performed using the sintering machine 5. According to this embodiment, in addition to the reduction of the load on the pulverizer 2, the intermediate particles having a particle size of 0.5 to 1 mm with little contribution in constituting the pseudo particles during granulation are pulverized, Increasing the number of fine particles having a particle size of 45 μm or less is preferable in order to improve the pseudo-particle property and adhesion of the sintering raw material. In the embodiment shown in FIG. 7, the above-mentioned effect can be obtained when sieving with less than 2 sieves. However, when the sieve mesh is less than 2, clogging occurs when sieving, This is not preferable because the yield decreases or the working efficiency decreases. On the other hand, when sieving with a mesh size exceeding 7 mm, the above effect cannot be obtained.

また、図7に示す実施形態における前記多孔質鉄鉱石の篩下(2〜7mmの篩目以上の粒径)を粉砕する場合に、該多孔質鉄鉱石以外の平均粒径3mm以下の鉄鉱石、および、副原料を粉砕機2に供給し、一緒に粉砕することも可能である。この実施形態は、多孔質鉄鉱石、該多孔質鉄鉱石以外の平均粒径3mm以下の鉄鉱石、および、副原料の内で、造粒時に擬似粒子を構成する上での寄与が少ない粒径が0.5〜1mmの中間粒子を粉砕し、粒径45μm以下の微粉粒子を増加することで焼結原料の擬似粒子化性および付着力を向上するために好ましい。なお、前記多孔質鉄鉱石以外の平均粒径3mm以下の鉄鉱石としては、ペレット用微粉鉄鉱石(ペレットフィード)が好ましい。   In the embodiment shown in FIG. 7, when pulverizing the sieve of the porous iron ore (particle diameter of 2 to 7 mm or more), the iron ore having an average particle diameter of 3 mm or less other than the porous iron ore It is also possible to supply auxiliary materials to the pulverizer 2 and pulverize them together. In this embodiment, among the porous iron ore, the iron ore having an average particle size of 3 mm or less other than the porous iron ore, and the auxiliary raw material, the particle size that contributes little to constituting pseudo particles during granulation Is preferable in order to improve the pseudo-particle property and adhesion of the sintered raw material by pulverizing 0.5 to 1 mm of intermediate particles and increasing fine particles having a particle size of 45 μm or less. In addition, as an iron ore with an average particle diameter of 3 mm or less other than the said porous iron ore, the fine iron ore for pellets (pellet feed) is preferable.

また、本発明の他の実施形態として、図8に示すように、多孔質鉄鉱石1を粉砕機2で粒径45μm以下の微粉が15%以上含有する粒度となるように粉砕し、この粉砕物を、多孔質鉄鉱石1以外のその他鉄含有原料、および、副原料9と配合し、混練機7に供給して水と分散剤を添加して焼結原料中に水と分散剤が均一になるように混合した後、1段目の造粒機4−1に供給して1次造粒し、造粒物とする。さらに、得られた造粒物に炭材または炭材とCaO含有副原料8を添加し、2段目の造粒機4−2に供給して2次造粒することで前記造粒物表面に炭材または炭材とCaO含有副原料が外装された造粒物を製造し、焼結機3で焼結する。   Further, as another embodiment of the present invention, as shown in FIG. 8, the porous iron ore 1 is pulverized by a pulverizer 2 so as to have a particle size containing 15% or more of fine powder having a particle size of 45 μm or less. The material is blended with other iron-containing raw materials other than the porous iron ore 1 and the auxiliary raw material 9 and supplied to the kneader 7 to add water and a dispersing agent so that the water and the dispersing agent are uniform in the sintering raw material. After being mixed, the mixture is supplied to the first-stage granulator 4-1 for primary granulation to obtain a granulated product. Furthermore, the surface of the granulated material is obtained by adding a carbonaceous material or a carbonaceous material and a CaO-containing auxiliary raw material 8 to the obtained granulated material, and supplying it to the second-stage granulator 4-2 for secondary granulation. A granulated material coated with a carbon material or a carbon material and a CaO-containing auxiliary material is manufactured and sintered with a sintering machine 3.

なお、混練機7としてレディゲミキサー、ドラムミキサーを用いられるが、レディゲミキサーがより好ましい。また、造粒機4−1、造粒機4−2として、ドラムミキサー、ディスクペレタイザー、または、パンペレタイザーのいずれかが使用できる。   In addition, although a Redige mixer and a drum mixer are used as the kneader 7, the Redige mixer is more preferable. Moreover, any of a drum mixer, a disk pelletizer, or a pan pelletizer can be used as the granulator 4-1 and the granulator 4-2.

この実施形態は、多孔質鉄鉱石1からなる粉砕物を、ペレット用微粉鉄鉱石(ペレットフィード)や製鉄ダストなどの微粉含有量が多いその他鉄含有原料と副原料に配合し、造粒する場合に有効な方法である。本発明によれば、多孔質鉄鉱石1からなる粉砕物中に含有する水分中での分散性が高い粒径45μm以下の超微粉子を活用し、当該超微粉子の水分中での均一分散により水分の凝集力が高められるため、焼結原料中の粒径0.5mm以下の微粉が多くても、焼結原料の擬似造粒性および付着力の向上効果は得られるが、本実施形態により、さらに、微粉含有量が高い焼結原料の造粒物を良好に焼結する際の以下の課題を解決することができる。   In this embodiment, a pulverized product made of porous iron ore 1 is blended with other iron-containing raw materials and auxiliary raw materials having a high fine powder content such as fine iron ore for pellets (pellet feed) and iron-making dust, and granulated. This is an effective method. According to the present invention, ultrafine powder having a particle size of 45 μm or less, which is highly dispersible in moisture contained in the pulverized product made of porous iron ore 1, is utilized, and the ultrafine powder is uniformly dispersed in moisture. In this embodiment, the cohesive force of moisture is enhanced by the above, so that even if there are many fine powders having a particle size of 0.5 mm or less in the sintered raw material, the effect of improving the pseudo-granulating property and adhesion of the sintered raw material can be obtained. Thus, the following problems can be solved when the granulated product of the sintering raw material having a high fine powder content is satisfactorily sintered.

つまり、前記多孔質鉄鉱石1と、多孔質鉄鉱石1以外のその他鉄含有原料、および、副原料9とからなる微粉含有量が高い焼結原料を前記混練機7に供給し、1段目の造粒機4−1で1次造粒して得られる造粒物は、比較的密度の高い造粒物となるため、そのまま通常の焼結機5で焼成する場合は、造粒物内部への酸素の拡散が阻害され、内部の炭材の燃焼が遅れる可能性が生じる。この問題を解決するため、この実施形態では、1段目の造粒機4−1で1次造粒した後、さらに、炭材8を添加して2段目の造粒機4−2で2次造粒することにより、表層に炭材8が外装された造粒物とし、焼結機5で焼結させる。これにより、焼結時に、造粒物表層の炭材の燃焼性が向上し、表層からの燃焼熱の伝達により造粒物内部は良好に焼成される。   That is, a sintered raw material having a high fine powder content comprising the porous iron ore 1, other iron-containing raw materials other than the porous iron ore 1, and the auxiliary raw material 9 is supplied to the kneader 7. Since the granulated product obtained by primary granulation with the granulator 4-1 is a granulated product having a relatively high density, when it is baked as it is with an ordinary sintering machine 5, Oxygen diffusion into the water is hindered, and combustion of internal carbon materials may be delayed. In order to solve this problem, in this embodiment, after the primary granulation by the first-stage granulator 4-1, the carbon material 8 is further added and the second-stage granulator 4-2 is used. By performing secondary granulation, a granulated product in which the carbon material 8 is sheathed on the surface layer is formed and sintered by the sintering machine 5. Thereby, at the time of sintering, the combustibility of the carbonaceous material on the surface of the granulated material is improved, and the inside of the granulated material is fired satisfactorily by the transfer of combustion heat from the surface layer.

また、造粒物表層に炭材とCaO含有副原料8の両方を外装した場合には、造粒物表層の炭材の燃焼とともに造粒物表層で還元性に優れたカルシウムフェライト融液の生成が促進され、この結合相による造粒物間が結合された焼結鉱が製造される。この造粒物間がカルシウムフェライト結合相で固着した焼結鉱は高炉で使用する際の還元性が良好な焼結鉱となる。CaO含有副原料としては、粉石灰石、消石灰、または、生石灰が使用できる。
なお、図8に示す実施形態において、多孔質鉄鉱石1の粉砕物と、その他鉄含有原料、および、副原料9を混練機7で混合する際に、多孔質鉄鉱石1の粉砕物中に含有する粒径45μm以下の超微粉粒子と分散剤および水を焼結原料中で均一化させ、造粒機4−1による1次造粒および造粒機4−2による2次造粒の際に、粒径45μm以下の超微粉粒子の水分中での分散性を高め、分散剤は少なくとも混練機7で混合する際に、水とともに添加する必要がある。
In addition, when both the carbonaceous material and the CaO-containing auxiliary raw material 8 are packaged on the surface of the granulated product, a calcium ferrite melt having excellent reducibility is produced along with the combustion of the carbonized material on the surface of the granulated product. Is promoted, and a sintered ore in which the granulated material is bonded by this bonded phase is produced. The sintered ore in which the granulated material is fixed with a calcium ferrite binder phase becomes a sintered ore with good reducibility when used in a blast furnace. As the CaO-containing auxiliary material, limestone, slaked lime, or quicklime can be used.
In the embodiment shown in FIG. 8, when the pulverized product of the porous iron ore 1, the other iron-containing raw material, and the auxiliary raw material 9 are mixed by the kneader 7, During the primary granulation by the granulator 4-1 and the secondary granulation by the granulator 4-2, the ultrafine powder particles having a particle size of 45 μm or less, the dispersant and water are homogenized in the sintering raw material. In addition, it is necessary to increase the dispersibility of ultrafine particles having a particle diameter of 45 μm or less in water, and to add the dispersant together with water at least when mixing with the kneader 7.

さらに、造粒機4−1による1次造粒、または、造粒機4−2による2次造粒の何れかまたは両方において、水、または、水と分散剤を添加することは、前記粒径45μm以下の超微粉粒子による効果を向上させるために好ましい。   Furthermore, in either or both of the primary granulation by the granulator 4-1 and the secondary granulation by the granulator 4-2, adding water or water and a dispersing agent This is preferable in order to improve the effect of ultrafine powder particles having a diameter of 45 μm or less.

また、上記実施形態において、前記混練7で混合する際に、前記多孔質鉄鉱石1と、多孔質鉄鉱石以外のその他鉄含有原料、および、副原料9に、炭材およびCaO含有副原料の1種または2種10を添加することも可能である。これにより、造粒物の表層添加に比べてその効果は少ないものの、造粒物内部の炭材の燃焼、及び/又は、造粒物内部でのカルシウムフェライト結合相の生成によりそれぞれの造粒物の強度が改善される。   Moreover, in the said embodiment, when mixing by the said kneading | mixing 7, the said iron ore 1 and other iron containing raw materials other than a porous iron ore, and the auxiliary raw material 9 are set to carbonaceous material and CaO containing auxiliary raw material. It is also possible to add one kind or two kinds 10. As a result, although less effective than the addition of the surface layer of the granulated product, each granulated product is produced by burning the carbonaceous material inside the granulated product and / or generating a calcium ferrite binder phase inside the granulated product. The strength of is improved.

図8に示される実施形態において好ましい分散剤の種類および添加量は、上記図6に示される実施形態で説明した通りである。   In the embodiment shown in FIG. 8, preferred types and addition amounts of the dispersant are as described in the embodiment shown in FIG.

以下に本発明の効果を実施例により説明する。なお、本発明は、以下に示した実施例のみに限定されず、上述した本発明の目的および技術思想に反しない限り、以下の条件以外においても効果が得られるものであることは言うまでもない。   The effects of the present invention will be described below with reference to examples. Needless to say, the present invention is not limited to only the examples described below, and the effect can be obtained even under the following conditions as long as the object and technical idea of the present invention described above are not violated.

図6及び図8に示す焼結鉱の製造工程により実施例を行い、図9に示す従来の多孔質鉄鉱石の粉砕処理を行なわない焼結鉱の製造工程により比較例を行なった。   An example was performed by the manufacturing process of the sintered ore shown in FIGS. 6 and 8, and a comparative example was performed by the manufacturing process of the sintered ore shown in FIG.

実施例および比較例で使用した多孔質鉄鉱石以外の鉄含有原料、副原料および炭材などの配合は、表3に示す。実施例および比較例は、多孔質鉄鉱石をそのまま、或いは、表1に示す粉砕条件で粉砕し、この粉砕物を表3に示すその他鉄含有原料および副原料との合計量に対する配合割合で配合した後、表1に示す条件で水分添加のみ、或いは、水分添加とともに分散剤を添加し、造粒した。得られた造粒物については、付着力および擬似造粒化性(GI値)を測定、評価するとともに、さらに造粒物を焼結機で焼結し、この際の生産性の評価も行なった。なお、また、表2に示す、粉砕原料の配合率は、当該粉砕原料と表3に示された粉砕原料以外の焼結原料の合計量に対する割合(質量%)で示す。また、表2に示す、分散剤および水分の添加量は、混合、造粒した粉砕原料と表3に示すその他の焼結原料の合計量に対する割合(質量%)である。また、分散剤でCMCは、カルボキシメチルセルロース、PAはポリアクリル酸ナトリウムを示す。   Table 3 shows the composition of iron-containing raw materials other than the porous iron ore used in Examples and Comparative Examples, auxiliary raw materials, and carbonaceous materials. In Examples and Comparative Examples, porous iron ore is crushed as it is or under the pulverization conditions shown in Table 1, and this pulverized product is blended in a blending ratio with respect to the total amount of other iron-containing raw materials and auxiliary raw materials shown in Table 3. Then, under the conditions shown in Table 1, only the addition of water, or a dispersant was added together with the addition of water, and granulated. The obtained granulated product is measured and evaluated for adhesion and pseudo-granulating property (GI value), and further, the granulated product is sintered with a sintering machine, and the productivity at this time is also evaluated. It was. In addition, the blending ratio of the pulverized raw material shown in Table 2 is expressed as a ratio (mass%) to the total amount of the sintered raw material other than the pulverized raw material and the pulverized raw material shown in Table 3. Moreover, the addition amount of a dispersing agent and water | moisture content shown in Table 2 is a ratio (mass%) with respect to the total amount of the pulverized raw material mixed and granulated and the other sintered raw materials shown in Table 3. In the dispersant, CMC represents carboxymethyl cellulose, and PA represents sodium polyacrylate.

なお、表2の実施例10、実施例11において、水分および分散剤の添加量はそれぞれ混合(7)、1次造粒(4−1)、2次造粒(4−2)の各工程で添加した合計添加量を、粉砕物、その他鉄含有原料および副原料の合計量に対する割合で示したものである。   In addition, in Example 10 and Example 11 of Table 2, the addition amount of a water | moisture content and a dispersing agent is each process of mixing (7), primary granulation (4-1), and secondary granulation (4-2), respectively. The total addition amount added in is shown as a ratio to the total amount of the pulverized product, other iron-containing raw materials, and auxiliary raw materials.

焼結は、焼結面積:400m2、パレット幅5mの焼結機を用い、層厚を600mmとし、コークス配合量3.7%、吸引負圧14.2MPaで行なった。   Sintering was performed using a sintering machine having a sintering area of 400 m 2 and a pallet width of 5 m, a layer thickness of 600 mm, a coke blending amount of 3.7%, and a suction negative pressure of 14.2 MPa.

表1には、焼結原料を造粒して得られた造粒物の付着力および擬似造粒化性(GI値) さらに、焼結の生産率の評価結果を示す。   Table 1 shows the adhesion force and pseudo-granulating property (GI value) of the granulated product obtained by granulating the sintering raw material, and the evaluation results of the sintering production rate.

焼結原料を造粒して得られた造粒物の付着力は、引張破断法により測定し、造粒物の擬似造粒化性(GI値)は、GI(%)=(造粒前の0.25mm以下の原料の比率−造粒後の0.25mm以下の原料の比率)/(造粒前の0.25mm以下の原料の比率)×100から求めた値である。   The adhesion of the granulated product obtained by granulating the sintered raw material is measured by the tensile fracture method, and the pseudo-granulating property (GI value) of the granulated product is GI (%) = (before granulation) The ratio of the raw material of 0.25 mm or less of-the ratio of the raw material of 0.25 mm or less after granulation / (the ratio of the raw material of 0.25 mm or less before granulation) x 100.

表2から判るように、図9に示す従来の方式で多孔質鉄鉱石を粉砕せずに造粒した比較例1の場合には、造粒物の付着力は、21(cm2/g)、GI指数は78.8(%)と低く、焼結の生産性が35.0と低い結果であった。
これに対して、図6または図8に示す本発明の実施形態の範囲内で多孔質鉄鉱石を粉砕処理し造粒した実施例1〜11は、何れも造粒物の付着力は、40(cm2/g)以上、GI指数は80%以上と高く、焼結原料の造粒性を悪化させる多孔質鉄鉱石を粉砕処理することで、焼結原料の造粒性は大幅に改善がなされた。また、比較的少ない水分量で焼結原料の造粒性が向上され、焼結機内での特に水分凝縮帯での崩壊も抑制されたため、焼結の生産性も37(t/d/m2)以上と良好な結果が得られた。
As can be seen from Table 2, in the case of Comparative Example 1 in which the porous iron ore was granulated without being pulverized by the conventional method shown in FIG. 9, the adhesion of the granulated product was 21 (cm 2 / g), The GI index was as low as 78.8 (%), and the productivity of sintering was as low as 35.0.
On the other hand, in Examples 1 to 11 in which the porous iron ore was pulverized and granulated within the scope of the embodiment of the present invention shown in FIG. 6 or FIG. More than (cm2 / g), the GI index is as high as 80% or more, and by granulating the porous iron ore that deteriorates the granulation property of the sintering raw material, the granulation property of the sintering raw material is greatly improved. It was. In addition, the granulation property of the sintering raw material is improved with a relatively small amount of moisture, and the collapse in the moisture condensing zone in the sintering machine is suppressed, so that the sintering productivity is 37 (t / d / m 2). As above, good results were obtained.

本発明の多孔質鉄鉱石であるマラマンバ鉱石の粉砕前(図1(a))と、粉砕後(図1(b))のそれぞれについて顕微鏡観察をした際の断面組織写真を示す。The cross-sectional structure | tissue photograph at the time of carrying out a microscope observation about each before (FIG. 1 (a)) and after grinding | pulverization (FIG.1 (b)) of the maramamba ore which is the porous iron ore of this invention is shown. 本発明の図1の粉砕前(図2(a))および粉砕後(図2(a))のマラマンバ鉱石中のマータイト組織について高倍率で顕微鏡観察した際の断面組織写真を示す。The cross-sectional structure | tissue photograph at the time of carrying out the microscope observation at high magnification about the martite structure | tissue in the maramamba ore before grinding | pulverization (FIG. 2 (a)) of FIG. 1 of this invention and after grinding | pulverization (FIG. 2 (a)) is shown. 本発明の多孔質鉄鉱石であるマラマンバ鉱石を粉砕後、水分を添加して得られた造粒物(図3(a))および水分と分散剤を添加して得られた造粒物の表面を顕微鏡観察した際の顕微鏡写真を示す。The surface of the granulated material obtained by adding water after adding the water after pulverizing the maramamba ore which is the porous iron ore of the present invention (FIG. 3 (a)) The micrograph at the time of observing a microscope is shown. 本発明の多孔質鉄鉱石であるマラマンバ鉱石を造粒する際の添加水分量及び粉砕後の粒径45μm以下の微粉含有量と造粒物の付着力との関係を示した図である。It is the figure which showed the relationship between the additional water content at the time of granulating the maramamba ore which is the porous iron ore of this invention, the fine powder content of the particle size of 45 micrometers or less after a grinding | pulverization, and the adhesive force of a granulated material. 本発明の多孔質鉄鉱石であるマラマンバ鉱石を造粒する際の添加水分量及び粉砕後の粒径45μm以下の微粉含有量と造粒物のGI値(擬似粒子化指数)との関係を示した図である。The relationship between the amount of added water when granulating the maramamba ore, which is the porous iron ore of the present invention, the content of fine powder with a particle size of 45 μm or less after pulverization, and the GI value (pseudo-particle conversion index) of the granulated product is shown. It is a figure. 本発明の焼結原料を用いた焼結鉱の製造工程を示す説明図である。It is explanatory drawing which shows the manufacturing process of the sintered ore using the sintering raw material of this invention. 本発明の焼結原料の製造に際し篩を用いた焼結鉱の製造工程を示す説明図である。It is explanatory drawing which shows the manufacturing process of the sintered ore using the sieve in the case of manufacture of the sintering raw material of this invention. 本発明の焼結原料の製造に際し混合機と2台の造粒機を用いた焼結鉱の製造工程を示す説明図である。It is explanatory drawing which shows the manufacturing process of the sintered ore using the mixer and two granulators in the case of manufacture of the sintering raw material of this invention. 従来の焼結原料を用いた焼結鉱の製造工程を示す図である。It is a figure which shows the manufacturing process of the sintered ore using the conventional sintering raw material. 各種鉄鉱石の微細気孔量と吸水性との関係を示した図である。It is the figure which showed the relationship between the amount of fine pores and water absorption of various iron ores. 各種鉄鉱石の吸水性とGI値(擬似粒子化指数)との関係を示した図である。It is the figure which showed the relationship between the water absorption of various iron ores and GI value (pseudo-particle-izing index).

符号の説明Explanation of symbols

1 多孔質鉄鉱石
2 粉砕機
3 その他鉄含有原料、副原料、及び、炭材
4、4−1、4−2 造粒機
5 焼結機
6 篩
7 混練機
8 炭材、又は炭材とCaO含有副原料
9 多孔質鉄鉱石1以外のその他鉄含有原料および副原料
10 炭材およびCaO含有副原料の1種または2種
DESCRIPTION OF SYMBOLS 1 Porous iron ore 2 Crusher 3 Other iron-containing raw materials, auxiliary raw materials, and carbon materials 4, 4-1, 4-2 Granulator 5 Sintering machine 6 Sieve 7 Kneading machine 8 Carbon materials or carbon materials CaO-containing auxiliary raw material 9 Other iron-containing raw materials and auxiliary raw materials other than porous iron ore 1 Carbon material and CaO-containing auxiliary raw material 1 type or 2 types

Claims (16)

鉄含有原料、副原料、および、炭材からなる焼結原料を焼結機に装入し焼結する焼結鉱の製造方法において、前記焼結原料のうちの少なくとも鉄含有原料を混合、造粒する前に、該鉄含有原料に配合された鉄鉱石のうち、少なくとも水銀圧入法で測定される微細気孔量が0.05cc/g以上である多孔質鉄鉱石を、該多孔質鉄鉱石中の粒径45μm以下の微粉が15%以上含有する粒度となるように粉砕することを特徴とする焼結鉱の製造方法。   In a method for producing a sintered ore in which a sintered raw material comprising iron-containing raw material, auxiliary raw material, and carbonaceous material is charged into a sintering machine and sintered, at least the iron-containing raw material is mixed and produced Before granulating, among the iron ores blended in the iron-containing raw material, at least a porous iron ore having a fine pore volume measured by a mercury intrusion method of 0.05 cc / g or more is contained in the porous iron ore. A method for producing a sintered ore, wherein the fine powder having a particle size of 45 μm or less is pulverized to a particle size containing 15% or more. 前記多孔質鉄鉱石は、粉砕する前に2〜7mmの篩目で篩分けし、該多孔質鉄鉱石の篩下を粉砕することを特徴とする請求項1記載の焼結鉱の製造方法。   The method for producing sintered ore according to claim 1, wherein the porous iron ore is sieved with a 2 to 7 mm sieve before pulverization, and the sieving of the porous iron ore is pulverized. 前記多孔質鉄鉱石の粉砕は、該多孔質鉄鉱石以外の平均粒径3mm以下の鉄鉱石、および、副原料とともに行うことを特徴とする請求項1または2記載の焼結鉱の製造方法。   The method for producing a sintered ore according to claim 1 or 2, wherein the pulverization of the porous iron ore is performed together with an iron ore having an average particle size of 3 mm or less other than the porous iron ore, and an auxiliary material. 前記多孔質鉄鉱石以外の平均粒径3mm以下の鉄鉱石は、ペレット用微粉鉄鉱石であることを特徴とする請求項3記載の焼結鉱の製造方法。   The method for producing a sintered ore according to claim 3, wherein the iron ore having an average particle size of 3 mm or less other than the porous iron ore is a fine iron ore for pellets. 前記多孔質鉄鉱石は、マラマンバ鉱石、高燐ブロックマン鉱石、ピソライト鉱石、低隣ブロックマンの1種または2種以上からなることを特徴とする請求項1〜4の何れかに記載の焼結鉱の製造方法。   The sintering according to any one of claims 1 to 4, wherein the porous iron ore is composed of one or more of maramamba ore, high phosphorus block man ore, pisolite ore, and low adjacent block man. Manufacturing method of ore. 前記混合、造粒は、水を添加してドラムミキサーで混合と造粒を行うことを特徴とする請求項1〜5の何れかに記載の焼結鉱の製造方法。   The method for producing a sintered ore according to any one of claims 1 to 5, wherein the mixing and granulation are performed by adding water and mixing and granulating with a drum mixer. 前記混合、造粒は、水とともに分散剤を添加してドラムミキサーで混合と造粒を行うことを特徴とする請求項1〜5の何れかに記載の焼結鉱の製造方法。   The method for producing a sintered ore according to any one of claims 1 to 5, wherein the mixing and granulation are performed by adding a dispersant together with water and mixing and granulating with a drum mixer. 前記混合、造粒は、水とともに分散剤を添加して混練機で混合した後、ドラムミキサー、ディスクペレタイザー、または、パンペレタイザーのいずれかで造粒を行うことを特徴とする請求項1〜5の何れかに記載の焼結鉱の製造方法。   6. The mixing and granulation are performed by adding a dispersant together with water and mixing with a kneader, and then granulating with any of a drum mixer, a disk pelletizer, or a pan pelletizer. The manufacturing method of the sintered ore in any one of. 前記造粒において、水、または、水と分散剤を添加することを特徴とする請求項8に記載の焼結鉱の製造方法。   The method for producing a sintered ore according to claim 8, wherein water or water and a dispersing agent are added in the granulation. 前記混合、造粒は、水とともに分散剤を添加して混練機で混合し、ドラムミキサー、ディスクペレタイザー、または、パンペレタイザーのいずれかで1次造粒し、さらに、該造粒物に炭材または炭材とCaO含有副原料を添加し、ドラムミキサー、ディスクペレタイザー、または、パンペレタイザーのいずれかで2次造粒することで前記造粒物表面に炭材または炭材とCaO含有副原料を外装することを特徴とする請求項1〜5の何れかに記載の焼結鉱の製造方法。   The mixing and granulation are carried out by adding a dispersant together with water, mixing with a kneader, and performing primary granulation with any of a drum mixer, a disk pelletizer, or a pan pelletizer, and further adding a carbonaceous material to the granulated material. Alternatively, the carbonaceous material and the CaO-containing auxiliary material are added, and the granulated material surface is subjected to secondary granulation by using a drum mixer, a disk pelletizer, or a pan pelletizer, whereby the carbonaceous material or the carbonaceous material and the CaO-containing auxiliary material are added to the surface of the granulated product. The method for producing a sintered ore according to any one of claims 1 to 5, wherein the outer or outer packaging is provided. 前記1次造粒または2次造粒の何れかかまたは両方において、水、または、水と分散剤を添加することを特徴とする請求項10に記載の焼結鉱の製造方法。   The method for producing a sintered ore according to claim 10, wherein water or water and a dispersant are added in either or both of the primary granulation and the secondary granulation. 前記混練機としてレディゲミキサーを用いることを特徴とする請求項8〜11の何れかに記載の焼結鉱の製造方法。   A method of producing a sintered ore according to any one of claims 8 to 11, wherein a Redige mixer is used as the kneader. 前記混練機で混合する際に、炭材およびCaO含有副原料の1種または2種を添加することを特徴とする請求項10〜12の何れかに記載の焼結鉱の製造方法。   The method for producing a sintered ore according to any one of claims 10 to 12, wherein one or two of carbonaceous materials and CaO-containing auxiliary raw materials are added when mixing with the kneader. 前記分散剤は、前記混合、造粒する少なくとも鉄含有原料を含み、かつ炭材を除いた焼結原料の合計量に対して0.001質量%〜1質量%の範囲で添加することを特徴とする特徴とする7〜13の何れかに記載の焼結鉱の製造方法。   The dispersant includes at least an iron-containing raw material to be mixed and granulated, and is added in a range of 0.001% by mass to 1% by mass with respect to the total amount of the sintered raw material excluding the carbonaceous material. The manufacturing method of the sintered ore in any one of 7-13 characterized by these. 前記分散剤と、前記混合、造粒する少なくとも鉄含有原料を含み、かつ炭材を除いた焼結原料を混合した後、該混合組成物を100mlのメスシリンダーに固形分で10gとなるように採取し、これに全量で100mlとなるようにイオン交換水を加えて10秒間攪拌した後、10分間放置後に水中に浮遊している微粒子の量が、前記混合組成物の固形分の2重量%以上となるように、前記混合、造粒する少なくとも鉄含有原料を含み、かつ炭材を除いた焼結原料の合計量に対する前記分散剤の添加量を調整することを特徴とする請求項14記載の焼結鉱の製造方法。   After mixing the dispersing agent and the sintering raw material including at least the iron-containing raw material to be mixed and granulated and excluding the carbonaceous material, the mixed composition is made to be 10 g in a solid content in a 100 ml measuring cylinder. Ion-exchanged water was added to this and added to 100 ml, and the mixture was stirred for 10 seconds. After standing for 10 minutes, the amount of fine particles floating in water was 2% by weight of the solid content of the mixed composition. The amount of the dispersant added to the total amount of the sintered raw material including at least the iron-containing raw material to be mixed and granulated and excluding the carbonaceous material is adjusted as described above. Method for producing sintered ore. 前記分散剤が酸基および/またはその塩を有する高分子化合物であることを特徴とする請求項7〜15の何れかに記載の焼結鉱の製造方法。

The method for producing a sintered ore according to any one of claims 7 to 15, wherein the dispersant is a polymer compound having an acid group and / or a salt thereof.

JP2005333341A 2005-11-17 2005-11-17 Method for producing sintered ore Active JP4746410B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005333341A JP4746410B2 (en) 2005-11-17 2005-11-17 Method for producing sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005333341A JP4746410B2 (en) 2005-11-17 2005-11-17 Method for producing sintered ore

Publications (2)

Publication Number Publication Date
JP2007138244A true JP2007138244A (en) 2007-06-07
JP4746410B2 JP4746410B2 (en) 2011-08-10

Family

ID=38201479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005333341A Active JP4746410B2 (en) 2005-11-17 2005-11-17 Method for producing sintered ore

Country Status (1)

Country Link
JP (1) JP4746410B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010113571A1 (en) * 2009-03-31 2010-10-07 新日本製鐵株式会社 Method of crushing iron ore material
JP2012021213A (en) * 2010-07-16 2012-02-02 Nippon Steel Corp Method for manufacturing sintered ore
JP2013032568A (en) * 2011-08-02 2013-02-14 Nippon Steel & Sumitomo Metal Corp Method of manufacturing sintered ore using fine powder raw material
KR20190117612A (en) 2017-03-31 2019-10-16 제이에프이 스틸 가부시키가이샤 Manufacturing method of granulated sintered raw material and manufacturing method of sintered ore
JP2020066766A (en) * 2018-10-23 2020-04-30 Jfeスチール株式会社 Method for manufacturing sintered ore
WO2020218170A1 (en) * 2019-04-23 2020-10-29 株式会社神戸製鋼所 Method for producing iron ore pellet
JP2020180371A (en) * 2019-04-23 2020-11-05 株式会社神戸製鋼所 Manufacturing method of iron ore pellet
KR20210090241A (en) 2018-12-26 2021-07-19 제이에프이 스틸 가부시키가이샤 Manufacturing method of sintered ore
WO2022259656A1 (en) 2021-06-11 2022-12-15 Jfeスチール株式会社 Ore crushing method and pellet production method
JP7419155B2 (en) 2020-05-07 2024-01-22 株式会社神戸製鋼所 Method for manufacturing iron ore pellets

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002105542A (en) * 2000-10-03 2002-04-10 Nkk Corp Method for producing sintered ore for blast furnace
JP2003277838A (en) * 2002-03-22 2003-10-02 Jfe Steel Kk High crystal water ore used for sintering raw material for blast furnace, sintering raw material for blast furnace and its producing method
JP2003293043A (en) * 2002-04-04 2003-10-15 Jfe Steel Kk Method for producing sintered ore for blast furnace
JP2004137596A (en) * 2002-08-21 2004-05-13 Nippon Steel Corp Method for granulating raw material to be sintered containing maramanba ore

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002105542A (en) * 2000-10-03 2002-04-10 Nkk Corp Method for producing sintered ore for blast furnace
JP2003277838A (en) * 2002-03-22 2003-10-02 Jfe Steel Kk High crystal water ore used for sintering raw material for blast furnace, sintering raw material for blast furnace and its producing method
JP2003293043A (en) * 2002-04-04 2003-10-15 Jfe Steel Kk Method for producing sintered ore for blast furnace
JP2004137596A (en) * 2002-08-21 2004-05-13 Nippon Steel Corp Method for granulating raw material to be sintered containing maramanba ore

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4795484B2 (en) * 2009-03-31 2011-10-19 新日本製鐵株式会社 Iron ore raw material grinding method
CN102378821A (en) * 2009-03-31 2012-03-14 新日本制铁株式会社 Method of crushing iron ore material
KR101377278B1 (en) * 2009-03-31 2014-03-24 신닛테츠스미킨 카부시키카이샤 Method of crushing iron ore material
WO2010113571A1 (en) * 2009-03-31 2010-10-07 新日本製鐵株式会社 Method of crushing iron ore material
JP2012021213A (en) * 2010-07-16 2012-02-02 Nippon Steel Corp Method for manufacturing sintered ore
JP2013032568A (en) * 2011-08-02 2013-02-14 Nippon Steel & Sumitomo Metal Corp Method of manufacturing sintered ore using fine powder raw material
KR20210151258A (en) 2017-03-31 2021-12-13 제이에프이 스틸 가부시키가이샤 Method for manufacturing granulated sintering raw material and method for manufacturing sintered ore
KR20190117612A (en) 2017-03-31 2019-10-16 제이에프이 스틸 가부시키가이샤 Manufacturing method of granulated sintered raw material and manufacturing method of sintered ore
JP7014127B2 (en) 2018-10-23 2022-02-01 Jfeスチール株式会社 Sintered ore manufacturing method
JP2020066766A (en) * 2018-10-23 2020-04-30 Jfeスチール株式会社 Method for manufacturing sintered ore
KR20210090241A (en) 2018-12-26 2021-07-19 제이에프이 스틸 가부시키가이샤 Manufacturing method of sintered ore
JP2020180371A (en) * 2019-04-23 2020-11-05 株式会社神戸製鋼所 Manufacturing method of iron ore pellet
WO2020218170A1 (en) * 2019-04-23 2020-10-29 株式会社神戸製鋼所 Method for producing iron ore pellet
JP7366832B2 (en) 2019-04-23 2023-10-23 株式会社神戸製鋼所 Method for manufacturing iron ore pellets
JP7419155B2 (en) 2020-05-07 2024-01-22 株式会社神戸製鋼所 Method for manufacturing iron ore pellets
WO2022259656A1 (en) 2021-06-11 2022-12-15 Jfeスチール株式会社 Ore crushing method and pellet production method

Also Published As

Publication number Publication date
JP4746410B2 (en) 2011-08-10

Similar Documents

Publication Publication Date Title
JP4746410B2 (en) Method for producing sintered ore
JP5000366B2 (en) Method for producing sintered ore
Zhu et al. Iron ore pelletization
JP5464317B2 (en) Manufacturing method of forming raw material for sinter production
CN102206744B (en) Method for granulating sinter mixture
CN103114201B (en) Agglomeration method for iron containing dust slime of iron and steel plants
CN106488990B (en) The manufacturing method of particle and the manufacturing method of iron-nickel alloy
KR102189069B1 (en) Method for manufacturing sintered ore
Kotta et al. Effect of molasses binder on the physical and mechanical properties of iron ore pellets
CN105274325B (en) A method of realizing super sintering at deep bed
CN101381809A (en) Method for preparing sintering ore of vanadium-titanium magnetite ore
JP2003129142A (en) Method for manufacturing agglomerated product of oxidized metal
CN102137944A (en) Process to produce manganese pellets from non-calcinated manganese ore and agglomerate obtained by this process
JP2016191122A (en) Method for producing sintered ore
WO2013161653A1 (en) Metal iron-containing sintered body
JP2007162127A (en) Method for pretreating raw material for sintering, and method for manufacturing sintered ore
CN101994002A (en) Method for sintering ore blending of Jianshan concentrate fines and limonite
CN107849633B (en) The manufacturing method of sinter
JP2010138445A (en) Method for preliminarily treating granulated raw material to be sintered
JP6036295B2 (en) Pretreatment method of sintering raw materials
CN114058763B (en) Preparation method of high-compressibility reduced iron powder
CN106661667A (en) Method for smelting nickel oxide ore and method for charging pellets
AU2003202538B2 (en) Method for making reduced iron
JP5517501B2 (en) Method for producing sintered ore
EP2980232B1 (en) Method for recycling iron-containing by-products discharged from coal-based ironmaking process, system used therefor, and direct-reduced iron agglomeration system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110513

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4746410

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350