JP5517501B2 - Method for producing sintered ore - Google Patents

Method for producing sintered ore Download PDF

Info

Publication number
JP5517501B2
JP5517501B2 JP2009149121A JP2009149121A JP5517501B2 JP 5517501 B2 JP5517501 B2 JP 5517501B2 JP 2009149121 A JP2009149121 A JP 2009149121A JP 2009149121 A JP2009149121 A JP 2009149121A JP 5517501 B2 JP5517501 B2 JP 5517501B2
Authority
JP
Japan
Prior art keywords
granulated product
granulated
raw material
strength
porosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009149121A
Other languages
Japanese (ja)
Other versions
JP2011006722A (en
Inventor
正則 中野
清太 上川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2009149121A priority Critical patent/JP5517501B2/en
Publication of JP2011006722A publication Critical patent/JP2011006722A/en
Application granted granted Critical
Publication of JP5517501B2 publication Critical patent/JP5517501B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、高炉用原料である焼結鉱の製造方法に関し、特に、焼結用の造粒物として、比較的細かい原料を選択して造粒した造粒物を使用する場合の焼結鉱の製造方法に関するものである。   The present invention relates to a method for producing sintered ore that is a raw material for a blast furnace, and in particular, as a granulated product for sintering, a sintered ore in the case of using a granulated product that is granulated by selecting a relatively fine raw material. It is related with the manufacturing method.

焼結鉱の製造において、焼結機における通気性を改善し、生産性を向上させるために、鉄鉱石、副原料、燃料等からなる焼結原料を混合し、少量の水を添加して造粒機で造粒して擬似粒子化する等の事前処理が行われている。   In the production of sintered ore, in order to improve the air permeability in the sintering machine and improve the productivity, the sintering raw material consisting of iron ore, auxiliary raw material, fuel, etc. is mixed and a small amount of water is added to make it. Pre-processing such as granulation by a granulator to make pseudo particles is performed.

近年では、従来主流として使用されていた赤鉄鉱等の鉄鉱石の供給量が減少しており、その代わりに、微粉が多く造粒性の悪い他の鉄鉱石の使用量が増大している。また、圧延スケール粉や製鉄ダストなど、製鉄所において発生する鉄分を多く含む粉状の副産物を焼結原料として利用することも増加している。   In recent years, the supply amount of iron ore such as hematite, which has been used as the mainstream in the past, has decreased, and instead, the use amount of other iron ores with much fine powder and poor granulation property has increased. In addition, the use of powdery by-products containing a large amount of iron generated at steelworks, such as rolling scale powder and iron dust, is increasing as a sintering raw material.

このため、鉄鉱石、副原料、燃料等の焼結原料を混合し造粒処理する従来の主造粒ラインとは別に、通常よりも造粒機能の高い設備を配置して比較的細かい原料を選択して造粒処理できる選択造粒ラインを設け、このラインで、難造粒性の鉄鉱石や粉状の副産物を造粒し、この造粒物を、主造粒ラインで造粒された造粒物と混ぜて焼結機に装入することにより、焼結機の通気性を向上させることが行われている(例えば、特許文献1、2参照)。   For this reason, apart from the conventional main granulation line that mixes and granulates sintered raw materials such as iron ore, secondary raw materials, and fuel, equipment with a higher granulation function than usual is arranged to provide relatively fine raw materials. A selective granulation line that can be selected and granulated is provided. In this line, difficult-to-granulate iron ore and powdery by-products are granulated, and this granulated product is granulated in the main granulation line. The air permeability of the sintering machine is improved by mixing with the granulated material and inserting it into the sintering machine (see, for example, Patent Documents 1 and 2).

さらに、造粒物として、熱源となる炭材を内部に含むペレット(含炭ペレット)を、通常の造粒ラインにより造粒された焼結原料に混合することも行われており(例えば、特許文献3、4参照)、そのようなペレットの製造にも選択造粒ラインが使用されている。   Furthermore, as a granulated product, a pellet (carbon-containing pellet) containing a carbon material serving as a heat source is mixed with a sintered raw material granulated by a normal granulation line (for example, patents). References 3 and 4), selective granulation lines are also used in the production of such pellets.

このような従来の造粒ラインとは別途に設けられた選択造粒ラインで、主として粉状の原料を造粒する場合、造粒後、焼結機までに搬送されるまでの間で潰れないように、結合材(バインダ)を用いて造粒して必要な強度を確保している(特許文献2参照)。
しかし、造粒物が搬送の際に潰れない強度を有していても、焼結時に急激な加熱を受けると、造粒物中の水分が蒸気となって爆裂することがあり、爆裂により造粒物が粉化すると、焼結機における通気性を阻害し、生産性を低下させるという問題があった。
In such a selective granulation line provided separately from the conventional granulation line, when mainly granulating powdery raw material, it is not crushed until it is conveyed to the sintering machine after granulation. Thus, it is granulated using a binder (binder) to ensure the required strength (see Patent Document 2).
However, even if the granulated product has strength not to be crushed during transportation, if the granulated product is subjected to rapid heating during sintering, the moisture in the granulated product may explode as steam, and the granulated product may explode. When the particles are pulverized, there is a problem that air permeability in the sintering machine is hindered and productivity is lowered.

特開平6−57340号公報JP-A-6-57340 特開2005−350770号公報JP 2005-350770 A 特開平10−219361号公報JP-A-10-219361 特開2007−191748号公報JP 2007-191748 A

そこで、本発明は、従来の造粒ラインとは別途に設けられた選択造粒ラインで、主として粉状の原料を用いて造粒した造粒物が、焼結時に急激な加熱を受けても爆裂しないようにして、焼結機における通気性を阻害し、生産性を低下させることがないようにすることを課題とする。   Therefore, the present invention is a selective granulation line provided separately from the conventional granulation line, and the granulated product granulated mainly using a powdery raw material is subjected to rapid heating during sintering. It is an object of the present invention to prevent explosion so that air permeability in the sintering machine is hindered and productivity is not lowered.

上記の選択造粒ラインで別途に造粒した造粒物の爆裂を防止するには、その造粒物の強度を爆裂に耐え得る強度にすれば良いが、そのため結合材の量を増加すると、粉鉱石やダストの添加量が減少し、コストが増加する。
そこで、種々調査した結果、爆裂を防止するには、造粒物の強度ばかりでなく、造粒物の気孔率が大きな影響を持っていることを新たに見出し、この点から更に検討して本発明に到達した。
In order to prevent the explosion of the granulated product separately granulated in the above selective granulation line, the strength of the granulated product may be set to a strength that can withstand the explosion, but when the amount of the binder is increased, The amount of fine ore and dust added is reduced and costs are increased.
Therefore, as a result of various investigations, in order to prevent explosion, not only the strength of the granulated material but also the porosity of the granulated material has been found to have a great influence. The invention has been reached.

そのようにしてなされた本発明の要旨は、以下のとおりである。
(1)鉄鉱石原料、副原料及び燃料を含む配合原料を混合造粒した第1の造粒物に、粉鉄鉱石とダストの1種以上と炭材含有原料に結合材を加えて造粒した第2の造粒物を混合し、混合されたこれらの造粒物を焼結機に装入して焼結する焼結鉱の製造方法において、
第2の造粒物の気孔率と強度が、
(a)気孔率が33%以上で、かつ強度が11.6Kg/cm以上の範囲、あるいは、
(b)気孔率が29.1%以上で、かつ強度が20Kg/cm以上の範囲、
のいずれかを満たすことを特徴とする焼結鉱の製造方法。
(2)前記第2の造粒物の気孔率を、炭材含有原料の添加量によって前記範囲に調整することを特徴とする(1)に記載の焼結鉱の製造方法。
(3)前記第2の造粒物を、造粒した後に乾燥、あるいは、養生してから第1の造粒物に混合することを特徴とする(1)または(2)に記載の焼結鉱の製造方法。
The gist of the present invention thus made is as follows.
(1) A first granulated material obtained by mixing and granulating a blended raw material containing an iron ore raw material, auxiliary raw material and fuel, and granulating by adding a binder to the powdered iron ore and at least one kind of dust and a carbonaceous material-containing raw material. In the method for producing a sintered ore, the second granulated product is mixed, and the mixed granulated product is charged into a sintering machine and sintered.
The porosity and strength of the second granulated product are
(A) The porosity is 33% or more and the strength is 11.6 Kg / cm 2 or more, or
(B) A porosity of 29.1 % or more and a strength of 20 Kg / cm 2 or more,
A method for producing a sintered ore characterized by satisfying any of the above.
(2) The method for producing a sintered ore according to (1), wherein the porosity of the second granulated product is adjusted to the above range by the amount of the carbonaceous material-containing raw material added.
(3) The sintered product according to (1) or (2), wherein the second granulated product is granulated, dried or cured, and then mixed with the first granulated product. Manufacturing method of ore.

本発明によれば、通常の焼結原料を用いて通常の造粒ラインで造粒された造粒物とは別に、選択造粒ラインで主として粉状の原料を選択して造粒された造粒物を混合して焼結鉱を製造する際、選択造粒ラインで造粒された造粒物が、搬送の際に潰れない強度を有し、かつ、焼結時に急激な加熱を受けても爆裂することがないので、焼結機における通気性を阻害することがなく、生産性を低下させずに粉状の原料や難造粒性の原料を有効に利用することができる。   According to the present invention, a granulation granulated mainly by selecting a powdery raw material in a selective granulation line separately from a granulated product granulated in a normal granulation line using a normal sintering raw material. When producing sintered ore by mixing granules, the granulated product granulated in the selective granulation line has a strength that does not collapse during transportation, and is subjected to rapid heating during sintering. Since no explosion occurs, the air permeability in the sintering machine is not hindered, and the powdery raw material and the hardly granulated raw material can be used effectively without reducing the productivity.

粒状物の爆裂の有無に対する造粒物の気孔率と強度の関係を示す図である。It is a figure which shows the relationship between the porosity of a granulated material, and intensity | strength with respect to the presence or absence of the explosion of a granular material. 本発明に係る焼結鉱の製造方法を実施するための製造ラインの1例を示す図である。It is a figure which shows one example of the manufacturing line for enforcing the manufacturing method of the sintered ore which concerns on this invention.

本発明者は、上記のように、選択造粒ラインで別途に造粒した造粒物の爆裂には、造粒物の強度ばかりでなく、造粒物の気孔率が大きな影響を持っていることを新たに見出した。以下、そのような知見が得られた実験について説明する。   As described above, the present inventors have a great influence not only on the strength of the granulated product but also on the porosity of the granulated product in the explosion of the granulated product separately granulated in the selective granulation line. I found a new thing. Hereinafter, an experiment in which such knowledge is obtained will be described.

焼結原料に混合される造粒物の爆裂性を調査するために、高炉ガス灰、焼結ダスト、転炉ダストの3種の製鉄ダストをセメントで結合して造粒物とする際、炭素含有量及び強度を種々調整した造粒物を作成した。造粒物の炭素含有量は、他の製鉄ダストに比べて炭素含有量が高い高炉ガス灰の量を変えて調整し、また、造粒物の強度は、セメント配合量や養生日数を変えて調整した。造粒物の気孔率は、炭素含有量を調整することにより変化するとともに、セメント配合量や養生日数によっても変化していた。   In order to investigate the explosiveness of the granulated material mixed with the sintering raw material, when combining three types of ironmaking dust, blast furnace gas ash, sintered dust, and converter dust, with cement, Granules with various contents and strengths were prepared. The carbon content of the granulated product is adjusted by changing the amount of blast furnace gas ash, which has a higher carbon content than other steelmaking dusts, and the strength of the granulated product is changed by changing the cement blending amount and the number of days of curing. It was adjusted. The porosity of the granulated product was changed by adjusting the carbon content, and was also changed by the amount of cement blended and the number of days of curing.

このようにして作成した造粒物のなかから、3〜6mmの粒径のものを篩分けして試験体とした。
一部の試験体について、造粒物の圧壊強度と気孔率を測定した。また、残りの試験体から5粒選び、造粒時の加水状態を再現するために水中に浸した後、アルミナボートにのせて、1310℃に保定した電気炉中に装入した。この時、個々の粒状物粒子は1分で1100℃に達した。1分後、アルミナボードを炉から取り出し、爆裂した造粒物の個数を数えて、3個以上破壊していた場合を爆裂、2個以内の場合を爆裂なしと判定した。
From the granulated material thus prepared, those having a particle diameter of 3 to 6 mm were sieved to obtain test specimens.
About some test bodies, the crushing strength and porosity of the granulated material were measured. Further, 5 grains were selected from the remaining specimens, soaked in water to reproduce the hydrated state at the time of granulation, placed on an alumina boat, and placed in an electric furnace maintained at 1310 ° C. At this time, the individual granular particles reached 1100 ° C. in 1 minute. One minute later, the alumina board was taken out of the furnace, the number of explosive granules was counted, and when 3 or more pieces were destroyed, it was determined that no explosion occurred when 2 or less pieces were destroyed.

以上の実験結果を、造粒物の気孔率と強度によって整理して図1に示す。爆裂ありを○で、爆裂なしを●で示すが、爆裂と判定した粒状物の範囲は、気孔率33vo1%未満かつ強度20kg/cm未満のものであった。
このことより、比較的微細な焼結原料を用いて造粒しても、その造粒物の気孔率と強度を少なくとも上記の爆裂範囲を避けて造粒することにより、焼結の際の爆裂を防ぐことができることがわかった。
The above experimental results are shown in FIG. 1 organized by the porosity and strength of the granulated product. The presence of explosion was indicated by ◯, and the absence of explosion was indicated by ●, but the range of the particulate matter determined to be explosion was a porosity of less than 33 vo 1% and a strength of less than 20 kg / cm 2 .
From this, even if granulation is performed using a relatively fine sintering raw material, the porosity and strength of the granulated product are granulated while avoiding at least the explosion range described above, so that the explosion during the sintering is performed. It was found that can be prevented.

造粒物の爆裂は、焼結時の急激な加熱により造粒物内部の水分が急速に気化し、それにともなって内圧が急速に上昇するためと考えられる。その際、造粒物の気孔率が大きいほど水蒸気の放散が容易となり内圧の上昇が妨げられると考えられる。また、造粒物の強度は高いほど内圧に耐えことができる。これら2つの要因から、造粒物の気孔率と強度について、上記のような爆裂する範囲が存在すると考えられる。   It is considered that the explosion of the granulated product is due to rapid evaporation of moisture inside the granulated product due to rapid heating during sintering, and the internal pressure rapidly increases accordingly. At that time, it is considered that the larger the porosity of the granulated product, the easier the diffusion of water vapor and the higher the internal pressure. Further, the higher the strength of the granulated product, the more it can withstand the internal pressure. From these two factors, it is considered that there is an explosion range as described above for the porosity and strength of the granulated product.

以下、以上の知見に基づく本発明の実施の形態を説明する。
焼結鉱は、図2に示す主造粒ラインAにより造粒された第1の造粒物と選択造粒ラインBにより造粒された第2の造粒物とを混合し、焼結機に装入して焼結することにより製造される。
Hereinafter, embodiments of the present invention based on the above knowledge will be described.
The sintered ore mixes the first granulated product granulated by the main granulating line A shown in FIG. 2 and the second granulated product granulated by the selective granulating line B, and then sintered. It is manufactured by charging and sintering.

主造粒ラインAは、少なくとも粗粒の鉄鉱石原料を含む通常の焼結原料を用いて造粒する従来のラインであり、原料槽1より切り出された焼結用原料は、ドラムミキサー3で水分を添加しながら混合造粒されて第1の造粒物とされる。
焼結用原料としては、鉄鉱石原料、副原料(石灰石や蛇紋岩など)、燃料(炭材)、返鉱などが用いられる。
The main granulation line A is a conventional line for granulating using an ordinary sintering raw material including at least coarse iron ore raw material. The sintering raw material cut out from the raw material tank 1 is a drum mixer 3. The mixture is granulated while adding moisture to form a first granulated product.
As the raw materials for sintering, iron ore raw materials, auxiliary raw materials (such as limestone and serpentine), fuel (carbon material), return ore, and the like are used.

選択造粒ラインBは、粉鉱石や製鉄ダストなどの比較的細かい原料や難造粒性鉄鉱石など、従来の造粒ラインに混合すると十分に造粒されず、通気性を阻害するような原料を選択して造粒するラインである。
このラインの原料には、さらに、炭材含有原料や強度を確保するための結合材が添加される。また、造粒しにくい原料を用いることから、造粒には、高速攪拌型造粒機5と皿型造粒機6とが用いられる。
Selective granulation line B is a raw material that is not sufficiently granulated when mixed with conventional granulation lines, such as relatively fine raw materials such as powdered ore and ironmaking dust, and difficult-to-granulate iron ore, and impairs air permeability. This is a line for selecting and granulating.
Further, a carbonaceous material-containing raw material and a binder for ensuring strength are added to the raw material of this line. Moreover, since the raw material which is hard to granulate is used, the high speed stirring type granulator 5 and the dish type granulator 6 are used for granulation.

原料槽4より切り出された原料は、高速攪拌型造粒機5で攪拌造粒され、ついで、皿型造粒機6でさらに造粒を強化されて第2の造粒物とされた後、主造粒ラインAのドラムミキサー2から出た第1の造粒物に混合される。
第2の造粒物は、添加される結合材の強度発現を十分に行うため、皿型造粒機6で造粒された後、さらに乾燥機7を通してもよい。また、高速攪拌型造粒機5で造粒された後、皿型造粒機を通さずに、養生ヤード8で養生して、強度を発現するようにしてもよい。さらには、図示していないが、皿型造粒機6で造粒された後、養生するようにしてもよい。
The raw material cut out from the raw material tank 4 is stirred and granulated by a high-speed stirring type granulator 5, then further granulated by a dish type granulator 6 to be a second granulated product, It is mixed with the first granulated product that comes out of the drum mixer 2 of the main granulation line A.
In order to sufficiently develop the strength of the added binder, the second granulated product may be further granulated by the dish granulator 6 and then passed through the dryer 7. Moreover, after granulating with the high-speed stirring granulator 5, it may be cured in the curing yard 8 without passing through the dish granulator to develop strength. Furthermore, although not shown in figure, after granulating with the plate type granulator 6, you may make it cure.

第1の造粒物に対する第2の造粒物の混合割合は、質量比で2割以下、通常は1〜2割とする。第1の造粒物に対する第2の造粒物の混合割合が増加することにより、焼結機内の通気性を改善し、生産性を向上させることができる。この点から、第1の造粒物に対する第2の造粒物の混合割合は1割以上が好ましい。第1の造粒物に対する第2の造粒物の混合割合の上限は、製鉄所内で発生ずるダストや微粉鉄鉱石、難造粒性鉄鉱有などの選択的に造粒を強化したい原料の量などの理由から決められるが、2割が好ましい。   The mixing ratio of the second granulated product to the first granulated product is 20% or less, and usually 10 to 20% in terms of mass ratio. By increasing the mixing ratio of the second granulated product to the first granulated product, the air permeability in the sintering machine can be improved and the productivity can be improved. From this point, the mixing ratio of the second granulated product to the first granulated product is preferably 10% or more. The upper limit of the mixing ratio of the second granulated product with respect to the first granulated product is the amount of the raw material to be selectively strengthened such as dust generated in the ironworks, fine iron ore, and difficult-to-granulate iron ore. For example, 20% is preferable.

第2の造粒物の径は、10mm以下に調整する。通常は、3〜6mmの範囲が最も多くなるように調整するのがよい。第2の造粒物の径が3mm以下であれば、そもそも第1の原料と同程度粒度であり、選択的に造粒を強化する意味合いがなくなる。第2の造粒物の径が10mm以上となると、焼結時に中心までの熱伝達に時間を要するようになり、短い焼結時間では十分に焼結しなくなるため、10mmを上限とした。この点で、好ましい第2の造粒物の径の上限は3mmである。   The diameter of the second granulated product is adjusted to 10 mm or less. Usually, it is good to adjust so that the range of 3-6 mm may become the largest. If the diameter of the second granulated product is 3 mm or less, the particle size is about the same as that of the first raw material in the first place, and the meaning of selectively strengthening the granulation is lost. When the diameter of the second granulated product is 10 mm or more, it takes time for heat transfer to the center at the time of sintering. In this respect, the upper limit of the diameter of the preferable second granulated product is 3 mm.

この選択造粒ラインBでは、鉄分含有原料、炭材含有原料、結合材を原料とする。
鉄分含有原料としては、製鉄ダストや微粉鉄鉱石、難造粒性鉄鉱石などの1種以上の選択的に造粒を強化したい原料を対象とする。
製鉄ダストとは、製鉄所における各製造プロセスで発生する微粒子廃棄物の総称であり、例えば、焼結ダスト、高炉ダスト、転炉ダスト、冷延プロセスにおける酸洗ダストが主なものであるが、その他にも種々のものがある。
In this selective granulation line B, an iron-containing raw material, a carbonaceous material-containing raw material, and a binder are used as raw materials.
As the iron-containing raw material, one or more raw materials to be selectively strengthened for granulation, such as iron dust, fine iron ore, and difficult-to-granulate iron ore, are targeted.
Steelmaking dust is a general term for particulate waste generated in each manufacturing process at steelworks, for example, sintered dust, blast furnace dust, converter dust, pickling dust in the cold rolling process, There are various other types.

炭材含有原料は、造粒物の気孔率を調整するために添加する。この原料としては、例えば、コークスや無煙炭の粉砕時やコンベアの乗り継ぎ部で集塵される微粉炭材、コークス乾式消化設備(CDQ)で発生する微粉コークス、高炉ガス灰等が用いられる。   The carbonaceous material-containing raw material is added to adjust the porosity of the granulated product. As this raw material, for example, pulverized carbon material collected at the time of pulverization of coke or anthracite coal or at a connecting part of a conveyor, pulverized coke generated in a coke dry digestion facility (CDQ), blast furnace gas ash, and the like are used.

結合材(バインダー)は、造粒物が主に粉体を原料にするため、必要な強度を確保する必要から添加される。この材料としては、ポルトランドセメントやセメントクリンカーなどのセメントでよいが、炭酸カルシウム、生石灰、消石灰、高炉スラグ、ベントナイト及び酸性白土などを用いてもよい。
また、セメントなどの無機系結合材にかえて、パルプ廃液、コーンスターチ等の有機質の結合材の水溶液の使用も可能である。その場合は、原料槽9から高速攪拌型造粒機5に直接添加するのがよい(図2参照)。
The binder (binder) is added because it is necessary to ensure the necessary strength because the granulated material mainly uses powder. This material may be cement such as Portland cement or cement clinker, but calcium carbonate, quicklime, slaked lime, blast furnace slag, bentonite, acid clay, etc. may be used.
Further, instead of an inorganic binder such as cement, an aqueous solution of an organic binder such as pulp waste liquid or corn starch can be used. In that case, it is preferable to add directly from the raw material tank 9 to the high-speed stirring granulator 5 (see FIG. 2).

なお、鉄分含有原料、炭材含有原料、結合材の各々の配合量については、特に定められるものではないが、好ましい配合は、質量%で、鉄分含有原料:82〜89%、炭材含有原料:8〜12%、結合材:3〜6%である。   The blending amounts of the iron-containing raw material, the carbonaceous material-containing raw material, and the binder are not particularly defined, but the preferred blending is mass%, the iron-containing raw material: 82 to 89%, and the carbonaceous material-containing raw material. : 8 to 12%, binder: 3 to 6%.

以上のような原料を用いて、選択造粒ラインで第2の造粒物が形成されるが、この造粒物は、図1に示されるように、気孔率33vo1%未満かつ強度20kg/cm未満の爆裂範囲にならないようにしなければならない。
また、搬送途中で潰れないように強度は4kg/cm以上でなければならない。さらに、気孔率は、焼結時の水蒸気の排出が円満に行われるように、28%以上でなければならない。
なお、本発明の範囲としては、実施例で確認されている値に基づいて、強度の下限は11.6Kg/cm とし、気孔率の下限は、29.1%とした
Using the raw materials as described above, the second granulated product is formed on the selective granulation line. This granulated product has a porosity of less than 33 vo1% and a strength of 20 kg / cm as shown in FIG. The explosive range should be less than 2 .
Further, the strength must be 4 kg / cm 2 or more so as not to be crushed during the conveyance. Furthermore, the porosity must be at least 28% so that the discharge of water vapor during the sintering takes place fully.
As the scope of the present invention, the lower limit of the strength was 11.6 Kg / cm 2 and the lower limit of the porosity was 29.1% based on the values confirmed in the examples .

このため、含炭ペレットの気孔率と強度は、次の(a)か(b)のいずれかの範囲を満たすものでなければならない。
(a)気孔率が33%以上で、かつ強度が4Kg/cm以上の範囲
(b)気孔率が28%以上で、かつ強度が20Kg/cm以上の範囲
For this reason, the porosity and intensity | strength of a carbon-containing pellet must satisfy | fill either the range of following (a) or (b).
(A) at a porosity of 33% or more and ranges strength at 4 Kg / cm 2 or more range (b) the porosity is 28% or more and strength of 20 Kg / cm 2 or more

なお、気孔率は、40%を超えると、結合材の添加によっても搬送途中で潰れないために必要な強度を維持できなくなるため、40%以下が好ましい。また、強度については高いほうが望ましいが、結合材の量を増やせばその分コストが増加するため、必要以上に増加させなくてもよく、10Kg/cm以下で十分である。 If the porosity exceeds 40%, it is not possible to maintain the required strength because it is not crushed in the middle of conveyance even by the addition of a binder, so 40% or less is preferable. Further, although it is desirable that the strength is high, if the amount of the binder is increased, the cost increases correspondingly. Therefore, it is not necessary to increase it more than necessary, and 10 Kg / cm 2 or less is sufficient.

なお、気孔率は、JIS M 8716で規定される方法によって、密度と体積を測定して計算される。また、強度は、圧縮強度試験装置によって測定される。   The porosity is calculated by measuring the density and volume according to the method specified in JIS M8716. The strength is measured by a compressive strength test apparatus.

気孔率の調整は、造粒設備の運転条件や造粒時間などで調整することでも可能であるが、制御よく調整することが難しい。しかし、炭素含有原料の添加量を調節することにより容易に行うことができる。
また、強度の調整には、結合材の添加量や養生期間を調節することにより行うことができる。ただし、結合材の量が多いほど気孔率が低下するとともに、養生期間が長くなるにつれても気孔率は低下するので、これらを考慮して、それぞれの原料の添加量や養生期間を選定する必要がある。
The porosity can be adjusted by adjusting the operating conditions of the granulation equipment, the granulation time, etc., but it is difficult to adjust with good control. However, it can be easily performed by adjusting the amount of the carbon-containing raw material added.
The strength can be adjusted by adjusting the amount of binder added and the curing period. However, the porosity decreases as the amount of the binder increases, and the porosity decreases as the curing period becomes longer.Therefore, it is necessary to select the amount of each raw material added and the curing period in consideration of these factors. is there.

以上のように、気孔率と強度が調整された第2の造粒物は、主造粒ラインで造粒された第1の造粒物と混合されて、焼結機に装入されて焼結される。
焼結条件については、通常採用されている条件でよく、本発明を用いることにより、粉状の原料を有効に利用して、爆裂の恐れが少なく、通気性を改善し、生産性を向上させることができる。
As described above, the second granulated product whose porosity and strength have been adjusted is mixed with the first granulated product granulated in the main granulation line, charged into a sintering machine, and baked. Tied.
The sintering conditions may be those normally employed. By using the present invention, powdery raw materials are effectively used, there is less risk of explosion, air permeability is improved, and productivity is improved. be able to.

高炉ガス灰、焼結ダスト、転炉ダストの3種の製鉄ダストをセメントで結合して3種の造粒物を作成した。その際、表1に示すように、他の製鉄ダストに比べて炭素含有量の高い高炉ガス灰の量を変えて造粒物の炭素含有量を調整するとともに、セメントの添加量と養生期間を変化させて、気孔率と強度の値が爆裂範囲内である1条件の造粒物と、範囲外である2条件の造粒物を作成した。
そのように作成した造粒物を用いて焼結実験を実施した。標準的な焼結原料を用いて造粒した造粒物に対して、上記のように作成した造粒物を5質量%加えて混合した原料を、層厚600mm、吸引負圧1300mmHOで焼成した。
その結果を表1に合わせて示す。表1に示されるように、爆裂範囲外の2条件は、爆裂範囲内の条件に比較して焼結生産率が0.6〜0.8t/d/m向上した。
Three types of iron dust, blast furnace gas ash, sintered dust, and converter dust, were combined with cement to produce three types of granulated products. At that time, as shown in Table 1, the amount of blast furnace gas ash having a higher carbon content than other steelmaking dusts is changed to adjust the carbon content of the granulated product, and the amount of cement added and the curing period are set. By changing, a granulated product of one condition whose porosity and strength values are within the explosion range and a granulated product of two conditions whose values are outside the range were prepared.
Sintering experiments were performed using the granulated material thus prepared. With respect to the granulated product granulated using a standard sintered raw material, a raw material obtained by adding and mixing 5% by mass of the granulated product prepared as described above is obtained with a layer thickness of 600 mm and a suction negative pressure of 1300 mmH 2 O. Baked.
The results are also shown in Table 1. As shown in Table 1, in the two conditions outside the explosion range, the sintering production rate was improved by 0.6 to 0.8 t / d / m 2 as compared with the conditions in the explosion range.

Figure 0005517501
Figure 0005517501

1 主原料槽
2 ドラムミキサー
3 焼結機
4 原料槽
5 高速攪拌型造粒機
6 皿型造粒機
7 乾燥機
8 養生ヤード
9 有機系結合材用の原料槽
DESCRIPTION OF SYMBOLS 1 Main raw material tank 2 Drum mixer 3 Sintering machine 4 Raw material tank 5 High-speed stirring granulator 6 Dish granulator 7 Dryer 8 Curing yard 9 Raw material tank for organic binder

Claims (3)

鉄鉱石原料、副原料及び燃料を含む配合原料を混合造粒した第1の造粒物に、粉鉄鉱石とダストの1種以上と炭材含有原料に結合材を加えて造粒した第2の造粒物を混合し、混合されたこれらの造粒物を焼結機に装入して焼結する焼結鉱の製造方法において、
第2の造粒物の気孔率と強度が、
(a)気孔率が33%以上で、かつ強度が11.6Kg/cm以上の範囲、あるいは、
(b)気孔率が29.1%以上で、かつ強度が20Kg/cm以上の範囲、
のいずれかを満たすことを特徴とする焼結鉱の製造方法。
1st granulated material obtained by mixing and granulating a blended raw material containing iron ore raw material, auxiliary raw material and fuel, and granulating by adding a binder to one or more types of powdered iron ore and dust and carbonaceous material-containing raw material In the method for producing a sintered ore, the granulated product is mixed, the mixed granulated product is charged into a sintering machine and sintered.
The porosity and strength of the second granulated product are
(A) The porosity is 33% or more and the strength is 11.6 Kg / cm 2 or more, or
(B) A porosity of 29.1 % or more and a strength of 20 Kg / cm 2 or more,
A method for producing a sintered ore characterized by satisfying any of the above.
前記第2の造粒物の気孔率を、炭材含有原料の添加量によって前記範囲に調整することを特徴とする請求項1に記載の焼結鉱の製造方法。   2. The method for producing a sintered ore according to claim 1, wherein the porosity of the second granulated product is adjusted to the range by the amount of the carbonaceous material-containing material added. 前記第2の造粒物を、造粒した後に乾燥、あるいは、養生してから第1の造粒物に混合することを特徴とする請求項1または2に記載の焼結鉱の製造方法。   The method for producing a sintered ore according to claim 1 or 2, wherein the second granulated product is granulated, dried or cured, and then mixed with the first granulated product.
JP2009149121A 2009-06-23 2009-06-23 Method for producing sintered ore Active JP5517501B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009149121A JP5517501B2 (en) 2009-06-23 2009-06-23 Method for producing sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009149121A JP5517501B2 (en) 2009-06-23 2009-06-23 Method for producing sintered ore

Publications (2)

Publication Number Publication Date
JP2011006722A JP2011006722A (en) 2011-01-13
JP5517501B2 true JP5517501B2 (en) 2014-06-11

Family

ID=43563697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009149121A Active JP5517501B2 (en) 2009-06-23 2009-06-23 Method for producing sintered ore

Country Status (1)

Country Link
JP (1) JP5517501B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6525806B2 (en) * 2015-08-10 2019-06-05 日本製鉄株式会社 Pretreatment method of steelmaking dust
JP7303442B2 (en) * 2019-11-18 2023-07-05 日本製鉄株式会社 Pretreatment method for raw materials for sintering

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5058715B2 (en) * 2007-08-27 2012-10-24 新日本製鐵株式会社 Pretreatment method for sintering raw materials
UA96505C2 (en) * 2007-09-14 2011-11-10 Ниппон Стил Корпорейшен Method for producing of reduced iron pellets and method for production of open-hearth pig iron

Also Published As

Publication number Publication date
JP2011006722A (en) 2011-01-13

Similar Documents

Publication Publication Date Title
JP5000366B2 (en) Method for producing sintered ore
JP2008214715A (en) Method for manufacturing nonfired agglomerated ore for iron manufacture
JP2008095177A (en) Method for producing carbon-containing non-calcined pellet for blast furnace
WO2011029269A1 (en) Method for innocuously treating chromium residue using metallurgical roasting and blast furnace
JP2007138244A (en) Method for producing sintered ore
CN113166844B (en) Iron ore powder agglomerate production method and agglomerated product
JP2003342646A (en) Carbon-containing, non-calcined pellet for blast furnace and its manufacturing process
CN101665867A (en) Method for increasing grade of sinter
JP5512205B2 (en) Strength improvement method of raw material for agglomerated blast furnace
JP5517501B2 (en) Method for producing sintered ore
JP6459724B2 (en) Method for producing sintered ore
JP5786668B2 (en) Method for producing unfired carbon-containing agglomerated mineral
JP2009030112A (en) Method for producing ore raw material for blast furnace
JP2009030114A (en) Method for producing ore raw material for blast furnace
JP6326074B2 (en) Carbon material interior ore and method for producing the same
AU2017388174B2 (en) Sintered ore manufacturing method
JP5729256B2 (en) Non-calcined hot metal dephosphorization method and hot metal dephosphorization method using non-fired hot metal dephosphorization material
JP6887717B2 (en) Charcoal interior granulated particles for sinter production and sinter production method using them
JP5454505B2 (en) Method for producing unfired carbon-containing agglomerated blast furnace
JP2009030116A (en) Method for producing ore raw material for blast furnace
JP2001262241A (en) Method for producing sintered ore containing carbon
JP5825180B2 (en) Method for producing unfired carbon-containing agglomerated ore for blast furnace using coal char
JP5447410B2 (en) Method for producing unfired carbon-containing agglomerated blast furnace
JP6939667B2 (en) Charcoal lumber interior ore and its manufacturing method
WO2007029342A1 (en) Fired agglomerated ore for iron manufacture and process for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140401

R150 Certificate of patent or registration of utility model

Ref document number: 5517501

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250