JP2007100149A - Method for producing sintered ore - Google Patents

Method for producing sintered ore Download PDF

Info

Publication number
JP2007100149A
JP2007100149A JP2005289748A JP2005289748A JP2007100149A JP 2007100149 A JP2007100149 A JP 2007100149A JP 2005289748 A JP2005289748 A JP 2005289748A JP 2005289748 A JP2005289748 A JP 2005289748A JP 2007100149 A JP2007100149 A JP 2007100149A
Authority
JP
Japan
Prior art keywords
ore
iron ore
iron
sintered
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005289748A
Other languages
Japanese (ja)
Other versions
JP4982993B2 (en
Inventor
Nobuyuki Oyama
伸幸 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005289748A priority Critical patent/JP4982993B2/en
Publication of JP2007100149A publication Critical patent/JP2007100149A/en
Application granted granted Critical
Publication of JP4982993B2 publication Critical patent/JP4982993B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To produce high quality sintered ore with the high productivity and at high product yield regardless of kind of raw material ore. <P>SOLUTION: When the sintered ore is produced from sintering raw material by blending two or more kinds of ores selected among an ore A having 0.03 to 0.05 cm<SP>3</SP>/g average porous rate, an ore B having 0.10 to 0.12 cm<SP>3</SP>/g average porous rate, an ore C having 0.07 to 0.09 cm<SP>3</SP>/g average porous rate and an ore D having 0.18 to 0.20 cm<SP>3</SP>/g average porous rate, and an ore E having a P content of ≥0.10 mass% and an Al<SB>2</SB>O<SB>3</SB>content of ≥2.0 mass%, as at least a part of the raw material ore; the average porous rate X of the ores is defined with X=0.04×[A%]+0.11×[B%]+0.08×[C%]+0.19×[D%]+2.0×0.06×[E%]. Then, the ore is blended so that the average porous rate X becomes ≤0.09 cm<SP>3</SP>/g. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高炉等の主原料として用いられる焼結鉱の製造方法に関する。   The present invention relates to a method for producing a sintered ore used as a main raw material for a blast furnace or the like.

高炉の主原料である焼結鉱は、一般に以下のようにして製造される。まず、粉鉄鉱石に、石灰粉等のCaO含有副原料、珪石や蛇紋岩等のSiO含有副原料及びコークス粉等の炭材を配合し、これに適量の水を加えて混合・造粒する。この造粒された配合原料(焼結原料)を、ドワイトロイド式焼結機のパレット上に所定の厚さに充填し、この充填ベッド表層部の炭材に着火後、下方に向けて空気を吸引しながら充填ベッド内部の炭材を燃焼させ、その燃焼熱により配合原料を焼結させて焼結ケーキとする。そして、この焼結ケーキを粉砕・整粒することにより、粒径が数mm以上の成品焼結鉱が得られる。 Sinter ore, which is the main raw material of a blast furnace, is generally manufactured as follows. First, powdered iron ore is blended with CaO-containing auxiliary materials such as lime powder, SiO 2- containing auxiliary materials such as silica and serpentine, and carbon materials such as coke powder, and an appropriate amount of water is added to this to mix and granulate To do. This granulated compounded raw material (sintered raw material) is filled onto a pallet of a Dwytroid type sintering machine to a predetermined thickness, and after igniting the carbonaceous material on the surface of the packed bed, air is directed downward. The carbonaceous material inside the packed bed is burned while being sucked, and the blended raw material is sintered by the combustion heat to obtain a sintered cake. Then, by pulverizing and sizing the sintered cake, a product sintered ore having a particle size of several mm or more can be obtained.

安定した高炉操業を行うためには、高品質の焼結鉱が求められる。一般に、焼結鉱の品質はシャッター強度(冷間強度)、還元粉化指数(RDI)、被還元性(RI)などが指標とされるが、これらが指標となる成品焼結鉱の品質は、高炉操業における炉内荷下がり状態の安定性、炉内通気性や通液性、鉱石の還元効率、高温性状等に対して大きな影響を及ぼす。このため焼結鉱の製造プロセスでは厳しい品質管理が行なわれている。また、焼結鉱の製造コストを低減させるために焼結鉱の成品歩留まりの向上が求められ、さらに焼結鉱製造ラインの効率化と生産性の向上が求められる。   In order to perform stable blast furnace operation, high-quality sintered ore is required. In general, the quality of sintered ore is measured by using shutter strength (cold strength), reduced powder index (RDI), reducibility (RI), etc. It has a great influence on the stability of the state of unloading in the furnace during blast furnace operation, air permeability and liquid permeability in the furnace, ore reduction efficiency, high temperature properties, and the like. For this reason, strict quality control is performed in the manufacturing process of sintered ore. Moreover, in order to reduce the manufacturing cost of a sintered ore, the improvement of the product yield of a sintered ore is calculated | required, and also the efficiency improvement and productivity improvement of a sintered ore production line are calculated | required.

ところで、焼結鉱の原料鉄鉱石としては、従来、主としてヘマタイト鉱石(赤鉄鉱)やマグネタイト鉱石(磁鉄鉱)が用いられてきたが、最近このような良質な鉄鉱石の供給量が減少しつつあることに伴い、リモナイト鉱石やマラマンバ鉱石(いずれも豪州産鉄鉱石)などのような結晶水の含有量が高い鉄鉱石を用いる必要に迫られており、将来的にその使用量は益々増大するものと思われる。ここで、マラマンバ鉱石とは、豪州のマラマンバ鉱床から産出される鉄鉱石の総称であって、一般にはゲーサイト(Fe・HO)とマータイト(マグネタイト構造を有するFe)を主要鉱物とし、かつ結晶水を5%前後の高い含有率で含む鉱石である。銘柄名では、ウェストアンジェラス鉱、MAC鉱などが代表的な鉄鉱石である。また、リモナイト鉱石の代表例としては、ピソライト鉱石がある。このピソライト鉱石は、一般には、魚卵状のへマタイト(Fe)の隙間をゲーサイト(Fe・HO)が埋めた内部構造を有し、かつ結晶水を8%前後の高い含有率で含む鉱石である。銘柄名では、ローブリバー鉱、ヤンディクージナ鉱などが代表的な鉄鉱石である。
また、最近では、ヤンディクージナ鉱と共通する鉱床からLCID鉱石と呼ばれる新たな種類の鉄鉱石が産出されはじめているが、このLCID鉱石は従来産出されてきたリモナイト鉱石に較べて結晶水の含有率がさらに高い。
By the way, as raw material iron ore of sintered ore, hematite ore (hematite) and magnetite ore (magnetite) have been conventionally used, but the supply of such high-quality iron ore is decreasing recently. Along with this, there is an urgent need to use iron ore with a high content of crystal water such as limonite ore and maramamba ore (both Australian iron ore), and the amount of use will increase in the future. I think that the. Here, the Mara Mamba ore is a general term for iron ores produced from the Mara Mamba deposit in Australia, and in general, goethite (Fe 2 O 3 .H 2 O) and martite (Fe 2 O 3 having a magnetite structure). Is an ore containing a high content of about 5% of crystal water. By brand name, West Angelus ore and MAC ore are typical iron ores. A typical example of limonite ore is pisolite ore. The Pisoraito ore generally has an internal structure that clearance goethite (Fe 2 O 3 · H 2 O) is filled roe-like of the hematite (Fe 2 O 3), and water of crystallization 8% It is an ore containing high content before and after. In the brand name, lobe river ore and yandi coujina ore are typical iron ores.
Recently, a new type of iron ore called LCID ore has begun to be produced from the deposit common with Yandi Kudina ore. high.

また、上述した各種の鉄鉱石のようにP含有量が0.10mass%未満(通常、0.06mass%以下)の鉄鉱石に対して、一般にPを0.10mass%以上含有するような鉄鉱石は高燐鉱石と呼ばれる。このようなP含有量の高い鉄鉱石を高炉原料として使用することは、製造される溶銑のP濃度を高め、脱燐処理の負荷を増大させることになるため、従来ではほとんど使用されていなかった。しかし、上述したように良質な鉄鉱石の供給量が減少しつつあることから、この高燐鉱石についても、焼結原料として相当量配合することが検討されつつある。   In addition, iron ores generally containing 0.10 mass% or more of P with respect to iron ores having a P content of less than 0.10 mass% (usually 0.06 mass% or less) like the various iron ores described above. Is called high phosphate ore. Using such iron ore with a high P content as a blast furnace raw material increases the P concentration of the hot metal to be produced and increases the load of dephosphorization treatment. . However, since the supply amount of high-quality iron ore is decreasing as described above, it is being studied to add a considerable amount of this high phosphate ore as a sintering raw material.

高結晶水鉱石を焼結原料として使用した場合、(1)焼結における結晶水離脱時の熱分解反応に対して熱補償が必要であるため、その分、配合する炭材(粉コークスなど)を増量する必要がある、(2)結晶水の離脱に起因して、溶融反応過程で生成する融液により局部的過溶融反応が引き起こされる結果、生産性や成品歩留まりが低下する、などの問題が指摘されている。
また、特にマラマンバ鉱石については、微粉分が多く造粒性が劣るため、焼結ベッド(焼結原料層)内の通気性の悪化に起因して成品強度が低下し、これに伴って生産率や成品歩留まりも低下する、などの問題が指摘されている。
従来、微粉分の多いマラマンバ鉱石を使用して焼結鉱を製造する際に、混合撹拌による造粒を強化することを狙いとして、マラマンバ鉱石が配合された焼結原料を高速撹拌して混合・造粒する技術が提案されている(特許文献1)。
特開平7−331342号公報
When high crystal water ore is used as a raw material for sintering, (1) thermal compensation is required for the thermal decomposition reaction at the time of detachment of crystal water during sintering. (2) Problems such as reduced productivity and product yield as a result of the local overmelting reaction caused by the melt generated in the melting reaction process due to the separation of crystal water Has been pointed out.
In particular, for Mara Mamba ore, there is a large amount of fine powder and the granulation property is inferior, so the product strength decreases due to the deterioration of the air permeability in the sintering bed (sintering raw material layer), and the production rate is accordingly reduced. And problems such as a decrease in product yield.
Conventionally, when producing ores using maramanba ore with a high amount of fine powder, with the aim of strengthening the granulation by mixing and stirring, the sintered raw material containing maramanba ore is stirred and mixed at high speed. A technique for granulating has been proposed (Patent Document 1).
JP-A-7-331342

しかし、特許文献1の技術は特別な撹拌手段を必要とするため、設備コストや処理コストが増大するという問題がある。また、本発明者らが検討したところによれば、特許文献1のようにマラマンバ鉱石を配合した焼結原料の造粒を強化したとしても、必ずしも生産性や成品歩留りは向上しないこと、また、特にマラマンバ鉱石を多量配合した場合には、冷間強度(シャッター強度)が非常に低い焼結鉱しか得られないことが判った。
また、高燐鉱石については、従来では焼結原料としての使用実績があまりないことから、焼結原料中に相当量を配合した場合の焼結鉱の品質や生産性、成品歩留りに及ぼす影響についての検討は殆どなされていない。そこで、本発明者らが高燐鉱石の配合が焼結鉱の品質等に及ぼす影響について調査・検討したところ、高燐鉱石の配合量が増加すると焼結鉱の冷間強度や生産性が低下する傾向があることが判明した。
However, since the technique of Patent Document 1 requires a special stirring means, there is a problem that equipment costs and processing costs increase. Moreover, according to the present inventors' investigation, even if the granulation of the sintering raw material which mix | blended Maramamba ore like patent document 1 was strengthened, productivity and a product yield do not necessarily improve, In particular, when a large amount of maramamba ore is blended, it has been found that only sintered ore having a very low cold strength (shutter strength) can be obtained.
In addition, since high phosphate ore has not been used as a sintering raw material in the past, the effect on the quality and productivity of sintered ore when a considerable amount is mixed in the sintering raw material There is almost no examination. Therefore, the present inventors investigated and examined the effect of the high phosphate ore blending on the quality of the sintered ore, etc. As the blending amount of the high phosphate ore increased, the cold strength and productivity of the sintered ore decreased. It turns out that there is a tendency to.

したがって本発明の目的は、焼結原料に配合する原料鉱石の種類に関わりなく高品質の焼結鉱を製造することができ、とりわけ、高燐鉱石やマラマンバ鉱石等を相当量配合した場合でも冷間強度が高い高品質の焼結鉱を高い生産性と成品歩留りで製造することができる焼結鉱の製造方法を提供することにある。   Therefore, the object of the present invention is to produce high-quality sintered ore regardless of the type of raw material ore to be blended in the sintered raw material, and in particular, even when a high amount of high-phosphorus ore and maramamba ore is blended in a considerable amount. It is an object of the present invention to provide a method for producing a sintered ore that can produce a high-quality sintered ore with high interstitial strength with high productivity and product yield.

上述したようにマラマンバ鉱石を焼結原料に多量配合した場合に、特許文献1に示されるような焼結原料の造粒を強化する方法では、成品焼結鉱の冷間強度や生産性、成品歩留まりの改善について必ずしも十分な効果が挙げられないということは、本質的な問題が原料の造粒性ではなく別の点にあることを示唆している。そこで本発明者らは、その点を解明すべく種々の実験と検討を行い、同時に、高燐鉱石の配合が成品焼結鉱の品質等に及ぼす影響とその改善策についても種々の実験と検討を行い、それらの結果、次のような事実を知見した。   As described above, when a large amount of maramanba ore is blended in the sintering raw material, the method of strengthening the granulation of the sintering raw material as disclosed in Patent Document 1, the cold strength and productivity of the product sinter ore, The fact that a sufficient effect cannot be obtained for improving the yield suggests that the essential problem lies in another point rather than the granulation property of the raw material. Therefore, the present inventors conducted various experiments and examinations to clarify the point, and at the same time, conducted various experiments and examinations on the effects of the high-phosphorus ore composition on the quality of the product sintered ore and measures to improve them. As a result, we found the following facts.

(1)焼結原料となる鉄鉱石は、その種類を問わず元々の鉱石粒子内部に微細気孔(微細な空隙)を有しているが、マラマンバ鉱石はその微細気孔量が他の鉱石に較べて格段に多い。このため焼結過程で生成した融液が元々あった微細気孔に浸透してしまうため、鉱石粒子間を結合する融液が不足し、その結果、成品焼結鉱の冷間強度が大きく低下してしまう。また、LCID鉱石はマラマンバ鉱石よりもさらに微細気孔量が多く、成品焼結鉱の冷間強度がより低下しやすい。
(2)上記のような鉱石粒子内部の微細気孔と融液の挙動との関係から、成品焼結鉱の冷間強度は焼結原料中に配合される原料鉱石の平均気孔量に大きく依存しており、したがって、鉱石の種類に関わりなく、焼結原料に配合する原料鉱石の平均気孔量を所定の水準以下とすることにより、成品焼結鉱の冷間強度を効果的に高めることができる。
(3)したがって、マラマンバ鉱石やLCID鉱石を多量配合した場合でも、配合する他の鉄鉱石の種類やその配合率を適宜選択・調整することで、焼結原料に配合する原料鉱石の平均気孔量を所定の水準以下とすることにより、冷間強度が高い高品質の焼結鉱を高い生産性と成品歩留りで製造することができる。
(1) Iron ore, which is a raw material for sintering, has fine pores (fine voids) inside the original ore particles regardless of the type, but Malamanba ore has a smaller amount of fine pores than other ores. There is much more. For this reason, the melt produced in the sintering process penetrates into the original micropores, so there is not enough melt to bond the ore particles. As a result, the cold strength of the product sintered ore is greatly reduced. End up. In addition, the LCID ore has a larger amount of fine pores than the maramamba ore, and the cold strength of the product sintered ore is likely to decrease.
(2) From the relationship between the fine pores inside the ore particles and the behavior of the melt as described above, the cold strength of the product sintered ore greatly depends on the average pore amount of the raw ore mixed in the sintered raw material. Therefore, regardless of the type of ore, the cold strength of the product sintered ore can be effectively increased by setting the average porosity of the raw ore to be mixed with the sintered raw material to a predetermined level or less. .
(3) Therefore, even when a large amount of maramamba ore or LCID ore is blended, the average pore volume of the raw ore blended into the sintering raw material can be selected and adjusted as appropriate by selecting and adjusting the type and blending ratio of other iron ores to be blended. By making the value below a predetermined level, a high-quality sintered ore with high cold strength can be produced with high productivity and product yield.

(4)一方、焼結原料中に高燐鉱石を配合する場合、高燐鉱石の配合が成品焼結鉱の品質等に及ぼす影響は同鉱石の気孔量だけでは整理できない。すなわち、高燐鉱石の平均気孔量はヘマタイト鉱石とマラマンバ鉱石との略中間程度であるが、そのような平均気孔量に基づいて高燐鉱石を上記(3)のような基準に従い配合したとしても、十分な冷間強度を得ることができない。
(5)その理由としては、高燐鉱石は微粉の割合が多いことに加えて、他の鉱石に較べて微粉中のAl含有量がかなり高く、このことに起因して焼結ベッド内で通気性が悪化し、焼結鉱の冷間強度が劣化するものと考えられる。したがって、高燐鉱石を配合する場合には、その気孔量の影響に加えて、上記の点の影響を加味する必要がある。
(4) On the other hand, when high phosphorus ore is added to the sintering raw material, the effect of high phosphate ore on the quality of the product sintered ore cannot be sorted out only by the pore volume of the ore. That is, the average pore volume of high phosphate ore is about halfway between hematite ore and maramamba ore, but even if high phosphate phosphate is blended according to the standard as described in (3) above based on such average pore volume, It is not possible to obtain sufficient cold strength.
(5) The reason for this is that high-phosphorus ore has a high proportion of fine powder, and the content of Al 2 O 3 in the fine powder is considerably higher than other ores. It is considered that the air permeability deteriorates and the cold strength of the sintered ore deteriorates. Therefore, when blending high phosphate ore, in addition to the effect of the pore volume, it is necessary to consider the effects of the above points.

本発明は、以上のような知見に基づきなされたもので、その特徴は以下のとおりである。
[1]原料鉱石の少なくとも一部として、水銀圧入測定法によって測定される平均気孔量が0.03〜0.05cm/gの鉄鉱石A(但し、ペレットフィードを除く)、同じく平均気孔量が0.10〜0.12cm/gの鉄鉱石B、同じく平均気孔量が0.07〜0.09cm/gの鉄鉱石C、同じく平均気孔量が0.18〜0.20cm/gの鉄鉱石Dの中から選ばれる2種以上の鉄鉱石(但し、鉄鉱石A,B,C,Dは、P含有量が0.10mass%以上で且つAl含有量が2.0mass%以上であるものを除く)と、P含有量が0.10mass%以上、Al含有量が2.0mass%以上の鉄鉱石Eとを配合した焼結原料から焼結鉱を製造する方法であって、
下記(1)式で定義される鉄鉱石の平均気孔量Xが0.09cm/g以下となるように、鉄鉱石を配合した焼結原料から焼結鉱を製造することを特徴とする焼結鉱の製造方法。
平均気孔量X=0.04×[A%]+0.11×[B%]+0.08×[C%]+0.19×[D%]+2.0×0.06×[E%] … (1)
但し [A%]:[鉄鉱石A量]/[鉄鉱石A,B,C,D,Eの合計量]
[B%]:[鉄鉱石B量]/[鉄鉱石A,B,C,D,Eの合計量]
[C%]:[鉄鉱石C量]/[鉄鉱石A,B,C,D,Eの合計量]
[D%]:[鉄鉱石D量]/[鉄鉱石A,B,C,D,Eの合計量]
[E%]:[鉄鉱石E量]/[鉄鉱石A,B,C,D,Eの合計量]
The present invention has been made based on the above findings, and the features thereof are as follows.
[1] Iron ore A (excluding pellet feed) having an average pore volume of 0.03 to 0.05 cm 3 / g measured by mercury porosimetry as at least a part of the raw material ore; There 0.10~0.12cm 3 / g of iron ore B, also iron ore C having an average pore volume is 0.07~0.09cm 3 / g, also the average pore volume is 0.18~0.20cm 3 / 2 or more types of iron ores selected from the iron ores D of g (provided that iron ores A, B, C, and D have a P content of 0.10 mass% or more and an Al 2 O 3 content of 2. Sintered ore is manufactured from sintering raw materials that combine iron ore E with a P content of 0.10 mass% or more and an Al 2 O 3 content of 2.0 mass% or more. A way to
A sintered ore produced from a sintered raw material containing iron ore so that the average pore volume X of iron ore defined by the following formula (1) is 0.09 cm 3 / g or less. Production method of ore.
Average pore volume X = 0.04 x [A%] + 0.11 x [B%] + 0.08 x [C%] + 0.19 x [D%] + 2.0 x 0.06 x [E%] (1)
[A%]: [Amount of iron ore A] / [Total amount of iron ore A, B, C, D, E]
[B%]: [Iron ore B amount] / [Total amount of iron ore A, B, C, D, E]
[C%]: [Iron ore C amount] / [Total amount of iron ore A, B, C, D, E]
[D%]: [Iron ore D amount] / [Total amount of iron ore A, B, C, D, E]
[E%]: [Amount of iron ore E] / [Total amount of iron ore A, B, C, D, E]

[2]上記[1]の製造方法において、焼結原料に鉄鉱石B及び/又は鉄鉱石Dが配合されることを特徴とする焼結鉱の製造方法。
[3]上記[1]の製造方法において、焼結原料に鉄鉱石A、鉄鉱石B、鉄鉱石C及び鉄鉱石Dが配合されることを特徴とする焼結鉱の製造方法。
[4]上記[2]又は[3]の製造方法において、鉄鉱石A、鉄鉱石B、鉄鉱石C、鉄鉱石D及び鉄鉱石Eの合計量(但し、鉄鉱石A、鉄鉱石B、鉄鉱石C及び鉄鉱石Dの中の1種以上が配合されない場合を含む)に対する鉄鉱石B及び鉄鉱石Dの割合(但し、鉄鉱石B、鉄鉱石Dのいずれかが配合されない場合を含む)が20mass%以上であることを特徴とする焼結鉱の製造方法。
[5]上記[2]〜[4]のいずれかの製造方法において、鉄鉱石A、鉄鉱石B、鉄鉱石C、鉄鉱石D及び鉄鉱石Eの合計量(但し、鉄鉱石A、鉄鉱石B、鉄鉱石C及び鉄鉱石Dの中の1種以上が配合されない場合を含む)に対する鉄鉱石Eの割合が20mass%以上であることを特徴とする焼結鉱の製造方法。
[2] The method for producing sintered ore according to [1], wherein iron ore B and / or iron ore D is blended in the sintering raw material.
[3] The method for producing sintered ore according to [1], wherein iron ore A, iron ore B, iron ore C, and iron ore D are mixed in the sintering raw material.
[4] In the production method of [2] or [3] above, the total amount of iron ore A, iron ore B, iron ore C, iron ore D and iron ore E (however, iron ore A, iron ore B, iron ore) The ratio of iron ore B and iron ore D to the case where one or more of stone C and iron ore D are not blended (including the case where either iron ore B or iron ore D is not blended) The manufacturing method of the sintered ore characterized by being 20 mass% or more.
[5] In the production method according to any one of [2] to [4] above, the total amount of iron ore A, iron ore B, iron ore C, iron ore D and iron ore E (however, iron ore A and iron ore) B, the ratio of iron ore E with respect to iron ore C and iron ore D (including the case where at least one of iron ore D is not blended) is 20 mass% or more.

ここで、本発明が規定する鉄鉱石の平均気孔量は、粒径4〜7mmの鉱石について、水銀圧入式細孔分布測定装置を用いた水銀圧入測定法(押込み圧力:0.007〜412MPa)により測定した微細気孔量の平均値(N=10の平均値)である。なお、上記押込み圧力範囲は、細孔径0.035〜200μmの気孔量を測定可能な圧力であり、このような圧力範囲で測定することにより、一般的な水銀圧入式細孔分布測定装置を用いて、本発明が対象とする鉄鉱石A〜Eの微細気孔量を正確に測定することができる。   Here, the average porosity of the iron ore specified by the present invention is a mercury intrusion measurement method (indentation pressure: 0.007 to 412 MPa) using an intrusion type pore distribution measuring device for ores having a particle diameter of 4 to 7 mm. It is the average value (average value of N = 10) of the amount of fine pores measured by (1). Note that the indentation pressure range is a pressure capable of measuring the amount of pores having a pore diameter of 0.035 to 200 μm. By measuring in such a pressure range, a general mercury intrusion pore distribution measuring device is used. Thus, the amount of fine pores of iron ores A to E targeted by the present invention can be accurately measured.

本発明によれば、焼結原料に配合される原料鉱石の平均気孔量であって且つ高燐鉱石の特殊性を考慮して定義された特定の平均気孔量を調整することにより、原料鉱石の種類に関わりなく高品質の焼結鉱を製造することができ、とりわけ、高燐鉱石やマラマンバ鉱石、LCID鉱石を相当量配合する場合でも、冷間強度が高い高品質の焼結鉱を高い生産性と成品歩留りで製造することができる。   According to the present invention, by adjusting a specific average pore amount defined in consideration of the specificity of the high-phosphorus ore that is the average pore amount of the raw ore blended in the sintered raw material, High quality sintered ore can be produced regardless of the type, and high quality sintered ore with high cold strength is produced even when a high amount of high ore, maramamba ore and LCID ore are mixed. It can be manufactured with the characteristics and product yield.

以下、本発明の詳細と好ましい実施形態を説明する。
まず、高燐鉱石以外の鉄鉱石(鉄鉱石A〜D)の配合条件について説明するが、最初にマラマンバ鉱石とへマタイト鉱石等を用いて行った試験について述べる。
図1は、実機による焼結鉱の製造試験において、原料鉱石中のマラマンバ鉱石の配合率を変化させ、焼結鉱の生産率と成品歩留まりを調べた結果を示している。この操業(全3日間)では、原料鉱石中でのマラマンバ鉱石と普通鉱石であるヘマタイト鉱石の配合比を、図2に示すように、(a)へマタイト鉱石:100mass%、(b)へマタイト鉱石:約80mass%,マラマンバ鉱石:約20mass%、(c)へマタイト鉱石:約60mass%,マラマンバ鉱石:約40mass%、という3水準に変化させ、標準的な造粒方法及び造粒条件で焼結原料を擬似粒子に造粒し、これをドワイトロイド式焼結機に装入して焼成し、焼結鉱を製造した。マラマンバ鉱石としてはMAC鉱を、またへマタイト鉱石としてはマウントニューマン鉱をそれぞれ用いた。その他の製造・操業条件としては、新原料中の生石灰比率:2.0mass%、焼結機内原料装入厚:580mmとし、また、焼結鉱の化学組成がSiO:5.1mass%、CaO:10.2mass%、MgO:1.0mass%になるように、焼結原料中の石灰石、珪石、Niスラグ、ドロマイトの配合率を調整した。
図1によれば、原料鉱石中でのマラマンバ鉱石の配合率が増加するに従い、成品焼結鉱の生産率と歩留まりが低下している。この理由を調べた結果、マラマンバ鉱石の配合率が増加すると焼結鉱の冷間強度が低下し、その結果、成品歩留まりと生産率の低下を招くことが確認できた。
Hereinafter, details and preferred embodiments of the present invention will be described.
First, the blending conditions of iron ores (iron ores A to D) other than the high-phosphorus ore will be described. First, tests conducted using maramamba ore and hematite ore will be described.
FIG. 1 shows the results of examining the production rate and product yield of sintered ore by changing the blending ratio of maramamba ore in the raw ore in a production test of sintered ore using an actual machine. In this operation (3 days in total), as shown in Fig. 2, the mixing ratio of maramamba ore and ordinary hematite ore in the raw ore is as follows: (a) hematite ore: 100 mass%, (b) hematite Ore: approx. 80 mass%, Maramamba ore: approx. 20 mass%, (c) Hematite ore: approx. 60 mass%, Maramamba ore: approx. 40 mass%, baked with standard granulation methods and granulation conditions The sintered raw material was granulated into pseudo particles, which were charged into a Dwytroid type sintering machine and fired to produce a sintered ore. MAC ore was used as the maramamba ore, and Mount Newman ore was used as the hematite ore. Other production and operation conditions include: quick lime ratio in new raw material: 2.0 mass%, raw material charging thickness in sintering machine: 580 mm, and the chemical composition of sintered ore is SiO 2 : 5.1 mass%, CaO The mixing ratio of limestone, quartzite, Ni slag, and dolomite in the sintering raw material was adjusted so that the mass ratio was 10.2 mass% and MgO: 1.0 mass%.
According to FIG. 1, the production rate and yield of the product sintered ore decrease as the blending ratio of maramamba ore in the raw material ore increases. As a result of investigating the reason, it was confirmed that the cold strength of the sintered ore decreased when the blending ratio of the maramamba ore increased, resulting in a decrease in product yield and production rate.

図3は、実機による焼結鉱の製造において、原料鉱石中の鉱石の配合を、(a)微粉のへマタイト鉱石:約10mass%,その他鉱石(へマタイト鉱石主体の普通鉱石):約90mass%、(b)マラマンバ鉱石:約10mass%,その他鉱石(へマタイト鉱石主体の普通鉱石):約90mass%、という2水準とした操業を行い、成品焼結鉱の冷間強度(タンブラー強度)や生産率等の変化を調べた結果を示している。この操業では、原料鉱石中の微粉鉱(ペレットフィード)の配合率が約10mass%の焼結原料を、途中で原料鉱石中のマラマンバ鉱石の配合率が約10mass%の焼結原料に切り替え、その影響を調査したものであり、原料の造粒性を強化した造粒法(所謂HPS法)を適用して焼結原料の造粒を行い、焼結鉱を製造した。
図3の結果によれば、原料鉱石中に10mass%の微粉鉱石(ペレットフィード)を配合した(a)の原料配合に対して、その微粉鉱石分をマラマンバ鉱石に置き換えた(b)の原料配合の場合には、成品焼結鉱の冷間強度(タンブラー強度)は大きく低下し、ほとんど管理限界に近づいている。
Fig. 3 shows the composition of ores in the raw ore in the production of sintered ore by using the actual machine. (A) Fine hematite ore: approx. 10 mass%, other ores (ordinary ore mainly composed of hematite ore): approx. 90 mass% (B) Maramamba ore: about 10mass%, other ores (ordinary ore mainly composed of hematite ore): about 90mass%, the cold strength (tumbler strength) and production of the product sintered ore The result of investigating changes in the rate is shown. In this operation, the sintering raw material in which the blending ratio of fine ore (pellet feed) in the raw material ore is about 10 mass% is switched to the sintering raw material in the middle of which the blending ratio of maramamba ore in the raw material ore is about 10 mass%. The influence was investigated, the granulation method (what is called HPS method) which strengthened the granulation property of the raw material was applied, the sintering raw material was granulated, and the sintered ore was manufactured.
According to the results shown in FIG. 3, the raw material composition of (a) in which 10 mass% of fine ore (pellet feed) is blended in the raw material ore is replaced by the raw material composition of (b) in which the fine ore content is replaced with maramamba ore. In the case of, the cold strength (tumbler strength) of the sintered product ore is greatly reduced and is almost approaching the control limit.

以上の図1及び図3の結果から、造粒方法や造粒条件の如何に関わりなく、或る程度の配合率でマラマンバ鉱石を配合した場合には、成品焼結鉱の冷間強度が低下してしまうことが確認できた。ここで、マラマンバ鉱石は、他の鉄鉱石に比べて鉱石粒子内部の微細気孔が非常に多いことが知られており、このような鉱石粒子内部に存在する微細気孔が、焼結過程で生成する融液の挙動に影響を及ぼし、成品焼結鉱の冷間強度に悪影響を与えていることが考えられた。そこで、試験鍋(φ100mm×100mm)とX線CT装置とを備えた図4に示すような試験装置を用い、表1に示す原料鉱石を配合した焼結原料を焼成し(焼結中風速:0.29Nm/s、コークス比:5.5%、混合原料中CaO比:9.0%、混合原料中SiO比:5.0%、原料粒度:−3mm)、焼結過程での原料鉱石及び焼結ケーキの気孔構造と融液流動状況の解析を行った。 From the results of FIG. 1 and FIG. 3 above, when maramamba ore is blended at a certain blending rate regardless of the granulation method and granulation conditions, the cold strength of the product sintered ore decreases. I was able to confirm. Here, it is known that Mara Mamba ore has a lot of fine pores inside ore particles compared to other iron ores, and such fine pores inside ore particles are generated during the sintering process. It was thought that it affected the behavior of the melt and negatively affected the cold strength of the product sintered ore. Therefore, using a test apparatus as shown in FIG. 4 equipped with a test pan (φ100 mm × 100 mm) and an X-ray CT apparatus, the sintered raw material containing the raw material ore shown in Table 1 is fired (wind speed during sintering: 0.29 Nm / s, coke ratio: 5.5%, CaO ratio in mixed raw material: 9.0%, SiO 2 ratio in mixed raw material: 5.0%, raw material particle size: -3 mm), raw material in sintering process The pore structure and melt flow status of ore and sintered cake were analyzed.

この試験では、表1のNo.1〜No.3の各原料鉱石を配合した焼結原料について、焼結開始から焼結が完了して一定時間経過後までの一連の過程における原料鉱石及び焼結ケーキのX線CT画像を得た。図5に、各焼結ケーキのX線CT画像の一例(焼成完了後のもの)を示す。これらのX線CT画像に基づき、以下のような手法で焼結中の各原料鉱石及び焼結ケーキの気孔構造の解析と融液流動状況の解析を行った。
気孔構造の解析では、図6に示すようにX線CT画像を固体部と気孔部に二値化し、これをさらに細線化処理し、この細線化処理画像からブランチ(気孔)の総面積Ap(mm)と総長さLbt(mm)を求め、ブランチ幅=Ap/Lbtによりブランチ幅を求めた。このブランチ幅は焼結ケーキ内部に存在する空洞の太さに相当するものである。
In this test, no. 1-No. With respect to the sintered raw material in which each of the three raw material ores was blended, X-ray CT images of the raw material ore and the sintered cake were obtained in a series of processes from the start of sintering to the end of the fixed time after the sintering was completed. FIG. 5 shows an example of an X-ray CT image of each sintered cake (after completion of firing). Based on these X-ray CT images, the pore structure of each raw ore and sintered cake being sintered and the melt flow state were analyzed by the following method.
In the analysis of the pore structure, as shown in FIG. 6, the X-ray CT image is binarized into a solid portion and a pore portion, and this is further thinned, and the total area Ap ( mm 2 ) and the total length Lbt (mm), and the branch width was obtained by branch width = Ap / Lbt. This branch width corresponds to the thickness of the cavity existing inside the sintered cake.

また、融液流動状況の解析では、図7に示すように時間間隔をおいた2つのX線CT画像(X線CT画像1=t1秒、X線CT画像2=t2秒)を固体部と気孔部に二値化し、この二値化画像に基づき、「t2−t1秒」間に固体部から気孔部に変化した面積S1と、同じく気孔部から固体部に変化した面積S2を求め、融液流動指数=(S1+S2)/(t2−t1)により融液流動指数を求めた。この融液流動指数は原料鉱石粒子間での融液の移動量(単位時間当たりの移動量)の指標となるものである。   Further, in the analysis of the melt flow situation, as shown in FIG. 7, two X-ray CT images (X-ray CT image 1 = t1 second, X-ray CT image 2 = t2 second) with a time interval as shown in FIG. Based on this binarized image, the area S1 that changed from the solid part to the pore part and the area S2 that changed from the pore part to the solid part in the same way are obtained on the basis of this binarized image. The melt flow index was obtained from the following formula: Liquid flow index = (S1 + S2) / (t2-t1). This melt flow index serves as an index of the amount of movement of the melt between the raw ore particles (the amount of movement per unit time).

図8は、焼結過程における原料鉱石及び焼結ケーキの気孔構造の解析結果を示すものである。これによれば、No.2(へマタイト鉱石:40mass%,マラマンバ鉱石:60mass%)やNo.3(へマタイト鉱石:40mass%,リモナイト鉱石:60mass%)の試験例は、No.1(へマタイト鉱石:100mass%)の試験例に比べてブランチ幅の成長速度と焼結ケーキのブランチ幅がかなり小さい。すなわち、これらNo.2とNo.3の場合には、No.1に比べて気孔の成長速度が遅く、かつ気孔そのものもの太くなり難いことを示している。また、No.2(へマタイト鉱石:40mass%,マラマンバ鉱石:60mass%)とNo.3(へマタイト鉱石:40mass%,リモナイト鉱石:60mass%)を比べると、No.3の方がNo.2よりも焼結ケーキのブランチ幅は大きくなっている。   FIG. 8 shows the analysis results of the pore structure of the raw ore and sintered cake during the sintering process. According to this, no. 2 (hematite ore: 40 mass%, maramamba ore: 60 mass%) and No. 2 No. 3 (Hematite ore: 40 mass%, Limonite ore: 60 mass%) Compared to the test example 1 (hematite ore: 100 mass%), the growth rate of the branch width and the branch width of the sintered cake are considerably small. That is, these No. 2 and No. In the case of No. 3, no. It indicates that the growth rate of the pores is slower than that of 1, and the pores themselves are not easily thickened. No. 2 (hematite ore: 40 mass%, maramamba ore: 60 mass%) and No. 2 3 (hematite ore: 40 mass%, limonite ore: 60 mass%) No. 3 is No. The branch width of the sintered cake is larger than 2.

焼結過程で生成する気孔は、主として鉱石粒子間での融液の移動により形成される(すなわち、融液が他所に移動した後の部分が気孔となる)ものであり、したがって、ブランチ幅の成長速度が大きくかつ焼結ケーキのブランチ幅が大きい(気孔が太い)ということは、鉱石粒子間での融液の移動量が大きいことを意味している。図9は、融液流動指数と図8の結果に基づくブランチ幅の成長速度との関係を示したものであるが、そのことが端的に示されている。   The pores generated in the sintering process are mainly formed by the movement of the melt between the ore particles (that is, the portion after the melt has moved to other places becomes the pores). The fact that the growth rate is high and the branch width of the sintered cake is large (the pores are thick) means that the amount of movement of the melt between the ore particles is large. FIG. 9 shows the relationship between the melt flow index and the growth rate of the branch width based on the result of FIG. 8, which is shown directly.

上記のように、配合する鉱石の種類とその配合率の違いによって鉱石粒子間での融液の移動量が大きく異なる理由について検討した結果、鉱石粒子間での融液の移動量が、鉱石粒子が元々有する微細気孔の多寡に大きく依存していることが判明した。これをマラマンバ鉱石とへマタイト鉱石を例に、図10の模式図に基づいて説明すると、図10(a)に示すマラマンバ鉱石の場合には、へマタイト鉱石に比べて鉱石粒子内部に微細気孔が非常に多く存在するため、鉱石粒子の周囲で生成した融液の相当量がその微細気孔内に吸収され、その結果、鉱石粒子間での融液の移動量が少なくなる。そして、焼結過程で生成した融液は鉱石粒子間を結合するボンドとなるため、融液の相当量が微細気孔内に吸収されてしまうと、鉱石粒子間を結合するボンド量が不足し、この結果として焼結鉱の冷間強度が低下してしまう。これに対して図10(b)に示すヘマタイト鉱石の場合には、鉱石粒子内部の微細気孔が少ないため、鉱石粒子の周囲で生成した融液の大部分が、微細気孔内に吸収されることなく鉱石粒子間に留まるため、鉱石粒子間での融液の移動量が多くなり、その結果として気孔も太くなる。そして、この鉱石粒子間に留まった多量の融液が鉱石粒子間を結合するボンドとなるため、高い冷間強度を有する焼結鉱が得られるものである。   As described above, as a result of examining the reason why the amount of melt transfer between ore particles varies greatly depending on the type of ore to be blended and the blending ratio, the amount of melt transfer between ore particles is It has been found that this is highly dependent on the number of micropores originally possessed. This will be described with reference to the schematic diagram of FIG. 10 by taking the maramamba ore and the hematite ore as an example. In the case of the maramamba ore shown in FIG. Due to the presence of such a large amount, a considerable amount of the melt formed around the ore particles is absorbed into the fine pores, and as a result, the amount of movement of the melt between the ore particles is reduced. And since the melt generated in the sintering process becomes a bond that bonds the ore particles, if a considerable amount of the melt is absorbed in the fine pores, the bond amount that bonds the ore particles is insufficient. As a result, the cold strength of the sintered ore is reduced. On the other hand, in the case of the hematite ore shown in FIG. 10B, since the fine pores inside the ore particles are few, most of the melt generated around the ore particles is absorbed into the fine pores. Therefore, the amount of movement of the melt between the ore particles increases, and as a result, the pores become thicker. And since the large amount of melt which remained between these ore particles becomes a bond which couple | bonds between ore particles, the sintered ore which has high cold intensity | strength is obtained.

また、LCID鉱石についても同様の試験、検討を行った結果、LCID鉱石はマラマンバ鉱石よりも微細気孔量がさらに多いため、微細気孔に起因する冷間強度の低下の度合いは、マラマンバ鉱石よりもさらに大きいことが判った。
以上の検討結果から、成品焼結鉱の冷間強度を高めるには、焼結原料中に配合される原料鉱石の平均気孔量を規制することが有効であり、これにより鉱石の種類に関わりなく、所定の水準以上の冷間強度を有する成品焼結鉱が得られることが判った。したがって、マラマンバ鉱石やLCID鉱石を多量配合した場合でも、配合される他の鉱石の種類やその配合率を適宜調整・選択することで、原料鉱石の平均気孔量を規制することにより、冷間強度が高い高品質の成品焼結鉱を得ることができる。
In addition, as a result of conducting the same test and examination for LCID ore, LCID ore has a larger amount of fine pores than Mara Mamba ore, and therefore, the degree of decrease in cold strength due to fine pores is more than that of Mara Mamba ore. I found it big.
From the above examination results, in order to increase the cold strength of the sintered product ore, it is effective to regulate the average pore volume of the raw material ore mixed in the sintered raw material, regardless of the type of ore. It was found that a product sintered ore having a cold strength equal to or higher than a predetermined level can be obtained. Therefore, even when blending a large amount of maramamba ore or LCID ore, by adjusting and selecting the type of other ores to be blended and the blending ratio as appropriate, by regulating the average pore volume of the raw ore, A high quality product sintered ore can be obtained.

図11は、水銀圧入測定法(水銀圧入式細孔分布測定装置を用い、押込み圧力:0.007〜412MPaで測定)で測定したヘマタイト鉱石、マラマンバ鉱石及びリモナイト鉱石(いずれも粒径4〜7mmの鉱石)の気孔径分布の一例を示したものである。また、図12は、同じ測定法により測定したLCID鉱石(粒径4〜7mm)の気孔径分布の一例を示したものである。同様の気孔径分布を各種の鉄鉱石について調査し、その気孔径分布に基づく加重平均気孔量を求めた結果、現在知られている焼結用鉄鉱石(但し、後述する高燐鉱石は除く)を融液の挙動に関係するような微細気孔量の多寡で分類すると、以下のような種類に大別できることが判った。
鉄鉱石A 平均気孔量:0.03〜0.05cm/g
鉄鉱石B 平均気孔量:0.10〜0.12cm/g
鉄鉱石C 平均気孔量:0.07〜0.09cm/g
鉄鉱石D 平均気孔量:0.18〜0.20cm/g
ここで、鉄鉱石Aに含まれる主要な鉱石としてはヘマタイト鉱石、マグネタイト鉱石等が挙げられ、また、鉄鉱石Bに含まれる主要な鉱石としてはマラマンバ鉱石等が挙げられ、鉄鉱石Cに含まれる主要な鉱石としてはピソライト鉱石に代表されるリモナイト鉱石等が挙げられ、鉄鉱石Dに含まれる主要な鉱石としてはLCID鉱石等が挙げられる。
FIG. 11 shows hematite ore, maramamba ore and limonite ore (all having a particle size of 4 to 7 mm) measured by a mercury intrusion measurement method (measured at an indentation pressure of 0.007 to 412 MPa using a mercury intrusion pore distribution measuring device). This shows an example of the pore size distribution of the ore. FIG. 12 shows an example of the pore size distribution of LCID ore (particle size 4 to 7 mm) measured by the same measurement method. The same pore size distribution was investigated for various iron ores, and the weighted average pore volume based on the pore size distribution was determined. As a result, currently known iron ores for sintering (excluding high-phosphorus ores described later) Were classified according to the amount of fine pores related to the behavior of the melt, and it was found that they can be roughly classified into the following types.
Iron ore A average pore volume: 0.03 to 0.05 cm 3 / g
Iron ore B average pore volume: 0.10 to 0.12 cm 3 / g
Iron ore C average pore volume: 0.07 to 0.09 cm 3 / g
Iron ore D average pore volume: 0.18 to 0.20 cm 3 / g
Here, hematite ore, magnetite ore etc. are mentioned as main ores contained in iron ore A, and maramamba ore etc. are mentioned as main ores contained in iron ore B, and are included in iron ore C. The main ore includes limonite ore represented by pisolite ore, and the main ore contained in iron ore D includes LCID ore.

このような4種類の鉄鉱石A〜Dを用いて焼結試験を繰り返し、それらの微細気孔量と成品焼結鉱の冷間強度との関係について整理した結果、焼結原料に配合される鉄鉱石において、融液の挙動と関係する鉄鉱石の平均気孔量は下記(a)式で定義することができ、かつこの平均気孔量Xを0.09cm/g以下とすることにより、成品焼結鉱の冷間強度を効果的に高めることができることが判明した。なお、上記平均気孔量は、粒径4〜7mmの鉱石について、水銀圧入式細孔分布測定装置を用いた水銀圧入測定法(押込み圧力:0.007〜412MPa)により測定した微細気孔量の平均値(N=10の平均値)である。
平均気孔量X=0.04×[A%]+0.11×[B%]+0.08×[C%]+0.19×[D%] … (a)
但し [A%]:[鉄鉱石A量]/[鉄鉱石A,B,C,Dの合計量]
[B%]:[鉄鉱石B量]/[鉄鉱石A,B,C,Dの合計量]
[C%]:[鉄鉱石C量]/[鉄鉱石A,B,C,Dの合計量]
[D%]:[鉄鉱石D量]/[鉄鉱石A,B,C,Dの合計量]
なお、微粉鉱石であるペレットフィードが焼結用の原料鉱石の一部として用いられており、このペレットフィードは鉱物組成上はヘマタイト鉱石及びマグネタイト鉱石に属するが、ペレットフィードは微粉であるために、その微細気孔は融液の挙動に大きな影響を与えないことが判った。このため本発明では、ペレットフィードは鉄鉱石Aの対象から除外する。
As a result of repeating the sintering test using these four types of iron ores A to D and arranging the relationship between the amount of fine pores and the cold strength of the product sintered ore, iron ore blended in the sintering raw material In the stone, the average porosity of iron ore related to the behavior of the melt can be defined by the following formula (a), and the average porosity X is set to 0.09 cm 3 / g or less, It has been found that the cold strength of the ore can be effectively increased. In addition, the said average amount of pores is the average of the amount of fine pores measured with the mercury intrusion measuring method (indentation pressure: 0.007-412MPa) using the mercury intrusion type pore distribution measuring apparatus about the ore with a particle size of 4-7mm. Value (average value of N = 10).
Average pore volume X = 0.04 x [A%] + 0.11 x [B%] + 0.08 x [C%] + 0.19 x [D%] ... (a)
However, [A%]: [Amount of iron ore A] / [Total amount of iron ore A, B, C, D]
[B%]: [Iron ore B amount] / [Total amount of iron ore A, B, C, D]
[C%]: [Iron ore C amount] / [Total amount of iron ore A, B, C, D]
[D%]: [Iron ore D amount] / [Total amount of iron ore A, B, C, D]
In addition, pellet feed which is fine powder ore is used as a part of raw material ore for sintering, and this pellet feed belongs to hematite ore and magnetite ore in terms of mineral composition, but because pellet feed is fine powder, It was found that the fine pores do not have a great influence on the behavior of the melt. For this reason, in this invention, a pellet feed is excluded from the object of the iron ore A.

以上が鉄鉱石A〜Dを配合する場合に妥当する条件であるが、以下に述べるように、高燐鉱石を配合する場合には多少事情が異なる。
高燐鉱石、リモナイト鉱石、ヘマタイト鉱石、マラマンバ鉱石、LCID鉱石について、それらの代表的な化学組成とLOI(結晶水含有量と高い相関がある加熱後質量減少割合)を表2に、同じく代表的な粒度構成(粒度分布、算術平均径)を表3に示す。これによれば、高燐鉱石はP含有量が他の鉱石よりも突出して高く、一般に他の鉱石のP含有量は0.06mass%以下であるのに対して、0.10mass%以上のPを含有する。また、高燐鉱石はAl含有量が2.0mass%以上と比較的高く、LOIもリモナイト鉱石よりは低いものの、ヘマタイト鉱石の約2倍である。また、高燐鉱石の粒度構成については、粒径0.25mm以下の微粉の割合は33mass%とマラマンバ鉱石に並みに高く、算術平均径も1.86mmであってマラマンバ鉱石並みに細粒であることが特徴である。
以上のような、いわゆる高燐鉱石の特徴からして、高燐鉱石はP含有量とAl含有量とにより他の鉱石(先に挙げた鉄鉱石A〜D)から区別することができ、このため本発明では、P含有量:0.10mass%以上、Al含有量:2.0mass%以上の鉱石を「高燐鉱石」と定義する。
The above conditions are appropriate when iron ores A to D are blended, but the situation is somewhat different when blending high phosphate ores as described below.
Table 2 shows the typical chemical composition and LOI (mass loss ratio after heating highly correlated with crystal water content) of high phosphate ore, limonite ore, hematite ore, maramamba ore, and LCID ore. Table 3 shows various particle size configurations (particle size distribution, arithmetic average diameter). According to this, high phosphorus ore has a P content that is prominently higher than other ores, and generally, the P content of other ores is 0.06 mass% or less, whereas P content of 0.10 mass% or more. Containing. High phosphate ore has a relatively high Al 2 O 3 content of 2.0 mass% or more, and LOI is lower than limonite ore, but is about twice that of hematite ore. As for the particle size composition of the high phosphate ore, the proportion of fine powder having a particle size of 0.25 mm or less is as high as 33 mass%, which is as high as that of Mara Mamba ore, and the arithmetic average diameter is 1.86 mm, which is as fine as that of Mara Mamba Ore. It is a feature.
Due to the characteristics of the so-called high phosphate ore as described above, the high phosphate ore can be distinguished from other ores (the iron ores A to D mentioned above) by the P content and the Al 2 O 3 content. Therefore, in the present invention, an ore having a P content of 0.10 mass% or more and an Al 2 O 3 content of 2.0 mass% or more is defined as “high phosphorus ore”.

図13に、高燐鉱石とブレンド鉱石(鉄鉱石A:50mass%、鉄鉱石B:10mass%、鉄鉱石C:40mass%)の粒度毎の質量割合と化学組成の比較を示す。これによれば、高燐鉱石は粒径0.063mm以下の微粉の割合が24mass%と多く、且つその微粉中でのAl含有量がブレンド鉱石に較べて非常に高く、微粉部分にAlが濃化していることが判る。 In FIG. 13, the mass ratio and chemical composition for each particle size of high phosphate ore and blended ore (iron ore A: 50 mass%, iron ore B: 10 mass%, iron ore C: 40 mass%) are shown. According to this, the ratio of fine powder having a particle size of 0.063 mm or less is as high as 24 mass%, and the content of Al 2 O 3 in the fine powder is very high compared to the blended ore. It can be seen that Al 2 O 3 is concentrated.

表4にNo.1〜No.3として示した、リモナイト鉱石100mass%の原料鉱石と、その一部を高燐鉱石に置き換えた原料鉱石を、それぞれ焼結原料に配合し、焼結試験鍋(試験鍋サイズ:300mmφ×400mmH)を用いて焼結鉱を製造した。その際の原料装入密度、擬似粒子径、焼結中風速及び焼結時間を図14に示す。その他の焼結条件としては、吸引圧力:1000mmHO、コークス比:5.3%、混合原料中CaO比:9%、混合原料中SiO比:5%、原料粒度:−10mmとした。得られた成品焼結鉱の品質、生産率及び歩留まりを図15に示す。
In Table 4, no. 1-No. The raw ore of 100% limonite ore and the raw ore in which a part of the limonite ore was replaced with high-phosphorus ore were blended into the sintering raw materials, respectively, and a sintering test pan (test pan size: 300 mmφ × 400 mmH) was prepared. Used to produce sintered ore. FIG. 14 shows the raw material charging density, pseudo particle size, wind speed during sintering, and sintering time at that time. Other sintering conditions were: suction pressure: 1000 mmH 2 O, coke ratio: 5.3%, CaO ratio in mixed raw material: 9%, SiO 2 ratio in mixed raw material: 5%, and raw material particle size: −10 mm. FIG. 15 shows the quality, production rate, and yield of the obtained sintered product ore.

図14によれば、No.1のリモナイト鉱石100mass%に対して高燐鉱石の配合量(置換量)が増加するに従い(No.2→No.3)、比重が小さく粗粒であるリモナイト鉱石との置換であるため、装入嵩密度が増加するとともに、擬似粒子径は低下する。また、高燐鉱石の配合量の増加に伴い、焼結中の風速(通気性)が低下し、焼結時間が長くなっている。また、図15によれば、高燐鉱石の配合量の増加に伴い、劣質といわれているリモナイト鉱石と置換したにも拘わらず、成品焼結鉱の生産率と歩留まりは低下している。具体的には、高燐鉱石をリモナイト鉱石と10mass%置換する毎に、生産率は0.01t/hr・m低下している。この理由を調べた結果、高燐鉱石の配合量が増加すると焼結鉱の冷間強度が低下し、その結果、成品歩留まりと生産率の低下を招くことが確認できた。さらに、高燐鉱石の配合量の増加に伴い、被還元性はそれほど変化しないものの、還元粉化性が悪化している。 According to FIG. As the blending amount (substitution amount) of high phosphate ore increases with respect to 100 mass% of limonite ore No. 1 (No. 2 → No. 3), it is substitution with limonite ore which has a small specific gravity and is coarse. As the bulk density increases, the pseudo particle size decreases. In addition, as the blending amount of high phosphate ore increases, the wind speed (breathability) during sintering decreases and the sintering time becomes longer. Further, according to FIG. 15, with the increase in the blending amount of the high phosphate ore, the production rate and yield of the product sintered ore are decreasing despite the replacement with the limonite ore which is said to be inferior. Specifically, the production rate decreases by 0.01 t / hr · m 2 every time the high-phosphorus ore is replaced with limonite ore by 10 mass%. As a result of investigating the reason, it was confirmed that when the blending amount of the high phosphate ore is increased, the cold strength of the sintered ore is lowered, and as a result, the product yield and the production rate are lowered. Furthermore, with the increase in the blending amount of high phosphate ore, the reducible property does not change so much, but the reduced powdering property deteriorates.

図16は、リモナイト鉱石100mass%を配合した焼結原料(表4のNo.1)と、高燐鉱石60mass%、リモナイト鉱石40mass%を配合した焼結原料(表4のNo.3)の上記焼結試験において、焼結中の通気性の変化を調べたものである。これによれば、No.1のリモナイト鉱石100mass%を配合した焼結原料に対し、高燐鉱石を相当量配合したNo.3の焼結原料では焼結時間が長くなり、通気性が悪化していることが判る。
ここで、焼結過程における通気性(ガス風速)の変化に注目すると、高燐鉱石を配合した焼結原料は、主に湿潤帯での通気抵抗が支配的な焼結前半部においても通気性は悪化しているものの、特に、主に溶融帯での通気抵抗が支配的な焼結後半部における通気性の悪化が著しい。つまり、高燐鉱石の配合が通気性の悪化に及ぼす影響としては、同鉱石が細粒であるために造粒性が低下し(造粒による擬似粒子径が大きくならない)、これに起因した湿潤帯での通気性悪化は認められるものの、その影響は小さく、一方、主に高燐鉱石が溶融している状態(溶融帯)での通気性の悪化が顕著であり、これが冷間強度や生産性に大きな悪影響を与えるものと考えられる。
FIG. 16 shows the above-mentioned sintered raw material (No. 1 in Table 4) blended with 100 mass% of limonite ore, and the sintered raw material (No. 3 of Table 4) blended with 60 mass% of high phosphorus ore and 40 mass% of limonite ore. In the sintering test, the change in air permeability during the sintering was examined. According to this, no. No. 1 containing a considerable amount of high phosphate ore with respect to the sintering raw material containing 100 mass% of limonite ore of No. 1. It can be seen that the sintering material No. 3 has a long sintering time and the air permeability is deteriorated.
Here, paying attention to the change in air permeability (gas wind speed) during the sintering process, the sintered raw material containing high phosphate ore is also air-permeable, even in the first half of the sintering, where the airflow resistance in the wet zone is dominant. However, in particular, the deterioration of the air permeability in the latter half of the sintering, in which the air flow resistance mainly in the melting zone is dominant, is remarkable. In other words, the effect of the blending of high phosphate ore on the deterioration of air permeability is that the ore is fine and the granulation is reduced (the pseudo particle size does not increase by granulation), and the wetness caused by this Although the deterioration of air permeability in the belt is observed, the effect is small, while the deterioration of air permeability is noticeable mainly in the state where the high phosphate ore is melted (melting zone). It is thought to have a great adverse effect on sex.

図17は、図16と同様の焼結原料を焼成した際の排ガス組成を調べた結果を示している。これによれば、No.1のリモナイト鉱石100mass%を配合した焼結原料に対し、高燐鉱石を相当量配合したNo.3の焼結原料では排ガス中のCO濃度が上昇し、CO濃度が低下している。これは、高燐鉱石の配合に伴いコークスの燃焼性が阻害されたことによるものと考えられる。ここで、稲角らにより、融液の流動性が悪化するとコークスが融液に包まれて燃焼する比率が高まり、その結果、コークスの燃焼性が阻害されることが報告(鉄と鋼
vol.78 (1992), p1053)されている。
FIG. 17 shows the result of examining the exhaust gas composition when the sintering raw material similar to FIG. 16 is fired. According to this, no. No. 1 containing a considerable amount of high phosphate ore with respect to the sintering raw material containing 100 mass% of limonite ore of No. 1. In the sintered raw material 3, the CO concentration in the exhaust gas is increased and the CO 2 concentration is decreased. This is thought to be due to the fact that the combustibility of coke was inhibited with the blending of high phosphate ore. Here, Inagaku et al. Reported that when the melt fluidity deteriorates, the rate at which coke is wrapped in the melt and burns increases, and as a result, the combustibility of coke is inhibited (iron and steel).
vol.78 (1992), p1053).

以上述べた通気性の悪化(図16)やコークス燃焼性の悪化(図17)の原因は、高燐鉱石の配合によって焼成時の融液の流動性が低下したためであると推察される。本発明者らは、先に挙げた高燐鉱石の成分組成及び粒度構成上の特徴、すなわち、微粉の割合が多く且つこの微粉中でのAl含有量が非常に高いという特徴に着目し、融液生成の基点であり且つ融液生成源の主要部でもある微粉中にAlが多く含まれることが、高燐鉱石を配合した場合の融液流動性の悪化の原因であると推定し、これを確認すべく、以下のような実験を行った。 The cause of the deterioration of the air permeability described above (FIG. 16) and the deterioration of the coke combustibility (FIG. 17) is presumed to be because the fluidity of the melt at the time of firing was reduced by the blending of the high phosphate ore. The present inventors pay attention to the above-described component composition and particle size composition of the high phosphate ore, that is, the feature that the proportion of fine powder is large and the content of Al 2 O 3 in the fine powder is very high. However, the fact that a large amount of Al 2 O 3 is contained in the fine powder, which is the starting point of the melt generation and is also the main part of the melt generation source, is a cause of deterioration of the melt fluidity when the high phosphate ore is blended. In order to confirm this, the following experiment was conducted.

CaO:20mass%、Fe:80mass%のCaO−Fe系融液に、それぞれ0.5mass%、1mass%、2mass%、6mass%、8mass%の割合でAl試薬を添加し、1300℃、1350℃、1400℃の各温度における各融液の粘度を測定した。なお、一般に1300℃は焼結ベッド上層の焼成温度に、1400℃は焼結ベッド下層の焼成温度に、それぞれ相当する。この融液の粘度測定では、図18に示すような球引き上げ法を採用した。この測定方法は、融液中に吊り下げられた球を引き上げる際に、天秤指示針の一定区間での移動速度を基に融液の粘度を算出するものである。図19は、その結果を示すものであり、融液の温度に拘わりなくAl添加量の増大に従い、融液の粘度が上昇することが判る。 CaO: 20mass%, Fe 2 O 3: to 80 mass% of CaO-Fe 2 O 3 KeiTorueki, respectively 0.5mass%, 1mass%, 2mass% , 6mass%, the Al 2 O 3 reagent at a ratio of 8mass% The viscosity of each melt at each temperature of 1300 ° C., 1350 ° C., and 1400 ° C. was measured. In general, 1300 ° C. corresponds to the firing temperature of the upper layer of the sintered bed, and 1400 ° C. corresponds to the firing temperature of the lower layer of the sintered bed. In measuring the viscosity of the melt, a ball pulling method as shown in FIG. 18 was adopted. In this measurement method, when the ball suspended in the melt is pulled up, the viscosity of the melt is calculated based on the moving speed of the balance indicating needle in a certain section. FIG. 19 shows the result, and it can be seen that the viscosity of the melt increases as the amount of Al 2 O 3 added increases regardless of the temperature of the melt.

次に、上記試験において様々な粘度を示した融液を用い、これら融液の充填層中での浸透速度を測定し、融液の粘度と充填層中における融液の浸透速度との関係を調べた。この浸透速度の測定では、図20に示すような浸透試験装置を用いた。この試験装置は、縦長のシリンダ容器内にガラスビーズの充填層を形成し、この充填層の上部から融液を滴下させ、充填層内での融液の浸透速度を測定するものである。図21は、測定された融液の浸透速度に基づき、融液の粘度と浸透速度との関係を示したもので、融液粘度の上昇とともに、融液の浸透速度(流動性)が低下することが判る。   Next, using melts having various viscosities in the above test, the penetration rate of these melts in the packed bed was measured, and the relationship between the viscosity of the melt and the penetration rate of the melt in the packed bed was measured. Examined. In the measurement of the penetration rate, a penetration test apparatus as shown in FIG. 20 was used. In this test apparatus, a packed bed of glass beads is formed in a vertically long cylinder container, a melt is dropped from the upper part of the packed layer, and the permeation rate of the melt in the packed layer is measured. FIG. 21 shows the relationship between the melt viscosity and the penetration rate based on the measured melt penetration rate. As the melt viscosity increases, the melt penetration rate (fluidity) decreases. I understand that.

以上の結果から、高燐鉱石の場合には、Al含有量が濃化した多量の微粉により生じる融液の粘度が大きいため、融液の流動性が低下し(すなわち、鉱石粒子間での融液の移動量が少なくなる)、焼結ケーキ中での気孔の成長が阻害され、これらによって通気性の悪化やコークス燃焼性の悪化が引き起こされ、成品焼結鉱の冷間強度の低下と生産率、歩留まりの低下につながるものと考えられる。 From the above results, in the case of high phosphate ore, the viscosity of the melt generated by a large amount of fine powder with a concentrated Al 2 O 3 content is large, so that the fluidity of the melt decreases (that is, between the ore particles). The amount of movement of the melt in the sinter cake is reduced), and the growth of pores in the sintered cake is hindered, which causes the deterioration of the air permeability and the coke combustion. This is thought to lead to a decline in production rate and yield.

したがって、高燐鉱石を配合する場合の配合条件については、先に述べた鉄鉱石A〜Dと同様の平均気孔量による冷間強度への影響に加えて、微粉(Alが濃化した微粉)により生じる融液の流動性低下に起因した冷間強度の低下等を考慮する必要がある。
まず、図11及び図12と同様の水銀圧入測定法(水銀圧入式細孔分布測定装置を用い、押込み圧力:0.007〜412MPaで測定)により高燐鉱石の気孔径分布を調査し、その気孔径分布に基づく加重平均気孔量を求めた結果、高燐鉱石(鉄鉱石E)の平均気孔量(融液の挙動に関係するような微細気孔量)は、以下のような範囲になることが判った。
鉄鉱石E 平均気孔量:0.05〜0.07cm/g
Therefore, with respect to the blending conditions when blending high phosphate ore, fine powder (Al 2 O 3 is concentrated in addition to the influence on the cold strength due to the average pore volume similar to iron ores A to D described above. It is necessary to consider a decrease in cold strength due to a decrease in the fluidity of the melt caused by the fine powder).
First, the pore size distribution of high phosphate ore was investigated by the same mercury intrusion measurement method (measured at an indentation pressure of 0.007 to 412 MPa using a mercury intrusion pore distribution measuring device) as in FIGS. As a result of obtaining the weighted average pore volume based on the pore size distribution, the average pore volume (fine pore volume related to the behavior of the melt) of high phosphate ore (iron ore E) should be in the following range I understood.
Iron ore E average pore volume: 0.05 to 0.07 cm 3 / g

そして、この高燐鉱石(鉄鉱石E)と上述した4種類の鉄鉱石A〜Dを用いて焼結試験を繰り返し、上述したような高燐鉱石(鉄鉱石E)の特殊性を加味した上で、それらの微細気孔量と成品焼結鉱の冷間強度との関係について整理した結果、高燐鉱石(鉄鉱石E)を配合する場合には、融液の挙動と関係する鉄鉱石の平均気孔量は下記(1)式で定義することができ、かつこの平均気孔量Xを0.09cm/g以下とすることにより、成品焼結鉱の冷間強度を効果的に高めることができることが判明した。なお、上記平均気孔量は、粒径4〜7mmの鉱石について、水銀圧入式細孔分布測定装置を用いた水銀圧入測定法(押込み圧力:0.007〜412MPa)により測定した微細気孔量の平均値(N=10の平均値)である。
平均気孔量X=0.04×[A%]+0.11×[B%]+0.08×[C%]+0.19×[D%]+2.0×0.06×[E%] … (1)
但し [A%]:[鉄鉱石A量]/[鉄鉱石A,B,C,D,Eの合計量]
[B%]:[鉄鉱石B量]/[鉄鉱石A,B,C,D,Eの合計量]
[C%]:[鉄鉱石C量]/[鉄鉱石A,B,C,D,Eの合計量]
[D%]:[鉄鉱石D量]/[鉄鉱石A,B,C,D,Eの合計量]
[E%]:[鉄鉱石E量]/[鉄鉱石A,B,C,D,Eの合計量]
Then, the sintering test was repeated using this high phosphate ore (iron ore E) and the above-mentioned four types of iron ores A to D, taking into account the special characteristics of the high phosphate ore (iron ore E) as described above. As a result of organizing the relationship between the amount of fine pores and the cold strength of the sintered sinter, when high phosphorus ore (iron ore E) is blended, the average of iron ore related to the behavior of the melt The amount of pores can be defined by the following formula (1), and the cold strength of the product sintered ore can be effectively increased by setting the average amount of pores X to 0.09 cm 3 / g or less. There was found. In addition, the said average amount of pores is the average of the amount of fine pores measured with the mercury intrusion measuring method (indentation pressure: 0.007-412MPa) using the mercury intrusion type pore distribution measuring apparatus about the ore with a particle size of 4-7mm. Value (average value of N = 10).
Average pore volume X = 0.04 x [A%] + 0.11 x [B%] + 0.08 x [C%] + 0.19 x [D%] + 2.0 x 0.06 x [E%] (1)
[A%]: [Amount of iron ore A] / [Total amount of iron ore A, B, C, D, E]
[B%]: [Iron ore B amount] / [Total amount of iron ore A, B, C, D, E]
[C%]: [Iron ore C amount] / [Total amount of iron ore A, B, C, D, E]
[D%]: [Iron ore D amount] / [Total amount of iron ore A, B, C, D, E]
[E%]: [Amount of iron ore E] / [Total amount of iron ore A, B, C, D, E]

図22は、上述した試験の結果を整理したもので、焼結原料に配合される鉄鉱石(高燐鉱石を含む鉄鉱石)の平均気孔量X(上記(1)式で定義される平均気孔量X)と成品焼結鉱の冷間強度(シャッター強度)との関係を示している。同図に示されるように、焼結原料に配合される鉄鉱石の平均気孔量Xを0.09cm/g以下とすることにより、成品焼結鉱の冷間強度(シャッター強度)を管理値である89.5%以上の水準にできることが判る。
したがって、本発明では、原料鉱石の少なくとも一部として、上記鉄鉱石A〜Dの中から選ばれる2種以上の鉄鉱石と、鉄鉱石E(高燐鉱石)とを配合した焼結原料から焼結鉱を製造する際に、焼結原料中に上記(1)式で定義される鉄鉱石の平均気孔量Xが0.09cm/g以下となるように鉄鉱石を配合し、この焼結原料から焼結鉱を製造するものである。
FIG. 22 is a summary of the results of the above-described tests. The average pore amount X of the iron ore (iron ore containing high-phosphorus ore) blended in the sintering raw material (average pore defined by the above formula (1)) The relationship between the amount X) and the cold strength (shutter strength) of the product sintered ore is shown. As shown in the figure, the average strength X of iron ore blended in the sintering raw material is set to 0.09 cm 3 / g or less to control the cold strength (shutter strength) of the product sintered ore. It can be seen that the level of 89.5% or more can be achieved.
Therefore, in the present invention, as at least a part of the raw material ore, a sintered raw material containing two or more kinds of iron ores selected from the iron ores A to D and iron ore E (high phosphorus ore) is sintered. When producing the ore, iron ore is blended in the sintering raw material so that the average pore volume X of the iron ore defined by the above formula (1) is 0.09 cm 3 / g or less. Sinter ore is produced from raw materials.

このような本発明の焼結鉱の製造方法は、マラマンバ鉱石が属する鉄鉱石B及び/又はLCID鉱石が属する鉄鉱石Dや高燐鉱石である鉄鉱石Eを相当量配合する場合に特に有用であり、例えば、(1)鉄鉱石A、鉄鉱石B、鉄鉱石C、鉄鉱石D及び鉄鉱石Eの合計量(但し、鉄鉱石A〜Dの中の1種以上が配合されない場合を含む)に対する鉄鉱石B及び鉄鉱石Dの配合割合(但し、鉄鉱石B、鉄鉱石Dのいずれかが配合されない場合を含む)が20mass%以上であるような鉄鉱石B及び/又は鉄鉱石D高配合の場合、(2)鉄鉱石A、鉄鉱石B、鉄鉱石C、鉄鉱石D及び鉄鉱石Eの合計量(但し、鉄鉱石A〜Dの中の1種以上が配合されない場合を含む)に対する鉄鉱石Eの配合割合が20mass%以上であるような鉄鉱石E高配合の場合、(3)
鉄鉱石A、鉄鉱石B、鉄鉱石C、鉄鉱石D及び鉄鉱石Eの合計量(但し、鉄鉱石A〜Dの中の1種以上が配合されない場合を含む)に対する鉄鉱石B及び鉄鉱石Dの配合割合(但し、鉄鉱石B、鉄鉱石Dのいずれかが配合されない場合を含む)が20mass%以上、鉄鉱石Eの配合割合が20mass%以上であるような鉄鉱石B及び/又は鉄鉱石D・鉄鉱石E高配合の場合、などにおいても冷間強度が高い高品質の焼結鉱を高い成品歩留まりと生産率で製造することができる。
Such a method for producing a sintered ore of the present invention is particularly useful when a considerable amount of iron ore B to which Mara Mamba ore belongs and / or iron ore D to which LCID ore belongs or iron ore E which is a high phosphorus ore is blended. Yes, for example, (1) Total amount of iron ore A, iron ore B, iron ore C, iron ore D and iron ore E (however, one or more of iron ores A to D are not included) Iron ore B and / or iron ore D high blending ratio in which iron ore B and iron ore D are mixed at a ratio of 20 mass% or more (including the case where either iron ore B or iron ore D is not blended) In the case of (2) with respect to the total amount of iron ore A, iron ore B, iron ore C, iron ore D and iron ore E (including the case where one or more of iron ores A to D are not blended) When the iron ore E content is 20mass% or more and the iron ore E content is high, (3)
Iron ore B and iron ore with respect to the total amount of iron ore A, iron ore B, iron ore C, iron ore D and iron ore E (including the case where one or more of iron ores A to D are not blended) Iron ore B and / or iron ore in which the blending ratio of D (provided that either iron ore B or iron ore D is not blended) is 20 mass% or more and the blending ratio of iron ore E is 20 mass% or more. In the case of high mixing of stone D and iron ore E, a high-quality sintered ore with high cold strength can be produced with high product yield and production rate.

原料鉱石中のマラマンバ鉱石の配合率と成品焼結鉱の生産率及び歩留まりとの関係を示すグラフA graph showing the relationship between the blending ratio of maramamba ore in the raw ore and the production rate and yield of the product sintered ore 図1の試験における原料鉱石の配合率を示す説明図Explanatory drawing which shows the mixing ratio of the raw material ore in the test of FIG. 焼結原料中に微粉鉱石+普通鉱石を配合した操業例と、マラマンバ鉱石+普通鉱石を配合した操業例について、コークス比及び焼結鉱の冷間強度の推移を示すグラフGraph showing changes in coke ratio and cold strength of sintered ore for an example of operation in which fine ore + ordinary ore is blended in the sintering raw material and an example of operation in which maramamba ore + ordinary ore is blended 焼成中の原料鉱石及び焼結ケーキの気孔構造と融液流動状況の解析を行うために用いた試験装置を示す説明図Explanatory drawing showing the test equipment used to analyze the pore structure and melt flow status of raw ore and sintered cake during firing 図4の試験装置で得られた焼結ケーキのX線CT画像の一例を示す図面Drawing which shows an example of the X-ray CT image of the sintered cake obtained with the test apparatus of FIG. 焼成中の原料鉱石及び焼結ケーキの気孔構造の解析を行うために採られた手法を示す説明図Explanatory drawing showing the technique taken to analyze the pore structure of raw ore and sintered cake during firing 焼結中の原料鉱石及び焼結ケーキの融液流動状況の解析を行うために採られた手法を示す説明図Explanatory drawing showing the technique adopted to analyze the melt flow status of raw ore and sintered cake during sintering 焼成中の原料鉱石及び焼結ケーキのブランチ(気孔)幅の推移を示すグラフGraph showing transition of branch (pore) width of raw ore and sintered cake during firing 図8で得られたブランチ幅の成長速度と融液流動指数との関係を示すグラフ8 is a graph showing the relationship between the branch width growth rate and the melt flow index obtained in FIG. 焼結過程で生成する融液の挙動をマラマンバ鉱石とへマタイト鉱石を例に示した説明図Explanatory diagram showing the behavior of the melt produced in the sintering process, using maramamba ore and hematite ore as examples 水銀圧入法で測定したヘマタイト鉱石、マラマンバ鉱石及びリモナイト鉱石の気孔径分布の一例を示すグラフGraph showing an example of pore size distribution of hematite ore, maramamba ore and limonite ore measured by mercury porosimetry 水銀圧入法で測定したLCID鉱石の気孔径分布の一例を示すグラフGraph showing an example of pore size distribution of LCID ore measured by mercury porosimetry 高燐鉱石とブレンド鉱石の粒度毎の質量割合と化学組成を示すグラフGraph showing the mass ratio and chemical composition of high phosphate ore and blended ore for each particle size 表4のNo.1〜No.3の原料鉱石をそれぞれ焼結原料に配合し、焼結試験鍋を用いて焼結鉱を製造した際の原料装入密度、擬似粒子径、焼結中風速及び焼結時間を示すグラフNo. in Table 4 1-No. A graph showing raw material charging density, pseudo particle diameter, wind speed during sintering, and sintering time when each raw material ore of No. 3 is blended into a sintering raw material and sintered ore is produced using a sintering test pot 表4のNo.1〜No.3の原料鉱石をそれぞれ焼結原料に配合し、焼結試験鍋を用いて製造された焼結鉱の品質、生産率及び歩留まりを示すグラフNo. in Table 4 1-No. Graph showing the quality, production rate, and yield of sintered ore manufactured by using 3 ore raw material ores and sintering raw material. 表4のNo.1とNo.3の原料鉱石をそれぞれ配合した焼結原料について、焼結中の通気性の変化を示すグラフNo. in Table 4 1 and No. Graph showing change in breathability during sintering for sintering raw materials each containing 3 raw material ores 表4のNo.1とNo.3の原料鉱石をそれぞれ配合した焼結原料を焼成した際の排ガス組成を示すグラフNo. in Table 4 1 and No. The graph which shows the exhaust gas composition at the time of baking the sintering raw material which mix | blended each raw material ore of 3 融液の粘度測定に用いた球引き上げ法を示す説明図Explanatory drawing showing the ball pulling method used for measuring the viscosity of the melt Al試薬を添加したCaO−Fe系融液の粘度を示すグラフGraph showing the viscosity of CaO-Fe 2 O 3 KeiTorueki added with al 2 O 3 reagent 融液の充填層中での浸透速度を測定するための装置を示す説明図Explanatory drawing which shows the apparatus for measuring the osmosis | permeation rate in the packed bed of melt. 融液の粘度と充填層中での浸透速度との関係を示すグラフGraph showing the relationship between melt viscosity and penetration rate in packed bed 焼結原料に配合される鉄鉱石の平均気孔量Xと成品焼結鉱の冷間強度(シャッター強度)との関係を示すグラフGraph showing the relationship between the average porosity X of iron ore blended in the sintering raw material and the cold strength (shutter strength) of the product sintered ore

Claims (5)

原料鉱石の少なくとも一部として、水銀圧入測定法によって測定される平均気孔量が0.03〜0.05cm/gの鉄鉱石A(但し、ペレットフィードを除く)、同じく平均気孔量が0.10〜0.12cm/gの鉄鉱石B、同じく平均気孔量が0.07〜0.09cm/gの鉄鉱石C、同じく平均気孔量が0.18〜0.20cm/gの鉄鉱石Dの中から選ばれる2種以上の鉄鉱石(但し、鉄鉱石A,B,C,Dは、P含有量が0.10mass%以上で且つAl含有量が2.0mass%以上であるものを除く)と、P含有量が0.10mass%以上、Al含有量が2.0mass%以上の鉄鉱石Eとを配合した焼結原料から焼結鉱を製造する方法であって、
下記(1)式で定義される鉄鉱石の平均気孔量Xが0.09cm/g以下となるように、鉄鉱石を配合した焼結原料から焼結鉱を製造することを特徴とする焼結鉱の製造方法。
平均気孔量X=0.04×[A%]+0.11×[B%]+0.08×[C%]+0.19×[D%]+2.0×0.06×[E%] … (1)
但し [A%]:[鉄鉱石A量]/[鉄鉱石A,B,C,D,Eの合計量]
[B%]:[鉄鉱石B量]/[鉄鉱石A,B,C,D,Eの合計量]
[C%]:[鉄鉱石C量]/[鉄鉱石A,B,C,D,Eの合計量]
[D%]:[鉄鉱石D量]/[鉄鉱石A,B,C,D,Eの合計量]
[E%]:[鉄鉱石E量]/[鉄鉱石A,B,C,D,Eの合計量]
As at least a part of the raw material ore, iron ore A (excluding pellet feed) having an average porosity of 0.03 to 0.05 cm 3 / g measured by a mercury intrusion measurement method, and the average porosity is also 0.00. 10~0.12cm 3 / g of iron ore B, also iron ore C having an average pore volume is 0.07~0.09cm 3 / g, also the average pore volume of 0.18~0.20cm 3 / g iron Two or more types of iron ores selected from stone D (however, iron ores A, B, C, and D have a P content of 0.10 mass% or more and an Al 2 O 3 content of 2.0 mass% or more) And a method of manufacturing sintered ore from a sintered raw material containing iron ore E having a P content of 0.10 mass% or more and an Al 2 O 3 content of 2.0 mass% or more. There,
A sintered ore produced from a sintered raw material containing iron ore so that the average pore volume X of iron ore defined by the following formula (1) is 0.09 cm 3 / g or less. Production method of ore.
Average pore volume X = 0.04 x [A%] + 0.11 x [B%] + 0.08 x [C%] + 0.19 x [D%] + 2.0 x 0.06 x [E%] (1)
[A%]: [Amount of iron ore A] / [Total amount of iron ore A, B, C, D, E]
[B%]: [Iron ore B amount] / [Total amount of iron ore A, B, C, D, E]
[C%]: [Iron ore C amount] / [Total amount of iron ore A, B, C, D, E]
[D%]: [Iron ore D amount] / [Total amount of iron ore A, B, C, D, E]
[E%]: [Amount of iron ore E] / [Total amount of iron ore A, B, C, D, E]
焼結原料に鉄鉱石B及び/又は鉄鉱石Dが配合されることを特徴とする請求項1に記載の焼結鉱の製造方法。   The method for producing sintered ore according to claim 1, wherein iron ore B and / or iron ore D is blended in the sintering raw material. 焼結原料に鉄鉱石A、鉄鉱石B、鉄鉱石C及び鉄鉱石Dが配合されることを特徴とする請求項1に記載の焼結鉱の製造方法。   The method for producing sintered ore according to claim 1, wherein iron ore A, iron ore B, iron ore C, and iron ore D are blended in the sintering raw material. 鉄鉱石A、鉄鉱石B、鉄鉱石C、鉄鉱石D及び鉄鉱石Eの合計量(但し、鉄鉱石A、鉄鉱石B、鉄鉱石C及び鉄鉱石Dの中の1種以上が配合されない場合を含む)に対する鉄鉱石B及び鉄鉱石Dの割合(但し、鉄鉱石B、鉄鉱石Dのいずれかが配合されない場合を含む)が20mass%以上であることを特徴とする請求項2又は3に記載の焼結鉱の製造方法。   Total amount of iron ore A, iron ore B, iron ore C, iron ore D and iron ore E (provided that one or more of iron ore A, iron ore B, iron ore C and iron ore D are not blended) The ratio of iron ore B and iron ore D to (including any of the cases where either iron ore B or iron ore D is not blended) is 20 mass% or more. The manufacturing method of the sintered ore as described. 鉄鉱石A、鉄鉱石B、鉄鉱石C、鉄鉱石D及び鉄鉱石Eの合計量(但し、鉄鉱石A、鉄鉱石B、鉄鉱石C及び鉄鉱石Dの中の1種以上が配合されない場合を含む)に対する鉄鉱石Eの割合が20mass%以上であることを特徴とする請求項2〜4のいずれかに記載の焼結鉱の製造方法。
Total amount of iron ore A, iron ore B, iron ore C, iron ore D and iron ore E (provided that one or more of iron ore A, iron ore B, iron ore C and iron ore D are not blended) The method of manufacturing a sintered ore according to any one of claims 2 to 4, wherein the ratio of the iron ore E to 20) is 20 mass% or more.
JP2005289748A 2005-10-03 2005-10-03 Method for producing sintered ore Active JP4982993B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005289748A JP4982993B2 (en) 2005-10-03 2005-10-03 Method for producing sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005289748A JP4982993B2 (en) 2005-10-03 2005-10-03 Method for producing sintered ore

Publications (2)

Publication Number Publication Date
JP2007100149A true JP2007100149A (en) 2007-04-19
JP4982993B2 JP4982993B2 (en) 2012-07-25

Family

ID=38027375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005289748A Active JP4982993B2 (en) 2005-10-03 2005-10-03 Method for producing sintered ore

Country Status (1)

Country Link
JP (1) JP4982993B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011052242A (en) * 2009-08-31 2011-03-17 Jfe Steel Corp Method for producing sintered ore, sintering machine and sintered ore

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62139834A (en) * 1985-12-11 1987-06-23 Sumitomo Metal Ind Ltd Pretreating method for sintering raw material
JPH05247545A (en) * 1992-03-02 1993-09-24 Kobe Steel Ltd Pseudo particle for raw material of sintered ore and raw material of sintered ore
JPH05311256A (en) * 1992-05-01 1993-11-22 Nippon Steel Corp Manufacture of sintered ore
JPH07278684A (en) * 1994-04-07 1995-10-24 Nippon Steel Corp Production of sintered ore
JPH08239720A (en) * 1995-03-01 1996-09-17 Sumitomo Metal Ind Ltd Method for manufacturing sintered ore from ore with high content of water of crystallization
JPH10195549A (en) * 1996-12-27 1998-07-28 Sumitomo Metal Ind Ltd Production of sintered ore
JP2000063960A (en) * 1998-08-18 2000-02-29 Nippon Steel Corp Production of sintered ore
JP2000256756A (en) * 1999-03-09 2000-09-19 Nisshin Steel Co Ltd Method for granulating sintering raw material
JP2002129246A (en) * 2000-10-25 2002-05-09 Nippon Steel Corp Method for producing sintered ore
JP2002167621A (en) * 2000-11-30 2002-06-11 Sumitomo Metal Ind Ltd Method for producing iron sintered ore
JP2002371322A (en) * 2001-06-18 2002-12-26 Sumitomo Metal Ind Ltd Method for manufacturing sintered ore
JP2003073749A (en) * 2001-09-07 2003-03-12 Nippon Steel Corp Granulation method for raw material for iron manufacture
JP2003129139A (en) * 2001-10-26 2003-05-08 Nippon Steel Corp Method for treating raw material prior to sintering
JP2003277838A (en) * 2002-03-22 2003-10-02 Jfe Steel Kk High crystal water ore used for sintering raw material for blast furnace, sintering raw material for blast furnace and its producing method
JP2004137575A (en) * 2002-10-18 2004-05-13 Kobe Steel Ltd Production method for sintered ore
JP2004137596A (en) * 2002-08-21 2004-05-13 Nippon Steel Corp Method for granulating raw material to be sintered containing maramanba ore
JP2004285398A (en) * 2003-03-20 2004-10-14 Kobe Steel Ltd Method of producing sintered ore
JP2004315918A (en) * 2003-04-17 2004-11-11 Sumitomo Metal Ind Ltd Method for manufacturing low-silicon-oxide sintered ore
JP2005089824A (en) * 2003-09-17 2005-04-07 Nippon Steel Corp Method for granulating raw material to be sintered including pisolite ore
JP2005097686A (en) * 2003-09-25 2005-04-14 Nippon Steel Corp Method for granulating sintering raw material for iron manufacture
JP2005133209A (en) * 2003-10-09 2005-05-26 Jfe Steel Kk Method for producing sintered ore, method for producing raw material for sintering, granulated pellet, and sintered ore
JP2005187839A (en) * 2003-12-24 2005-07-14 Sumitomo Metal Ind Ltd METHOD FOR PRODUCING LOW SiO2 SINTERED ORE
JP2005200719A (en) * 2004-01-16 2005-07-28 Kobe Steel Ltd Method for manufacturing non-fired agglomerated ore

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62139834A (en) * 1985-12-11 1987-06-23 Sumitomo Metal Ind Ltd Pretreating method for sintering raw material
JPH05247545A (en) * 1992-03-02 1993-09-24 Kobe Steel Ltd Pseudo particle for raw material of sintered ore and raw material of sintered ore
JPH05311256A (en) * 1992-05-01 1993-11-22 Nippon Steel Corp Manufacture of sintered ore
JPH07278684A (en) * 1994-04-07 1995-10-24 Nippon Steel Corp Production of sintered ore
JPH08239720A (en) * 1995-03-01 1996-09-17 Sumitomo Metal Ind Ltd Method for manufacturing sintered ore from ore with high content of water of crystallization
JPH10195549A (en) * 1996-12-27 1998-07-28 Sumitomo Metal Ind Ltd Production of sintered ore
JP2000063960A (en) * 1998-08-18 2000-02-29 Nippon Steel Corp Production of sintered ore
JP2000256756A (en) * 1999-03-09 2000-09-19 Nisshin Steel Co Ltd Method for granulating sintering raw material
JP2002129246A (en) * 2000-10-25 2002-05-09 Nippon Steel Corp Method for producing sintered ore
JP2002167621A (en) * 2000-11-30 2002-06-11 Sumitomo Metal Ind Ltd Method for producing iron sintered ore
JP2002371322A (en) * 2001-06-18 2002-12-26 Sumitomo Metal Ind Ltd Method for manufacturing sintered ore
JP2003073749A (en) * 2001-09-07 2003-03-12 Nippon Steel Corp Granulation method for raw material for iron manufacture
JP2003129139A (en) * 2001-10-26 2003-05-08 Nippon Steel Corp Method for treating raw material prior to sintering
JP2003277838A (en) * 2002-03-22 2003-10-02 Jfe Steel Kk High crystal water ore used for sintering raw material for blast furnace, sintering raw material for blast furnace and its producing method
JP2004137596A (en) * 2002-08-21 2004-05-13 Nippon Steel Corp Method for granulating raw material to be sintered containing maramanba ore
JP2004137575A (en) * 2002-10-18 2004-05-13 Kobe Steel Ltd Production method for sintered ore
JP2004285398A (en) * 2003-03-20 2004-10-14 Kobe Steel Ltd Method of producing sintered ore
JP2004315918A (en) * 2003-04-17 2004-11-11 Sumitomo Metal Ind Ltd Method for manufacturing low-silicon-oxide sintered ore
JP2005089824A (en) * 2003-09-17 2005-04-07 Nippon Steel Corp Method for granulating raw material to be sintered including pisolite ore
JP2005097686A (en) * 2003-09-25 2005-04-14 Nippon Steel Corp Method for granulating sintering raw material for iron manufacture
JP2005133209A (en) * 2003-10-09 2005-05-26 Jfe Steel Kk Method for producing sintered ore, method for producing raw material for sintering, granulated pellet, and sintered ore
JP2005187839A (en) * 2003-12-24 2005-07-14 Sumitomo Metal Ind Ltd METHOD FOR PRODUCING LOW SiO2 SINTERED ORE
JP2005200719A (en) * 2004-01-16 2005-07-28 Kobe Steel Ltd Method for manufacturing non-fired agglomerated ore

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011052242A (en) * 2009-08-31 2011-03-17 Jfe Steel Corp Method for producing sintered ore, sintering machine and sintered ore

Also Published As

Publication number Publication date
JP4982993B2 (en) 2012-07-25

Similar Documents

Publication Publication Date Title
JP4808819B2 (en) Non-fired carbon-containing agglomerated mineral for blast furnace and method for producing the same
TWI473882B (en) Sintering raw materials for the adjustment of raw materials and sintering raw materials for powder
JP5168802B2 (en) Method for producing sintered ore
JP4661154B2 (en) Method for producing sintered ore
CN106414778A (en) Production method of granular metallic iron
JP4982993B2 (en) Method for producing sintered ore
JP4528362B2 (en) Method for producing sintered ore
JP2012046828A (en) Method for producing sintered ore
JP4767388B2 (en) Method for producing sintered ore with excellent high-temperature properties
JP4725230B2 (en) Method for producing sintered ore
JP2002129246A (en) Method for producing sintered ore
JP2007100150A (en) Method for producing sintered ore
JP4661077B2 (en) Method for producing sintered ore
JP2005307253A (en) Method for producing sintered ore
JP2003313614A (en) Method for manufacturing sintered ore with little slag
JP4501656B2 (en) Method for producing sintered ore
JP2020084241A (en) Manufacturing method of sintered ore
JP4438477B2 (en) Method for producing sintered ore for blast furnace
JP5011637B2 (en) Processing method of ore for sintering
JP7273305B2 (en) Method for producing sintered ore
JP2005307255A (en) Method for producing sintered ore
JP2006111959A (en) Method for manufacturing sintered ore
JP3952871B2 (en) Manufacturing method of high-strength sintered ore
JP4946007B2 (en) Manufacturing method of ferro-coke for metallurgy
TWI471419B (en) Sintering raw materials for the adjustment of raw materials and sintering raw materials for powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120409

R150 Certificate of patent or registration of utility model

Ref document number: 4982993

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250