JPH05311256A - Manufacture of sintered ore - Google Patents

Manufacture of sintered ore

Info

Publication number
JPH05311256A
JPH05311256A JP13763592A JP13763592A JPH05311256A JP H05311256 A JPH05311256 A JP H05311256A JP 13763592 A JP13763592 A JP 13763592A JP 13763592 A JP13763592 A JP 13763592A JP H05311256 A JPH05311256 A JP H05311256A
Authority
JP
Japan
Prior art keywords
porosity
sinter
sintering
melting zone
sintered ore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13763592A
Other languages
Japanese (ja)
Other versions
JP2668613B2 (en
Inventor
Tadahiro Inasumi
忠弘 稲角
Masami Fujimoto
政美 藤本
Shunji Kasama
俊次 笠間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP13763592A priority Critical patent/JP2668613B2/en
Publication of JPH05311256A publication Critical patent/JPH05311256A/en
Application granted granted Critical
Publication of JP2668613B2 publication Critical patent/JP2668613B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To manufacture the sintered ore where the porosity is high, the fluctuation of the porosity is small, and the quality is stable in the manufacture of the sintered ore by the air-suction type sintering method. CONSTITUTION:P is calculated by the formula 1. The downward force to be applied to the combustion melting zone of the sintering is controlled so that the value may be the porosity of the target sintered ore. The formula 1 is expressed as P=P0-a(bWsc+cWdp). Where, P: porosity of sintered ore, P0: porosity of sintered ore when the downward force to the combustion melting zone is zero, Wsc: weight of the sinter cake per unit area, Wdp: gravity-converted value of the downward force to be applied to the combustion melting zone of the sintering based on the pressure difference to be caused on the sintered cake part of the sintering bed by the suction load, a, b, c: proportional constants.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、DL式およびGW式な
どの空気吸引式焼結機による鉄鉱石焼結鉱、非鉄金属焼
結鉱の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an iron ore sintered ore and a non-ferrous metal sintered ore by an air suction type sintering machine such as DL type and GW type.

【0002】[0002]

【従来の技術】DL式鉄鉱石焼結法においては空気が下
方に吸引され、この空気で原料に内蔵した粉コークスを
燃焼させることにより、パレット上の原料の厚さ方向数
mm乃至数十mmの燃焼帯が下方へ移動していく形で焼
結反応が進行する。非鉄金属焼結法では粉コークスは使
わず、鉱石中の硫黄成分の酸化熱が利用されたり、また
空気が押圧で操業されるが、焼結ベッド内を通過する空
気で内蔵燃料の硫黄が酸化されて発熱し、その熱で焼結
するというプロセスの基本において変わりはない。
2. Description of the Related Art In the DL type iron ore sintering method, air is sucked downward and the powder coke contained in the raw material is burned by this air, so that the raw material on the pallet has a thickness of several mm to several tens of mm. The sintering reaction proceeds in such a manner that the combustion zone of No. 1 moves downward. In the non-ferrous metal sintering method, coke powder is not used and the heat of oxidation of the sulfur component in the ore is used, and air is operated by pressing, but the sulfur in the internal fuel is oxidized by the air passing through the sintering bed. There is no change in the basics of the process of generating heat to generate heat and sintering.

【0003】このような自己燃焼型の焼結では、成品は
必然的に多孔焼結体になる。気孔は材料強度的には欠陥
であり好ましくはないが、高炉などの冶金炉で使用され
る場合は一般に気孔が多い方が被還元性に有利である。
このように気孔率は焼結鉱の品質を左右する重要な要因
であるが、現実の焼結鉱製造技術では気孔率の制御は行
われておらず、原料条件、製造条件の変化に応じてその
都度変動し、調整すべきすべもなく放置されているのが
現状である。これが品質の変動、ひいては高炉などの冶
金炉の操業変動の一因になっており、その安定化が望ま
れる。さらに、従来の焼結鉱では、冶金的特性としての
被還元性が格段に優れている気孔率50%以上の高気孔
率高被還元性の焼結鉱は気孔率が変動することにより強
度が不安定になり、実用的に生産することは難しかっ
た。
In such self-combustion type sintering, the product is inevitably a porous sintered body. Porosity is not preferable because it is a defect in terms of material strength, but when it is used in a metallurgical furnace such as a blast furnace, it is generally more advantageous in terms of reducibility that it has many pores.
As described above, porosity is an important factor that affects the quality of sinter, but in actual sinter production technology, porosity is not controlled, and it depends on changes in raw material conditions and production conditions. The current situation is that it fluctuates each time and there is nothing to adjust. This is one of the causes of fluctuations in quality, and eventually fluctuations in the operation of metallurgical furnaces such as blast furnaces, and it is desirable to stabilize it. Further, in the conventional sinter, the reducibility as a metallurgical property is remarkably excellent, and the high porosity and high reducibility of the sinter having a porosity of 50% or more have strengths due to fluctuations in the porosity. It became unstable and was difficult to produce practically.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上述の問題
点を解決し、気孔率の変動の小さい安定した品質の焼結
鉱石、さらに冶金炉にとって好ましい高気孔率の焼結鉱
を安定して製造する方法を提供し、高炉などの冶金炉の
操業を安定化し、エネルギー原単位の低減、溶銑品質の
安定、環境の改善を行う。
SUMMARY OF THE INVENTION The present invention solves the above problems and stabilizes a stable quality ore having a small fluctuation in porosity, and a high-porosity sintered ore preferable for a metallurgical furnace. To stabilize the operation of metallurgical furnaces such as blast furnaces, reduce the energy consumption rate, stabilize the quality of hot metal, and improve the environment.

【0005】[0005]

【課題を解決するための手段】本発明の要旨は以下の通
りである。
The gist of the present invention is as follows.

【0006】 空気吸引式焼結法による焼結鉱の製造
方法において、吸引ブロアー圧に基づく圧力勾配差
dp、およびシンターケーキの荷重Wscから式(1)数
3でPを計算し、その値が目標とする焼結鉱の気孔率と
なるように焼結の燃焼溶融帯にかかる下向きの力を制御
することにより一定の気孔率を有する焼結鉱を製造する
焼結鉱の製造方法。
In the method for producing a sintered ore by the air suction type sintering method, P is calculated from the pressure gradient difference W dp based on the suction blower pressure and the load W sc of the sinter cake by Formula (1) Formula 3 and A method for producing a sinter having a constant porosity by controlling a downward force applied to a combustion melting zone of sintering so that the value becomes a target porosity of the sinter.

【0007】[0007]

【数3】 P=P0 −a(bWsc+cWdp) …(1) P :焼結鉱の気孔率 P0 :燃焼溶融帯への下向きの力がゼロの状態で焼結し
たときの焼結鉱の気孔率 Wsc:単位面積当たりのシンターケーキ重量 Wdp:吸引負荷により焼結ベッドのシンターケーキ部分
に生じる圧力差にもとづき焼結の燃焼溶融帯にかかる下
向きの力の重力換算値 a,b,c:比例定数
Equation 3] P = P 0 -a (bW sc + cW dp) ... (1) P: sinter porosity P 0: baked when downward force to the combustion melting zone is sintered at zero state Porosity of sinter W sc : Weight of sinter cake per unit area W dp : Gravity conversion value of downward force applied to combustion melting zone of sintering based on pressure difference generated in sinter cake portion of sintering bed due to suction load a , B, c: proportional constant

【0008】 空気吸引式焼結法による焼結鉱の製造
方法において、吸引ブロアー圧に基づく圧力勾配差
dp、およびシンターケーキの荷重Wscによる焼結の燃
焼溶融帯にかかる下向きの力に応じて上向きの力WLift
を作用させ、これら燃焼溶融帯にかかる力から式(2)
数4でPを計算し、その値が目標とする焼結鉱の気孔率
となるように制御することにより一定の気孔率を有する
焼結鉱を製造する焼結鉱の製造方法。
In the method for producing a sintered ore by the air suction type sintering method, depending on the pressure gradient difference W dp based on the suction blower pressure and the downward force applied to the combustion melting zone of the sintering by the load W sc of the sinter cake. Upward force W Lift
From the force acting on these combustion melting zones,
A method for producing a sinter having a constant porosity by calculating P by Equation 4 and controlling the value so as to be the target porosity of the sinter.

【0009】[0009]

【数4】 P=P0 −a(bWsc+cWdp−WLift) …(2) P :焼結鉱の気孔率 P0 :燃焼溶融帯への下向きの力がゼロの状態で焼結し
たときの焼結鉱の気孔率 Wsc:単位面積当たりのシンターケーキ重量 Wdp:吸引負荷により焼結ベッドのシンターケーキ部分
に生じる圧力差にもとづき焼結の燃焼溶融帯にかかる下
向きの力の重力換算値 WLift:シンターケーキに作用させる上向きの力 a,b,c:比例定数
Equation 4] P = P 0 -a (bW sc + cW dp -W Lift) ... (2) P: sinter porosity P 0: downward force to the combustion melting zone is sintered at zero state Porosity of sintered ore at this time W sc : Weight of sinter cake per unit area W dp : Gravity of downward force applied to the combustion melting zone of sintering based on the pressure difference generated in the sinter cake part of the sintering bed due to suction load Converted value W Lift : Upward force acting on the sinter cake a, b, c: Proportional constant

【0010】[0010]

【作用】図面を参照しながら作用を説明する。The operation will be described with reference to the drawings.

【0011】焼結の操業状態の一例を図1に示す。焼結
原料サージホッパー1に蓄えられた焼結原料は、焼結機
2に原料装入装置3で装入された後点火炉4で着火さ
れ、順次表層から下層に向けて焼結される。点火炉4を
通過した後はストランドの進行とともに焼結床の上層か
ら焼結が完了し、固結し、冷却され、シンターケーキが
できる。1点鎖線は焼結反応が行われている燃焼溶融帯
を示し、この線より上方は焼結反応が完了したいわゆる
シンターケーキ部分、この線より下方は原料状態にある
部分である。この燃焼溶融において焼結鉱の気孔率が決
定される。
An example of the operating state of sintering is shown in FIG. The sintering raw material stored in the sintering raw material surge hopper 1 is charged in the sintering machine 2 by the raw material charging device 3 and then ignited in the ignition furnace 4, and sequentially sintered from the surface layer to the lower layer. After passing through the ignition furnace 4, the sintering is completed from the upper layer of the sintering bed along with the progress of the strands, solidification and cooling are performed, and a sinter cake is formed. The one-dot chain line shows the combustion melting zone where the sintering reaction is performed, the upper part of this line is the so-called sinter cake part where the sintering reaction is completed, and the lower part is the part in the raw material state. The porosity of the sintered ore is determined in this combustion melting.

【0012】焼結体の気孔率は真比重と嵩重量からも測
定できるが、特開昭61−110729号公報記載のC
Tによる焼結体の気孔率の測定方法、あるいは特開昭6
2−269040号公報記載の真空パック法など従来知
られている方法でも測定できる。
Although the porosity of the sintered body can be measured from the true specific gravity and the bulk weight, C described in JP-A-61-1110729 is disclosed.
Method for measuring porosity of sintered body by T,
It can also be measured by a conventionally known method such as the vacuum packing method described in JP-A-2-269040.

【0013】焼結鉱の気孔率は原料空隙率と燃焼溶融帯
での溶融状態に左右されるが、同時にこの燃焼溶融帯に
は吸引負圧のもたらす圧力勾配とシンターケーキの重力
荷重がかかり、このような下向きの力を受けた状態で焼
結反応が行われるので、この圧下の受け方にも左右され
ると考えられた。そこで、焼結ベッド内の圧力分布の測
定を詳細に行うことにより、吸引負圧のもたらす燃焼溶
融帯への圧力勾配の大きさはストランド方向で場所によ
らずほぼ一定であり、通常全負圧の半分がかかることが
判明した。また、シンタケーキの重量荷重は、ロードセ
ルにより焼結ベッド内の応力分布を測定することによ
り、原料嵩比重が決定されると燃焼溶融帯の層高方向の
高さに逆比例して大きくなることが判明した。発明者ら
は焼結ベッド内の焼結燃焼溶融帯にかかる下向きの力と
焼結反応完了後測定した焼結体の気孔率の関係を種々検
討した結果、両要因の間に式(1)数5の強い関係があ
ることを見出した。
The porosity of the sinter depends on the porosity of the raw material and the molten state in the combustion melting zone. At the same time, the pressure gradient caused by the suction negative pressure and the gravity load of the sinter cake are applied to this combustion melting zone. Since the sintering reaction takes place in the state of receiving such a downward force, it was considered that it depends on the way of receiving this reduction. Therefore, by measuring the pressure distribution in the sintering bed in detail, the magnitude of the pressure gradient to the combustion melting zone caused by the suction negative pressure is almost constant regardless of the location in the strand direction. Turns out to take half of. Further, the weight load of the sintering cake increases in inverse proportion to the height of the combustion melting zone in the bed height direction when the bulk density of the raw material is determined by measuring the stress distribution in the sintering bed with a load cell. There was found. The inventors conducted various studies on the relationship between the downward force applied to the sintering combustion melting zone in the sintering bed and the porosity of the sintered body measured after the completion of the sintering reaction. It was found that there is a strong relationship of the number 5.

【0014】[0014]

【数5】 P=P0 −a(bWsc+cWdp) …(1)[Number 5] P = P 0 -a (bW sc + cW dp) ... (1)

【0015】Pは目標とする焼結鉱の気孔率であり、P
0 は燃焼溶融帯への下向きの力がゼロの状態で焼結した
ときの焼結鉱の気孔率で、原料と装入密度が決まればオ
フラインの鍋試験で求めることができる。日本で使われ
る標準的な原料で通常の原料装入密度1.8前後では約
55%になり、多少原料条件、装入密度が変化しても大
きく変わらないので、一度測定すれば日常は定数として
扱うことも可能である。Wscは単位面積当たりのシンタ
ーケーキ重量で、層厚に比例する。燃焼溶融帯にかかる
シンターケーキ重量は焼結ベッドの高さ毎に異なるが、
気孔率形成への影響は単位面積当たりのシンターケーキ
総重量の何分の1の荷重が常時かかっていることと等価
であることが判明し、この係数をbとすると、単位面積
当たりのシンターケーキ総重量に係数bをかけた荷重を
常時かけた状態に応じた気孔率になる。通常全荷重の約
半分がかかることが判明しており、定数とすることもで
きる。Wdpは吸引負圧の焼結ベッドのシンターケーキ部
分に生じる圧力差にもとづき燃焼溶融帯にかかる下向き
の力の重力換算値である。吸引負圧のもたらす燃焼溶融
帯への圧力勾配の大きさはストランド方向で場所によら
ずほぼ一定であり、Wdpに比例する力がかかる。この比
例係数をcとした。通常、全負圧の約半分がかかること
が判明しており、定数とすることもできる。aは燃焼溶
融帯にかかる下向きの力と焼結鉱の気孔率との比例係数
で、オフラインの鍋試験で求めることができる。通常a
は荷重10kg/m2 で1%前後である。
P is the porosity of the target sinter, and P
0 is the porosity of the sintered ore when it is sintered in the state where the downward force on the combustion melting zone is zero, and can be obtained by an off-line pot test if the raw material and the charging density are determined. It is a standard raw material used in Japan and is about 55% at a normal raw material charging density of around 1.8, and it does not change significantly even if the raw material conditions and charging density change slightly, so once measured, it is a constant on a daily basis. Can also be treated as W sc is the weight of the sinter cake per unit area and is proportional to the layer thickness. Although the weight of the sinter cake on the combustion melting zone varies depending on the height of the sintering bed,
It was found that the effect on porosity formation is equivalent to the fact that a load of a fraction of the total weight of the sinter cake per unit area is constantly applied, and if this coefficient is b, the sinter cake per unit area is The porosity corresponds to the state in which the total weight is multiplied by the coefficient b and a load is constantly applied. It has been found that normally about half of the total load is applied and can be a constant. W dp is a gravity-converted value of the downward force applied to the combustion melting zone based on the pressure difference generated in the sinter cake portion of the sintering bed under negative suction pressure. The magnitude of the pressure gradient to the combustion melting zone caused by the suction negative pressure is almost constant in the strand direction regardless of the location, and a force proportional to W dp is applied. This proportionality coefficient was set to c. It has been found that usually about half of the total negative pressure is applied, and can be a constant. a is a proportional coefficient between the downward force applied to the combustion melting zone and the porosity of the sinter, and can be obtained by an off-line pot test. Usually a
Is about 1% under a load of 10 kg / m 2 .

【0016】式(1)の関係から望みの一定の気孔率の
焼結鉱を製造するための操業条件が選択でき、気孔率以
外の生産率、歩留、品質を総合的に勘案して負圧、層厚
条件が決定できる。
From the relation of the formula (1), the operating conditions for producing the sintered ore having a desired constant porosity can be selected, and it is negative considering the production rate other than the porosity, the yield, and the quality comprehensively. The pressure and layer thickness conditions can be determined.

【0017】式(1)によれば、狙いの気孔率に合わせ
た焼結鉱の操業が可能である。ただし従来は荷重が過剰
気味であり、気孔率が一般に低く、そのため焼結操業自
体は通気性に悩み、かつそのような状態では通風が偏流
し、不均一な気孔構造が形成され、バラツキが大きく、
狙いの気孔率のものがなかなか製造できないのが通常で
ある。たとえば、特開平2−293586号公報記載の
スタンド焼結法、特願平2−242544号、特願平3
−124532号に係る磁気浮揚焼結法などのシンター
ケーキに上向きの力を作用させる技術と組み合わせ、式
(2)数6によれば通気が安定し、従来にない高気孔率
焼結鉱の高位安定生産が可能である。
According to the formula (1), it is possible to operate the sinter according to the target porosity. However, in the past, the load was excessive and the porosity was generally low, so the sintering operation itself suffered from air permeability, and in such a state the ventilation was unevenly distributed, and a non-uniform pore structure was formed, resulting in large variations. ,
Usually, it is difficult to manufacture the one with the target porosity. For example, the stand sintering method described in JP-A-2-293586, Japanese Patent Application Nos. 2-242544 and 3
Combined with the technique of applying an upward force to the sinter cake such as the magnetic levitation sintering method according to No. 124532, according to the formula (2) number 6, the ventilation is stable, and the high level of the unprecedented high porosity sintered ore is obtained. Stable production is possible.

【0018】[0018]

【数6】 P=P0 −a(bWsc+cWdp−WLift) …(2)## EQU6 ## P = P 0 −a (bW sc + cW dp −W Lift ) (2)

【0019】WLiftは圧力勾配、重力荷重を合わせた燃
焼溶融帯にかかる力を、シンターケーキをスタンド材で
下支えするとか、磁気浮揚でシンターケーキに上向きの
力をかけることにより軽減する量を示す。
W Lift indicates the amount of the force applied to the combustion melting zone, which combines the pressure gradient and gravity load, reduced by supporting the sinter cake with a stand material or applying an upward force to the sinter cake by magnetic levitation. ..

【0020】[0020]

【実施例】本発明の実施例を以下に説明する。EXAMPLES Examples of the present invention will be described below.

【0021】実施例1 焼結面積600m2 (5m巾×120mストランド長
さ)のDL鉄鉱石焼結機で層厚600mm、負圧150
0mmaqで操業している時に原料配合の変化があり、
強度はJIS常温強度SIが89から90.5に向上し
たが、被還元性JIS・RIが67.4から66.1に
低下し、高炉燃料比が1.9kg/t−p悪化した。焼
結鉱の気孔率を測定したところ、49.3%から48.
1%に低下していた。この原料のP0 、aを鍋試験で測
定したところ、それぞれ54.5%、0.105であっ
た。層厚を500mmにして、負圧を1300mmaq
にしたところ、JIS常温強度SIが89.5になり、
被還元性JIS・RIが67.8に回復し、高炉燃料比
も2.1kg/t−p回復した。
Example 1 A DL iron ore sintering machine having a sintering area of 600 m 2 (5 m width × 120 m strand length) has a layer thickness of 600 mm and a negative pressure of 150.
There is a change in the raw material composition when operating at 0 mmaq,
Regarding the strength, the JIS room temperature strength SI was improved from 89 to 90.5, but the reducible JIS / RI was decreased from 67.4 to 66.1, and the blast furnace fuel ratio was deteriorated by 1.9 kg / tp. When the porosity of the sintered ore was measured, it was 49.3% to 48.
It had dropped to 1%. When P 0 and a of this raw material were measured by a pan test, they were 54.5% and 0.105, respectively. The layer thickness is 500 mm and the negative pressure is 1300 mmaq.
Then, the JIS room temperature strength SI becomes 89.5,
The reducible JIS / RI was recovered to 67.8, and the blast furnace fuel ratio was also recovered to 2.1 kg / tp.

【0022】実施例2 焼結面積280m2 (4m巾×70mストランド長さ)
のDL鉄鉱石焼結機で通常500mmの層厚、負圧10
00mmaqで操業していたが、気孔率は49.8%で
あった。この原料のP0 、aを鍋試験で測定したとこ
ろ、それぞれ56.2%、0.104であった。図2に
示す磁気浮揚装置8を稼働させ、層厚600mまであげ
て、吸引圧1000mmaqとシンターケーキ重量が燃
焼溶融帯にかかる下向きの力45kg/m2 に見合う磁
気浮揚力をかけて操業したところ、気孔率56.0%の
高気孔率焼結鉱が得られた。強度はJIS常温強度SI
が89.6から90.5に向上し、被還元性JIS・R
Iが66.4から70.1に向上し、高炉燃料比が7.
5kg/t−p改善された。
Example 2 Sintered area 280 m 2 (4 m width × 70 m strand length)
DL iron ore sinter machine with a layer thickness of 500mm, negative pressure 10
Although operated at 00 mmaq, the porosity was 49.8%. When P 0 and a of this raw material were measured by a pan test, they were 56.2% and 0.104, respectively. When the magnetic levitation device 8 shown in FIG. 2 is operated, the layer thickness is increased to 600 m, and the magnetic levitation force corresponding to the suction pressure of 1000 mmaq and the downward force of 45 kg / m 2 applied to the combustion melting zone by the sinter cake is operated. A high porosity sinter having a porosity of 56.0% was obtained. Strength is JIS room temperature strength SI
Has been improved from 89.6 to 90.5, and reducible JIS / R
I increased from 66.4 to 70.1 and the blast furnace fuel ratio was 7.
It was improved by 5 kg / tp.

【0023】[0023]

【発明の効果】本発明により、従来何によって気孔率が
左右され、何を操作すれば気孔率が制御できるのかが曖
昧に判断されていたのが、的確に制御でき、管理できる
ようになる。気孔率は強度、被還元性などの焼結鉱品質
を左右する重要な構造要素であり、これが制御、管理で
きるようになるので品質が安定化し、高炉などの冶金炉
の操業変動を抑制でき、安定操業が可能になる。さら
に、変動の抑制で操業効果が改善され、燃料比を低減で
きる。磁気浮揚などのシンターケーキに上向きの力を作
用させる技術を合わせて利用すれば、従来にない高気孔
率の焼結鉱の製造が可能になり、大幅に高炉燃料比が低
減できる。
As described above, according to the present invention, it has been vaguely decided by what has affected the porosity and by what operation the porosity can be controlled. However, it becomes possible to precisely control and manage the porosity. Porosity is an important structural element that influences the quality of sinter such as strength and reducibility, and since it can be controlled and managed, the quality is stabilized, fluctuations in the operation of metallurgical furnaces such as blast furnaces can be suppressed, Stable operation becomes possible. Further, by suppressing the fluctuation, the operation effect is improved and the fuel ratio can be reduced. By using a technique such as magnetic levitation to apply an upward force to the sinter cake, it is possible to manufacture unprecedentedly high-porosity sinter, and the blast furnace fuel ratio can be greatly reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】DL式焼結機に磁気浮揚装置を装着して操業し
ている状態の例を示す図である。
FIG. 1 is a diagram showing an example of a state in which a magnetic levitation device is attached to a DL type sintering machine to operate.

【図2】磁気浮揚装置の詳細を示す図である。FIG. 2 is a diagram showing details of a magnetic levitation device.

【符号の説明】[Explanation of symbols]

1 焼結原料サージホッパー 2 焼結機 3 原料装入装置 4 点火炉 8 磁気浮揚装置 9 磁気浮揚装置支持枠 1 Sintering raw material surge hopper 2 Sintering machine 3 Raw material charging device 4 Ignition furnace 8 Magnetic levitation device 9 Magnetic levitation device support frame

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 空気吸引式焼結法による焼結鉱の製造方
法において、吸引ブロアー圧に基づく圧力勾配差Wdp
およびシンターケーキの荷重Wscから式(1)数1でP
を計算し、その値が目標とする焼結鉱の気孔率となるよ
うに焼結の燃焼溶融帯にかかる下向きの力を制御するこ
とにより一定の気孔率を有する焼結鉱を製造する焼結鉱
の製造方法。 【数1】 P=P0 −a(bWsc+cWdp) …(1) P :焼結鉱の気孔率 P0 :燃焼溶融帯への下向きの力がゼロの状態で焼結し
たときの焼結鉱の気孔率 Wsc:単位面積当たりのシンターケーキ重量 Wdp:吸引負荷により焼結ベッドのシンターケーキ部分
に生じる圧力差にもとづき焼結の燃焼溶融帯にかかる下
向きの力の重力換算値 a,b,c:比例定数
1. A method for producing a sintered ore by an air suction type sintering method, wherein a pressure gradient difference W dp based on a suction blower pressure,
And the load W sc of the sinter cake, P in Equation (1) number 1
Sintering that produces a sinter having a constant porosity by controlling the downward force on the combustion melting zone of the sinter so that the calculated value is the target porosity of the sinter. Manufacturing method of ore. [Number 1] P = P 0 -a (bW sc + cW dp) ... (1) P: sinter porosity P 0: baked when downward force to the combustion melting zone is sintered at zero state Porosity of sinter W sc : Weight of sinter cake per unit area W dp : Gravity conversion value of downward force applied to combustion melting zone of sintering based on pressure difference generated in sinter cake portion of sintering bed due to suction load a , B, c: proportional constant
【請求項2】 空気吸引式焼結法による焼結鉱の製造方
法において、吸引ブロアー圧に基づく圧力勾配差Wdp
およびシンターケーキの荷重Wscによる焼結の燃焼溶融
帯にかかる下向きの力に応じて上向きの力WLiftを作用
させ、これら燃焼溶融帯にかかる力から式(2)数2で
Pを計算し、その値が目標とする焼結鉱の気孔率となる
ように制御することにより一定の気孔率を有する焼結鉱
を製造する焼結鉱の製造方法。 【数2】 P=P0 −a(bWsc+cWdp−WLift) …(2) P :焼結鉱の気孔率 P0 :燃焼溶融帯への下向きの力がゼロの状態で焼結し
たときの焼結鉱の気孔率 Wsc:単位面積当たりのシンターケーキ重量 Wdp:吸引負荷により焼結ベッドのシンターケーキ部分
に生じる圧力差にもとづき焼結の燃焼溶融帯にかかる下
向きの力の重力換算値 WLift:シンターケーキに作用させる上向きの力 a,b,c:比例定数
2. A pressure gradient difference W dp based on a suction blower pressure in a method for producing a sintered ore by an air suction type sintering method,
And an upward force W Lift is applied in response to a downward force applied to the combustion melting zone of sintering by the load W sc of the sinter cake, and P is calculated from the force applied to the combustion melting zone by Equation (2) , A method for producing a sintered ore that produces a sintered ore having a constant porosity by controlling the value so as to be the target porosity of the sintered ore. [Number 2] P = P 0 -a (bW sc + cW dp -W Lift) ... (2) P: sinter porosity P 0: downward force to the combustion melting zone is sintered at zero state Porosity of sintered ore at this time W sc : Weight of sinter cake per unit area W dp : Gravity of downward force applied to the combustion melting zone of sintering based on the pressure difference generated in the sinter cake part of the sintering bed due to suction load Converted value W Lift : Upward force acting on the sinter cake a, b, c: Proportional constant
JP13763592A 1992-05-01 1992-05-01 Sinter production method Expired - Lifetime JP2668613B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13763592A JP2668613B2 (en) 1992-05-01 1992-05-01 Sinter production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13763592A JP2668613B2 (en) 1992-05-01 1992-05-01 Sinter production method

Publications (2)

Publication Number Publication Date
JPH05311256A true JPH05311256A (en) 1993-11-22
JP2668613B2 JP2668613B2 (en) 1997-10-27

Family

ID=15203255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13763592A Expired - Lifetime JP2668613B2 (en) 1992-05-01 1992-05-01 Sinter production method

Country Status (1)

Country Link
JP (1) JP2668613B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007100150A (en) * 2005-10-03 2007-04-19 Jfe Steel Kk Method for producing sintered ore
JP2007100149A (en) * 2005-10-03 2007-04-19 Jfe Steel Kk Method for producing sintered ore
KR101455457B1 (en) * 2012-08-29 2014-11-03 현대제철 주식회사 Method for predicting reducibility index of sintered ore

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007100150A (en) * 2005-10-03 2007-04-19 Jfe Steel Kk Method for producing sintered ore
JP2007100149A (en) * 2005-10-03 2007-04-19 Jfe Steel Kk Method for producing sintered ore
KR101455457B1 (en) * 2012-08-29 2014-11-03 현대제철 주식회사 Method for predicting reducibility index of sintered ore

Also Published As

Publication number Publication date
JP2668613B2 (en) 1997-10-27

Similar Documents

Publication Publication Date Title
JPH0579721B2 (en)
JP2668613B2 (en) Sinter production method
JPS5910402B2 (en) How to operate a blast furnace with mixed charges
WO1998007891A1 (en) Method of manufacturing sintered ore and sintering machine therefor
JPH0733528B2 (en) Blast furnace operation method
WO1994004710A1 (en) Method and apparatus for producing sintered ore
JP2627122B2 (en) Sinter production method
US2686118A (en) Method of making metal products directly from ores
JPH09125165A (en) Operation of sintering and sintering pallet
JPH0689416B2 (en) Sintering operation method
JPH06322451A (en) Production of sintered ore
JPS63317605A (en) Method for charging raw material in blast furnace
US3996047A (en) Method and mold for producing round rods by powder metallurgy
JPH06271952A (en) Manufacture of sintered ore
JPH06322450A (en) Production of sintered ore
SU1164297A1 (en) Method of sintering mixture caking
JP3014549B2 (en) Blast furnace operation method
JPH0914857A (en) Manufacture of sintered ore
JPH06129776A (en) Manufacturing method of sintered ore and pallet for the manufacturing of sintered ore
JPH0665649A (en) Method for production of sintered ore and device therefor
JP3632290B2 (en) Blast furnace operation method
JP3835041B2 (en) Blast furnace raw material charging method
JP2600803B2 (en) Blast furnace raw material charging method
JPH0961060A (en) Device for manufacturing sintered ore
JPH08269507A (en) Low si operation method of blast furnace

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970603