JPH0733528B2 - Blast furnace operation method - Google Patents

Blast furnace operation method

Info

Publication number
JPH0733528B2
JPH0733528B2 JP4240691A JP4240691A JPH0733528B2 JP H0733528 B2 JPH0733528 B2 JP H0733528B2 JP 4240691 A JP4240691 A JP 4240691A JP 4240691 A JP4240691 A JP 4240691A JP H0733528 B2 JPH0733528 B2 JP H0733528B2
Authority
JP
Japan
Prior art keywords
iron ore
ore
blast furnace
porous
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4240691A
Other languages
Japanese (ja)
Other versions
JPH04263003A (en
Inventor
和弘 白浜
誠章 内藤
正則 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4240691A priority Critical patent/JPH0733528B2/en
Publication of JPH04263003A publication Critical patent/JPH04263003A/en
Publication of JPH0733528B2 publication Critical patent/JPH0733528B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は結晶水及び付着粉鉱石が
多く、しかも脈鉱成分の多い安価な多孔質塊鉄鉱石を塊
状態のまま高炉に装入することによって、原料コスト及
び燃料比の低減を図るための高炉の操業方法に関するも
のである。
INDUSTRIAL APPLICABILITY The present invention charges raw material cost and fuel ratio by charging an inexpensive porous lump iron ore containing a large amount of water of crystallization and adhered powder ores and having a lot of vein ore components into a blast furnace in a lump state. The present invention relates to a method of operating a blast furnace for reducing the amount of electricity.

【0002】[0002]

【従来の技術】高炉は焼結鉱、鉄鉱石、ペレット等の鉄
源と、コークスを装入して操業しており、その鉄鉱石と
しては比較的還元性が良く、しかも、熱割れ性の少ない
優良鉄鉱石してのハマスレー鉱石、ニューマン鉱石等を
通常、5から20パーセント程度使用している。また、
MBR鉱石等の熱割れ性鉱石、又は、熱割れ性の少ない
鉱石であるが多孔質で結晶水及び付着粉鉱石(3ミリメ
ートル以下)が多く、しかも、脈鉱成分の多い安価なロ
ーブリバー、ゴア鉱石等の多孔質塊鉄鉱石は高炉シャフ
ト部での粉化量が多く通気不良を惹起して安定した操業
を維持することが出来なくなることが懸念され、この種
の鉱石は直接高炉に装入することは行なず、破砕して焼
結原料に供されて来た。しかし近年おいては、特開平1
−219111号公報にように、熱割れ性鉱石を炉壁側
部に、前記優良鉄鉱石を炉中心部に装入する方法が提案
されている。
2. Description of the Related Art A blast furnace is operated by charging an iron source such as sinter, iron ore and pellets, and coke, and it has a relatively good reducing property as an iron ore and has a thermal cracking property. Usually, about 5 to 20% of Hamassley ore, Newman ore, etc., which are good iron ore, are used. Also,
Heat cracking ores such as MBR ores, or ores with low heat cracking properties, but with a lot of porous water of crystallization and adhering powder ores (3 mm or less), and low cost lobe river and gore with high vein ore components Porous massive iron ore such as ore has a large amount of pulverization in the shaft part of the blast furnace, and it is feared that it will not be possible to maintain stable operation due to poor ventilation, and this kind of ore is directly charged into the blast furnace. Nothing was done, but it was crushed and used as a sintering raw material. However, in recent years, JP-A-1
As disclosed in Japanese Patent Laid-Open No. 219111, a method has been proposed in which a heat crackable ore is charged in the furnace wall side part and the excellent iron ore is charged in the furnace center part.

【0003】[0003]

【発明が解決しようとする課題】この特開平1−219
111号公報で提案の熱割れ性鉱石に変えて、上記の様
に焼結原料に供されて来た多孔質塊鉄鉱石をそのままの
状態で装入すると、高炉炉壁側部であっても、粉鉱石に
起因する装入物の目詰まりが発生し、使用できたとして
も精々装入する全鉄源量の1パーセント程度以下であ
り、それ以上になると高炉の安定操業が不可能になるも
のであった。また中心部に装入するチャージと炉壁側部
に装入するチャージを別々に設けなければならず煩雑な
ものであった。本発明は上記問題を伴うことなく原料コ
スト、燃料比を低減するために、上記多孔質塊鉄鉱石を
多量に、しかも炉内のいずれの位置に装入しても安定し
た高炉操業の維持を可能とすることを課題とするもので
ある。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
If instead of the heat cracking ore proposed in Japanese Patent No. 111, the porous massive iron ore that has been used as a sintering raw material as described above is charged as it is, even if it is on the side of the blast furnace wall. Even if it can be used, it is less than about 1% of the total iron source charged even if it can be used, and stable operation of the blast furnace becomes impossible. It was a thing. In addition, the charge to be charged in the central part and the charge to be charged in the side of the furnace wall must be separately provided, which is complicated. In order to reduce the raw material cost and the fuel ratio without the above problems, the present invention maintains a stable blast furnace operation even if a large amount of the above-mentioned porous lump iron ore is charged, and at any position in the furnace. The challenge is to make it possible.

【0004】[0004]

【課題を解決するための手段】本発明は上記問題点を解
決するためになされたものであり、その特徴とする第1
の手段は高炉に装入する鉄鉱石として、気孔率30パー
セント以上、結晶水3パーセント以上を有する多孔質塊
鉄鉱石を使用するに際し、3mm以下を1パーセント以
下にした該多孔質塊鉄鉱石と焼結鉱とを、これらが少な
くとも高炉々内では混合状態であるように高炉々内に装
入するものである。更に、第2の手段は第1の手段にお
いて、前記焼結鉱の還元粉化指数及び高炉シャフト部の
炉内温度500から700度Cの低温還元域における装
入物の滞留時間に応じて前記塊鉄鉱石の使用量を調整す
るものである。
The present invention has been made to solve the above problems, and is characterized by the first feature thereof.
The means of using a porous lump iron ore having a porosity of 30% or more and a crystallization water of 3% or more as the iron ore to be charged into the blast furnace, the porous lump iron ore having a diameter of 3 mm or less of 1% or less, Sinter ore is charged into the blast furnaces such that they are mixed at least in the blast furnaces. Further, the second means is the first means according to the reduction pulverization index of the sinter and the residence time of the charge in the low temperature reduction zone of the furnace temperature of the blast furnace shaft portion of 500 to 700 ° C. It adjusts the amount of lump iron ore used.

【0005】この3mm以下の粉鉱石を1パーセント以
下に除去する方法としては、多孔質塊鉄鉱石を振動篩装
置により篩分けした後、該塊鉄鉱石の上方より散水し篩
分けする方法、水槽内に浸漬する方法、熱風炉又はコー
クス炉の排ガスにより予熱して振動を与えて篩分けする
方法等がある。又、多孔質塊鉄鉱石と焼結鉱は少なくと
も高炉々内において混合層を形成できれば良く、その方
法としては多孔質塊鉄鉱石と焼結鉱とを高炉に装入する
に先立ってあらかじめ混合しても良く、装入途中(ベル
上、装入ベルト上)で混合出来ればよく、特に限定する
ものではない。上記、低温還元域における装入物の滞留
時間は、炉頂水素ガス利用率の絶対値との相関関係から
求める方法、もしくはゾンデ装置で求めた炉内垂直方向
の炉内温度分布から求める方法がある。
As a method for removing the powdered ore of 3 mm or less to 1% or less, a method of sieving the porous lump iron ore with a vibrating sieving device, and then sprinkling water from above the lump iron ore, and a water tank There are a method of immersing inside, a method of preheating with an exhaust gas from a hot air oven or a coke oven, and applying vibration to perform sieving. Further, it is sufficient that the porous lump iron ore and the sinter are capable of forming a mixed layer at least in the blast furnaces, and as a method thereof, the porous lump iron ore and the sinter are mixed in advance before charging into the blast furnace. However, it is not particularly limited as long as it can be mixed during charging (on the bell, on the charging belt). The residence time of the charge in the low-temperature reduction zone is determined by the correlation with the absolute value of the furnace top hydrogen gas utilization rate, or by the temperature distribution in the furnace in the vertical direction obtained by the sonde apparatus. is there.

【0006】[0006]

【作用】本発明者等は安価なローブリバー、ゴア鉱石等
の多孔質、高結晶水で、且つ被還元性の優れた塊鉄鉱石
を塊状態のまま高炉に装入することによって、原料コス
トを低減する方法について種々実験、検討を行なった。
この多孔質塊鉄鉱石は、(1)表面に粒径3mm以下の
粉鉱石が付着しており、この付着粉鉱石は単に振動篩装
置で篩っても除去できず、その粉鉱石の割合が7パーセ
ント程度と多い。(2)結晶水を3パーセント以上含有
しているために該結晶水が抜ける時に粉化し易く、強度
も弱い。(3)還元粉化し易い。(4)高温になると収
縮して粒度が小さくなる等の性質を有している。
[Function] The present inventors charge raw material costs by charging inexpensive lobed rivers, gore ores, and other porous and highly crystallized water and highly reducible lump iron ore into the blast furnace in the lump state. Various experiments and studies were conducted on the method of reducing the noise.
In this porous lump iron ore, (1) powdered ore with a particle size of 3 mm or less adheres to the surface, and this adhered powdered ore cannot be removed simply by sieving with a vibrating screen device, and the ratio of the powdered ore is It is as high as 7%. (2) Since it contains 3% or more of water of crystallization, it is easily pulverized when the water of crystallization comes off, and its strength is weak. (3) It is easy to reduce powder. (4) It has properties such as shrinkage and particle size reduction at high temperatures.

【0007】このため、そのまま高炉に装入すると、上
記の性質から高炉シャフト部内で目詰まりが発生して炉
内の通気性が悪化する。これにより、軟化、融着開始が
高炉の上部に移行(融着帯上面が上昇)し、鉱石類の間
接還元率の低下を招くと共に炉底に滴下するスラグ溶融
物のFeOが増大し、化1の吸熱反応量を増すため、炉
芯温度の低下、スラグ量の増大を引き起こし、更には融
着帯の肥大化により高炉々下部の通気性が悪化して安定
操業の維持が困難となり、前記多孔質塊鉄鉱石の高気孔
率という利点を活かすことが出来ずに燃料比の上昇を余
儀なくされていた。
For this reason, if the blast furnace is charged as it is, clogging occurs in the shaft portion of the blast furnace due to the above properties, and the air permeability in the furnace deteriorates. As a result, the start of softening and fusing shifts to the upper part of the blast furnace (the upper surface of the fusing zone rises), causing a decrease in the indirect reduction rate of ores and increasing the FeO content of the slag melt dripping to the bottom of the furnace. Since the endothermic reaction amount of No. 1 is increased, the core temperature is lowered, the amount of slag is increased, and further, due to the enlargement of the cohesive zone, the air permeability of the lower part of the blast furnace is deteriorated and it becomes difficult to maintain stable operation. It was not possible to take advantage of the high porosity of the porous lump iron ore, and the fuel ratio had to be increased.

【化1】 [Chemical 1]

【0008】このため、本発明者等は先ずこの多孔質塊
鉄鉱石の前記粉鉱石と炉内の通気性の関係のついて調査
検討した。図2に示すように、耐火物1を内張りした容
器2の上部の装入装置3を設けると共にその下部に装入
塊鉄鉱石を連続的に排出する切出器4を設け、該切出器
4の上方部の周囲に1000度Cの熱風を供給する熱風
配管5を連接し、上部に排気ダクト6を設けた試験装置
により、高炉のシャフト部と同等の熱的条件を作り出
し、前記装入装置3から多孔質塊鉄鉱石と共に装入する
粒度3mm以下の粉鉱石の割合と容器2内の圧損との関
係を調査した。
Therefore, the present inventors first investigated and examined the relationship between the powdered ore of the porous lump iron ore and the air permeability in the furnace. As shown in FIG. 2, a charging device 3 is provided in an upper portion of a container 2 lined with a refractory material 1, and a cutting device 4 for continuously discharging a charged lump iron ore is provided in the lower portion thereof. 4, a hot-air pipe 5 for supplying hot air of 1000 ° C. is connected around the upper part of the No. 4 and an exhaust duct 6 is provided on the upper part of the test device to create a thermal condition equivalent to that of the shaft part of the blast furnace. The relationship between the ratio of the powdered ore having a grain size of 3 mm or less charged together with the porous massive iron ore from the device 3 and the pressure loss in the container 2 was investigated.

【0009】この結果、図1に示すように粉鉱石の割合
が1パーセント以下になると、容器2内の圧損が急激に
低下することの知見を得た。これはこの割合が高くなれ
ばなる程、容器2内における鉱石層にその粉鉱石による
目詰まりが発生すると共に容器2内における粉鉱石の吹
上循環等に伴う粉鉱石の蓄積部が発生することにより通
気性が悪化する。そしてこの通気性悪化に伴って高温上
昇ガスに偏流が発生し、この偏流部分にある多孔質塊鉄
鉱石が急速に加熱されるために結晶水が急激に気化し、
鉱石内圧の上昇に起因する破壊粉化現象を助長し、通気
障害を加速することも上記圧損上昇の原因と推察され
る。
As a result, as shown in FIG. 1, it was found that the pressure loss in the container 2 drastically decreases when the ratio of the powdered ore becomes 1% or less. This is because the higher the ratio, the more the ore layer in the container 2 is clogged with the ore powder, and the accumulating portion of the ore powder in the container 2 is caused by the upward circulation of the ore powder. Breathability deteriorates. And due to the deterioration of air permeability, a nonuniform flow is generated in the high temperature rising gas, and the porous lump iron ore in this nonuniform flow portion is rapidly heated, so that the crystal water is rapidly vaporized,
It is also presumed that the above-mentioned increase in pressure loss is promoted by accelerating the breakage and pulverization phenomenon caused by the increase in the ore internal pressure and accelerating the ventilation failure.

【0010】反対に粉鉱石の割合が1パーセント以下に
なると、該粉鉱石による鉱石層の目詰まりが少なくなっ
て、容器2内における通気性の悪化がなくなり、該容器
2内におけるガスの流れが安定化し、ピストンフローと
なる。このため容器2内に装入された多孔質塊鉄鉱石は
容器2内を降下するに従って徐々に加熱される結果、結
晶水の気化が徐々に起こり該多孔質塊鉄鉱石の破壊粉化
量が減少し、通気性が悪化しないものと推察される。ま
た、多孔質塊鉄鉱石を焼結鉱と混合して上記容器2内に
装入して層状にした場合、混合することなく別々に装入
して別々の層を形成した場合に比して、通気性が50パ
ーセント程度良好になることが判明した。
On the contrary, when the ratio of the powdered ore is 1% or less, the ore layer is less likely to be clogged with the powdered ore, the air permeability in the container 2 is not deteriorated, and the gas flow in the container 2 is reduced. Stabilizes and becomes a piston flow. For this reason, the porous lump iron ore charged in the container 2 is gradually heated as it descends in the container 2, and as a result, vaporization of crystal water gradually occurs, and the amount of crushed powder of the porous lump iron ore is reduced. It is assumed that the air permeability will decrease and the breathability will not deteriorate. Further, in the case where the porous massive iron ore is mixed with the sintered ore and charged into the container 2 to form a layer, as compared with the case where they are separately charged without mixing and different layers are formed. It was found that the breathability was improved by about 50%.

【0011】これは、前記多孔質塊鉄鉱石が高温域にお
いて収縮して粒径が小さくなることに起因すると考えら
れる。つまり、多孔質塊鉄鉱石のみの単独層を形成して
いる場合には、該多孔質塊鉄鉱石の粒径が収縮すると上
層部からの荷重により下層部の層厚が薄くなって充填密
度が上昇し層内の空隙率が低下することにより通気性が
悪化するのに対し、本発明のように多孔質塊鉄鉱石と焼
結鉱との混合層を形成すると、前記のように該多孔質塊
鉄鉱石の粒径が収縮してもこの温度域では焼結鉱が殆ど
収縮しないことから、層厚としては殆ど変化がなく通気
性の悪化が生じないものと想定される。
It is considered that this is because the porous lump iron ore contracts in a high temperature region to reduce the particle size. That is, when a single layer of only the porous lump iron ore is formed, when the particle size of the porous lump iron ore shrinks, the layer thickness of the lower layer portion becomes thin due to the load from the upper layer portion and the packing density becomes When the mixed layer of porous lump iron ore and sintered ore is formed as in the present invention, the air permeability is deteriorated due to the rise and the porosity in the layer is decreased. Even if the particle size of the lump iron ore shrinks, the sintered ore hardly shrinks in this temperature range, so it is assumed that the layer thickness hardly changes and the air permeability does not deteriorate.

【0012】この結果から、前記のように振動篩装置に
より篩分けした後、該塊鉄鉱石の上方より散水し篩分け
して3mm以下の粉鉱石の割合(多孔質塊鉄鉱石の表面
に付着した粉鉱石を含む)を1パーセント以下にした多
孔質塊鉄鉱石を、高炉に装入する鉄源の一部として焼結
鉱と共に高炉に装入し、この間の炉内の通気性を測定し
たが、通気性の悪化はなく安定した高炉の操業ができ
た。また、多孔質塊鉄鉱石の気孔率に着目し、この気孔
率、粒度と加熱・還元反応効率との関係を実公平1−2
7038号公報に提案の高炉内反応シミュレーター(上
部より多孔質塊鉄鉱石を充填すると共に下部より還元ガ
スを導通して、該還元ガスと多孔質塊鉄鉱石を向流接触
する炉芯管と、該炉心管の一部を包囲して前記還元ガス
下流側方向に移動自在に設けた加熱器を有する装置)を
用いて調査した。
From this result, after sieving by the vibrating sieving apparatus as described above, water was sprinkled from above the lump iron ore and sieving was performed to give a ratio of powdered ore of 3 mm or less (attached to the surface of the porous lump iron ore. Porous lump iron ore containing less than 1%) was charged into the blast furnace together with sinter as part of the iron source charged into the blast furnace, and the air permeability in the furnace during this time was measured. However, stable blast furnace operation was possible without deterioration of air permeability. Also, paying attention to the porosity of the porous lump iron ore, the relationship between the porosity and the particle size and the heating / reduction reaction efficiency is actually fair 1-2.
No. 7038 gazette proposed reaction simulator in a blast furnace (a furnace core tube in which a porous lump iron ore is filled from the upper part and a reducing gas is conducted from the lower part, and the reducing gas and the porous lump iron ore are countercurrently contacted, A device having a heater surrounding a part of the core tube and movably provided in the reducing gas downstream direction) was used for the investigation.

【0013】この結果、図3に示すように、鉄鉱石の粒
度が小さくなるほど加熱・還元反応効率は良好になり、
特に、気孔率が30パーセント以上の鉱石を25mm以
下の粒度に整粒すれば焼結鉱と同等又はそれ以上の加熱
・還元反応効率が得られる。しかし、粒度が3mm以下
になると加熱・還元反応効率は良好であるが、前記のよ
うに装入物層の空隙率の低下(目詰まり)を助長する事
があり、高炉安定操業に支障となる。更に、気孔率が高
くなるに従って、加熱・還元反応効率が向上することが
判明した。つまり、30パーセント以上の気孔率を有す
る多孔質塊鉄鉱石が3mm以上の粒度にすれば焼結鉱と
同等又はそれ以下の燃料で高炉操業が可能になり、又、
従来使用していた優良鉄鉱石(気孔率25パーセント以
下)より大幅に還元反応効率が向上して燃料比の低減が
可能となることの知見をえた。
As a result, as shown in FIG. 3, the smaller the iron ore particle size, the better the heating / reduction reaction efficiency.
In particular, if the ore having a porosity of 30% or more is sized to a grain size of 25 mm or less, a heating / reduction reaction efficiency equal to or higher than that of the sintered ore can be obtained. However, when the particle size is 3 mm or less, the heating / reduction reaction efficiency is good, but as described above, it may promote the decrease (clogging) of the porosity of the charging layer, which hinders stable operation of the blast furnace. . Further, it has been found that the heating / reduction reaction efficiency improves as the porosity increases. That is, if the porous massive iron ore having a porosity of 30% or more has a grain size of 3 mm or more, it is possible to operate the blast furnace with fuel equal to or less than that of the sintered ore, and
It was found that the reduction reaction efficiency can be significantly improved and the fuel ratio can be reduced compared to the conventionally used good iron ore (porosity 25% or less).

【0014】又、高炉に装入する焼結鉱、鉄鉱石は主に
還元中に粉化するが、この還元粉化は炉内温度が500
から700度Cの低温還元領域で最も顕著となるもので
ある。この低温還元領域における焼結鉱、鉄鉱石の滞留
(降下)時間と3mm以下の粉化率を調査するため、前
記同様の高炉内反応シミュレーターを用いて実験を行っ
た。その結果を図4に示す。この図4に示すように、焼
結鉱の還元粉化指数(RDI)値が大きくなるに従って
粉化率が上昇し、しかも、滞留時間が長くなるに従って
上昇することが判明した。
Further, the sinter ore or iron ore charged into the blast furnace is pulverized mainly during the reduction, and this reduction pulverization takes place at a furnace temperature of 500.
It is most prominent in the low temperature reduction region from to 700 ° C. In order to investigate the residence (falling) time of sinter or iron ore and the pulverization rate of 3 mm or less in this low temperature reduction region, an experiment was conducted using the same blast furnace reaction simulator as described above. The result is shown in FIG. As shown in FIG. 4, it was found that the pulverization rate increases as the reduction powdering index (RDI) value of the sinter increases, and further increases as the residence time increases.

【0015】又、多孔質塊鉄鉱石は滞留時間に関係な
く、還元粉化は滞留時間が20分間から90分間の間に
おいて略一定の高い粉化率を示した。また従来より使用
している優良鉄鉱石は滞留時間が80分間程度では粉化
が助長され、それ以外では粉化しにくいことが判明し
た。実際に高炉においては、装入物が500から700
度Cの低温還元領域を降下する(滞留する)時間は通常
30分間程度であるが、局部的にOre/Cokeが高
くなった場合、低温部が広がり、長くて2時間程度とな
る場合とがある。
Further, the reduction pulverization of the porous lump iron ore showed a substantially constant high pulverization rate during the residence time of 20 to 90 minutes regardless of the residence time. Further, it has been found that the good iron ore used conventionally is promoted to be pulverized when the residence time is about 80 minutes, and it is difficult to be pulverized at other times. In the actual blast furnace, the charge is 500 to 700
The time to fall (stay) in the low temperature reduction region of C is usually about 30 minutes. However, when the Ore / Coke locally becomes high, the low temperature part spreads and it may take about 2 hours at the longest. is there.

【0016】このことにより、装入物の前記低温還元領
域における滞留時間と、焼結鉱の還元粉化指数に応じて
多孔質塊鉄鉱石の装入量を調整する事により、高炉内の
低温還元領域内で発生する還元粉化量を低減して、安定
操業に必要な上限粉率(高炉によって異なるが3mm以
下の粉率30パーセント前後)以下に維持可能なことを
見出した。つまり、装入物の低温還元領域における滞留
時間が前記のように30分程度であれば、従来から使用
している優良鉄鉱石の還元粉化は少なく、しかも、焼結
鉱の粉化も少ないので多量の多孔質塊鉄鉱石を装入出来
る。
[0016] Thus, by adjusting the amount of the porous lump iron ore charged in accordance with the residence time of the charge in the low temperature reduction region and the reduction powdering index of the sinter, the low temperature in the blast furnace can be controlled. It has been found that it is possible to reduce the amount of reduced pulverization generated in the reduction region and maintain it at or below the upper limit powder ratio (a powder ratio of about 30% of 3 mm or less, which varies depending on the blast furnace) required for stable operation. That is, if the residence time of the charge in the low-temperature reduction region is about 30 minutes as described above, the fine iron ore used conventionally is less reduced and pulverized, and the sinter is also less pulverized. Therefore, a large amount of porous lump iron ore can be charged.

【0017】また、低温還元領域が長く、この領域にお
ける装入物の滞留時間が長くなり80分を超える場合に
は前記優良鉱石の還元粉化が多くなると共に焼結鉱の粉
化も順次増加するので多孔質塊鉄鉱石の装入量を少なく
する。さらに何れの場合においても、装入する焼結鉱の
還元粉化指数が低いものであれば、当該焼結鉱の還元粉
化が少ないので、さらに多量の多孔質塊鉄鉱石を使用で
きるものである。この多孔質塊鉄鉱石の使用上限割合O
Tは上記上限粉率(30パーセント)の関係から、 LD×(δL0+δL)+0S×(δS0+δS)+0T×(δT0+δT)=
30−α で求めることができる。
Further, when the low-temperature reduction zone is long and the residence time of the charge in this zone is long and exceeds 80 minutes, the reduction pulverization of the above-mentioned fine ore increases and the sinter ore pulverization also sequentially increases. Therefore, the amount of porous lump iron ore charged is reduced. Furthermore, in any case, if the reduction or pulverization index of the sinter to be charged is low, the reduction or pulverization of the sinter ore is small, so that a larger amount of porous lump iron ore can be used. is there. Upper limit ratio O of this porous lump iron ore
T is LD × (δL0 + δL) + 0S × (δS0 + δS) + 0T × (δT0 + δT) =
It can be calculated by 30-α.

【0018】但し、LD:焼結鉱使用割合、0S:優良
鉄鉱石使用割合、δL:焼結鉱のRDIと炉内の低温還
元領域における焼結鉱滞留時間で決まる焼結鉱の粉化率
(パーセント)、δS:炉内の低温還元領域における優
良鉄鉱石滞留時間で決まる優良鉄鉱石粉化率(パーセン
ト)、δT:炉内の低温還元領域における多孔質塊鉄鉱
石滞留時間で決まる多孔質塊鉄鉱石粉化率(パーセン
ト)、δL0:焼結鉱の炉内持込み粉率、δS0:優良
鉄鉱石の炉内持込み粉率、δT0:多孔質塊鉄鉱石の炉
内持込み粉率、α:炉内装入時に粉化する割合、であ
る。
However, LD: proportion of sinter used, 0S: proportion of good iron ore, δL: RDI of sinter, and pulverization rate of sinter determined by residence time of sinter in the low-temperature reduction zone in the furnace. (Percent), δS: Fine iron ore pulverization rate (percentage) determined by the residence time of excellent iron ore in the low-temperature reduction region in the furnace, δT: Porous lump determined by residence time of the iron ore in low-temperature reduction region in the furnace Iron ore pulverization rate (percentage), δL0: Sintered ore carry-in powder rate, δS0: Excellent iron ore carry-in powder rate, δT0: Porous lump iron ore carry-in powder rate, α: Furnace interior It is the ratio of powdering upon entering.

【0019】[0019]

【実施例】以下、本発明の実施例を比較例と共に説明す
る。本例は内容積4000立方メートル級で、Ore/
Cokeを4.25,羽口前フレーム温度を2276度
C(送風温度:1250度C,送風湿分:20g/N立
方メートル、微粉炭吹き込み量:90kg/t−pi
g)で操業している高炉に、多孔質塊鉄鉱石及び優良鉄
鉱石を振動篩装置で表1中の状態に篩分けした後、多孔
質塊鉄鉱石は散水により該多孔質塊鉄鉱石の表面に付着
した3mm以下の粉鉱石を除去し、優良鉄鉱石はそのま
ま高炉に装入したものであり、その状況を従来例(優良
鉄鉱石使用)、比較例と共に表2に示す。表2からわか
るように、本発明の実施例1から5においては従来例
(優良鉄鉱石のみを装入)に比して燃料比を低減するこ
とができ、炉況も良好であった。この実施例1は従来例
の優良鉄鉱石の一部にかえて多孔質塊鉄鉱石(ゴア鉄鉱
石)を使用した場合である。
EXAMPLES Examples of the present invention will be described below together with comparative examples. This example has an internal volume of 4000 cubic meters and
Coke 4.25, tuyere front frame temperature 2276 ° C (blast temperature: 1250 ° C, blast moisture: 20 g / N cubic meter, pulverized coal blowing rate: 90 kg / t-pi
After sieving the porous lump iron ore and the fine iron ore into the state shown in Table 1 in a blast furnace operating in g) with a vibrating sieving device, the porous lump iron ore was sprinkled to remove the porous lump iron ore The fine ore having a size of 3 mm or less attached to the surface was removed, and the good iron ore was directly charged into the blast furnace. The situation is shown in Table 2 together with the conventional example (using the good iron ore) and the comparative example. As can be seen from Table 2, in Examples 1 to 5 of the present invention, the fuel ratio was able to be reduced and the furnace conditions were good as compared with the conventional example (charged with excellent iron ore only). Example 1 is a case where a porous lump iron ore (gore iron ore) is used instead of a part of the excellent iron ore of the conventional example.

【0020】実施例2は実施例1に比して低温還元領域
に於ける装入物の滞留時間が長くなったので、実施例1
の装入鉄源条件では炉内における粉率が大幅に上昇(1
9パーセントから30.3パーセント:上記式で算定し
た値)して前記高炉を安定操業するのに必要な上限粉化
率を越える。このためRDIの低い焼結鉱に切換えると
共に多孔質塊鉄鉱石(ローブリバー鉄鉱石)の使用割合
を低下し、優良鉄鉱石の使用割合を増加して前記粉化率
を25パーセント程度にして炉況の悪化を防止した。実
施例3は実施例1よりRDIの低い焼結鉱を使用したの
で実施例1に比して前記粉率が該実施例1の装入鉄源条
件では低下(19から18パーセント)するので優良鉄
鉱石の全部を多孔質塊鉄鉱石(ゴア鉄鉱石)に変えて該
粉率を同程度にした場合である。
Since Example 2 has a longer residence time of the charge in the low temperature reduction region than Example 1, Example 1
Under the conditions of charging iron source, the powder ratio in the furnace increased significantly (1
9% to 30.3%: the value calculated by the above formula) and exceeds the upper limit pulverization rate required for stable operation of the blast furnace. For this reason, the sinter having a low RDI is switched to, and the ratio of the porous lump iron ore (lobe river iron ore) used is decreased, the ratio of the fine iron ore used is increased, and the pulverization rate is set to about 25%. It prevented the situation from worsening. In Example 3, since a sinter having a lower RDI than that in Example 1 was used, the powder ratio was lower (19 to 18%) under the charged iron source conditions of Example 1 as compared with Example 1, and thus was excellent. This is a case where all of the iron ore is changed to a porous lump iron ore (gore iron ore) to make the powder ratio to the same level.

【0021】実施例4は実施例3に比して低温還元領域
に於ける装入物の滞留時間が長くなった場合であり、こ
の際も実施例3の装入鉄源条件では炉内における粉率が
大幅に上昇して前記粉率が30パーセント以上になるこ
とから、RDIの低い焼結鉱に切換えると共に多孔質塊
鉄鉱石(ゴア鉄鉱石)の使用割合を低下し、その分、優
良鉄鉱石を使用し、前記粉率を27パーセント程度にし
た。実施例5はペレットに変えて多孔質塊鉄鉱石(ゴア
鉄鉱石)を使用した場合である。
Example 4 is a case where the residence time of the charge in the low temperature reduction region is longer than that in Example 3, and in this case as well, in the charged iron source condition of Example 3, in the furnace. Since the powder ratio greatly increases and the powder ratio becomes 30% or more, the ratio of the porous lump iron ore (gore iron ore) is decreased and the usage ratio of the porous lump iron ore (gore iron ore) is reduced, and the excellent ratio is obtained. Iron ore was used, and the powder ratio was set to about 27%. Example 5 is a case where a porous lump iron ore (gore iron ore) is used instead of the pellet.

【0022】又、比較例1は多孔質塊鉄鉱石(ローブリ
バー鉄鉱石)に付着した粉鉱石の割合が3パーセントと
多い場合であり、この場合は目詰まりが発生し炉況が悪
化し、燃料比も高いレベルになった。更に、比較例2は
多孔質塊鉄鉱石(ゴア鉱石)の粒度が15mmから30
mmと粗い場合であり、この場合は炉況は良好であり従
来例に比して燃料比の低減が可能であるが、実施例1か
ら5に比して加熱・還元反応効率が低下し燃料比が若干
高くなった。
In Comparative Example 1, the ratio of the powdered ore adhering to the porous lump iron ore (lobe river iron ore) was as high as 3%. In this case, clogging occurred and the furnace condition deteriorated, The fuel ratio has also reached a high level. Furthermore, in Comparative Example 2, the particle size of the porous lump iron ore (gore ore) is from 15 mm to 30 mm.
In this case, the furnace condition is good, and the fuel ratio can be reduced as compared with the conventional example, but the heating / reduction reaction efficiency is lower than in Examples 1 to 5, and the fuel ratio is reduced. The ratio is slightly higher.

【0023】[0023]

【効果】以上説明したように本発明によると、多孔質で
結晶水及び表面付着粉鉱石が多くしかも脈鉱成分の多い
安価な多孔質塊鉄鉱石を、破砕して焼結鉱とすることな
く塊状態のまま高炉に多量に装入して使用可能となり、
原料コストを低減することが可能となる。加えて、多孔
質である特性を生かして加熱・還元効率の向上を図り、
燃料比を低減することが出来る。更に、焼結鉱のRD
I,装入物の低温還元領域の滞留時間に応じて、上記多
孔質塊鉄鉱石の使用量を調整して適正量に管理すること
により、安定した高炉操業を維持することが可能となる
ものであり、この分野における効果は多大なものであ
る。
[Effect] As described above, according to the present invention, an inexpensive porous massive iron ore that is porous and has a large amount of crystal water and surface-adhered powdered ore and a large amount of vein ore component can be obtained without crushing it into a sintered ore. A large amount of blast furnace can be charged into the blast furnace and used.
Raw material costs can be reduced. In addition, by utilizing the characteristics of being porous, we aim to improve heating and reduction efficiency,
The fuel ratio can be reduced. Furthermore, RD of sintered ore
I, it is possible to maintain stable blast furnace operation by adjusting the amount of the above-mentioned porous lump iron ore used in accordance with the residence time in the low-temperature reduction region of the charge and controlling it appropriately. Therefore, the effect in this field is enormous.

【図面の簡単な説明】[Brief description of drawings]

【図1】多孔質塊鉄鉱石の表面に付着した3mm以下の
粉鉱石の割合と装入物中の圧損との関係を示す図
FIG. 1 is a diagram showing the relationship between the ratio of the powdered ore of 3 mm or less attached to the surface of the porous lump iron ore and the pressure loss in the charge.

【図2】粉鉱石の割合と圧損とを調査する試験装置の側
断面図
FIG. 2 is a side sectional view of a test apparatus for investigating the ratio of fine ore and pressure loss

【図3】多孔質塊鉄鉱石の粒度と加熱・還元反応効率と
の関係を示す図
FIG. 3 is a diagram showing the relationship between the particle size of porous lump iron ore and the efficiency of heating / reduction reaction.

【図4】低温域滞留時間と高炉装入物の粉化率との関係
を示す図
FIG. 4 is a diagram showing the relationship between the residence time in the low temperature range and the pulverization rate of the blast furnace charge.

【表1】 [Table 1]

【表2】 [Table 2]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 高炉に装入する鉄鉱石として、気孔率3
0パーセント以上、結晶水3パーセント以上を有する多
孔質塊鉄鉱石を使用するに際し、3mm以下を1パーセ
ント以下にした該多孔質塊鉄鉱石と焼結鉱とを、これら
が少なくとも高炉々内では混合状態であるように高炉々
内に装入するすることを特徴とする高炉の操業方法。
1. A porosity of 3 as an iron ore charged into a blast furnace.
When using a porous lump iron ore having 0% or more and 3% or more of water of crystallization, the porous lump iron ore having a diameter of 3 mm or less and 1% or less is mixed with at least a blast furnace. A method of operating a blast furnace, which comprises charging the blast furnace into the blast furnace so that it is in a state.
【請求項2】 前記焼結鉱の還元粉化指数及び高炉シャ
フト部の炉内温度500から700度Cの低温還元域に
おける装入物の滞留時間に応じて前記塊鉄鉱石の使用量
を調整することを特徴とする請求項1記載の高炉の操業
方法。
2. The amount of the lump iron ore used is adjusted according to the reduction pulverization index of the sinter ore and the residence time of the charge in the low temperature reduction zone of the furnace temperature of the blast furnace shaft portion of 500 to 700 ° C. The method of operating a blast furnace according to claim 1, wherein
JP4240691A 1991-02-15 1991-02-15 Blast furnace operation method Expired - Lifetime JPH0733528B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4240691A JPH0733528B2 (en) 1991-02-15 1991-02-15 Blast furnace operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4240691A JPH0733528B2 (en) 1991-02-15 1991-02-15 Blast furnace operation method

Publications (2)

Publication Number Publication Date
JPH04263003A JPH04263003A (en) 1992-09-18
JPH0733528B2 true JPH0733528B2 (en) 1995-04-12

Family

ID=12635189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4240691A Expired - Lifetime JPH0733528B2 (en) 1991-02-15 1991-02-15 Blast furnace operation method

Country Status (1)

Country Link
JP (1) JPH0733528B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4997712B2 (en) * 2005-04-07 2012-08-08 住友金属工業株式会社 Blast furnace operation method
JP4792797B2 (en) * 2005-04-11 2011-10-12 住友金属工業株式会社 Method of charging ores containing high crystal water into a bell-less blast furnace
JP4634887B2 (en) * 2005-08-03 2011-02-16 新日本製鐵株式会社 Blast furnace operation method
JP4718929B2 (en) * 2005-08-03 2011-07-06 新日本製鐵株式会社 Blast furnace operation method
JP4946119B2 (en) * 2006-03-24 2012-06-06 Jfeスチール株式会社 Drying and preheating equipment for hopper and blast furnace raw materials
JP4946120B2 (en) * 2006-03-24 2012-06-06 Jfeスチール株式会社 Control method of drying preheater for blast furnace raw material
JP5061481B2 (en) * 2006-03-24 2012-10-31 Jfeスチール株式会社 Dry preheating equipment for blast furnace raw materials
JP5251408B2 (en) * 2008-10-02 2013-07-31 新日鐵住金株式会社 Blast furnace operation method
JP5589765B2 (en) * 2010-10-28 2014-09-17 Jfeスチール株式会社 Blast furnace operation method
JP5304778B2 (en) * 2010-12-21 2013-10-02 新日鐵住金株式会社 Blast furnace operation method
JP2012102406A (en) * 2011-12-26 2012-05-31 Jfe Steel Corp Hopper

Also Published As

Publication number Publication date
JPH04263003A (en) 1992-09-18

Similar Documents

Publication Publication Date Title
AU715276B2 (en) Method and apparatus for making metallic iron
JP5066690B2 (en) Blast furnace and method for producing pig iron using the same
RU2240354C2 (en) Method for producing of liquid metal iron
CN100441701C (en) Method for producing reduced iron compact in rotary hearth reducing furnace, reduced iron compact, and method for producing pig iron using the same
JPH0733528B2 (en) Blast furnace operation method
CA2663831A1 (en) Method and apparatus for manufacturing granular metallic iron
EP2851435B1 (en) Method for charging starting material into blast furnace
JP5168802B2 (en) Method for producing sintered ore
CN106967877A (en) Carbon-bearing lump ore deposit, the manufacture method and its manufacture device of carbon-bearing lump ore deposit
JP2003301205A (en) Method for charging blast furnace material
JP4078285B2 (en) Blast furnace operation method
CN116096924A (en) Pig iron production method
JP6264517B1 (en) Method for producing carbonaceous interior sinter
JP2797917B2 (en) Blast furnace operation method
JP4341138B2 (en) Method for producing reduced metal from metal-containing material
JP2004204295A (en) Blast furnace operation method
JP3485787B2 (en) How to charge raw materials for blast furnace
JPS624443B2 (en)
WO2022201562A1 (en) Pig iron production method
JPH0625367B2 (en) Blast furnace operating method using hot cracked ore
JPH11286705A (en) Operation of blast furnace
JPH07278684A (en) Production of sintered ore
JP2933468B2 (en) Method of charging molded coke into blast furnace
JP2600803B2 (en) Blast furnace raw material charging method
AU2011203011B2 (en) Granulated metallic iron superior in rust resistance and method for producing the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960109