JPH05247545A - Pseudo particle for raw material of sintered ore and raw material of sintered ore - Google Patents

Pseudo particle for raw material of sintered ore and raw material of sintered ore

Info

Publication number
JPH05247545A
JPH05247545A JP8170892A JP8170892A JPH05247545A JP H05247545 A JPH05247545 A JP H05247545A JP 8170892 A JP8170892 A JP 8170892A JP 8170892 A JP8170892 A JP 8170892A JP H05247545 A JPH05247545 A JP H05247545A
Authority
JP
Japan
Prior art keywords
raw material
ore
sintered ore
water
crystallization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8170892A
Other languages
Japanese (ja)
Inventor
Toshihide Matsumura
俊秀 松村
Takeshi Sugiyama
健 杉山
Akiji Shirouchi
章治 城内
Yasuhiko Igawa
泰彦 井川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP8170892A priority Critical patent/JPH05247545A/en
Publication of JPH05247545A publication Critical patent/JPH05247545A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To provide such pseudo particle for the raw materials of sintered ore and the raw material for sintered ore from which the high-strength sintered ore can be produced without increasing heat consumption even if high-water-of- crystallization-contg. ore is used as the raw material of the sintered ore for blast furnaces. CONSTITUTION:The pseudo particle for the raw material of the sintered ore is constituted by pelletizing the water-of-crystallization-contg. ore and solid fuel while satisfying either or both of the following requirements: (a) The solid fuel be stuck to the surface of the water-of-crystallization-contg. (b) The solid fuel be mixed with the water-of-crystallization-contg. ore. The desired raw material of the sintered ore is obtd. by further mixing CaO-contg. auxiliary raw materials and SiO2-contg. auxiliary raw materials with such pseudo particle for the raw material of the sintered ore as mentioned above.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高炉操業における主要
鉄鉱石原料となる焼結鉱を製造する為の原料、および該
焼結鉱原料を得る為の焼結鉱原料用擬似粒子に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a raw material for producing a sintered ore as a main iron ore raw material in a blast furnace operation, and a pseudo particle for a sintered ore raw material for obtaining the sintered ore raw material. is there.

【0002】[0002]

【従来の技術】高炉原料としての焼結鉱は、一般に下記
の方法で製造されている。まず10mm以下の粉鉱石に、石
灰石等のCaO含有副原料、珪石,蛇紋石等のSiO2
含有副原料、およびコークスなどの固体燃料(以下、コ
ークスで代表する)を混合し、これに適量の水分を加え
て造粒する。造粒された配合原料を、ドワイトロイド式
焼結機のパレット上に充填し、充填層表層部の固体燃料
に着火する。着火後は下方に向けて空気を吸引しながら
固体燃料を燃焼させ、その際に発生する燃焼熱により配
合原料を焼結して焼結ケーキを製造する。この焼結ケー
キは、その後破砕、整粒され、粒径3mm以上の焼結鉱を
高炉原料として使用する。
2. Description of the Related Art Sintered ore as a blast furnace raw material is generally manufactured by the following method. First, powdered ore of 10 mm or less, CaO-containing auxiliary materials such as limestone, SiO 2 such as silica stone and serpentine
The contained auxiliary raw material and a solid fuel such as coke (hereinafter, represented by coke) are mixed, and an appropriate amount of water is added thereto to granulate. The granulated blended raw material is filled on a pallet of a Dwightroid type sintering machine, and the solid fuel in the surface layer of the packed bed is ignited. After ignition, the solid fuel is burned while sucking air downward, and the compounded raw materials are sintered by the combustion heat generated at that time to produce a sintered cake. This sinter cake is then crushed and sized, and sinter having a particle size of 3 mm or more is used as a blast furnace raw material.

【0003】ところで高炉を安定に操業するためには、
高品質の焼結鉱が要求され、冷間強度,被還元性,耐還
元粉化性等が厳しく管理されている。また、焼結鉱製造
コストの面から、歩留りおよび生産性も重要な管理項目
である。
In order to operate the blast furnace stably,
High-quality sinter is required, and cold strength, reducibility, and resistance to reduction powder are strictly controlled. From the viewpoint of sinter production cost, yield and productivity are also important management items.

【0004】[0004]

【発明が解決しようとする課題】焼結鉱の原料鉱石とし
ては、主として赤鉄鉱(ヘマタイト、Fe23 )や磁
鉄鉱(マグネタイト、Fe34 )等が用いられている
が、近年良質鉄鉱石の産出量が減少していることにとも
ない、ゲーサイト(Fe23 ・H2 O)を多量に含有
する褐鉄鉱の使用量が増加する傾向にある。しかしなが
ら、ゲーサイトの化学式から明らかな様に、この鉄鉱石
は結晶水を多く含有しており(通常4重量%以上)、焼
結鉱の原料として多量に使用すると結晶水を除去するた
めに消費熱量が増加するだけではなく、焼成時に粗大気
孔やクラックが発生し、製品の歩留りや強度、および生
産性等が低下する。
As the raw material ore of the sintered ore, hematite (hematite, Fe 2 O 3 ) and magnetite (magnetite, Fe 3 O 4 ) are mainly used. With the decrease in stone production, the amount of limonite containing a large amount of goethite (Fe 2 O 3 .H 2 O) tends to increase. However, as is clear from the chemical formula of goethite, this iron ore contains a large amount of crystal water (usually 4% by weight or more), and when used in large amounts as a raw material for sinter, it is consumed to remove the crystal water. Not only the amount of heat increases, but also coarse air holes and cracks are generated during firing, which reduces the yield, strength, and productivity of products.

【0005】こうした問題が生じる理由は次の様に考え
ることができる。焼結過程において、高結晶水含有鉱石
は約300 ℃から結晶水が分解、脱水し、かつ亀裂も発生
して多孔質組織に変わるが、その後更に約1200℃まで上
昇すると、CaOとヘマタイトが反応して融液が生成さ
れ、この融液は直ちに鉄鉱石中の前記気孔や亀裂の中に
侵入するため、鉄鉱石粒子同士の結合に必要な融液量が
不足し、粒子間の結合が阻害される。また粒子と融液の
接触面積が大きいため、ヘマタイト粒子の一部が融液へ
高速度に溶け込む(同化反応)。その結果、冷却後の焼
結鉱は多量の粒状ヘマタイトに、カルシウムフェライト
とスラグからなる結合相、および多量の粗大気孔が混在
した状態に構成されたものになる。この粗大気孔により
製品焼結鉱の強度および歩留りが低下する他、焼結ベッ
ド内の融液生成帯における通気性が悪化してコークスな
どの炭材の燃焼が遅れ、生産性が低下するものと考えら
れる。
The reason why such a problem occurs can be considered as follows. In the sintering process, the crystal water of high crystal water containing ore decomposes and dehydrates from about 300 ℃, and cracks occur to change to a porous structure, but when it further rises to about 1200 ℃, CaO reacts with hematite. Then a melt is generated, and this melt immediately penetrates into the pores and cracks in the iron ore, so the amount of melt necessary for the bonding of the iron ore particles is insufficient, and the bonding between the particles is obstructed. To be done. Moreover, since the contact area between the particles and the melt is large, a part of the hematite particles dissolves into the melt at a high speed (assimilation reaction). As a result, the sintered ore after cooling becomes a state in which a large amount of granular hematite, a binder phase composed of calcium ferrite and slag, and a large amount of coarse air holes are mixed. This coarse air hole reduces the strength and yield of the product sinter, and also deteriorates the air permeability in the melt generation zone in the sintering bed, which delays the combustion of carbonaceous materials such as coke and reduces productivity. Conceivable.

【0006】上述した様に、結晶水を多く含有する鉱石
をそのまま焼結鉱原料として使用するのは問題が多く、
高結晶水含有鉱石の効果的な利用法を開発する意義は大
きい。こうしたことから、高結晶水含有鉱石の有効利用
を図る為の、様々な技術が提案されているが、いずれも
問題点を含んだものである。例えば特開昭59-197528号
公報には、ゲーサイトを多量に含有するリモナイト質鉱
石に対し、元鉱として残留しやすい粒径3mm以上の粒子
を粉砕してその量比を減少させると共に、粒径0.5mm 以
下の微粒子の配合割合を20〜30重量%に管理することに
よって、融液生成を促進し、脆弱な鉱石が元鉱として残
留するのを防止する技術が開示されている。しかしなが
らこの技術では、配合原料中の微粒試料の増加によって
充填層の通気性が低下し、生産性の低下につながるとい
う重大な欠点がある。
As described above, it is problematic to use an ore containing a large amount of water of crystallization as it is as a raw material for sinter.
It is of great significance to develop effective utilization of ores containing high crystal water. For these reasons, various techniques have been proposed for the effective use of ores containing high crystal water, but all of them involve problems. For example, in Japanese Patent Laid-Open No. 59-197528, for a limonite ore containing a large amount of goethite, particles having a particle size of 3 mm or more, which are likely to remain as an original ore, are crushed to reduce the amount ratio and There is disclosed a technique of promoting melt generation and preventing a fragile ore from remaining as a base ore by controlling a mixing ratio of fine particles having a diameter of 0.5 mm or less to 20 to 30% by weight. However, this technique has a serious drawback in that the permeability of the packed bed is lowered due to an increase in the fine particle sample in the blended raw material, which leads to a decrease in productivity.

【0007】一方特開平3-10027 号公報には、ゲーサイ
トを多量に含む鉱石を1200℃以上の温度で一定時間加熱
処理することによって緻密化し、粗大気孔やクラックに
起因する歩留り,強度および生産性の低下を防止する技
術が開示されている。しかしながらこの技術では、原料
を予め加熱する構成を採用しているので、消費熱量が増
加して焼結鉱の製造コストが上昇するという問題があ
る。上述した様に、従来では高結晶水含有鉱石を多量に
使用した焼結鉱を、高い熱効率を維持しながら生産性を
低下させることなく製造することは困難であった。
On the other hand, Japanese Patent Laid-Open No. 3-10027 discloses a ore containing a large amount of goethite at a temperature of 1200 ° C. or higher for a certain period of time to densify the ore and to improve yield, strength and production due to coarse air holes and cracks. A technique for preventing a decrease in sex is disclosed. However, in this technique, since the raw material is preheated, there is a problem that the amount of heat consumed increases and the production cost of the sintered ore increases. As described above, conventionally, it has been difficult to produce a sintered ore containing a large amount of ore containing a high amount of crystal water without lowering productivity while maintaining high thermal efficiency.

【0008】本発明はこうした状況のもとになされたも
のであって、その目的は、高炉用焼結鉱の原料として高
結晶水含有鉱石を使用した場合であっても、高強度の焼
結鉱を消費熱量を増加させずに製造することのできる様
な、焼結鉱原料用擬似粒子および焼結鉱原料を提供する
ことにある。
The present invention has been made under these circumstances, and its purpose is to achieve high strength sintering even when a high crystal water containing ore is used as a raw material for a sinter for a blast furnace. It is an object of the present invention to provide a pseudo particle for a sintered ore raw material and a sintered ore raw material that can produce ore without increasing the heat consumption.

【0009】[0009]

【課題を解決するための手段】上記目的を達成し得た本
発明とは、結晶水含有鉱石と固体燃料を、下記(a) ,
(b) の要件のいずれかまたは両方を満足させつつ造粒し
た点に要旨を有する焼結鉱原料用擬似粒子である。 (a) 結晶水含有鉱石の表面に、固体燃料を付着させるこ
と。 (b) 結晶水含有鉱石と固体燃料を混合させること。 また上記の様な焼結鉱原料用擬似粒子に対し、更にCa
O含有副原料およびSiO2 含有副原料を混合すること
によって、希望する焼結鉱原料が得られる。
Means for Solving the Problems The present invention which has achieved the above-mentioned object is to use a crystal water-containing ore and a solid fuel in the following (a),
This is a pseudo particle for a sintered ore raw material, which is characterized in that it is granulated while satisfying one or both of the requirements of (b). (a) To attach solid fuel to the surface of ore containing water of crystallization. (b) Mixing ore containing water of crystallization with solid fuel. In addition to the above-mentioned pseudo particles for sintering ore raw material, Ca
By mixing the O-containing auxiliary material and the SiO 2 -containing auxiliary material, the desired sintered ore raw material is obtained.

【0010】[0010]

【作用】以下、本発明が完成された経緯に沿って、本発
明の作用・効果について説明する。まず本発明者らは、
結晶水を4重量%以上含有する高結晶水含有鉱石の単味
層が焼結鉱製造時にどのような温度変化を示すかを、結
晶水が3%以下の通常用いられているヘマタイト系鉱石
層の場合を対象として、コークス配合量一定の条件で比
較した。
The operation and effect of the present invention will be described below along with the background of the completion of the present invention. First, the inventors
A hematite-based ore layer with a crystal water content of 3% or less is used to determine the temperature change of a plain layer of a high crystal water content ore containing 4% or more crystal water by the time of sinter production. In the case of, the comparison was made under the condition that the coke content was constant.

【0011】その結果を図1に示すが、図1から明らか
な様に、高結晶水含有鉱石単味層の最高到達温度はヘマ
タイト系鉱石層より低く、融液が生成して焼結反応に寄
与する1192℃以上の温度領域が極めて小さくなってい
る。これは結晶水の分解・脱水反応に多くの熱量が消費
されたためであり、高結晶水含有鉱石の焼結性が著しく
劣る主原因は、焼結反応に直接関与する熱が不足してい
るためであると考えられる。
The results are shown in FIG. 1. As is apparent from FIG. 1, the highest temperature reached by the ore plain layer containing high crystal water is lower than that by the hematite ore layer, and a melt is generated to cause a sintering reaction. The temperature range above 1192 ° C that contributes is extremely small. This is because a large amount of heat was consumed in the decomposition / dehydration reaction of crystal water, and the main reason for the significant inferior sinterability of high crystal water-containing ores was the lack of heat directly involved in the sintering reaction. Is considered to be.

【0012】焼結時の熱量不足を解消する方法として
は、結晶水の分解・脱水反応に要する熱量をコークス量
の増大によって補償する方法も考えられる。しかしなが
らこの方法では、コークス量の増加にともなって製造コ
ストが上昇する。従って、コークス量を増やさずに製品
焼結鉱の強度や生産性を改善するには、熱を効果的に投
入する必要がある。
As a method of eliminating the insufficient heat quantity during sintering, a method of compensating for the heat quantity required for the decomposition / dehydration reaction of crystal water by increasing the amount of coke can be considered. However, with this method, the manufacturing cost increases as the amount of coke increases. Therefore, in order to improve the strength and productivity of the product sintered ore without increasing the amount of coke, it is necessary to effectively input heat.

【0013】そこで本発明者らは、前記(a),(b) の要件
のいずれかまたは両方を満足させつつ、結晶水含有鉱石
とコークスを予め造粒すれば、熱吸収物質である結晶水
含有鉱石を選択的に加熱できるという着想が得られ、こ
うした構成を採用することによって、結晶水の分解・脱
水反応がコークス量を増やさずに促進され、製品焼結鉱
の強度が改善できることを見出し、本発明を完成した。
尚本発明は高結晶水を含有した(例えば4重量%以上)
鉱石を想定したものであり、本発明はこの様な鉱石を対
象としたときに最も効果的であるが、本発明で対象とす
る鉱石は結晶水を多量に含有したものに限らず、2〜3
%程度或はそれ以下の結晶水を含んだ鉱石を用いる場合
への適用を排除するものではない。
Therefore, the inventors of the present invention, by satisfying one or both of the requirements (a) and (b) described above, by granulating the crystal water-containing ore and coke in advance, the crystal water which is a heat absorbing substance. The idea that the contained ore can be selectively heated was obtained, and it was found that by adopting such a configuration, the decomposition / dehydration reaction of crystal water is promoted without increasing the amount of coke, and the strength of the product sintered ore can be improved. The present invention has been completed.
The present invention contains high crystal water (for example, 4% by weight or more).
The ore is assumed, and the present invention is most effective when such an ore is targeted, but the ore targeted by the present invention is not limited to one containing a large amount of crystal water, and Three
The application to the case of using an ore containing about% or less of water of crystallization is not excluded.

【0014】本発明で用いるコークスの量は、従来より
も増加させないのが前提であるが、配合予定量の全てを
造粒工程中に配合する場合だけでなく、結晶水の分解・
蒸発に必要と考えられる量を造粒工程中に配合し、残部
は副原料と共に追加混合する様にしても良い。尚結晶水
含有鉱石の1kgに対し、結晶水1重量%を分解・蒸発さ
せるのに必要な熱量は11.8kcalである。従って、造粒す
る際に使用する最低必要量のコークスは、少なくとも上
記熱量を発生させるのに相当する量以上とするのが良
い。
It is premised that the amount of coke used in the present invention is not increased more than in the prior art, but not only when all of the planned amount of compounding is compounded during the granulation step, but also when the amount of crystal water is decomposed
The amount considered to be necessary for evaporation may be added during the granulation process, and the balance may be additionally mixed with the auxiliary raw materials. The amount of heat required to decompose and evaporate 1% by weight of water of crystallization is 11.8 kcal with respect to 1 kg of ore containing water of crystallization. Therefore, it is preferable that the minimum required amount of coke used for granulation be at least an amount equivalent to the amount of heat generated.

【0015】以下本発明を実施例によって更に具体的に
説明するが、下記実施例は本発明を限定するものではな
く、前・後記の趣旨に徴して設計変更することはいずれ
も本発明の技術的範囲に含まれるものである。
The present invention will be described in more detail with reference to the following examples, but the following examples are not intended to limit the present invention, and any modification of the design can be made according to the gist of the preceding and the following. It is included in the target range.

【0016】[0016]

【実施例】表1の化学組成の高結晶含有水鉱石を用い、
図2に示す設備によって焼結鉱原料を得た。尚図2にお
いて、1は高結晶水含有鉱石,2はコークス,3は造粒
機,4はドラムミキサー,5は他の原料(CaO含有副
原料やSiO2 含有副原料等)を夫々示す。
[Example] Using a high crystal content water ore of the chemical composition of Table 1,
A sintered ore raw material was obtained by the equipment shown in FIG. In FIG. 2, 1 is a high crystal water containing ore, 2 is a coke, 3 is a granulator, 4 is a drum mixer, and 5 is other raw materials (CaO-containing auxiliary raw material, SiO 2 -containing auxiliary raw material, etc.).

【0017】[0017]

【表1】 [Table 1]

【0018】高結晶水含有鉱石1とコークス2(4.07重
量%)を、造粒機3を用いて予め造粒し、その後ドラム
ミキサー4を用いて他の原料5と混合し、焼結鉱原料と
した。上記で得られた焼結鉱原料、および通常の方法で
混合した焼結鉱原料を用い、これらを直径100mm 、高さ
350mm の焼結鍋に充填した。次いで層頂面に着火し、吸
引圧360mm H2 Oで空気を吸引しながら焼成を行ない、
焼結鉱を製造し、得られた焼結鉱の落下強度と生産率を
調査した。このとき本発明に係る焼結鉱原料層は、通気
性が良好であったため、吸引圧を300mm H2 Oとした。
尚落下強度および生産率は下記の方法によって測定し
た。
Highly crystalline water-containing ore 1 and coke 2 (4.07% by weight) were granulated in advance using a granulator 3 and then mixed with another raw material 5 using a drum mixer 4 to obtain a sintered ore raw material. And Using the sintered ore raw material obtained above and the sintered ore raw material mixed by the usual method, these are 100 mm in diameter and
It was filled in a 350 mm sintering pot. Next, the top surface of the layer is ignited, and firing is performed while suctioning air with a suction pressure of 360 mm H 2 O,
Sintered ore was manufactured, and the drop strength and production rate of the obtained ore were investigated. At this time, since the sintered ore raw material layer according to the present invention had good air permeability, the suction pressure was set to 300 mm H 2 O.
The drop strength and the production rate were measured by the following methods.

【0019】(落下強度)製品焼結鉱を2mの高さから
鉄製台上に一度に落下させる。この操作を4回繰り返し
た後、全量を4.8mm のふるいでふるい分けし、次式より
落下強度を算出する。 落下強度=(ふるい上の重量/試験前の重量)×100 (生産率)製品焼結鉱のパレット単位面積当り、および
単位時間当りの生産量を示す値であり、以下の式より算
出される。但し、焼結時間は、排ガス中のCO2濃度が
0.1 %以下になった時点を終了時間とした。 生産率=(ケーキ重量×歩留)/(パレット面積×焼結
時間) その結果を表2に示す。尚表2には比較の為に、通常の
方法で混合した焼結鉱原料にコークスを増配し、結晶水
の分解に要する熱量を補償した場合の結果についても示
した。
(Drop strength) A product sinter is dropped from a height of 2 m onto an iron table at once. After repeating this operation 4 times, screen the whole amount with a 4.8 mm sieve and calculate the drop strength from the following formula. Drop strength = (weight on sieve / weight before test) × 100 (production rate) A value showing the production amount of product sinter per unit area of pallet and per unit time, which is calculated by the following formula .. However, the sintering time depends on the CO 2 concentration in the exhaust gas.
The end time was defined as the time when it became 0.1% or less. Production rate = (cake weight × yield) / (pallet area × sintering time) The results are shown in Table 2. For comparison, Table 2 also shows the results when the coke was added to the sinter ore raw material mixed by the usual method to compensate for the amount of heat required for the decomposition of water of crystallization.

【0020】[0020]

【表2】 [Table 2]

【0021】表2から明らかな様に本発明の焼結鉱原料
を用いたときは、コークス量を増加しなくても、結晶水
の分解に要する熱量を補償した場合と同様の強度が得ら
れることがわかる。尚生産率はほとんど変わっていない
が、これは前述のように吸引圧を低くして制御したため
であり、吸引圧を未処理原料の場合と等しくすれば、生
産率は向上するものと考えられる。
As is apparent from Table 2, when the sintered ore raw material of the present invention is used, the same strength as when compensating for the amount of heat required for the decomposition of water of crystallization is obtained without increasing the amount of coke. I understand. Although the production rate has not changed much, this is because the suction pressure is controlled to be low as described above, and it is considered that the production rate is improved by making the suction pressure equal to that of the untreated raw material.

【0022】[0022]

【発明の効果】本発明は以上の様に構成されており、従
来高炉用焼結鉱原料として使用することが困難であった
高結晶水含有鉱石であっても有効に利用することがで
き、高強度の焼結鉱を低消費熱量で製造することが可能
な焼結鉱原料用擬似粒子および焼結鉱原料が得られた。
EFFECTS OF THE INVENTION The present invention is constituted as described above, and even a high crystal water content ore which has been difficult to use as a raw material for sinter ore for a blast furnace can be effectively utilized. Pseudo particles for sinter ore raw material and sinter ore raw material capable of producing high-strength sinter with low heat consumption were obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】焼結過程における高結晶水鉱石層およびヘマタ
イト系鉱石層の温度変化を示すグラフである。
FIG. 1 is a graph showing temperature changes in a highly crystalline water ore layer and a hematite-based ore layer during a sintering process.

【図2】実施例において焼結原料を製造する為に用いた
設備の概略説明図である。
FIG. 2 is a schematic explanatory diagram of equipment used for manufacturing a sintering raw material in Examples.

【符号の説明】[Explanation of symbols]

1 高結晶水含有鉱石 2 コークス 3 造粒機 4 ドラムミキサー 5 他の原料 1 Ore containing high crystal water 2 Coke 3 Granulator 4 Drum mixer 5 Other raw materials

───────────────────────────────────────────────────── フロントページの続き (72)発明者 井川 泰彦 加古川市金沢町1番地 株式会社神戸製鋼 所加古川製鉄所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasuhiko Igawa 1 Kanazawa-machi, Kakogawa City Kobe Steel, Ltd. Kakogawa Works

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 結晶水含有鉱石と固体燃料を、下記(a),
(b) に示す要件のいずれかまたは両方を満足させつつ造
粒したものであることを特徴とする焼結鉱原料用擬似粒
子。 (a) 結晶水含有鉱石の表面に、固体燃料を付着させるこ
と。 (b) 結晶水含有鉱石と固体燃料を混合させること。
1. A crystal water-containing ore and a solid fuel are prepared according to the following (a),
Pseudo-particles for sintered ore raw material, characterized by being granulated while satisfying one or both of the requirements shown in (b). (a) To attach solid fuel to the surface of ore containing water of crystallization. (b) Mixing crystal water containing ore with solid fuel.
【請求項2】 請求項1に記載の焼結原料用擬似粒子に
対し、更にCaO含有副原料およびSiO2 含有副原料
を混合したものであることを特徴とする焼結鉱原料。
2. A sintered ore raw material, wherein the pseudo particles for a sintering raw material according to claim 1 are further mixed with a CaO-containing auxiliary raw material and a SiO 2 -containing auxiliary raw material.
JP8170892A 1992-03-02 1992-03-02 Pseudo particle for raw material of sintered ore and raw material of sintered ore Pending JPH05247545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8170892A JPH05247545A (en) 1992-03-02 1992-03-02 Pseudo particle for raw material of sintered ore and raw material of sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8170892A JPH05247545A (en) 1992-03-02 1992-03-02 Pseudo particle for raw material of sintered ore and raw material of sintered ore

Publications (1)

Publication Number Publication Date
JPH05247545A true JPH05247545A (en) 1993-09-24

Family

ID=13753890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8170892A Pending JPH05247545A (en) 1992-03-02 1992-03-02 Pseudo particle for raw material of sintered ore and raw material of sintered ore

Country Status (1)

Country Link
JP (1) JPH05247545A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100433251B1 (en) * 1999-10-18 2004-05-27 주식회사 포스코 Method for manufacturing sintered ore
JP2007100149A (en) * 2005-10-03 2007-04-19 Jfe Steel Kk Method for producing sintered ore
JP2007100150A (en) * 2005-10-03 2007-04-19 Jfe Steel Kk Method for producing sintered ore
CN108315551A (en) * 2018-02-05 2018-07-24 武汉科技大学 A kind of sintering method of low-grade limonite

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100433251B1 (en) * 1999-10-18 2004-05-27 주식회사 포스코 Method for manufacturing sintered ore
JP2007100149A (en) * 2005-10-03 2007-04-19 Jfe Steel Kk Method for producing sintered ore
JP2007100150A (en) * 2005-10-03 2007-04-19 Jfe Steel Kk Method for producing sintered ore
CN108315551A (en) * 2018-02-05 2018-07-24 武汉科技大学 A kind of sintering method of low-grade limonite

Similar Documents

Publication Publication Date Title
JP5194378B2 (en) Method for producing sintered ore
JP5168802B2 (en) Method for producing sintered ore
KR20000077339A (en) Process for producing sintered ore and the sintered ore
JPH05247545A (en) Pseudo particle for raw material of sintered ore and raw material of sintered ore
JP2001348623A (en) METHOD FOR PRODUCING HIGH QUALITY AND LOW SiO2 SINTERED ORE FOR BLAST FURNACE
JP4725230B2 (en) Method for producing sintered ore
JP4241285B2 (en) Method for producing semi-reduced sintered ore
JP2001294945A (en) METHOD FOR PRODUCING HIGH QUALITY AND LOW SiO2 SINTERED ORE FOR BLAST FURNACE
JP2779647B2 (en) ▲ High ▼ Pretreatment of goethite ore
JPH05339653A (en) Pretreatment of sintered ore raw material and sintered ore raw material for iron making
JP2003096521A (en) Sintered ore blended with high alumina iron ore, and production method therefor
JPH08269584A (en) Production of sintered ore
JPH0881717A (en) Production of sintered ore
JPH05339654A (en) Pretreatment of sintered ore raw material and sintered ore raw material for iron making
JP4982986B2 (en) Method for producing sintered ore
JP4767388B2 (en) Method for producing sintered ore with excellent high-temperature properties
CN219653092U (en) Device for producing steelmaking iron-containing auxiliary materials from high-proportion red mud
JPH0583620B2 (en)
JPH0867919A (en) Production of sintered ore made of limonite based ore
JPH0827525A (en) Production of sintered ore formed by using ore of high crystallization water as raw material
JP2001348622A (en) METHOD FOR PRODUCING HIGH QUALITY AND LOW SiO2 SINTERED ORE FOR BLAST FURNACE
JPH07166248A (en) Production of burnt agglomerated ore
JP2006045600A (en) Method for producing sintered ore
JPH0819486B2 (en) Manufacturing method of sinter for blast furnace using high goethite ore as raw material
JP4767425B2 (en) Method for producing sintered ore

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000201