JP4982986B2 - Method for producing sintered ore - Google Patents

Method for producing sintered ore Download PDF

Info

Publication number
JP4982986B2
JP4982986B2 JP2005264765A JP2005264765A JP4982986B2 JP 4982986 B2 JP4982986 B2 JP 4982986B2 JP 2005264765 A JP2005264765 A JP 2005264765A JP 2005264765 A JP2005264765 A JP 2005264765A JP 4982986 B2 JP4982986 B2 JP 4982986B2
Authority
JP
Japan
Prior art keywords
mass
ore
iron ore
iron
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005264765A
Other languages
Japanese (ja)
Other versions
JP2007077430A (en
Inventor
秀明 佐藤
伸幸 大山
智 町田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005264765A priority Critical patent/JP4982986B2/en
Publication of JP2007077430A publication Critical patent/JP2007077430A/en
Application granted granted Critical
Publication of JP4982986B2 publication Critical patent/JP4982986B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、高炉製銑法等の主原料として用いられる焼結鉱の製造方法に関するものである。   The present invention relates to a method for producing a sintered ore used as a main raw material for a blast furnace ironmaking method or the like.

高炉の主原料である焼結鉱は、一般に以下のようにして製造される。まず、原料鉱石(粉鉄鉱石)に、石灰粉等のCaO含有副原料、珪石や蛇紋岩等のSiO含有副原料及びコークス粉等の炭材を配合し、これに適量の水を加えて混合・造粒する。この造粒された配合原料(焼結原料)を、ドワイトロイド式焼結機のパレット上に所定の厚さに充填し、この充填ベッド表層部の炭材に着火後、下方に向けて空気を吸引しながら充填ベッド内部の炭材を燃焼させ、その燃焼熱により配合原料を焼結させて焼結ケーキとする。そして、この焼結ケーキを粉砕・整粒することにより、粒径が数mm以上の成品焼結鉱が得られる。 Sinter ore, which is the main raw material of a blast furnace, is generally manufactured as follows. First, a raw material ore (pulverized iron ore) is blended with CaO-containing auxiliary materials such as lime powder, SiO 2- containing auxiliary materials such as silica and serpentine, and carbon materials such as coke powder, and an appropriate amount of water is added thereto. Mix and granulate. This granulated compounded raw material (sintered raw material) is filled onto a pallet of a Dwytroid type sintering machine to a predetermined thickness, and after igniting the carbonaceous material on the surface of the packed bed, air is directed downward. The carbonaceous material inside the packed bed is burned while being sucked, and the blended raw material is sintered by the combustion heat to obtain a sintered cake. Then, by pulverizing and sizing the sintered cake, a product sintered ore having a particle size of several mm or more can be obtained.

安定した高炉操業を行うためには、高品質の焼結鉱が求められる。一般に、焼結鉱の品質は冷間強度、還元粉化指数(RDI)、被還元性(RI)などが指標とされるが、これらが指標となる成品焼結鉱の品質は、高炉操業における炉内荷下がり状態の安定性、炉内通気性や通液性、鉱石の還元効率、高温性状等に対して大きな影響を及ぼす。このため焼結鉱の製造プロセスでは厳しい品質管理が行なわれている。また、焼結鉱の製造コストを低減させるために焼結鉱の成品歩留まりの向上が求められ、さらに焼結鉱製造ラインの効率化と生産性の向上が求められる。   In order to perform stable blast furnace operation, high-quality sintered ore is required. In general, the quality of sintered ore is indicated by cold strength, reduced powder index (RDI), reducibility (RI), etc., but the quality of the product sinter ore, which uses these as indicators, It has a great influence on the stability of the lowered state in the furnace, air permeability and liquid permeability in the furnace, ore reduction efficiency, high temperature properties, and the like. For this reason, strict quality control is performed in the manufacturing process of sintered ore. Moreover, in order to reduce the manufacturing cost of a sintered ore, the improvement of the product yield of a sintered ore is calculated | required, and also the efficiency improvement and productivity improvement of a sintered ore production line are calculated | required.

わが国は国内に鉄鉱石資源を持たないため、焼結鉱用原料である鉄鉱石は100%海外からの輸入に頼っている。近年、鉄鉱石の輸入は、豪州系鉱石が約60%を占め、南米系鉱石が約20〜25%、インド系鉱石が約10〜15%程度である。
鉄鉱石は、その構成鉱物から表1に示すようにヘマタイト鉱石、マグネタイト鉱石、リモナイト鉱石、マラマンバ鉱石に大別される。これらのうちのヘマタイト鉱石、リモナイト鉱石、マラマンバ鉱石の組織拡大写真を図7に示す。
Since Japan does not have iron ore resources in the country, iron ore, which is a raw material for sintered ore, is 100% dependent on imports from overseas. In recent years, iron ore imports account for about 60% of Australian ores, about 20-25% of South American ores, and about 10-15% of Indian ores.
As shown in Table 1, iron ores are roughly classified into hematite ore, magnetite ore, limonite ore, and maramamba ore. Among these, a structure enlarged photograph of hematite ore, limonite ore and maramamba ore is shown in FIG.

南米系鉱石は、脈石成分が少なくFe品位の高いヘマタイト鉱石が主体で、一部マグネタイト鉱石もあり、従来から良質の焼結鉱用原料として用いられている。しかし、産地が遠距離であるために輸送費が高いという問題がある。
インド系鉱石は、SiO等の脈石分は南米系鉱石に比べ高いものの、良質なヘマタイト鉱石や結晶水を4〜5mass%程度含むヘマタイト鉱石が代表的鉱石であり、重要な鉄鉱石資源の一つではある。しかし、南米、豪州に比べて、埋蔵量が少なく且つ採鉱及び港への輸送・積み出しのためのインフラの整備が遅れていること、さらに、モンスーンの影響で出荷時期に制約があること、などの問題があり、その輸入比率は伸び悩んでいる。
South American ores are mainly hematite ores with low gangue components and high Fe grade, and some magnetite ores have been used as high-quality raw materials for sintered ore. However, there is a problem that transportation costs are high because the production area is a long distance.
Although Indian ores have high gangue content such as SiO 2 compared to South American ores, high-quality hematite ores and hematite ores containing about 4 to 5 mass% of crystal water are representative ores. There is one. However, compared to South America and Australia, the amount of reserves is small, infrastructure development for mining and transportation / shipping to the port is delayed, and there are restrictions on shipping time due to the effects of monsoons, etc. There are problems, and the import ratio is sluggish.

一方、豪州系鉱石は鉱山会社の積極的な投資もあり、1980年代から生産量が大幅に伸びており、鉄鉱石供給のメインソースとなっている。しかしながら、従来、わが国製鉄業において好適に利用されてきた良質なヘマタイト鉱石は、開発後30年を経て急速に枯渇の方向に向かいつつあり、また、1990年代中頃から開発が行われてきたリモナイト鉱石も生産量的には頭打ちとなっている。これに対して、近年新規に開発される鉱山は、マラマンバ鉱石を主体とする鉱石を産出するものが多い。   Australian ore, on the other hand, has been actively invested by mining companies, and its production volume has grown significantly since the 1980s, making it the main source of iron ore supply. However, the high-quality hematite ore that has been used favorably in Japan's steel industry has been rapidly depleting 30 years after its development, and the limonite ore that has been developed since the mid-1990s. However, production has reached a peak. On the other hand, many newly developed mines in recent years produce ores mainly composed of maramamba ore.

ここで、マラマンバ鉱石とは、豪州のマラマンバ鉱床から産出される鉄鉱石の総称であって、一般にはゲーサイト(Fe・HO)とマータイト(マグネタイト構造を有するFe)を主要鉱物とし、且つへマタイト鉱石に較べて結晶水含有量(LOI(JIS M 8850による).以下同様)が高い鉱石である。銘柄名では、ウェストアンジェラス鉱、MAC鉱などが代表的な鉄鉱石である。また、リモナイト鉱石の代表例としては、ピソライト鉱石がある。このピソライト鉱石は、一般には、魚卵状のへマタイト(Fe)の隙間をゲーサイト(Fe・HO)が埋めた内部構造を有し、且つマラマンバ鉱石よりもさらに結晶水含有量が高い鉱石である。銘柄名では、ローブリバー鉱、ヤンディクージナ鉱などが代表的な鉄鉱石である。さらに今後は、ヤンディクージナ鉱の中でも鉱床の最下層から産出する、通常のヤンディクージナ鉱よりも結晶水含有量の高いLCIDと呼ばれる銘柄の使用も見込まれている。 Here, the Mara Mamba ore is a general term for iron ores produced from the Mara Mamba deposit in Australia, and is generally a goethite (Fe 2 O 3 .H 2 O) and martite (Fe 2 O 3 having a magnetite structure). Is a major ore with a high crystal water content (LOI (according to JIS M 8850), the same applies hereinafter) compared to hematite ore. By brand name, West Angelus ore and MAC ore are typical iron ores. A typical example of limonite ore is pisolite ore. This pisolite ore generally has an internal structure in which the gap between fish egg-like hematite (Fe 2 O 3 ) is filled with goethite (Fe 2 O 3 .H 2 O), and is further more than maramanba ore. It is an ore with a high crystallization water content. In the brand name, lobe river ore and yandi coujina ore are typical iron ores. Furthermore, the use of a brand called LCID, which is produced from the lowest layer of the ore deposit and has a higher crystallization water content than that of ordinary yandi cousina ore, is expected in the future.

上述した各種の鉄鉱石は、P(燐を表す。以下同様)含有量が0.10mass%未満(通常、0.06mass%以下)である一般的な鉄鉱石である。これに対して、Pを0.10mass%以上含有するような鉄鉱石は高燐鉱石と呼ばれる。このようなP含有量の高い鉄鉱石を高炉原料として使用することは、製造される溶銑のP濃度を高め、製鋼工程での脱燐処理の負荷を増大させることになるため、従来ではほとんど使用されていなかった。しかし、上述したように良質な鉄鉱石の供給量が減少しつつあることから、この高燐鉱石についても、焼結原料として相当量配合することが検討されつつある。   The various iron ores described above are general iron ores having a P (representing phosphorus; hereinafter the same) content of less than 0.10 mass% (usually 0.06 mass% or less). On the other hand, an iron ore containing 0.10 mass% or more of P is called a high phosphate ore. The use of such iron ore with a high P content as a blast furnace raw material increases the P concentration of the hot metal produced and increases the load of dephosphorization treatment in the steelmaking process. Was not. However, since the supply amount of high-quality iron ore is decreasing as described above, it is being studied to add a considerable amount of this high phosphate ore as a sintering raw material.

従来から用いられてきたヘマタイト鉱石は焼結性も良く、CaO源副原料を加えて塩基度(CaO/SiO)が1.7以上になるよう原料配合を調整した焼結鉱は品質、生産性、歩留りともに良好である。
これに対して、豪州系鉱石のうちリモナイト鉱石は、通常、結晶水含有量が9〜11mass%程度であり、微粉部分は少なく粒度は粗いが、図7の組織写真にも見られるように、鉱物組織中に粗大気孔が多い。このためリモナイト鉱石を焼成すると鉱石中の結晶水が抜けてさらに多孔質化し、亀裂が派生するため、衝撃を加えると粉化しやすい。また、結晶水の抜けた比較的粗い気孔内に、焼結過程においてCaO源副原料と鉄鉱石とが反応して生成したCaO系融液が浸入すると、急激に同化して過剰な溶融を引き起こす。そのため、リモナイト鉱石を多量に配合した場合には、焼結鉱の強度が低下するだけでなく、焼結ベッド内に過剰融液を発生させて岩板状に成長する部位が生じ、この過溶融部分と他の部分とで通気に著しいムラが生じて、過溶融した岩板状の部分の下方には未焼成部分が残されるため、歩留りの著しい低下が起こる。
Conventionally used hematite ore has good sinterability. Sintered ore is adjusted in quality and production so that the basicity (CaO / SiO 2 ) is adjusted to 1.7 or more by adding CaO source auxiliary material. Both sex and yield are good.
On the other hand, the limonite ore among Australian ores usually has a crystallization water content of about 9 to 11 mass%, and there are few fine powder parts and the particle size is coarse, but as seen in the structure photograph of FIG. There are many rough pores in the mineral structure. For this reason, when the limonite ore is baked, the crystal water in the ore is released to make it more porous and cracks are derived. In addition, when a CaO-based melt formed by the reaction of the CaO source auxiliary material and iron ore in the sintering process intrudes into the relatively coarse pores from which crystal water has been removed, it rapidly assimilates and causes excessive melting. . Therefore, when a large amount of limonite ore is blended, not only does the strength of the sintered ore decrease, but a portion that grows in the form of a rock plate by generating excess melt in the sintering bed is generated, and this overmelting occurs. A significant unevenness occurs in ventilation between the part and the other part, and an unfired part is left below the overmelted rock-like part, resulting in a significant reduction in yield.

一方、豪州系鉱石として新規に開発され、今後使用量の大幅な増大が見込まれるマラマンバ鉱石は、一般に結晶水含有量は4〜6mass%程度であり、リモナイト鉱石に比べると粗大気孔は少なく結晶水も少ないため、焼成時の過剰な溶融は緩和される。しかし、微細な気孔が組織全体にあるため、融液を吸収しやすく、吸収された融液が周辺部から鉱石を同化させ、融液中のFe濃度が上がると急激に粘度が上昇し、内部に気孔を残したまま焼成が完了する。このため隣接する鉱石には融液が充分行き渡らなくなり、また、マラマンバ鉱石部分は細かい気孔を残したまま焼結鉱となるため、強度が低下して歩留りも低下する。さらに、マラマンバ鉱石は粒度が細かいために、大量に使用した場合には、焼結の原料処理工程において原料造粒後の粒子径が大きくならず、焼結機パレット上に装入されたベッドの通気性が悪化することになり、生産性が低下する。   On the other hand, maramamba ore, which is newly developed as an Australian ore and is expected to increase in use in the future, generally has a crystal water content of about 4 to 6 mass%, and it has less rough atmospheric pores than limonite ore. Therefore, excessive melting during firing is alleviated. However, since fine pores exist in the entire structure, it is easy to absorb the melt, and the absorbed melt assimilates the ore from the periphery, and when the Fe concentration in the melt increases, the viscosity rapidly increases and the internal Firing is completed with the pores left behind. For this reason, the melt does not sufficiently spread to adjacent ores, and the maramamba ore portion becomes a sintered ore with fine pores remaining, so that the strength is lowered and the yield is also lowered. Furthermore, because Mara Mamba ore has a fine particle size, when used in large quantities, the particle size after raw material granulation does not increase in the raw material processing step of sintering, and the bed of the bed charged on the sintering machine pallet does not increase. Air permeability will deteriorate and productivity will fall.

以上のように、良質なヘマタイト鉱石やマグネタイト鉱石が枯渇する傾向にある一方で、リモナイト鉱石やマラマンバ鉱石の大量使用には、得られる焼結鉱の品質や生産性が低下するという大きな問題がある。このため、高品質の焼結鉱(例えば、JIS
M 8712による回転強度:66%以上)を高い生産率(例えば、1.5t/h/m以上)で低コストに製造することは、困難になりつつあるのが現状である。
また、高燐鉱石については、これを相当量使用した場合には溶銑中のP濃度が上昇して脱燐処理の負荷が増大するという問題が考えられるが、従来では焼結原料としての使用実績があまりないことから、焼結原料中に相当量を配合した場合の焼結鉱の品質や生産性、成品歩留りに及ぼす影響についての検討は殆どなされていない。
したがって、本発明の目的は、上述のような原料鉄鉱石の供給事情の下で、高品質な焼結鉱を高い生産率と歩留まりで低コストに製造することができる、焼結鉱の製造方法を提供することにある。
As described above, while high-quality hematite ore and magnetite ore tend to be depleted, large-scale use of limonite ore and maramamba ore has a major problem that the quality and productivity of the resulting sintered ore are reduced. . For this reason, high-quality sintered ore (for example, JIS
Currently, it is becoming difficult to manufacture a high production rate (for example, 1.5 t / h / m 2 or more) at a low cost with a rotational strength of M 8712: 66% or more.
In addition, with respect to high phosphate ore, when a considerable amount of this is used, there is a problem that the P concentration in the hot metal is increased and the load of dephosphorization treatment is increased. Therefore, there has been little research on the influence on the quality, productivity and product yield of sintered ore when a considerable amount is mixed in the sintering raw material.
Therefore, an object of the present invention is to produce a sintered ore that can produce a high-quality sintered ore at a high production rate and yield at a low cost under the above-mentioned supply situation of raw iron ore. Is to provide.

本発明者等は、焼結原料中に上述した複数種の鉄鉱石を同時に配合することを前提に、上記課題を解決するための最適な配合条件について検討を行った。その結果、ヘマタイト鉱石・マグネタイト鉱石と、リモナイト鉱石と、マラマンバ鉱石とを、それらの性状が焼結過程に及ぼす影響および相互作用を考慮した配合比率であって、且つ原料鉱石全体の平均結晶水含有率と粒度が所定のレベルとなるような配合比率で配合することにより、高品質な焼結鉱を高い生産性と歩留まりで低コストに製造できることを見出した。また、そのような特定の配合比率を満足させつつ、それら鉄鉱石の一部を所定限度内で高燐鉱石と代替させても、ほぼ同等の焼結鉱の品質、生産性、歩留まりが得られることが判った。   The inventors of the present invention have studied the optimum blending conditions for solving the above problems on the premise that the above-described plural types of iron ores are blended simultaneously in the sintering raw material. As a result, hematite ore, magnetite ore, limonite ore, and maramamba ore are mixed in consideration of the influence and interaction of their properties on the sintering process, and the average crystal water content of the entire raw ore It has been found that a high-quality sintered ore can be produced at a low cost with high productivity and yield by blending at a blending ratio such that the rate and particle size are at a predetermined level. In addition, even if some of these iron ores are replaced with high-phosphorus ores within predetermined limits while satisfying such specific blending ratios, almost the same quality, productivity and yield of sintered ores can be obtained. I found out.

本発明は、以上のような知見に基づきなされたもので、その要旨は以下のとおりである。
[1] 配合される原料鉱石が、結晶水含有量が9.0mass%以上の鉄鉱石Aと、結晶水含有量が4.0mass%未満の鉄鉱石Bと、結晶水含有量が4.0mass%以上9.0mass%未満の鉄鉱石Cとで構成される焼結原料(但し、前記鉄鉱石A、鉄鉱石B及び鉄鉱石Cは、P(燐)含有量が0.10mass%以上であるものを除く)であって、
前記鉄鉱石Aがリモナイト鉱石(但し、ピソライト鉱石を含む)、前記鉱石Bがヘマタイト鉱石または/およびマグネタイト鉱石、前記鉱石Cがマラマンバ鉱石であり、前記鉄鉱石A、鉄鉱石B及び鉄鉱石Cの配合割合を、図1に示す、点a(鉄鉱石A:40mass%,鉄鉱石B:50mass%,鉄鉱石C:10mass%)、点b(鉄鉱石A:7mass%,鉄鉱石B:50mass%,鉄鉱石C:43mass%)、点c(鉄鉱石A:12mass%,鉄鉱石B:18mass%,鉄鉱石C:70mass%)、点d(鉄鉱石A:23mass%,鉄鉱石B:7mass%,鉄鉱石C:70mass%)および点e(鉄鉱石A:40mass%,鉄鉱石B:36mass%,鉄鉱石C:24mass%)で囲まれる範囲内とし、且つ鉄鉱石A、鉄鉱石B及び鉄鉱石Cの合計量の20mass%以上30mass%以下を、P(燐)含有量が0.10mass%以上の鉄鉱石Dで代替させた焼結原料から焼結鉱を製造することを特徴とする焼結鉱の製造方法。
The present invention has been made on the basis of the above findings, and the gist thereof is as follows.
[1] The raw material ore to be blended includes iron ore A having a crystallization water content of 9.0 mass% or more, iron ore B having a crystallization water content of less than 4.0 mass%, and a crystallization water content of 4.0 mass. % Or more and less than 9.0 mass% of iron ore C (provided that the iron ore A, iron ore B, and iron ore C have a P (phosphorus) content of 0.10 mass% or more). Except for)
The iron ore A is limonite ore (including pisolite ore), the ore B is hematite ore and / or magnetite ore, the ore C is maramamba ore, and the iron ore A, iron ore B and iron ore C The blending ratio shown in FIG. 1 is point a (iron ore A: 40 mass%, iron ore B: 50 mass%, iron ore C: 10 mass%), point b (iron ore A: 7 mass%, iron ore B: 50 mass%). , Iron ore C: 43 mass%), point c (iron ore A: 12 mass%, iron ore B: 18 mass%, iron ore C: 70 mass%), point d (iron ore A: 23 mass%, iron ore B: 7 mass%) , Iron ore C: 70 mass%) and point e (iron ore A: 40 mass%, iron ore B: 36 mass%, iron ore C: 24 mass%) , and iron ore A, iron ore B and iron ore 20 mass% or more and 30 mass% or less of the total amount of stone C, including P (phosphorus) Method for producing sintered ore, characterized in that the amount to produce a sintered ore of a sintered material obtained by alternate with 0.10 mass% or more iron ore D.

[2] 上記[1]の製造方法において、鉄鉱石A、鉄鉱石B及び鉄鉱石Cの配合割合を、図2に示す、点b(鉄鉱石A:7mass%,鉄鉱石B:50mass%,鉄鉱石C:43mass%)、点c(鉄鉱石A:12mass%,鉄鉱石B:18mass%,鉄鉱石C:70mass%)、点d(鉄鉱石A:23mass%,鉄鉱石B:7mass%,鉄鉱石C:70mass%)、点e(鉄鉱石A:40mass%,鉄鉱石B:36mass%,鉄鉱石C:24mass%)、点f(鉄鉱石A:40mass%,鉄鉱石B:40mass%,鉄鉱石C:20mass%)および点g(鉄鉱石A:30mass%,鉄鉱石B:50mass%,鉄鉱石C:20mass%)で囲まれる範囲内とした焼結原料から焼結鉱を製造することを特徴とする焼結鉱の製造方法。
[3] 上記[1]または[2]の製造方法において、全部の原料が配合された焼結原料に水を添加して混合した後、造粒し、この造粒した焼結原料を焼成することを特徴とする焼結鉱の製造方法。
[4] 上記[1]〜[3]のいずれかの製造方法において、焼結原料中での原料鉱石の配合量が60mass%以上であることを特徴とする焼結鉱の製造方法。
[2] In the production method of [1] above, the blending ratio of iron ore A, iron ore B, and iron ore C is shown in FIG. 2 at point b (iron ore A: 7 mass%, iron ore B: 50 mass%, Iron ore C: 43 mass%), point c (iron ore A: 12 mass%, iron ore B: 18 mass%, iron ore C: 70 mass%), point d (iron ore A: 23 mass%, iron ore B: 7 mass%, Iron ore C: 70 mass%), point e (iron ore A: 40 mass%, iron ore B: 36 mass%, iron ore C: 24 mass%), point f (iron ore A: 40 mass%, iron ore B: 40 mass%, Producing sintered ore from sintering raw materials within a range surrounded by iron ore C: 20 mass%) and point g (iron ore A: 30 mass%, iron ore B: 50 mass%, iron ore C: 20 mass%) The manufacturing method of the sintered ore characterized by these.
[3] In the production method of [1] or [2] above, water is added to and mixed with a sintering raw material in which all raw materials are blended, and then granulated, and the granulated sintering raw material is fired. The manufacturing method of the sintered ore characterized by the above-mentioned.
[4] The method for producing a sintered ore according to any one of the above [1] to [3], wherein a blending amount of the raw material ore in the sintered raw material is 60 mass% or more.

本発明によれば、鉄鉱石A,B,Cという3種類の原料鉱石を特定の限定された割合で配合した焼結原料、或いはその原料鉱石の一部を所定限度内で鉄鉱石Dと代替させた焼結原料を用いることにより、高品質な焼結鉱を高い生産率と歩留まりで低コストに製造することができる。   According to the present invention, a sintered raw material in which three types of raw material ores called iron ores A, B, and C are blended at a specific limited ratio, or a part of the raw material ore is replaced with iron ore D within a predetermined limit. By using the sintered raw material, a high-quality sintered ore can be produced at a low cost with a high production rate and yield.

高品質の焼結鉱を高生産率で製造するには、焼結原料に配合する原料鉱石の結晶水含有量(LOI(JIS M 8850による).以下同様)と粒度が重要な要素となるが、リモナイト鉱石、へマタイト鉱石・マグネタイト鉱石、マラマンバ鉱石は、以下のように結晶水含有量により区別することができる。
(1)結晶水含有量が9.0mass%以上である鉄鉱石A=リモナイト鉱石
(2)結晶水含有量が4.0mass%未満である鉄鉱石B=へマタイト鉱石・マグネタイト鉱石
(3)結晶水含有量が4.0mass%以上9.0mass%未満である鉄鉱石C=マラマンバ鉱石
また、これらの鉄鉱石の通常の粒度は、重量平均径でリモナイト鉱石が3.0mm以上、へマタイト鉱石・マグネタイト鉱石が2.2mm以上、マラマンバ鉱石が1.9mm以下である。
In order to produce high-quality sintered ore at a high production rate, the crystal water content (LOI (according to JIS M 8850) and grain size) of the raw material ore to be blended with the sintering raw material is important factors. Limonite ore, hematite ore, magnetite ore and maramamba ore can be distinguished by the crystal water content as follows.
(1) Iron ore with crystallization water content of 9.0 mass% or more A = limonite ore (2) Iron ore with crystallization water content less than 4.0 mass% B = Hematite ore or magnetite ore (3) Crystal Iron ore with water content of 4.0 mass% or more and less than 9.0 mass% = Maramanba ore The usual particle size of these iron ores is the weight average diameter of limonite ore of 3.0 mm or more, hematite ore, Magnetite ore is 2.2 mm or more, and Maramamba ore is 1.9 mm or less.

一方、高燐鉱石はP含有量が他の鉱石よりも突出して高く、一般に他の鉱石のP含有量は0.06mass%以下であるのに対して、0.10mass%以上のPを含有する。したがって、高燐鉱石はP含有量で他の鉱石(先に挙げた鉄鉱石A,B,C)から区別することができ、このため本発明では、P含有量:0.10mass%以上の鉱石を「高燐鉱石」と定義し、これを鉄鉱石Dとする。   On the other hand, high phosphorus ore has a P content that is prominently higher than that of other ores. Generally, the P content of other ores is 0.06 mass% or less, while P content is 0.10 mass% or more. . Therefore, the high phosphate ore can be distinguished from other ores (the iron ores A, B, and C mentioned above) by the P content. Therefore, in the present invention, the ore having the P content of 0.10 mass% or more is used. Is defined as “high phosphate ore”, and this is designated iron ore D.

本発明による第一の焼結鉱の製造方法では、焼結原料中の原料鉱石を上記鉄鉱石A,B,Cの3種類で構成するとともに、それらの配合割合を、図1に示す、点a(鉄鉱石A:40mass%,鉄鉱石B:50mass%,鉄鉱石C:10mass%)、点b(鉄鉱石A:7mass%,鉄鉱石B:50mass%,鉄鉱石C:43mass%)、点c(鉄鉱石A:12mass%,鉄鉱石B:18mass%,鉄鉱石C:70mass%)、点d(鉄鉱石A:23mass%,鉄鉱石B:7mass%,鉄鉱石C:70mass%)および点e(鉄鉱石A:40mass%,鉄鉱石B:36mass%,鉄鉱石C:24mass%)で囲まれる範囲内とする。なお、鉄鉱石Bとしてはへマタイト鉱石または/およびマグネタイト鉱石が用いられる。また、本発明において原料鉱石とは、言うまでもなく新原料としての鉄鉱石を指し、したがって、いわゆる返鉱は原料鉱石の定義には含まれない。   In the first method for producing a sintered ore according to the present invention, the raw material ore in the sintered raw material is composed of the three types of iron ores A, B, and C, and the blending ratio thereof is shown in FIG. a (Iron Ore A: 40 mass%, Iron Ore B: 50 mass%, Iron Ore C: 10 mass%), Point b (Iron Ore A: 7 mass%, Iron Ore B: 50 mass%, Iron Ore C: 43 mass%), Point c (iron ore A: 12 mass%, iron ore B: 18 mass%, iron ore C: 70 mass%), point d (iron ore A: 23 mass%, iron ore B: 7 mass%, iron ore C: 70 mass%) and point e (iron ore A: 40 mass%, iron ore B: 36 mass%, iron ore C: 24 mass%). As the iron ore B, hematite ore and / or magnetite ore is used. In the present invention, the raw material ore refers to iron ore as a new raw material, and so-called return ore is not included in the definition of raw material ore.

ここで、図1の限界線イは、鉄鉱石B(ヘマタイト鉱石・マグネタイト鉱石)の配合限界量を規定するもので、限界線イ(全原料鉱石の50mass%)を超えて鉄鉱石Bを配合することは、焼結鉱の製造コストを増大させることになり、本発明の目的に反する。すなわち、他鉱石に較べて良質であるが故に枯渇傾向にある高価な鉄鉱石Bの配合比率を高めることは、それ自体製造コストの上昇を招くとともに、現状の産地からの鉄鉱石の供給事情からして、限界線イを超えて鉄鉱石Bの使用割合を高めるには、生産に余力がある南米系鉱石(産地別では最も高価な鉄鉱石B)を増やすしかなく、このためコストは大幅に増加する。   Here, the limit line A in FIG. 1 defines the mixing limit amount of iron ore B (hematite ore / magnetite ore), and iron ore B exceeds the limit line I (50 mass% of all raw ores). Doing so increases the production cost of the sintered ore and is contrary to the object of the present invention. In other words, increasing the blending ratio of the expensive iron ore B, which is high in quality compared with other ores, tends to increase the manufacturing cost itself, and the supply situation of iron ore from the current production area. The only way to increase the ratio of iron ore B beyond the limit line a is to increase the number of South American ores that have the potential for production (the most expensive iron ore B by production area). To increase.

図1の限界線ロは、鉄鉱石A(リモナイト鉱石)の配合限界量を規定するもので、限界線ロ(全原料鉱石の40mass%)を超えて鉄鉱石Aを配合すると、鉄鉱石Aによる岩板状の溶融物が多量に生成し、焼結ベッドの通気性が大きく阻害され、その結果、焼結鉱の品質・生産性が低下する。鉄鉱石Aが焼結ベッド中で通気を阻害するような岩板状の溶融物を作らないようにするためには、鉄鉱石Aが焼結ベッド上で分散装入されることが必要である。そのためには、原料充填層中で鉄鉱石A主体の擬似粒子の周りに、他の鉄鉱石(鉄鉱石Bおよび/または鉄鉱石C)等が主体の擬似粒子を配位させる必要があり、鉄鉱石A主体の擬似粒子がその他鉄鉱石等主体の擬似粒子で適度に囲まれた状態とするには、鉄鉱石A主体の擬似粒子が1に対して、少なくともその他鉄鉱石等主体の擬似粒子が1.5以上必要であると考えられる。そして、鉄鉱石Aの割合が40mass%以下であれば、上記擬似粒子の比率が満足されることになる。
また、鉄鉱石A主体の擬似粒子が1に対して、少なくともその他鉄鉱石等主体の擬似粒子が3〜4程度であることがより好ましいと考えられる。また、焼結原料中の原料鉱石の割合は60〜80mass%程度が好ましい。したがって、そのうちの鉄鉱石Aの割合が40mass%以下であれば、焼結原料中での鉄鉱石Aの割合は約24〜32mass%以下となり、上記擬似粒子の比率が満足されることになる。
The limit line B in FIG. 1 defines the blending limit amount of iron ore A (limonite ore). When iron ore A is blended exceeding the limit line ro (40 mass% of all raw ores), iron ore A A large amount of rock-like melt is generated, and the air permeability of the sintered bed is greatly hindered. As a result, the quality and productivity of the sintered ore are lowered. In order to prevent iron ore A from creating a rock-like melt that impedes aeration in the sintered bed, it is necessary that iron ore A be distributed and charged on the sintered bed. . For that purpose, it is necessary to coordinate the pseudo particles mainly composed of other iron ores (iron ore B and / or iron ore C) around the pseudo particles mainly composed of iron ore A in the raw material packed bed. In order for the pseudo-particles mainly composed of stone A to be appropriately surrounded by pseudo-particles mainly composed of iron ore or the like, the pseudo-particles mainly composed of iron ore A is 1 and at least other pseudo-particles mainly composed of iron ore or the like It is considered that 1.5 or more is necessary. And if the ratio of iron ore A is 40 mass% or less, the ratio of the said pseudo | simulation particle will be satisfied.
Further, it is considered that it is more preferable that the number of pseudo particles mainly composed of iron ore is about 3 to 4 with respect to the number of pseudo particles mainly composed of iron ore A. The ratio of the raw material ore in the sintered raw material is preferably about 60 to 80 mass%. Therefore, if the ratio of the iron ore A is 40 mass% or less, the ratio of the iron ore A in the sintered raw material is about 24 to 32 mass% or less, and the ratio of the pseudo particles is satisfied.

図1の限界線ハは、微粉鉱石量が多い鉄鉱石C(マラマンバ鉱石)の配合限界量を規定するもので、限界線ハ(全原料鉱石の70mass%)を超えて鉄鉱石Cを配合すると、鉄鉱石Cの粒度に起因した問題が顕在化する。通常の焼結操業においては、粒径0.25mm以下の微粉鉱石が焼結ベッドの通気性を阻害することが知られており、このような粒径0.25mm以下の微粉鉱石の悪影響を取り除くために、生石灰や消石灰をバインダーに用いて焼結原料の造粒を行うことにより、焼結機に装入される原料粒子の大きさを重量平均径が3〜6mmになるようにしている。一般に、焼結原料の造粒では、原料鉱石中の粒径0.25mm以下の微粉鉱石の含有量に合わせバインダーの添加量を調整するが、図8に示すように、バインダーの効果はその添加量が少ない領域では添加量に比例するが、ある程度以上に添加量が増えると(約2.5mass%以上)、その効果も飽和してくる。したがって、微粉鉱石量が多い鉄鉱石Cの配合割合にも限界があり、以下に述べるように、限界線ハが規定する70mass%程度が限界となる。   The limit line C in FIG. 1 defines the blending limit amount of iron ore C (maramanba ore) with a large amount of fine ore, and when iron ore C is blended exceeding the limit line c (70 mass% of all raw ores). The problem resulting from the grain size of iron ore C becomes obvious. In ordinary sintering operations, it is known that fine ore with a particle size of 0.25 mm or less inhibits the air permeability of the sintered bed, and removes such adverse effects of fine ore with a particle size of 0.25 mm or less. Therefore, by granulating the sintered raw material using quick lime or slaked lime as a binder, the size of the raw material particles charged in the sintering machine is set to 3 to 6 mm in weight average diameter. In general, in the granulation of sintered raw materials, the amount of binder added is adjusted in accordance with the content of fine ore with a particle size of 0.25 mm or less in the raw ore. As shown in FIG. In the region where the amount is small, it is proportional to the amount added, but when the amount added is increased to a certain degree (about 2.5 mass% or more), the effect becomes saturated. Therefore, there is a limit to the blending ratio of iron ore C with a large amount of fine ore, and as described below, the limit is about 70 mass% defined by the limit line C.

一般に、粒径0.25mm以下の細粒鉱石の割合は、鉄鉱石Cで約40mass%程度、鉄鉱石Aで約5〜12mass%程度、鉄鉱石Bで20〜30mass%程度であるが、図9に示すように、原料鉱石中の粒径0.25mm以下の細粒鉱石の割合が約35mass%を超えると焼結に悪影響を与え、生産率が低下するようになる。鉄鉱石Cの割合が70mass%以下であれば、粒径0.25mm以下の細粒鉱石の割合は約25〜30mass%以下となり、生産性に与える影響は小さい。   In general, the proportion of fine ore with a particle size of 0.25 mm or less is about 40 mass% for iron ore C, about 5 to 12 mass% for iron ore A, and about 20 to 30 mass% for iron ore B. As shown in FIG. 9, when the ratio of fine ore having a particle size of 0.25 mm or less in the raw material ore exceeds about 35 mass%, it adversely affects the sintering and the production rate is lowered. If the ratio of iron ore C is 70 mass% or less, the ratio of fine-grained ores having a particle size of 0.25 mm or less is about 25 to 30 mass% or less, and the influence on productivity is small.

図1の限界線ニは、原料鉱石(鉄鉱石A+B+C)の平均結晶水含有量の限界(上限)を規定するものである。原料鉱石の結晶水含有量が高いと、結晶水が抜けることによって気孔の多い焼結組織となり、焼成速度一定の条件では焼結鉱の強度、歩留まりが低下する。一方、焼成時間を確保するために焼成速度を小さくすると、生産性が低下してしまう。また、熱量を増加させるため炭材量を多くすると、過剰な溶融が起こるため通気性が悪化若しくは不均一になり、歩留まりが低下する。このような問題に対して、原料鉱石(鉄鉱石A+B+C)の平均結晶水含有量が6.0mass%以下に調整される必要があることが判った。鉄鉱石A,B,Cの各結晶水含有量からして、鉄鉱石A,B,Cの配合割合を限界線ニで規定すること、すなわち、鉄鉱石Aを限界線ニを超えないように配合し、且つ鉄鉱石B,Cを限界線ニを下回らないように配合すれば、原料鉱石(鉄鉱石A+B+C)全体の平均結晶水含有量を6.0mass%以下に調整することができる。   The limit line D in FIG. 1 defines the limit (upper limit) of the average crystal water content of the raw ore (iron ore A + B + C). When the crystallization water content of the raw material ore is high, the crystallization water is removed to form a sintered structure with many pores, and the strength and yield of the sinter are reduced under the constant firing rate. On the other hand, if the firing rate is reduced to ensure the firing time, the productivity will be reduced. Further, if the amount of carbon material is increased in order to increase the amount of heat, excessive melting occurs, resulting in deterioration or nonuniformity in air permeability and a decrease in yield. It was found that the average crystal water content of the raw material ore (iron ore A + B + C) needs to be adjusted to 6.0 mass% or less for such a problem. From the content of crystal water of iron ores A, B, and C, the blending ratio of iron ores A, B, and C is defined by the limit line D, that is, iron ore A does not exceed the limit line D. If it mix | blends and it mix | blends iron ore B and C so that it may not fall below the limit line D, the average crystallization water content of the whole raw material ore (iron ore A + B + C) can be adjusted to 6.0 mass% or less.

図1の限界線ホは、原料鉱石(鉄鉱石A+B+C)の平均粒度の限界(下限)を規定するものである。原料鉱石の粒度が小さすぎると、焼結ベッド内の通気性が悪化し、焼結鉱の歩留まりが低下してしまう。このような問題に対して、原料鉱石(鉄鉱石A+B+C)の平均粒径が2.2mm以上に調整される必要があることが判った。鉄鉱石A,B,Cの各平均粒径からして、鉄鉱石A,B,Cの配合割合を限界線ホで規定すること、すなわち、鉄鉱石Aを限界線ホを下回らないように配合し、且つ鉄鉱石B,Cを限界線ホを超えないように配合すれば、原料鉱石(鉄鉱石A+B+C)全体の平均粒径を2.2mm以上とすることができる。
以上の結果から、本発明では原料鉱石中の鉄鉱石A,B,Cの配合割合を、図1の限界線イ−ロ−ニ−ハ−ホで区画された範囲内、すなわち、点a,点b,点c,点dおよび点eで囲まれる範囲内と規定する。
The limit line E in FIG. 1 defines the limit (lower limit) of the average particle size of the raw ore (iron ore A + B + C). If the particle size of the raw ore is too small, the air permeability in the sintered bed is deteriorated and the yield of the sintered ore is lowered. It was found that the average particle size of the raw material ore (iron ore A + B + C) needs to be adjusted to 2.2 mm or more for such a problem. From the average particle size of iron ores A, B, and C, the blending ratio of iron ores A, B, and C is defined by the limit line E, that is, the iron ore A is blended so as not to fall below the limit line E If the iron ores B and C are blended so as not to exceed the limit line E, the average particle size of the entire raw material ore (iron ore A + B + C) can be 2.2 mm or more.
From the above results, in the present invention, the mixing ratio of the iron ores A, B, and C in the raw ore is within the range defined by the limit line iron hae in FIG. It is defined as a range surrounded by the points b, c, d and e.

さらに、本発明のより好ましい製造方法では、原料鉱石中での上記鉄鉱石A,B,Cの配合割合を、図2に示す、点b(鉄鉱石A:7mass%,鉄鉱石B:50mass%,鉄鉱石C:43mass%)、点c(鉄鉱石A:12mass%,鉄鉱石B:18mass%,鉄鉱石C:70mass%)、点d(鉄鉱石A:23mass%,鉄鉱石B:7mass%,鉄鉱石C:70mass%)、点e(鉄鉱石A:40mass%,鉄鉱石B:36mass%,鉄鉱石C:24mass%)、点f(鉄鉱石A:40mass%,鉄鉱石B:40mass%,鉄鉱石C:20mass%)および点g(鉄鉱石A:30mass%,鉄鉱石B:50mass%,鉄鉱石C:20mass%)で囲まれる範囲内とする。   Furthermore, in the more preferable manufacturing method of this invention, the mixing ratio of the said iron ore A, B, C in a raw material ore is shown in FIG. 2, the point b (iron ore A: 7 mass%, iron ore B: 50 mass%). , Iron ore C: 43 mass%), point c (iron ore A: 12 mass%, iron ore B: 18 mass%, iron ore C: 70 mass%), point d (iron ore A: 23 mass%, iron ore B: 7 mass%) , Iron ore C: 70 mass%), point e (iron ore A: 40 mass%, iron ore B: 36 mass%, iron ore C: 24 mass%), point f (iron ore A: 40 mass%, iron ore B: 40 mass%) , Iron ore C: 20 mass%) and point g (iron ore A: 30 mass%, iron ore B: 50 mass%, iron ore C: 20 mass%).

ここで、図2の限界線イ,ロ,ハ,ニ,ホが規定される理由は先に述べたとおりである。さらに、限界線ヘは鉄鉱石C(マラマンバ鉱石)の配合量の下限を規定するもので、鉄鉱石Cをこの限界線ヘを下回らないように配合することにより、安価ではあるが微粉鉱石量が多いために上述した問題を生じやすい鉄鉱石C(マラマンバ鉱石)を積極的に配合しつつ、高品質な焼結鉱をより低コストに高い生産率で製造することができる。
したがって、本発明では原料鉱石中の鉄鉱石A,B,Cの配合割合を、図2の限界線イ−ヘ−ロ−ニ−ハ−ホで区画された範囲内、すなわち、上述した点b,点c,点d,点e,点fおよび点gで囲まれる範囲内とすることが好ましい。
Here, the reason why the limit lines (a), (b), (c), (d), and (e) in FIG. 2 are defined is as described above. Furthermore, the limit line defines the lower limit of the amount of iron ore C (maramanba ore). By blending iron ore C so that it does not fall below this limit line, the amount of fine ore is low, but cheap. High-quality sintered ore can be produced at a lower cost and at a higher production rate while actively blending iron ore C (maramanba ore) that is likely to cause the above-described problems because of its large amount.
Therefore, in the present invention, the mixing ratio of the iron ores A, B, and C in the raw material ore is within the range defined by the limit line i-hello-ni-haho in FIG. 2, that is, the point b described above. , Point c, point d, point e, point f and point g.

図1、図2に示す鉄鉱石A,B,Cの配合割合の中でより好ましいのは、図3、図5に示すように、限界線トによりさらに限定される範囲内の配合割合である。すなわち、図1の配合範囲をベースとする場合には、図3に示す、点a(鉄鉱石A:40mass%,鉄鉱石B:50mass%,鉄鉱石C:10mass%)、点b(鉄鉱石A:7mass%,鉄鉱石B:50mass%,鉄鉱石C:43mass%)、点h(鉄鉱石A:11.5mass%,鉄鉱石B:20mass%,鉄鉱石C:68.5mass%)、点i(鉄鉱石A:30mass%,鉄鉱石B:20mass%,鉄鉱石C:50mass%)および点e(鉄鉱石A:40mass%,鉄鉱石B:36mass%,鉄鉱石C:24mass%)で囲まれる範囲内である。また、図2の配合範囲をベースとする場合には、図5に示す、点b(鉄鉱石A:7mass%,鉄鉱石B:50mass%,鉄鉱石C:43mass%)、点h(鉄鉱石A:11mass%,鉄鉱石B:20mass%,鉄鉱石C:69mass%)、点i(鉄鉱石A:30mass%,鉄鉱石B:20mass%,鉄鉱石C:50mass%)、点e(鉄鉱石A:40mass%,鉄鉱石B:36mass%,鉄鉱石C:24mass%)、点f(鉄鉱石A:40mass%,鉄鉱石B:40mass%,鉄鉱石C:20mass%)および点g(鉄鉱石A:30mass%,鉄鉱石B:50mass%,鉄鉱石C:20mass%)で囲まれる範囲内である。   More preferable among the mixing ratios of iron ores A, B, and C shown in FIGS. 1 and 2 is a mixing ratio within the range further limited by the limit line as shown in FIGS. . That is, when based on the blending range of FIG. 1, point a (iron ore A: 40 mass%, iron ore B: 50 mass%, iron ore C: 10 mass%), point b (iron ore) shown in FIG. A: 7 mass%, iron ore B: 50 mass%, iron ore C: 43 mass%), point h (iron ore A: 11.5 mass%, iron ore B: 20 mass%, iron ore C: 68.5 mass%), point Surrounded by i (iron ore A: 30 mass%, iron ore B: 20 mass%, iron ore C: 50 mass%) and point e (iron ore A: 40 mass%, iron ore B: 36 mass%, iron ore C: 24 mass%) It is within the range. Moreover, when based on the compounding range of FIG. 2, the point b (iron ore A: 7 mass%, iron ore B: 50 mass%, iron ore C: 43 mass%), point h (iron ore) shown in FIG. A: 11 mass%, iron ore B: 20 mass%, iron ore C: 69 mass%), point i (iron ore A: 30 mass%, iron ore B: 20 mass%, iron ore C: 50 mass%), point e (iron ore) A: 40 mass%, iron ore B: 36 mass%, iron ore C: 24 mass%), point f (iron ore A: 40 mass%, iron ore B: 40 mass%, iron ore C: 20 mass%) and point g (iron ore) A: 30 mass%, iron ore B: 50 mass%, iron ore C: 20 mass%).

図3、図5の限界線トは、焼結鉱の強度等の観点からより好ましい配合条件を規定するものである。この限界線トにより限定される好ましい範囲から外れることになる、点h,点c,点dおよび点iで囲まれる範囲は、従来より焼結原料として好適に用いられてきた、結晶水が少なく緻密な焼結組織が得られる鉄鉱石Bの配合割合が20mass%未満となり、一方において、焼成により結晶水が抜けることで焼結組織が多孔質になりやすい鉄鉱石A,Cの配合割合が80mass%を超えることになるため、焼結鉱の強度の維持(したがって、これに伴う生産率と歩留まりの維持)が難しい領域である。したがって、図1の配合範囲をベースとする場合には、鉄鉱石A,B,Cの配合割合は、図3の限界線イ−ロ−ニ−ト−ホで区画された範囲内、すなわち、上述した点a,点b,点h,点iおよび点eで囲まれる範囲内とすることが好ましく、また、図2の配合範囲をベースとする場合には、鉄鉱石A,B,Cの配合割合は、図5の限界線イ−ヘ−ロ−ニ−ト−ホで区画された範囲内、すなわち、上述した点b,点h,点i,点e,点fおよび点gで囲まれる範囲内とすることが好ましい。   3 and 5 define more preferable blending conditions from the viewpoint of the strength of the sintered ore and the like. The range surrounded by point h, point c, point d, and point i, which deviates from the preferred range limited by the limit line, has less crystal water that has been used favorably as a sintering raw material conventionally. The blending ratio of iron ore B from which a dense sintered structure is obtained is less than 20 mass%. On the other hand, the blending ratio of iron ores A and C, in which the sintered structure is likely to become porous due to the removal of crystal water by firing, is 80 mass. Therefore, it is difficult to maintain the strength of the sintered ore (thus maintaining the production rate and yield). Therefore, when the blending range of FIG. 1 is used as a base, the blending ratio of iron ores A, B, and C is within the range defined by the limit line iron-neutho of FIG. It is preferable to be within the range surrounded by the points a, b, h, i and e described above, and when based on the blending range of FIG. 2, the iron ores A, B, C The blending ratio is within the range defined by the limit line ello-neato ho of FIG. 5, that is, surrounded by the points b, h, i, e, f and g described above. It is preferable to be within the range.

また、図1、図2に示す鉄鉱石A,B,Cの配合割合の中でさらに好ましいのは、図4、図6に示すように、限界線チによりさらに限定される範囲内の配合割合である。すなわち、図1の配合範囲をベースとする場合には、図4に示す、点a(鉄鉱石A:40mass%,鉄鉱石B:50mass%,鉄鉱石C:10mass%)、点b(鉄鉱石A:7mass%,鉄鉱石B:50mass%,鉄鉱石C:43mass%)、点j(鉄鉱石A:8mass%,鉄鉱石B:42mass%,鉄鉱石C:50mass%)、点i(鉄鉱石A:30mass%,鉄鉱石B:20mass%,鉄鉱石C:50mass%)および点e(鉄鉱石A:40mass%,鉄鉱石B:36mass%,鉄鉱石C:24mass%)で囲まれる範囲内である。また、図2の配合範囲をベースとする場合には、図6に示す、点b(鉄鉱石A:7mass%,鉄鉱石B:50mass%,鉄鉱石C:43mass%)、点j(鉄鉱石A:9mass%,鉄鉱石B:41mass%,鉄鉱石C:50mass%)、点i(鉄鉱石A:30mass%,鉄鉱石B:20mass%,鉄鉱石C:50mass%)、点e(鉄鉱石A:40mass%,鉄鉱石B:36mass%,鉄鉱石C:24mass%)、点f(鉄鉱石A:40mass%,鉄鉱石B:40mass%,鉄鉱石C:20mass%)および点g(鉄鉱石A:30mass%,鉄鉱石B:50mass%,鉄鉱石C:20mass%)で囲まれる範囲内である。   Further, among the mixing ratios of iron ores A, B, and C shown in FIG. 1 and FIG. 2, as shown in FIGS. 4 and 6, the mixing ratio within the range further limited by the limit line h It is. That is, when based on the blending range of FIG. 1, point a (iron ore A: 40 mass%, iron ore B: 50 mass%, iron ore C: 10 mass%), point b (iron ore) shown in FIG. A: 7 mass%, iron ore B: 50 mass%, iron ore C: 43 mass%), point j (iron ore A: 8 mass%, iron ore B: 42 mass%, iron ore C: 50 mass%), point i (iron ore) A: 30 mass%, iron ore B: 20 mass%, iron ore C: 50 mass%) and point e (iron ore A: 40 mass%, iron ore B: 36 mass%, iron ore C: 24 mass%) is there. Moreover, when based on the compounding range of FIG. 2, the point b (iron ore A: 7 mass%, iron ore B: 50 mass%, iron ore C: 43 mass%), point j (iron ore) shown in FIG. A: 9 mass%, iron ore B: 41 mass%, iron ore C: 50 mass%), point i (iron ore A: 30 mass%, iron ore B: 20 mass%, iron ore C: 50 mass%), point e (iron ore) A: 40 mass%, iron ore B: 36 mass%, iron ore C: 24 mass%), point f (iron ore A: 40 mass%, iron ore B: 40 mass%, iron ore C: 20 mass%) and point g (iron ore) A: 30 mass%, iron ore B: 50 mass%, iron ore C: 20 mass%).

図4、図6の限界線チは、鉱石の造粒性の観点からより好ましい配合条件を規定するものである。この限界線チにより限定される好ましい範囲から外れることになる、点j,点c,点dおよび点iで囲まれる範囲は、鉄鉱石C(マラマンバ鉱石)由来の粒径0.25mm以下の微粉鉱石による焼結充填層の影響を緩和するために、生石灰添加量をその添加効果が飽和し始める(図8参照)2.5mass%以上とする必要がある配合範囲となる。そのため、この配合範囲では生石灰の添加による微粉鉱石の造粒性の効果は不安定となりがちであり、焼結鉱の生産率・強度は低下しやすい。したがって、図1の配合範囲をベースとする場合には、鉄鉱石A,B,Cの配合割合は、図4の限界線イ−ロ−ニ−チ−ホで区画された範囲内、すなわち、上述した点a、点b、点j、点iおよび点eで囲まれる範囲内とすることが好ましい。また、図2の配合範囲をベースとする場合には、鉄鉱石A,B,Cの配合割合は、図6の限界線イ−ヘ−ロ−ニ−チ−ホで区画された範囲内、すなわち、上述した点b,点j,点i,点e,点fおよび点gで囲まれる範囲内とすることが好ましい。   4 and 6 define more preferable blending conditions from the viewpoint of ore granulation. The range surrounded by point j, point c, point d and point i, which deviates from the preferred range limited by this limit line h, is a fine powder having a particle size of 0.25 mm or less derived from iron ore C (maramanba ore). In order to alleviate the influence of the sintered packed bed due to the ore, the addition amount of quicklime starts to saturate the addition effect (see FIG. 8), and the blending range needs to be 2.5 mass% or more. Therefore, in this blending range, the effect of granulation of fine ore due to the addition of quicklime tends to be unstable, and the production rate and strength of sintered ore are likely to decrease. Therefore, when the blending range of FIG. 1 is used as a base, the blending ratio of iron ores A, B, and C is within the range defined by the limit line yellow niche of FIG. It is preferable to be within the range surrounded by the points a, b, j, i and e. Further, when the blending range of FIG. 2 is used as a base, the blending ratio of iron ores A, B, and C is within the range defined by the limit line yellow-neach ho of FIG. In other words, it is preferable to be within the range surrounded by the points b, j, i, e, f and g.

本発明による第二の焼結鉱の製造方法では、鉄鉱石A、鉄鉱石B及び鉄鉱石Cの合計量の30mass%以下を、P(燐)含有量が0.10mass%以上の鉄鉱石Dで代替させる。本発明者らの検討の結果、鉄鉱石Dの代替量が30mass%以下であれば、以上述べたような鉄鉱石A,B,Cの配合比率により得られる作用効果を、ほぼそのまま維持できることが判った。また、鉄鉱石Dの代替量が30mass%を超えると、溶銑中のP濃度が過剰となるため脱燐処理の負荷が増大し、製鋼コストの上昇を招いてしまう。   In the second method for producing sintered ore according to the present invention, 30 mass% or less of the total amount of iron ore A, iron ore B, and iron ore C, and iron ore D having a P (phosphorus) content of 0.10 mass% or more. Replace with As a result of the study by the present inventors, if the alternative amount of iron ore D is 30 mass% or less, the effects obtained by the blending ratio of iron ores A, B, and C as described above can be maintained almost as they are. understood. Moreover, when the alternative amount of iron ore D exceeds 30 mass%, the P concentration in the hot metal becomes excessive, so that the load of dephosphorization treatment increases and the steelmaking cost increases.

本発明の焼結鉱の製造方法において、上述した鉄鉱石A,B,C或いは鉄鉱石A,B,C,Dの配合割合の規制による効果を十分に確保するには、焼結原料中での原料鉱石の配合量、すなわち原料鉱石として鉄鉱石A,B,Cを用いる場合には鉄鉱石A+B+Cの合計量、また原料鉱石として鉄鉱石A,B,C,Dを用いる場合には鉄鉱石A+B+C+Dの合計量が、それぞれ60mass%以上であることが好ましい。この原料鉱石の配合量は現行の焼結操業における一般な範囲であるが、原料鉱石の配合量(鉄鉱石A+B+Cまたは鉄鉱石A+B+C+D)が60mass%未満であると、他の原料による焼結性等への影響が顕在化してくるので、本発明の効果が得にくくなる。   In the method for producing sintered ore of the present invention, in order to sufficiently secure the effect of the above-described regulation of the mixing ratio of iron ore A, B, C or iron ore A, B, C, D, in the sintered raw material The amount of the raw material ore, that is, the total amount of iron ore A + B + C when using iron ore A, B, C as the raw material ore, and the iron ore when using iron ore A, B, C, D as the raw material ore The total amount of A + B + C + D is preferably 60 mass% or more. The blending amount of the raw material ore is a general range in the current sintering operation, but if the blending amount of the raw material ore (iron ore A + B + C or iron ore A + B + C + D) is less than 60 mass%, the sinterability by other raw materials, etc. The effect of the present invention becomes difficult to obtain.

本発明において、焼結原料中に配合される原料鉱石は鉄鉱石A,B,Cの3種類または鉄鉱石A,B,C,Dの4種類であり、この原料鉱石に成分調整用副原料(例えば、CaO含有副原料、SiO含有副原料など)、造粒助剤(例えば、生石灰など)、製鉄所内回収粉(主にダスト類などの鉄源)、炭材(コークス粉、無煙炭など)、焼結鉱篩下粉などを配合して焼結原料とし、この焼結原料に適量の水を加えて混合・造粒する。なお、焼結原料に含まれる新原料と粉コークスの一般的な配合割合(新原料+コークス=100mass%とした場合の各原料の割合)は、例えば、原料鉱石:60〜80mass%、石灰石:6〜9mass%、生石灰:2.5mass%以下、蛇紋岩:0.8〜2.0mass%、焼結鉱篩下粉:5〜15mass%、製鉄所内回収粉(ダスト、スラッジ、ミルスケール、集塵粉など):5〜10mass%、粉コークス:2.8〜3.5mass%程度である。また、上記混合・造粒の方式には種々のものがあるが、いずれの方式でもよい。この造粒された配合原料(焼結原料)を、ドワイトロイド式焼結機のパレット上に所定の厚さに充填し、この充填ベッド表層部の炭材に着火後、下方に向けて空気を吸引しながら充填ベッド内部の炭材を燃焼させ、その燃焼熱により配合原料を焼結させて焼結ケーキとする。そして、この焼結ケーキを粉砕・整粒することにより、粒径が数mm以上の成品焼結鉱が得られる。 In the present invention, the raw material ores to be blended in the sintered raw material are three types of iron ores A, B, and C or four types of iron ores A, B, C, and D. (For example, CaO-containing auxiliary materials, SiO 2 -containing auxiliary materials, etc.), granulation aids (for example, quick lime, etc.), steel mill recovered powder (mainly iron sources such as dust), carbonaceous materials (coke powder, anthracite, etc.) ), Sinter ore sieving powder, etc. are mixed to make a sintering raw material, and an appropriate amount of water is added to the sintering raw material and mixed and granulated. In addition, the general compounding ratio (The ratio of each raw material at the time of setting it as a new raw material + coke = 100 mass%) of the new raw material and powder coke contained in a sintering raw material is raw material ore: 60-80 mass%, limestone: 6-9 mass%, quicklime: 2.5 mass% or less, serpentine: 0.8-2.0 mass%, sinter ore sieving powder: 5-15 mass%, recovered powder in ironworks (dust, sludge, mill scale, collection Dust and the like): 5 to 10 mass%, powder coke: about 2.8 to 3.5 mass%. There are various methods of mixing and granulation, and any method may be used. This granulated compounded raw material (sintered raw material) is filled onto a pallet of a Dwytroid type sintering machine to a predetermined thickness, and after igniting the carbonaceous material on the surface of the packed bed, air is directed downward. The carbonaceous material inside the packed bed is burned while being sucked, and the blended raw material is sintered by the combustion heat to obtain a sintered cake. Then, by pulverizing and sizing the sintered cake, a product sintered ore having a particle size of several mm or more can be obtained.

[実施例1]
焼結原料(配合原料)として、原料鉱石(粉鉱石)を70mass%、焼結篩下粉を10mass%、所内回収物(主に鉄源)を7〜8mass%、副原料及び造粒バインダーを12〜13mass%配合した。原料鉱石としては、本発明の第一の製造方法で規定する鉄鉱石A,B,Cのうちの2種以上を用いた。この焼結原料をドラムミキサーで3分間混合・湿質した後、3分間造粒して得られた擬似粒子を直径300mmの鍋試験装置に層厚が400mmになるよう装入し、バーナーで着火した後、10KPaの負圧一定で焼成し、焼結鉱を製造した。
[Example 1]
As raw materials for sintering (compounding raw materials), 70 mass% of raw ore (pulverized ore), 10 mass% of powder under sintered sieving, 7-8 mass% of collected materials (mainly iron source), auxiliary raw materials and granulating binder 12-13 mass% was blended. As the raw material ore, two or more of iron ores A, B and C defined by the first production method of the present invention were used. This sintered raw material is mixed and wetted with a drum mixer for 3 minutes and then granulated for 3 minutes. The pseudo particles obtained by granulating for 3 minutes are loaded into a 300 mm diameter pan test apparatus so that the layer thickness is 400 mm and ignited with a burner. After that, it was fired at a constant negative pressure of 10 KPa to produce a sintered ore.

この試験では、成品焼結鉱がSiO:4.8〜5.0mass%、塩基度:1.85になるように、鉄鉱石A,B,Cの銘柄の選択と配合量の調整を行い、また、鉄鉱石Cの配合量に応じて生石灰添加量を調整した。なお、生石灰は、活性度320mlで、粒度は全量1.0mm以下のものを用いた。
原料鉱石中での鉄鉱石A,B,Cの配合割合、焼結原料中での生石灰配合量、得られた成品焼結鉱の生産率、冷間強度(JIS
M 8712による回転強度)、+10mm歩留りを表2に示す。また、図10のグラフ中に、各実施例の鉱石配合割合をプロットした。
In this test, selection of brands of iron ore A, B, and C and adjustment of blending amount were performed so that the product sintered ore would be SiO 2 : 4.8 to 5.0 mass% and basicity: 1.85. Moreover, the quick lime addition amount was adjusted according to the compounding quantity of the iron ore C. The quicklime used had an activity of 320 ml and a particle size of 1.0 mm or less.
Mixing ratio of iron ore A, B, C in raw material ore, mixing amount of quick lime in sintering raw material, production rate of obtained product sintered ore, cold strength (JIS
Rotational strength according to M 8712), +10 mm yield is shown in Table 2. Moreover, the ore compounding ratio of each Example was plotted in the graph of FIG.

表2に示されるように、本発明条件に従って鉄鉱石A,B,Cを配合した焼結原料から焼結鉱を製造することにより、高い生産性を維持しつつ、強度、歩留まりとも良好な焼結鉱を製造することができる。また、図2〜図6に示すような、より限定された配合範囲で鉄鉱石A,B,Cを配合することにより、より優れた効果が得られている。
なお、比較例15〜17は、焼結鉱としては品質、歩留まりとも良好であり、生産率も良好であるが、原料コストが非常に高くなり、原料の需給バランス上、現実には採用し難い原料配合例である。
As shown in Table 2, by producing sintered ore from sintered raw materials containing iron ores A, B, and C according to the conditions of the present invention, high strength and yield are maintained while maintaining high productivity. It can produce ore. Moreover, the more excellent effect is acquired by mix | blending iron ore A, B, and C in the more limited mixing | blending range as shown in FIGS.
In addition, Comparative Examples 15 to 17 have good quality and yield as sintered ore, and the production rate is also good, but the raw material cost becomes very high, and it is difficult to actually adopt it because of the supply and demand balance of raw materials. It is a raw material compounding example.

[実施例2]
実施例1と同様、焼結原料(配合原料)として、原料鉱石(粉鉱石)を70mass%、焼結篩下粉を10mass%、所内回収物(主に鉄源)を7〜8mass%、副原料及び造粒バインダーを12〜13mass%配合した。原料鉱石としては、本発明の第二の製造方法で規定する鉄鉱石A,B,C,Dを用いた。この焼結原料をドラムミキサーで3分間混合・湿質した後、3分間造粒して得られた擬似粒子を直径300mmの鍋試験装置に層厚が400mmになるよう装入し、バーナーで着火した後、10KPaの負圧一定で焼成し、焼結鉱を製造した。
[Example 2]
As in Example 1, the raw material ore (powder ore) is 70 mass%, the sintered sieving powder is 10 mass%, the in-house collection (mainly iron source) is 7 to 8 mass%, A raw material and a granulated binder were blended in an amount of 12 to 13 mass%. As the raw ores, iron ores A, B, C, and D defined by the second production method of the present invention were used. This sintered raw material is mixed and wetted with a drum mixer for 3 minutes and then granulated for 3 minutes. The pseudo particles obtained by granulating for 3 minutes are loaded into a 300 mm diameter pan test apparatus so that the layer thickness is 400 mm and ignited with a burner. After that, it was fired at a constant negative pressure of 10 KPa to produce a sintered ore.

この試験でも、成品焼結鉱がSiO:4.8〜5.0mass%、塩基度:1.85になるように、鉄鉱石A,B,C,Dの銘柄の選択と配合量の調整を行い、また、鉄鉱石Cの配合量に応じて生石灰添加量を調整した。なお、生石灰は、活性度320mlで、粒度は全量1.0mm以下のものを用いた。
原料鉱石中での鉄鉱石A,B,C,Dの配合割合、焼結原料中での生石灰配合量、得られた成品焼結鉱の生産率、冷間強度(JIS
M 8712による回転強度)、+10mm歩留りを表3に示す。
Also in this test, selection of brands of iron ore A, B, C, D and adjustment of blending amount so that the product sintered ore is SiO 2 : 4.8 to 5.0 mass% and basicity: 1.85. Moreover, quick lime addition amount was adjusted according to the compounding quantity of the iron ore C. The quicklime used had an activity of 320 ml and a particle size of 1.0 mm or less.
Mixing ratio of iron ore A, B, C, D in raw material ore, quick lime content in sintering raw material, production rate of obtained sintered ore, cold strength (JIS
Table 3 shows the rotational strength according to M8712) and the +10 mm yield.

表3に示されるように、本発明条件に従って鉄鉱石A,B,C,Dを配合した焼結原料から焼結鉱を製造することにより、高い生産性を維持しつつ、強度、歩留まりとも良好な焼結鉱を製造することができる。 As shown in Table 3, by producing sintered ore from sintered raw materials containing iron ores A, B, C, and D according to the conditions of the present invention, both strength and yield are good while maintaining high productivity. Sinter can be produced.

本発明の規定する鉄鉱石A,B,Cの配合割合の範囲を示す図面Drawing which shows the range of the compounding ratio of iron ore A, B, C prescribed | regulated by this invention 本発明の規定する鉄鉱石A,B,Cの配合割合のより限定された範囲を示す図面Drawing which shows the more limited range of the compounding ratio of iron ore A, B, C prescribed | regulated by this invention 図1の配合範囲をベースとする場合において、鉄鉱石A,B,Cの配合割合のより好ましい範囲を示す図面Drawing which shows the more preferable range of the compounding ratio of iron ore A, B, C when based on the compounding range of FIG. 図1の配合範囲をベースとする場合において、鉄鉱石A,B,Cの配合割合のさらに好ましい範囲を示す図面Drawing which shows the more preferable range of the blending ratio of iron ore A, B, C when the blending range of FIG. 1 is used as a base 図2の配合範囲をベースとする場合において、鉄鉱石A,B,Cの配合割合のより好ましい範囲を示す図面Drawing which shows the more preferable range of the compounding ratio of iron ore A, B, C when based on the compounding range of FIG. 図2の配合範囲をベースとする場合において、鉄鉱石A,B,Cの配合割合のさらに好ましい範囲を示す図面Drawing which shows the further preferable range of the compounding ratio of iron ore A, B, C when based on the compounding range of FIG. へマタイト鉱石、リモナイト鉱石、マラマンバ鉱石の各組織の顕微鏡拡大写真Photomicrographs of hematite ore, limonite ore and maramamba ore 焼結原料中の生石灰添加量と焼結鉱の生産率との関係を示すグラフA graph showing the relationship between the amount of quicklime added to the sintering raw material and the production rate of sintered ore 焼結原料に配合された原料鉱石中の粒径0.25mm以下の細粒鉱石の割合と焼結鉱の生産率との関係を示すグラフThe graph which shows the relationship between the ratio of the fine ore with a particle size of 0.25 mm or less in the raw material ore mix | blended with the sintering raw material, and the production rate of a sintered ore 各実施例における鉄鉱石A,B,Cの配合割合を示す図面Drawing which shows the mixture ratio of iron ore A, B, C in each Example

Claims (4)

配合される原料鉱石が、結晶水含有量が9.0mass%以上の鉄鉱石Aと、結晶水含有量が4.0mass%未満の鉄鉱石Bと、結晶水含有量が4.0mass%以上9.0mass%未満の鉄鉱石Cとで構成される焼結原料(但し、前記鉄鉱石A、鉄鉱石B及び鉄鉱石Cは、P(燐)含有量が0.10mass%以上であるものを除く)であって、
前記鉄鉱石Aがリモナイト鉱石(但し、ピソライト鉱石を含む)、前記鉱石Bがヘマタイト鉱石または/およびマグネタイト鉱石、前記鉱石Cがマラマンバ鉱石であり、前記鉄鉱石A、鉄鉱石B及び鉄鉱石Cの配合割合を、図1に示す、点a(鉄鉱石A:40mass%,鉄鉱石B:50mass%,鉄鉱石C:10mass%)、点b(鉄鉱石A:7mass%,鉄鉱石B:50mass%,鉄鉱石C:43mass%)、点c(鉄鉱石A:12mass%,鉄鉱石B:18mass%,鉄鉱石C:70mass%)、点d(鉄鉱石A:23mass%,鉄鉱石B:7mass%,鉄鉱石C:70mass%)および点e(鉄鉱石A:40mass%,鉄鉱石B:36mass%,鉄鉱石C:24mass%)で囲まれる範囲内とし、且つ鉄鉱石A、鉄鉱石B及び鉄鉱石Cの合計量の20mass%以上30mass%以下を、P(燐)含有量が0.10mass%以上の鉄鉱石Dで代替させた焼結原料から焼結鉱を製造することを特徴とする焼結鉱の製造方法。
The raw material ores to be blended are iron ore A having a crystallization water content of 9.0 mass% or more, iron ore B having a crystallization water content of less than 4.0 mass%, and a crystallization water content of 4.0 mass% or more. .Sintered raw material composed of less than 0 mass% iron ore C (however, the iron ore A, iron ore B, and iron ore C exclude those having a P (phosphorus) content of 0.10 mass% or more. ) And
The iron ore A is limonite ore (including pisolite ore), the ore B is hematite ore and / or magnetite ore, the ore C is maramamba ore, and the iron ore A, iron ore B and iron ore C The blending ratio shown in FIG. 1 is point a (iron ore A: 40 mass%, iron ore B: 50 mass%, iron ore C: 10 mass%), point b (iron ore A: 7 mass%, iron ore B: 50 mass%). , Iron ore C: 43 mass%), point c (iron ore A: 12 mass%, iron ore B: 18 mass%, iron ore C: 70 mass%), point d (iron ore A: 23 mass%, iron ore B: 7 mass%) , Iron ore C: 70 mass%) and point e (iron ore A: 40 mass%, iron ore B: 36 mass%, iron ore C: 24 mass%) , and iron ore A, iron ore B and iron ore 20 mass% or more and 30 mass% or less of the total amount of stone C, including P (phosphorus) Method for producing sintered ore, characterized in that the amount to produce a sintered ore of a sintered material obtained by alternate with 0.10 mass% or more iron ore D.
鉄鉱石A、鉄鉱石B及び鉄鉱石Cの配合割合を、図2に示す、点b(鉄鉱石A:7mass%,鉄鉱石B:50mass%,鉄鉱石C:43mass%)、点c(鉄鉱石A:12mass%,鉄鉱石B:18mass%,鉄鉱石C:70mass%)、点d(鉄鉱石A:23mass%,鉄鉱石B:7mass%,鉄鉱石C:70mass%)、点e(鉄鉱石A:40mass%,鉄鉱石B:36mass%,鉄鉱石C:24mass%)、点f(鉄鉱石A:40mass%,鉄鉱石B:40mass%,鉄鉱石C:20mass%)および点g(鉄鉱石A:30mass%,鉄鉱石B:50mass%,鉄鉱石C:20mass%)で囲まれる範囲内とした焼結原料から焼結鉱を製造することを特徴とする請求項1に記載の焼結鉱の製造方法。   The mixing ratio of iron ore A, iron ore B, and iron ore C is shown in FIG. 2, point b (iron ore A: 7 mass%, iron ore B: 50 mass%, iron ore C: 43 mass%), point c (iron ore) Stone A: 12 mass%, Iron Ore B: 18 mass%, Iron Ore C: 70 mass%), Point d (Iron Ore A: 23 mass%, Iron Ore B: 7 mass%, Iron Ore C: 70 mass%), Point e (Iron Ore) Stone A: 40 mass%, Iron Ore B: 36 mass%, Iron Ore C: 24 mass%), Point f (Iron Ore A: 40 mass%, Iron Ore B: 40 mass%, Iron Ore C: 20 mass%) and Point g (Iron Ore) The sintered ore according to claim 1, wherein the sintered ore is produced from a sintered raw material within a range surrounded by stone A: 30 mass%, iron ore B: 50 mass%, iron ore C: 20 mass%). Manufacturing method of ore. 全部の原料が配合された焼結原料に水を添加して混合した後、造粒し、この造粒した焼結原料を焼成することを特徴とする請求項1または2に記載の焼結鉱の製造方法。The sintered ore according to claim 1 or 2, wherein water is added to and mixed with a sintered raw material in which all raw materials are mixed, and then granulated, and the granulated sintered raw material is fired. Manufacturing method. 焼結原料中での原料鉱石の配合量が60mass%以上であることを特徴とする請求項1〜3のいずれかに記載の焼結鉱の製造方法。   The method for producing a sintered ore according to any one of claims 1 to 3, wherein the amount of raw ore in the sintered raw material is 60 mass% or more.
JP2005264765A 2005-09-13 2005-09-13 Method for producing sintered ore Active JP4982986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005264765A JP4982986B2 (en) 2005-09-13 2005-09-13 Method for producing sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005264765A JP4982986B2 (en) 2005-09-13 2005-09-13 Method for producing sintered ore

Publications (2)

Publication Number Publication Date
JP2007077430A JP2007077430A (en) 2007-03-29
JP4982986B2 true JP4982986B2 (en) 2012-07-25

Family

ID=37938036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005264765A Active JP4982986B2 (en) 2005-09-13 2005-09-13 Method for producing sintered ore

Country Status (1)

Country Link
JP (1) JP4982986B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6001485B2 (en) * 2013-03-28 2016-10-05 株式会社神戸製鋼所 Method for producing sintered ore for iron making
JP7260786B2 (en) * 2019-09-03 2023-04-19 日本製鉄株式会社 Method for blending raw materials for sintering and method for producing sintered ore

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3166536B2 (en) * 1995-03-01 2001-05-14 住友金属工業株式会社 Method for producing sintered ore of high crystal water ore
JP3573089B2 (en) * 2000-11-30 2004-10-06 住友金属工業株式会社 Method for producing iron ore sintered ore
JP4048739B2 (en) * 2001-06-26 2008-02-20 住友金属工業株式会社 Method for producing sintered ore
JP5020446B2 (en) * 2001-08-06 2012-09-05 新日本製鐵株式会社 Method for producing sintered ore
JP2003306723A (en) * 2002-04-17 2003-10-31 Jfe Steel Kk Method for manufacturing sintered ore for blast furnace
JP4887611B2 (en) * 2003-10-09 2012-02-29 Jfeスチール株式会社 Method for producing sintered ore and granulated particles
JP5004421B2 (en) * 2004-09-17 2012-08-22 Jfeスチール株式会社 Method for producing sintered ore

Also Published As

Publication number Publication date
JP2007077430A (en) 2007-03-29

Similar Documents

Publication Publication Date Title
JP4935133B2 (en) Ferro-coke and method for producing sintered ore
KR100787359B1 (en) Method for producing sintered steel
JP4725230B2 (en) Method for producing sintered ore
JP4982986B2 (en) Method for producing sintered ore
JP2007327096A (en) Method for manufacturing sintered ore using brucite
JP6020832B2 (en) Sintering raw material manufacturing method
JP2002129246A (en) Method for producing sintered ore
JP2003096521A (en) Sintered ore blended with high alumina iron ore, and production method therefor
JP4392302B2 (en) Method for producing sintered ore
JP4767388B2 (en) Method for producing sintered ore with excellent high-temperature properties
JP3050493B2 (en) Method for producing sintered ore using limonite ore as raw material
JP2020084241A (en) Manufacturing method of sintered ore
JP4661077B2 (en) Method for producing sintered ore
JP2009114485A (en) Method for manufacturing sintered ore
JP4501656B2 (en) Method for producing sintered ore
JP4816119B2 (en) Method for producing sintered ore
JPH10317069A (en) Sintering raw material treatment
JP3006884B2 (en) Sinter for iron making using pisolite iron ore as raw material and method for producing the same
JP2009167466A (en) Method for producing sintered ore
JP4415690B2 (en) Method for producing sintered ore
JP6028939B2 (en) Granulation method of steelmaking slag
KR970010799B1 (en) Making method of sintering ore
JP2000265220A (en) Production of sintered ore
JPH08176686A (en) Production for sintered ore compounded at high ratio with high alumina iron ore
JP2021025112A (en) Method for manufacturing sintered ore

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120409

R150 Certificate of patent or registration of utility model

Ref document number: 4982986

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250