JP5020446B2 - Method for producing sintered ore - Google Patents

Method for producing sintered ore Download PDF

Info

Publication number
JP5020446B2
JP5020446B2 JP2001238249A JP2001238249A JP5020446B2 JP 5020446 B2 JP5020446 B2 JP 5020446B2 JP 2001238249 A JP2001238249 A JP 2001238249A JP 2001238249 A JP2001238249 A JP 2001238249A JP 5020446 B2 JP5020446 B2 JP 5020446B2
Authority
JP
Japan
Prior art keywords
kaolin
ore
sintering
iron ore
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001238249A
Other languages
Japanese (ja)
Other versions
JP2003049227A (en
Inventor
裕二 藤岡
将之 西藤
宗行 今福
公児 齋藤
幸基 田中
林  俊一
康二 金橋
潤 岡崎
陽三 細谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001238249A priority Critical patent/JP5020446B2/en
Publication of JP2003049227A publication Critical patent/JP2003049227A/en
Application granted granted Critical
Publication of JP5020446B2 publication Critical patent/JP5020446B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、鉱山で採掘した鉄鉱石の破砕処理で大量に発生する粉鉱石を鉄含有原料として多量に配合する焼結用原料を、混合、造粒し、その後、焼成して塊成化する焼結鉱の製造方法に関し、特に、造粒後の擬似粒子の強度を高めるとともに、焼成時の通気性を改善することにより、焼結鉱の生産性および成品歩留を向上させると共に、高炉で使用する際の耐還元粉化性等の品質に優れた焼結鉱を製造するための焼結鉱の製造方法に関する。
【0002】
【従来の技術】
高炉製鉄法の主原料として使用される焼結鉱は、粉砕した鉄鉱石粉等の鉄含有原料に、石灰石、ドロマイト、珪石、蛇紋岩等の副原料、および、コークス粉、無煙炭等の炭材を配合して、これらの焼結原料に適量の水分を加えて混合、造粒し、その後、ドワイトロイド式焼結機に装入し、原料充填ベット表層中の炭材に点火し、下方に向けて空気を吸引することにより炭材の燃焼点を上方から下方に移動させながら焼結原料を加熱焼成することにより製造されている。
【0003】
造粒された擬似粒子は、粒径1mm以上の塊鉱石が核粒子となり、その周囲に粒径1mm未満の粉鉱石、および、副原料が付着した構造となっている。
【0004】
焼結鉱の製造においては、焼結鉱の生産性および成品歩留の向上とともに、冷間強度、被還元性、耐還元粉化性などの高炉用原料としての所定品質が要求されるが、これらは、焼結原料の主原料である鉄鉱石の鉱物組成や結晶構造などに左右される。
【0005】
一般に、鉄鉱石を鉱物組成別に分類すると、磁鉄鉱、赤鉄鉱、褐鉄鉱に大別される。磁鉄鉱(マグネタイト)はFe3O4を主成分とし、密度の高い結晶粒構造を持ち、焼結過程で還元し難くほとんどそのままの形態で残る。
【0006】
赤鉄鉱(ヘマタイト)はα-Fe2O3を主成分とし、磁鉄鉱と褐鉄鉱の密度の中間の結晶粒構造を持ち、焼結過程でFe3O4に還元されるか、石灰石との同化反応によりカルシウムフェライト(CaO・2Fe2O3)になる。
【0007】
また、褐鉄鉱(リモナイト:Fe2O3・nH2O)は、針鉄鉱(ゲーサイト:Fe2O3・H2Oまたはα-FeO(OH))を主成分とし、密度の小さい結晶粒構造を持ち、焼結過程でnH2O(結合水)が分解、蒸発し、α-Fe2O3を経てFe3O4に還元される。
【0008】
なお、褐鉄鉱(Fe2O3・nH2O)は、最近の研究により天然産出形態で針鉄鉱(ゲーサイト:Fe2O3・H2Oまたはα-FeO(OH))、鱗鉄鉱(レピドクロサイト:Fe2O3・H2Oまたはγ-FeO(OH))、加水赤鉄鉱(Fe2O3・1/2H2O)などの混合物であることが確認されている。
【0009】
また、鉄鉱石中には、上記ような主要酸化鉄または水酸化鉄の他に、脈石として、石英(SiO2)、アルミナ(Al2O3)、カオリン(理想化学式:Al2Si2O5(OH)4)、スメクタイト、イライトなどが含有されており、鉄鉱石の鉱物組成および結晶構造とともに、脈石の種類および含有量が、焼結鉱を製造するうえで、原料の造粒性、焼結時の通気性および焼結性に大きな影響を与え、冷間強度、耐還元粉化性などの焼結鉱の品質を左右する。
【0010】
焼結鉱の製造においては、主要な焼結用原料である鉄鉱石は、鉱山で採掘した鉄鉱石の破砕処理で大量に発生する粉鉱石を多量に使用するため、この他の副原料等の焼結用原料と混合、造粒することにより、粒径1mm以上の塊鉱石の周囲に粒径1mm未満の粉鉱石、副原料および炭材などが付着した構造の擬似粒子とした後、焼結機に装入して焼成する。
【0011】
焼結鉱の生産性、成品および品質の向上の点から焼結用原料を造粒して得られる擬似粒子が具備すべき基本要件としては、以下の三つが挙げられる。
(1)核粒子に対する粉鉱石の付着量が多いこと。
(2)焼結パレットに装入時に擬似粒子が崩壊しないこと。
(3)焼結過程、特に乾燥帯においても粒子が崩壊せずに通気性を確保できるこ
と。
【0012】
焼結原料に用いられる鉄鉱石は、単一銘柄の鉱石で構成されることはほとんどなく、通常、数種類以上の鉱石が配合される。しかし、鉄鉱石は銘柄によって造粒性は異なり、これまで、これらを上記擬似粒子の基本要件から適切に配合するための明確な指標はなかった。
【0013】
従来の焼結原料の造粒性を向上させる方法としては、焼結原料にバインダー(粘土、タール、リグニン酸塩、ポリビニルアルコール、ポリアクリルアミドなど)を添加して造粒する方法が知られており、その際の擬似粒子化の改善等が検討されている。
【0014】
造粒用のバインダーとしては、一部粘土鉱物も検討されているが、価格が高いために、工業的に用いられるのは生石灰、セメント、セメントクリンカ粉などであった。しかし、このようなセメント系(Ca系)バインダーにしても、高炉で使用する際の塩基度の規制から、焼結原料の造粒性を向上させるために添加する量が制限され、充分な効果は得られないという問題があった。
【0015】
【発明が解決しようとする課題】
本発明は、上記従来技術の問題点に鑑みて、鉄鉱石中に含有する粘土鉱物を焼結原料の造粒時に有効に利用するための鉄鉱石の配合を行うことにより、造粒で得られる擬似粒子の強度を向上させ、焼結時の生産性および成品歩留を向上させると共に品質に優れた焼結鉱を製造するための焼結鉱の製造方法を提供するものである。
【0016】
【課題を解決するための手段】
本発明者らは上記課題を解決するために鋭意検討した結果、焼結原料の主要原料である鉄鉱石に含まれる粘土鉱物に着目し、微粉鉱石中の粘土鉱物の含有量を鉄鉱石の配合により適正な範囲に調整することにより、焼結原料の造粒性が向上できることを見出した。
【0017】
本発明は、この知見に基づいてなされたものであり、その発明の要旨とするところは、以下の通りである。
【0019】
主に焼結用鉄鉱石からなる鉄含有原料と副原料と炭材に水を添加して混合、造粒した後、焼結機に装入して焼結する焼結鉱の製造方法において、配合する各銘柄の前記焼結用鉄鉱石の粒径1mm未満の微粉の赤外吸収スペクトルを測定し、該赤外吸収スペクトルにおけるカオリン中の構造水O−Hに起因する吸収強度とカオリンの含有量との関係に基づいてカオリンの含有量を測定し、該カオリンの含有量測定値をもとにカオリンの含有量が異なる各銘柄の焼結用鉄鉱石を配合する焼結鉱の製造方法であって、前記焼結用鉄鉱石の粒径1mm未満の微粉中のカオリンの含有量が1.0質量%以上5.0質量%未満となるように、焼結用鉄鉱石の配合を行うことを特徴とする焼結鉱の製造方法。
主に焼結用鉄鉱石からなる鉄含有原料と副原料と炭材に水を添加して混合、造粒した後、焼結機に装入して焼結する焼結鉱の製造方法において、配合する各銘柄の前記焼結用鉄鉱石の粒径1mm未満の微粉の赤外吸収スペクトルを測定し、該赤外吸収スペクトルにおけるカオリン中の構造水O−Hに起因する吸収強度とカオリンの含有量との関係に基づいてカオリンの含有量を測定し、該カオリンの含有量測定値をもとにカオリンの含有量が異なる各銘柄の焼結用鉄鉱石を配合する焼結鉱の製造方法であって、前記焼結用鉄鉱石の粒径1mm未満の微粉中のカオリンの含有量とカオリンの添加量が1.0質量%以上5.0質量%未満となるように、焼結用鉄鉱石の配合を行うと共にカオリンを添加することを特徴とする焼結鉱の製造方法。
【0023】
【発明の実施の形態】
以下に本発明の詳細を説明する。
【0024】
発明者らは、銘柄によってその含有量は異なるものの、鉄鉱石中には脈石として粘土鉱物が含有されており、その粘土鉱物の多くは、水を加えると粘性を帯びる性質を有することがわかった。
【0025】
そこで、発明者らは、鉄鉱石中に脈石として含有する粘土鉱物を焼結原料の造粒時に有効に活用し、造粒性を改善するための鉄鉱石の配合方法について、鋭意検討を行った。
【0026】
先ず、発明者らは、種々の銘柄の鉄鉱石に含有する粘土鉱物の含有量を分析、定量化する方法を検討した。
【0027】
図1に鉄鉱石に含有する粘土鉱物の分析例として、赤鉄鉱B、褐鉄鉱Cの赤外吸収スペクトルを示す。
【0028】
赤鉄鉱Bおよび褐鉄鉱Cの各赤外吸収スペクトルの波数:3800〜3600(1/cm)の範囲において、粘土鉱物であるカオリンの構造水(Al2Si2O5(OH)4の(OH))に因する2つの吸収が見られ、鉱種によってその吸収強度、つまり含有量が異なることがわかる。
【0029】
また、各赤外吸収スペクトルにおいて、水酸化鉄に因するO−Hの吸収が波数:3600〜2800(1/cm)の範囲で観測され、特に、褐鉄鉱Cで大きな吸収を示すが、赤鉄鉱Bおよび褐鉄鉱Cのいずれの赤外吸収スペクトルにおいてもカオリンのO−Hに因する吸収とは区別できることがわかる。
【0030】
図2に、試薬のカオリンを用いた赤外吸収スペクトルによる検量線の一例を示す。
【0031】
鉄鉱石中の粘土鉱物であるカオリンの含有量は、一定量の鉄鉱石試料を秤量して、図1に示すような鉄鉱石の赤外吸収スペクトルを測定し、カオリン(Al2Si2O5(OH)4の(OH))の構造水O‐Hに因する吸収ピーク面積を算出し、例えば、図2に示すような試薬のカオリンの赤外吸収スペクトルの吸収強度とカオリン量との関係、つまり、検量線から鉄鉱石の赤外吸収スペクトルのカオリンのO‐Hに因する吸収ピーク面積に相当するカオリン量を求め、鉄鉱石試料の質量に占める割合を算出することによって定量化できる。
【0032】
従来から、各銘柄の鉄鉱石の管理評価は、総鉄量(T. Fe:質量%)、FeO(質量%)、酸化物換算したSi、Al、Ca、Mg、Ti(質量%)、Mn、S、P(質量%)、結合水(C. W.:質量%)などの分析により行われている。
【0033】
発明者らは、カオリンの含有量の定量化を、鉄鉱石中のSi含有量およびAl含有量を基に、Al2O3がすべてカオリン由来のAlとし、カオリンの基本化学式(Al2Si2O5(OH)4)によりカオリン含有量を評価する方法も試みたが、このような方法で定量したカオリン含有量と鉄鉱石の造粒時の擬似粒子化性とは相関がなく、このような方法ではカオリン含有量を適正に定量できないことを確認している。
【0034】
鉄鉱石に含有する粘土鉱物であるカオリンが造粒時の擬似粒子化性の向上に作用するのは、カオリン(Al2Si2O5(OH)4)中の構造水O−Hによる親水性に因し、造粒時に添加される水により粘性が向上するためと考えられる。
【0035】
このことは、発明者らの実験により、カオリンを加熱すると400℃程度から脱水し始め、600℃で完全脱水し、構造水O−Hが失われるが、一旦脱水して変質したカオリンは、水を加えても粘性を帯びないことを確認しており、この結果からも裏付けられている。
【0036】
なお、カオリン(Al2Si2O5(OH)4)のような構造水O−Hを持たないAl化合物に水を添加しても粘性を帯びず、造粒性に対して効果がないことも実験により確認している。
【0037】
焼結原料の造粒により得られる擬似粒子は、主に粒径1mm以上の塊鉱石からなる核粒子とその周囲に付着する粒径1mm未満の粉鉱石、副原料および炭材で構成されるため、上記のような焼結原料の造粒時の擬似粒子化性の向上効果を十分に得るためには、擬似粒子の付着粉となる粒径1mm未満の粉鉱石中の粘土鉱物の含有量を1.0質量%以上とする必要がある。
【0038】
一方、粒径1mm未満の粉鉱石中の粘土鉱物の含有量が、5.0質量%以上となると、粘土鉱物中に含有されるSiおよびAlのスラグ成分が多くなり、焼結鉱を高炉で使用する場合にスラグが増加するため好ましくない。
【0039】
したがって、本発明では、焼結用鉄鉱石の粒径1mm未満の微粉中の粘土鉱物の含有量が、1.0質量%以上5.0質量%未満となるように焼結用鉄鉱石の配合を行うこととする。
【0040】
市販される純度の高い粘土鉱物は価格が高いので、経済性の観点からは好ましくないが、さらに擬似粒子化性を向上させるためには、焼結用鉄鉱石の配合と共に、バインダーとして純度の高い粘土鉱物を添加して、焼結用鉄鉱石の粒径1mm未満の微粉中の粘土鉱物の含有量とバインダーとしての粘土鉱物の添加量が1.0質量%以上5.0質量%未満となるように調整してもよい。
【0041】
また、焼結原料として褐鉄鉱などの含水酸化鉄を含む鉄鉱石を多量に使用する場合などのように、焼結原料を事前にばい焼して鉄鉱石中の結合水を除去する場合には、ばい焼時の加熱温度が500℃以上では、粘土鉱物であるカオリンの構造水O−Hが失われ、粘土鉱物の粘性向上効果が低下するため、ばい焼時の加熱温度を500℃未満にすることが好ましい。
【0042】
また、鉄鉱石中の粘土鉱物の含有量の定量化方法は、上述の赤外吸収スペクトル測定方法の他に、X線回折による方法、熱分析による方法、試料加熱時に発生する水分を測定する方法、核磁気共鳴法による方法などがあるが、測定条件などに以下の得失があるため、測定の目的および条件に応じて使い分けることが好ましい。
【0043】
熱分析による方法、および、試料加熱時に発生する水分を測定する方法は、加熱しながら試料の重量減少、熱量変化、温度毎の水分発生量をなどを測定する方法で、測定には時間がかかる。核磁気共鳴法による方法は、高磁場内で測定するため、磁性体が共存する鉄鉱石には不向きである。
【0044】
X線回折法は、結晶構造から分析するため有効であるが、結晶性が悪いと感度が得られないという欠点がある。
【0045】
赤外吸収スペクトルによる方法は、試料と臭化カリウムを混合して成形し、赤外分光光度計で測定する方法で、簡便で精度も良いため、粘土鉱物を迅速かつ正確に測定するのに最適である。
【0046】
【実施例】
(実施例1)
表1に原料鉱石の性状、表2に原料鉱石の配合割合、表3に発明例と比較例の評価結果を示す。
【0047】
表1のT.FeはJISM8212「鉄鉱石中の全鉄定量方法」、SiO2、Al2O3はJISM8205「鉄鉱石の蛍光X線分析方法」、C.W.はJISM8211「鉄鉱石中の化合水定量方法」に従って測定した。
【0048】
鉄鉱石のカオリン含有量は、次のように赤外吸収スペクトル測定結果から求めた。すなわち、予め、市販試薬のカオリンを用い、異なる量のカオリンにおいて赤外吸収スペクトルを測定し、カオリン由来のO−Hに因する吸収強度から検量線を作製しておき、次に、ばい焼前後の試料鉱石(褐鉄鉱)の赤外吸収スペクトルを測定し、同じく鉱石中のカオリン由来のO−Hの吸収強度を求め、この吸収強度から予め求めたカオリン量と吸収強度の検量線をもとに試料鉱石(褐鉄鉱)中のカオリン含有量(質量%)を換算することにより求めた。
【0049】
このカオリン量は、「鉄鉱石の蛍光X線分析方法」によって求めたSiO2、Al2O3とは無関係である。
【0050】
【表1】

Figure 0005020446
【0051】
【表2】
Figure 0005020446
【0052】
次に、鉱石の組合わせ焼結鍋試験を行うための配合を表2に示す。実施例の場合、原料中のカオリン濃度は1.0質量%以上であり、比較例の場合は1.0質量%未満である。本試験では、原料の造粒性と焼結性の二つに分けて評価した。造粒性は、擬似粒化指数(GI0.5)と点火前の充填層の通気性(JPU)で評価した。
【0053】
擬似粒化指数:GI0.5(%)は次式より求めた。
【0054】
GI0.5={(A−B)/A}×100
A:0.5mm以下の真粒子の配合割合
B:0.5mm以下の擬似粒子の配合割合
GI0.5は高いほど擬似粒子強度が強いことを意味する。
【0055】
JPUは次式により求めた。
【0056】
JPU=(F/A)(h/s)0.6
F:流量(Nm3/min)
A:吸引面積(m2
h:装入層厚(m)
s:負圧(mH2O)
JPUは値が大きいほど原料層の通気性が良好であることを意味する。
【0057】
焼結性は、生産率、歩留、焼結時間に加え、焼結鉱の品質として、耐還元粉化性(RDI)、還元率(Rf)、タンブラー強度(TI)で評価した。
【0058】
耐還元粉化性は、焼結鉱の高炉内の比較的低温領域での粉化性を推定するもので、試料を30%CO、70%N2の還元性雰囲気で550℃で30分間還元した後に、所定の回転試験機に装入して規定の回転数を回転させ、所定のふるいでふるい分け、各区分ごとの質量%により評価する。次式に計算式を示す。
【0059】
RDI(%)=(W3/W2)×100
W2:回転試験機に装入した試料の質量(g)
W3:ふるい分け後の3mm以下の試料の質量(g)
還元率は、JIS M8713に基づき、次式により計算した。
【0060】
Rf(%)=[(m1−m2)/{m0(0.430w2−0.111w1)}]×104
m0:はかり取った試料質量(g)
m1:還元開始直前の試料質量(g)
m2:還元開始3時間後の試料質量(g)
w1:還元前試料の酸化鉄(II)の質量%で、鉄(II)の質量%に酸化
物換算係数1.286を乗じて算出
w2:還元前試料の全鉄質量%で、ISO2597によって測定
タンブラー強度は、JIS M8712に基づき、試料を回転ドラム内で回転させて、6.3mmのふるいでふるい分け、試験に供された試料質量m0(g)と、試験後の+6.3mmの試料質量m1(g)から次式により求めたものである。
【0061】
TI=(m1/m0)×100
TIは、鉄鉱石(焼結鉱)の衝撃による粉化・崩壊に対する抵抗を表す強度であり、値が大きいほど粉化・崩壊に対する抵抗が強いことを意味する。
【0062】
表3にGI0.5とJPUの測定結果を示す。発明例に対して、カオリン量が1.0質量%未満の比較例では、いずれのケースでもGI0.5は85%以下となり、JPUは30以下となった。また、カオリン濃度が低いほどその傾向は大きい。
【0063】
一方、カオリン量が1.0質量%以上の発明例の場合は、GI0.5はいずれも90%以上であり、造粒性は向上しており、カオリン量が高いほどその傾向は大きい。JPUも35以上であり、明らかに通気が改善している。
【0064】
【表3】
Figure 0005020446
【0065】
また、比較例2、比較例5、比較例6は、塊鉱石(核粒子)中のカオリン量が1.2〜2.2質量%と多いが、造粒性に効果があるのは粉鉱石中のカオリンであり、比較例2、比較例5、および、比較例6でも、GI0.5、JPUとも発明例に比べて低い。
【0066】
次に、焼結鍋試験結果を表4に示す。発明例の場合、原料中のカオリン濃度が高いほど、焼結時間が短縮され、歩留が向上した。したがって、生産率も上昇している。
【0067】
一方、カオリン濃度が1.0質量%未満の比較例では、カオリン濃度が低くなるほど焼結時間は延長され、歩留も低下した。そのため生産率も悪化した。
【0068】
【表4】
Figure 0005020446
【0069】
焼結鉱の品質面では、発明例の場合、カオリン濃度が高いほどTIは向上した。
また、Rfもカオリン濃度が高いほど向上した。また、従来Rfと逆相関のあるRDIは若干ではあるが改善している。これは、擬似粒子の強度が向上し充填層の通気が改善された結果、高温保持時間が短縮され焼結鉱中の2次ヘマタイトが減少したためである。
【0070】
図3に発明例2、図4に比較例3の組織写真を示すが、発明例2に比べて、比較例3では2次ヘマタイトが多いことがわかる。
【0071】
比較例では、カオリン濃度が減少するほど、強度は低下しており、その結果充填層の通気が改善されず、局所的に高温保持時間が長い部分が生じた結果である。ただし、Rf,RDIには大きな変化はみられなかった。
(実施例2)
カオリン量の含有量が少ない比較例3の条件(核粒子:褐鉄鉱A=100質量%、粉鉱石:赤鉄鉱A=10質量%、褐鉄鉱A=40質量%、褐鉄鉱B=30質量%、褐鉄鉱C=20質量%)に、試薬のカオリン(Aldrich社製)を添加して評価した。表5にその組成と粉鉱石中のカオリン量、表6にGI0.5とJPUの測定結果、表7に焼結鍋試験結果を示す。
【0072】
カオリンの効果は、鉱石に対して1.0質量%以上で顕著に表れ、造粒性が向上し、焼結性、生産性も向上する。なお、カオリン量は多いほど効果が大きいが、スラグの増加や塩基度の制御のため、その添加量は多くても5.0質量%未満である。
【0073】
【表5】
Figure 0005020446
【0074】
【表6】
Figure 0005020446
【0075】
【表7】
Figure 0005020446
【0076】
【発明の効果】
主に焼結用鉄鉱石からなる鉄含有原料と副原料と炭材に水を添加して混合、造粒した後、焼結機に装入して焼結する焼結鉱の製造方法において、粒径1mm未満の鉄鉱石中の粘土鉱物の含有量を1.0質量%以上5.0質量%未満となるよう鉱石の配合および粘土鉱物の添加を行うことによって、焼結原料の造粒で得られる擬似粒子の強度を向上させることができ、その結果、焼結鉱の生産性および成品歩留の向上、焼結鉱の品質に優れた焼結鉱を製造することができる。
【図面の簡単な説明】
【図1】鉄鉱石中の粘土鉱物であるカオリンを測定した赤外吸収スペクトルを示す図である。
【図2】試薬のカオリンを用いた赤外吸収スペクトルによる検量線を示す図である。
【図3】発明例2の組織を示す図である。
【図4】比較例3の組織を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention mixes and granulates a sintering raw material containing a large amount of powdered ore generated as a result of crushing of iron ore mined in a mine as an iron-containing raw material, and then fires and agglomerates. Regarding the method for producing sintered ore, in particular, the strength of pseudo particles after granulation is increased and the air permeability during firing is improved to improve the productivity and product yield of sintered ore, and in the blast furnace. The present invention relates to a method for producing sintered ore for producing a sintered ore excellent in quality such as resistance to reduction dusting when used.
[0002]
[Prior art]
Sintered ore used as the main raw material for the blast furnace ironmaking process is made of iron-containing raw materials such as pulverized iron ore powder, auxiliary materials such as limestone, dolomite, silica and serpentine, and carbon materials such as coke powder and anthracite. Mix, granulate by adding an appropriate amount of moisture to these sintered raw materials, and then charge into the Dwightroid type sintering machine, ignite the carbonaceous material in the surface layer of the raw material packed bed, and face downward Then, by sucking air, the sintering raw material is heated and fired while moving the combustion point of the carbon material from above to below.
[0003]
The granulated pseudo particle has a structure in which a lump ore having a particle diameter of 1 mm or more becomes a core particle, and a fine ore having a particle diameter of less than 1 mm and an auxiliary material adhere to the periphery.
[0004]
In the production of sintered ore, with the improvement of sintered ore productivity and product yield, prescribed quality as raw materials for blast furnaces such as cold strength, reducibility, and reduction dust resistance is required. These depend on the mineral composition and crystal structure of the iron ore that is the main raw material of the sintering raw material.
[0005]
Generally, when iron ore is classified according to mineral composition, it is roughly divided into magnetite, hematite, and limonite. Magnetite (magnetite) has Fe 3 O 4 as the main component, has a dense crystal grain structure, is hardly reduced during the sintering process, and remains in an almost intact form.
[0006]
Hematite is mainly composed of α-Fe 2 O 3 and has a grain structure intermediate between the density of magnetite and limonite, and is reduced to Fe 3 O 4 during the sintering process or assimilated with limestone. As a result, calcium ferrite (CaO · 2Fe 2 O 3 ) is obtained.
[0007]
Limonite (limonite: Fe 2 O 3 · nH 2 O) is a crystal grain structure with a low density, mainly composed of goethite (goethite: Fe 2 O 3 · H 2 O or α-FeO (OH)). NH 2 O (bonded water) decomposes and evaporates during the sintering process, and is reduced to Fe 3 O 4 via α-Fe 2 O 3 .
[0008]
Limonite (Fe 2 O 3 · nH 2 O) is a natural production form of goethite (goethite: Fe 2 O 3 · H 2 O or α-FeO (OH)), spheroite (repi It has been confirmed that it is a mixture of dokurosite: Fe 2 O 3 · H 2 O or γ-FeO (OH)), hydrohemite (Fe 2 O 3 · 1 / 2H 2 O), and the like.
[0009]
In addition to the main iron oxide or iron hydroxide as described above, iron ore contains quartz (SiO 2 ), alumina (Al 2 O 3 ), kaolin (ideal chemical formula: Al 2 Si 2 O) as gangue. 5 (OH) 4 ), smectite, illite, etc., and the mineral composition and crystal structure of the iron ore, as well as the type and content of the gangue, the granulation properties of the raw material in producing the sintered ore It greatly affects the air permeability and sinterability during sintering, and affects the quality of sintered ore, such as cold strength and resistance to reduction dusting.
[0010]
In the production of sintered ore, iron ore, which is the main raw material for sintering, uses a large amount of powdered ore generated in the crushing process of iron ore mined in the mine. By mixing and granulating with raw materials for sintering, pseudo ores with a structure in which fine ores with a particle size of less than 1 mm, auxiliary materials and carbonaceous materials are attached around lump ores with a particle size of 1 mm or more are sintered. The machine is charged and fired.
[0011]
From the viewpoint of improving the productivity, product, and quality of the sintered ore, the following three requirements are listed as the basic requirements that the pseudo particles obtained by granulating the raw material for sintering should have.
(1) The amount of fine ore attached to the core particles is large.
(2) The pseudo particles should not collapse when charged into the sintering pallet.
(3) The air permeability can be secured without disintegrating particles even in the sintering process, particularly in the dry zone.
[0012]
The iron ore used for the sintering raw material is rarely composed of a single brand ore, and usually several ore types are mixed. However, iron ore has different granulation properties depending on the brand, and until now, there has been no clear indicator for properly blending these from the basic requirements of the pseudo particles.
[0013]
As a conventional method for improving the granulation property of a sintering raw material, a method of granulating by adding a binder (clay, tar, lignate, polyvinyl alcohol, polyacrylamide, etc.) to the sintering raw material is known. The improvement of pseudo-particle formation at that time has been studied.
[0014]
Although some clay minerals have been examined as a binder for granulation, due to their high price, quick lime, cement, cement clinker powder and the like have been used industrially. However, even with such a cement-based (Ca-based) binder, the amount added to improve the granulation properties of the sintering raw material is limited due to the restrictions on basicity when used in a blast furnace, and sufficient effects are achieved. There was a problem that could not be obtained.
[0015]
[Problems to be solved by the invention]
The present invention is obtained by granulation by blending iron ore for effectively using clay minerals contained in iron ore at the time of granulation of a sintered raw material in view of the problems of the above prior art. The present invention provides a method for producing a sintered ore for improving the strength of pseudo particles, improving the productivity and product yield during sintering, and producing a sintered ore excellent in quality.
[0016]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have focused on clay minerals contained in iron ore, which is the main raw material of the sintering raw material, and the content of clay minerals in fine ore is blended with iron ore. It has been found that the granulation property of the sintered raw material can be improved by adjusting to an appropriate range.
[0017]
This invention is made | formed based on this knowledge, The place made into the summary of the invention is as follows.
[0019]
( 1 ) Manufacture of sintered ore, which is mainly composed of iron ore for sintering, mixed with water, added to raw materials and carbonaceous material, mixed and granulated, then charged into a sintering machine and sintered. In the method, the infrared absorption spectrum of fine powder having a particle size of less than 1 mm of the sintering iron ore of each brand to be blended is measured, and the absorption intensity due to the structural water OH in kaolin in the infrared absorption spectrum The content of kaolin is measured based on the relationship with the content of kaolin, and based on the measured content of kaolin, the iron ore for sintering of each brand with different kaolin content is mixed. It is a manufacturing method, Comprising: Mixing | blending of the iron ore for sintering so that content of kaolin in the fine powder with a particle size of less than 1 mm of the iron ore for sintering may be 1.0 mass% or more and less than 5.0 mass% baked ore production method of you and performs.
( 2 ) Manufacture of sintered ore that is mainly mixed with iron-containing raw materials, auxiliary raw materials, and carbonaceous materials consisting of iron ore for sintering, mixed and granulated, then charged into a sintering machine and sintered. In the method, the infrared absorption spectrum of fine powder having a particle size of less than 1 mm of the sintering iron ore of each brand to be blended is measured, and the absorption intensity due to the structural water OH in kaolin in the infrared absorption spectrum The content of kaolin is measured based on the relationship with the content of kaolin, and based on the measured content of kaolin, the iron ore for sintering of each brand with different kaolin content is mixed. It is a manufacturing method, Comprising: It sinters so that the content of kaolin in the fine powder with a particle diameter of less than 1 mm of the iron ore for sintering and the added amount of kaolin may be 1.0 mass% or more and less than 5.0 mass%. Of sintered ore characterized by adding iron ore and adding kaolin Law.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Details of the present invention will be described below.
[0024]
The inventors have found that the iron ore contains clay minerals as gangue, although the content varies depending on the brand, and that many of the clay minerals have the property of becoming viscous when water is added. It was.
[0025]
Therefore, the inventors have made extensive studies on a method of blending iron ore to effectively use the clay mineral contained as gangue in the iron ore during granulation of the sintering raw material and to improve the granulation property. It was.
[0026]
First, the inventors examined a method for analyzing and quantifying the content of clay minerals contained in various brands of iron ore.
[0027]
FIG. 1 shows infrared absorption spectra of hematite B and limonite C as analysis examples of clay minerals contained in iron ore.
[0028]
In the range of wave numbers of infrared absorption spectra of hematite B and limonite C: 3800-3600 (1 / cm), the structural water of kaolin, a clay mineral ((OH) of Al 2 Si 2 O 5 (OH) 4 ) ) attributable to the two absorption was observed at its absorption strength by mineral species, i.e. it can be seen that the content is different.
[0029]
In each infrared absorption spectrum, wave number absorption of O-H that attributable to iron hydroxide: observed in a range of 3600~2800 (1 / cm), in particular, exhibits a large absorption in limonite C, red in any of the infrared absorption spectrum of the iron B and limonite C it can be seen that distinguishable from absorption attributable to O-H kaolin.
[0030]
FIG. 2 shows an example of a calibration curve based on an infrared absorption spectrum using the reagent kaolin.
[0031]
The content of kaolin, which is a clay mineral in iron ore, is measured by measuring an infrared absorption spectrum of iron ore as shown in Fig. 1 by weighing a certain amount of iron ore sample, and kaolin (Al 2 Si 2 O 5 (OH) calculates the absorption peak area attributable to the structural water OH of 4 (OH)), for example, the absorption intensity and the kaolin quantity of infrared absorption spectrum of the kaolin reagent as shown in FIG. 2 relationship, i.e., quantified by seeking kaolin quantity corresponding to the absorption peak area attributable to the O-H kaolin infrared absorption spectrum of the iron ore from the calibration curve to calculate the percentage of the mass of the iron ore sample it can.
[0032]
Conventionally, the management evaluation of each brand of iron ore has been based on total iron content (T. Fe: mass%), FeO (mass%), oxide-converted Si, Al, Ca, Mg, Ti (mass%), Mn , S, P (mass%), analysis of bound water (CW: mass%) and so on.
[0033]
The inventors quantified the content of kaolin based on the Si content and the Al content in iron ore, and Al 2 O 3 is all Al derived from kaolin, and the basic chemical formula of Kaolin (Al 2 Si 2 A method of evaluating the kaolin content by O 5 (OH) 4 ) was also attempted, but there was no correlation between the kaolin content quantified by such a method and the quasi-particle formation during granulation of iron ore. It has been confirmed that the kaolin content cannot be properly quantified by this method.
[0034]
The effect of kaolin, a clay mineral contained in iron ore, on the improvement of pseudo-particle formation during granulation is due to the hydrophilicity of structural water OH in kaolin (Al 2 Si 2 O 5 (OH) 4 ). in attributable to, it believed to improve viscosity by water added during granulation.
[0035]
According to the experiments by the inventors, when kaolin is heated, it begins to dehydrate at about 400 ° C. and completely dehydrated at 600 ° C., and structural water OH is lost. It has been confirmed that it does not become viscous even when added, and this result is also supported.
[0036]
In addition, even if water is added to an Al compound that does not have structural water OH, such as kaolin (Al 2 Si 2 O 5 (OH) 4 ), it does not become viscous and has no effect on granulation properties. Has also been confirmed by experiments.
[0037]
Pseudoparticles obtained by granulation of sintered raw materials are mainly composed of core particles consisting of massive ores with a particle size of 1 mm or more, fine ores with a particle size of less than 1 mm attached to the periphery, auxiliary materials and carbonaceous materials. In order to sufficiently obtain the effect of improving the pseudo-particle property at the time of granulation of the sintered raw material as described above, the content of the clay mineral in the powder ore having a particle diameter of less than 1 mm that becomes the adhering powder of the pseudo particles is set. It is necessary to set it as 1.0 mass% or more.
[0038]
On the other hand, when the content of the clay mineral in the fine ore having a particle size of less than 1 mm is 5.0 mass% or more, the slag components of Si and Al contained in the clay mineral increase, and the sintered ore is removed in the blast furnace. When using, since slag increases, it is not preferable.
[0039]
Therefore, in the present invention, the composition of the iron ore for sintering is set so that the content of the clay mineral in the fine powder having a particle size of less than 1 mm of the iron ore for sintering is 1.0% by mass or more and less than 5.0% by mass. To do.
[0040]
Commercially available high-purity clay minerals are expensive and are not preferable from the viewpoint of economic efficiency. However, in order to further improve the pseudo-particle formation property, in addition to the blending of iron ore for sintering, it is highly pure as a binder. When clay mineral is added, the content of clay mineral in the fine powder having a particle size of less than 1 mm of the iron ore for sintering and the addition amount of clay mineral as a binder become 1.0 mass% or more and less than 5.0 mass%. You may adjust as follows.
[0041]
In addition, when using a large amount of iron ore containing hydrous iron oxide such as limonite as a sintering raw material, when sintering the sintering raw material in advance to remove the binding water in the iron ore, When the heating temperature during roasting is 500 ° C. or higher, the structural water OH of kaolin, which is a clay mineral, is lost, and the effect of improving the viscosity of the clay mineral is reduced. Therefore, the heating temperature during roasting is set to less than 500 ° C. It is preferable.
[0042]
In addition to the infrared absorption spectrum measurement method described above, the method for quantifying the clay mineral content in iron ore is a method based on X-ray diffraction, a method based on thermal analysis, and a method for measuring moisture generated during sample heating. Although there are methods using a nuclear magnetic resonance method, etc., there are the following advantages and disadvantages in the measurement conditions, etc., so it is preferable to use them properly according to the purpose and conditions of the measurement.
[0043]
The thermal analysis method and the method of measuring the moisture generated when the sample is heated are methods that measure the weight loss of the sample, the change in calorie, the amount of moisture generated at each temperature, etc. while heating. . Since the method by the nuclear magnetic resonance method is measured in a high magnetic field, it is not suitable for iron ore in which a magnetic substance coexists.
[0044]
The X-ray diffraction method is effective because it is analyzed from the crystal structure, but has a drawback that sensitivity cannot be obtained if the crystallinity is poor.
[0045]
The method using infrared absorption spectrum is a method in which a sample and potassium bromide are mixed and molded, and is measured with an infrared spectrophotometer. It is simple and accurate, so it is ideal for measuring clay minerals quickly and accurately. It is.
[0046]
【Example】
Example 1
Table 1 shows the properties of the raw material ore, Table 2 shows the blending ratio of the raw material ore, and Table 3 shows the evaluation results of the invention examples and comparative examples.
[0047]
Table 1 T.Fe is JISM8212 "total iron quantification method of iron ore", SiO 2, Al 2 O 3 is "X-ray fluorescence analysis method iron ore" JISM8205, CW is JISM8211 "compound water determination of iron in the ore Measured according to “Method”.
[0048]
The kaolin content of iron ore was determined from the results of infrared absorption spectrum measurement as follows. That is, in advance, using a kaolin of commercial reagents differ in the amount of kaolin was measured infrared absorption spectra, in advance to prepare a calibration curve from the absorption intensity attributable to the O-H from kaolin, then baked Infrared absorption spectra of the sample ore (limonite) before and after are measured, and the absorption intensity of OH derived from kaolin in the ore is also obtained. Based on the calibration curve of kaolin amount and absorption intensity obtained in advance from this absorption intensity. It calculated | required by converting kaolin content (mass%) in a sample ore (limonite).
[0049]
This amount of kaolin is independent of SiO 2 and Al 2 O 3 determined by the “method of fluorescent X-ray analysis of iron ore”.
[0050]
[Table 1]
Figure 0005020446
[0051]
[Table 2]
Figure 0005020446
[0052]
Next, Table 2 shows the composition for performing the combined ore sintering pot test. In the case of Examples, the concentration of kaolin in the raw material is 1.0% by mass or more, and in the case of Comparative Examples, it is less than 1.0% by mass. In this test, the evaluation was divided into two parts: granulation and sintering of the raw material. The granulation property was evaluated by the pseudo-granulation index (GI 0.5 ) and the air permeability (JPU) of the packed bed before ignition.
[0053]
Pseudo graining index: GI 0.5 (%) was obtained from the following equation.
[0054]
GI 0.5 = {(A−B) / A} × 100
A: Mixing ratio of true particles of 0.5mm or less
B: Mixing ratio of pseudo particles of 0.5mm or less
GI 0.5 means that the higher the quasi-particle strength, the higher.
[0055]
JPU was calculated by the following formula.
[0056]
JPU = (F / A) (h / s) 0.6
F: Flow rate (Nm 3 / min)
A: Suction area (m 2 )
h: Charging layer thickness (m)
s: Negative pressure (mH 2 O)
The larger the value of JPU, the better the air permeability of the raw material layer.
[0057]
In addition to the production rate, yield, and sintering time, the sinterability was evaluated by reducing powder resistance (RDI), reduction rate (R f ), and tumbler strength (TI) as the quality of the sintered ore.
[0058]
Reduced powder resistance is an estimate of powdered powder in a relatively low temperature region in a blast furnace for sintered ore. The sample is reduced at 550 ° C. for 30 minutes in a reducing atmosphere of 30% CO and 70% N 2. After that, the sample is loaded into a predetermined rotation testing machine, rotated at a predetermined rotation speed, sieved with a predetermined sieve, and evaluated by mass% for each section. The calculation formula is shown below.
[0059]
RDI (%) = (W 3 / W 2 ) x 100
W 2 : Mass of the sample charged in the rotation tester (g)
W 3 : Mass of the sample of 3mm or less after sieving (g)
The reduction rate was calculated by the following formula based on JIS M8713.
[0060]
R f (%) = [(m 1 −m 2 ) / {m 0 (0.430w 2 −0.111w 1 )}] × 10 4
m 0 : Weighed sample mass (g)
m 1 : Mass of sample immediately before the start of reduction (g)
m 2 : Mass of sample (g) 3 hours after the start of reduction
w 1 : Mass% of iron (II) oxide in the sample before reduction, calculated by multiplying the mass% of iron (II) by an oxide conversion factor of 1.286
w 2 : Total iron mass% before reduction, measured by ISO2597. Tumble strength measured according to JIS M8712, rotating the sample in a rotating drum, sieving with a 6.3 mm sieve, and the sample mass used for the test It is obtained from the following equation from m 0 (g) and a sample mass m 1 (g) of +6.3 mm after the test.
[0061]
TI = (m 1 / m 0 ) × 100
TI is a strength representing resistance to pulverization / collapse due to impact of iron ore (sintered ore), and a larger value means stronger resistance to pulverization / collapse.
[0062]
Table 3 shows the measurement results for GI 0.5 and JPU. In contrast to the inventive examples, in the comparative examples in which the kaolin amount was less than 1.0% by mass, GI 0.5 was 85% or less and JPU was 30 or less in any case. Moreover, the tendency is so large that a kaolin concentration is low.
[0063]
On the other hand, in the case of the invention examples in which the kaolin amount is 1.0% by mass or more, the GI 0.5 is 90% or more, and the granulation property is improved, and the tendency is larger as the kaolin amount is higher. JPU is also over 35, and the ventilation is clearly improved.
[0064]
[Table 3]
Figure 0005020446
[0065]
In Comparative Example 2, Comparative Example 5, and Comparative Example 6, the amount of kaolin in the lump ore (nuclear particles) is as large as 1.2 to 2.2% by mass, but it is fine ore that has an effect on granulation properties. Among them, in Comparative Example 2, Comparative Example 5 and Comparative Example 6, both GI 0.5 and JPU are lower than those of the inventive examples.
[0066]
Next, Table 4 shows the results of the sintering pot test. In the case of the inventive example, the higher the kaolin concentration in the raw material, the shorter the sintering time and the better the yield. Therefore, the production rate is also rising.
[0067]
On the other hand, in the comparative example having a kaolin concentration of less than 1.0% by mass, the lower the kaolin concentration, the longer the sintering time and the lower the yield. As a result, the production rate also deteriorated.
[0068]
[Table 4]
Figure 0005020446
[0069]
In the quality aspect of sintered ore, in the case of the invention example, TI improved as the kaolin concentration increased.
In addition, Rf also improved as the kaolin concentration increased. In addition, the RDI having an inverse correlation with the conventional R f is slightly improved. This is because the strength of the pseudo particles is improved and the aeration of the packed bed is improved. As a result, the high temperature holding time is shortened and the secondary hematite in the sintered ore is reduced.
[0070]
FIG. 3 shows structural photographs of Invention Example 2 and FIG. 4 shows Comparative Example 3. It can be seen that Comparative Example 3 has more secondary hematite than Inventive Example 2.
[0071]
In the comparative example, as the kaolin concentration decreases, the strength decreases, and as a result, the ventilation of the packed bed is not improved, and a portion where the high temperature holding time is locally generated is generated. However, there was no significant change in R f and RDI.
(Example 2)
Conditions of Comparative Example 3 with a low kaolin content (nuclear particles: limonite A = 100 mass%, fine ore: hematite A = 10 mass%, limonite A = 40 mass%, limonite B = 30 mass%, limonite C = 20% by mass) and the reagent kaolin (manufactured by Aldrich) was added for evaluation. Table 5 shows the composition and the amount of kaolin in the fine ore, Table 6 shows the measurement results of GI 0.5 and JPU, and Table 7 shows the results of the sintering pot test.
[0072]
The effect of kaolin appears remarkably at 1.0% by mass or more with respect to the ore, and the granulation property is improved, and the sinterability and productivity are also improved. In addition, although the effect is so large that there is much kaolin amount, the addition amount is less than 5.0 mass% at most for the increase in slag and control of basicity.
[0073]
[Table 5]
Figure 0005020446
[0074]
[Table 6]
Figure 0005020446
[0075]
[Table 7]
Figure 0005020446
[0076]
【Effect of the invention】
In the method for producing sintered ore, which is mainly mixed with iron-containing raw material and auxiliary raw material composed of iron ore for sintering and carbonaceous material, mixed, granulated, charged into a sintering machine and sintered. By granulating the sintered raw material by blending the ore and adding the clay mineral so that the content of the clay mineral in the iron ore having a particle size of less than 1 mm is 1.0% by mass or more and less than 5.0% by mass. The strength of the obtained pseudo particles can be improved, and as a result, it is possible to produce a sintered ore excellent in the productivity and product yield of the sintered ore and the quality of the sintered ore.
[Brief description of the drawings]
FIG. 1 is an infrared absorption spectrum obtained by measuring kaolin, which is a clay mineral in iron ore.
FIG. 2 is a diagram showing a calibration curve by an infrared absorption spectrum using kaolin as a reagent.
FIG. 3 is a view showing a structure of Invention Example 2.
4 is a view showing a structure of Comparative Example 3. FIG.

Claims (2)

主に焼結用鉄鉱石からなる鉄含有原料と副原料と炭材に水を添加して混合、造粒した後、焼結機に装入して焼結する焼結鉱の製造方法において、
配合する各銘柄の前記焼結用鉄鉱石の粒径1mm未満の微粉の赤外吸収スペクトルを測定し、該赤外吸収スペクトルにおけるカオリン中の構造水O−Hに起因する吸収強度とカオリンの含有量との関係に基づいてカオリンの含有量を測定し、該カオリンの含有量測定値をもとにカオリンの含有量が異なる各銘柄の焼結用鉄鉱石を配合する焼結鉱の製造方法であって、
前記焼結用鉄鉱石の粒径1mm未満の微粉中のカオリンの含有量が1.0質量%以上5.0質量%未満となるように、焼結用鉄鉱石の配合を行うことを特徴とする焼結鉱の製造方法。
In the method for producing sintered ore, which is mainly mixed with iron-containing raw material and auxiliary raw material composed of iron ore for sintering and carbonaceous material, mixed, granulated, charged into a sintering machine and sintered.
Infrared absorption spectrum of fine powder having a particle diameter of less than 1 mm of the sintered iron ore of each brand to be blended is measured, and absorption intensity and kaolin content due to structural water OH in kaolin in the infrared absorption spectrum Measure the content of kaolin based on the relationship with the amount, and based on the measured content of kaolin, a method for producing sintered ore that combines iron ore for sintering of different brands with different kaolin content There,
The iron ore for sintering is mixed so that the content of kaolin in the fine powder having a particle diameter of less than 1 mm of the iron ore for sintering is 1.0 mass% or more and less than 5.0 mass%. method of manufacturing a baked ore you.
主に焼結用鉄鉱石からなる鉄含有原料と副原料と炭材に水を添加して混合、造粒した後、焼結機に装入して焼結する焼結鉱の製造方法において、
配合する各銘柄の前記焼結用鉄鉱石の粒径1mm未満の微粉の赤外吸収スペクトルを測定し、該赤外吸収スペクトルにおけるカオリン中の構造水O−Hに起因する吸収強度とカオリンの含有量との関係に基づいてカオリンの含有量を測定し、該カオリンの含有量測定値をもとにカオリンの含有量が異なる各銘柄の焼結用鉄鉱石を配合する焼結鉱の製造方法であって、
前記焼結用鉄鉱石の粒径1mm未満の微粉中のカオリンの含有量とカオリンの添加量が1.0質量%以上5.0質量%未満となるように、焼結用鉄鉱石の配合を行うと共にカオリンを添加することを特徴とする焼結鉱の製造方法。
In the method for producing sintered ore, which is mainly mixed with iron-containing raw material and auxiliary raw material composed of iron ore for sintering and carbonaceous material, mixed, granulated, charged into a sintering machine and sintered.
Infrared absorption spectrum of fine powder having a particle diameter of less than 1 mm of the sintered iron ore of each brand to be blended is measured, and absorption intensity and kaolin content due to structural water OH in kaolin in the infrared absorption spectrum Measure the content of kaolin based on the relationship with the amount, and based on the measured content of kaolin, a method for producing sintered ore that combines iron ore for sintering of different brands with different kaolin content There,
The composition of the iron ore for sintering is adjusted so that the content of kaolin in the fine powder having a particle diameter of less than 1 mm of the iron ore for sintering and the amount of kaolin added is 1.0% by mass or more and less than 5.0% by mass. A method for producing a sintered ore characterized by performing kaolin and adding kaolin.
JP2001238249A 2001-08-06 2001-08-06 Method for producing sintered ore Expired - Lifetime JP5020446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001238249A JP5020446B2 (en) 2001-08-06 2001-08-06 Method for producing sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001238249A JP5020446B2 (en) 2001-08-06 2001-08-06 Method for producing sintered ore

Publications (2)

Publication Number Publication Date
JP2003049227A JP2003049227A (en) 2003-02-21
JP5020446B2 true JP5020446B2 (en) 2012-09-05

Family

ID=19069201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001238249A Expired - Lifetime JP5020446B2 (en) 2001-08-06 2001-08-06 Method for producing sintered ore

Country Status (1)

Country Link
JP (1) JP5020446B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4716761B2 (en) * 2005-03-14 2011-07-06 株式会社リコー Microstrip antenna and radio system using the same
JP4380587B2 (en) 2005-05-11 2009-12-09 日立電線株式会社 Distributed phase type circularly polarized wave receiving module and portable wireless device
JP4982986B2 (en) * 2005-09-13 2012-07-25 Jfeスチール株式会社 Method for producing sintered ore
DE102009023928A1 (en) * 2009-06-04 2010-12-09 Rheinkalk Gmbh Process for producing an agglomerate
JP5471852B2 (en) * 2010-06-03 2014-04-16 新日鐵住金株式会社 Preparation method of sintering raw material
JP6294135B2 (en) * 2014-04-16 2018-03-14 株式会社神戸製鋼所 Method for producing reduced iron
JP6680369B2 (en) 2017-02-16 2020-04-15 Jfeスチール株式会社 Sintered ore manufacturing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55152134A (en) * 1979-05-15 1980-11-27 Nippon Steel Corp Preparation of low slag sintered ore
JPS5855221B2 (en) * 1980-11-06 1983-12-08 新日本製鐵株式会社 Pre-treatment method for sintering raw materials
JPH0291547A (en) * 1988-09-29 1990-03-30 Sankyo Co Ltd Method for measuring moisture content
WO1993016203A1 (en) * 1992-02-13 1993-08-19 Nippon Steel Corporation Iron-making sintered ore produced from pisolitic iron ore and production thereof

Also Published As

Publication number Publication date
JP2003049227A (en) 2003-02-21

Similar Documents

Publication Publication Date Title
TWI411687B (en) Production method of raw materials for sintering production
JP5287127B2 (en) Evaluation method of compound iron ore for sintering
JP5565481B2 (en) Evaluation method of compound iron ore for sintering
CA1044897A (en) Pellets useful in shaft furnace direct reduction and method of making same
JP5020446B2 (en) Method for producing sintered ore
JP5098248B2 (en) Granulation method of iron-containing dust collection dusts for iron making
US5395441A (en) Revert briquettes for iron making blast furnace
US4326887A (en) Basic process of producing basic fluxed pellets for iron-making
CA2062145A1 (en) Self-fluxing binder composition for use in the pelletization of ore concentrates
CN102851491A (en) Red mud composite binder for oxidized pellets
JP2013227605A (en) Metallic iron-containing sintered body
KR101444562B1 (en) Unfired carbon-containing agglomerate and production method therefor
CN114438313B (en) Sintering material and material mixing method thereof
JP4762446B2 (en) Method for producing sintered ore
US4518428A (en) Agglomerates containing olivine
US2990268A (en) Pelletized iron ore concentrate composition and process for making the same
JP4725230B2 (en) Method for producing sintered ore
US4963185A (en) Agglomerates containing olivine for use in blast furnace
Sakamoto et al. A commercial production test of iron ore sinter using high amounts of pisolite ores and quality evaluation of the sinter products
US3194673A (en) Hydraulic cement and process for making same
US4657584A (en) Effect of MgO source on sinter properties
EP3084018B1 (en) Method for exploiting dusts generated in a ferronickel process
JP7273305B2 (en) Method for producing sintered ore
Umadevi et al. Effect of olivine as MgO-bearing flux on low-and high-alumina iron ore pellets
JP7127395B2 (en) Pretreatment method for raw material for sintering

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120613

R151 Written notification of patent or utility model registration

Ref document number: 5020446

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term