JP4762446B2 - Method for producing sintered ore - Google Patents

Method for producing sintered ore Download PDF

Info

Publication number
JP4762446B2
JP4762446B2 JP2001212480A JP2001212480A JP4762446B2 JP 4762446 B2 JP4762446 B2 JP 4762446B2 JP 2001212480 A JP2001212480 A JP 2001212480A JP 2001212480 A JP2001212480 A JP 2001212480A JP 4762446 B2 JP4762446 B2 JP 4762446B2
Authority
JP
Japan
Prior art keywords
water
roasting
kaolin
ore
iron oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001212480A
Other languages
Japanese (ja)
Other versions
JP2003027148A (en
Inventor
将之 西藤
裕二 藤岡
宗行 今福
幸基 田中
公児 齋藤
林  俊一
康二 金橋
潤 岡崎
陽三 細谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001212480A priority Critical patent/JP4762446B2/en
Publication of JP2003027148A publication Critical patent/JP2003027148A/en
Application granted granted Critical
Publication of JP4762446B2 publication Critical patent/JP4762446B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、焼結原料中に配合される鉄鉱石として、含水酸化鉄を含有する鉄鉱石を用いて焼結鉱を製造する方法に関し、特に、含水酸化鉄を含有する鉄鉱石を用いる場合の焼結時の生産性および成品歩留を向上させ、耐還元粉化性等の品質に優れた焼結鉱を製造する方法に関する。
【0002】
【従来の技術】
高炉製鉄法の主原料として使用される焼結鉱は、粉砕した鉄鉱石粉等の鉄含有原料に、石灰石、ドロマイト、珪石、蛇紋岩等の副原料、およびコークス粉、無煙炭等の炭材を配合して、これらの焼結原料に適量の水分を加えて混合、造粒し、その後、ドワイトロイド式焼結機ないしトラベリンググレート式焼成機に装入し、原料充填ベット表層中の炭材に点火し、下方に向けて空気を吸引することにより炭材の燃焼点を上方から下方に移動させながら焼結原料を加熱焼成することにより大量生産されている。
【0003】
焼結鉱の製造においては、焼結鉱の生産性および製品歩留の向上とともに、冷間強度、被還元性、耐還元粉化性などの高炉用原料としての所定品質が要求されるが、これらは、焼結原料の主原料である鉄鉱石の鉱物組成や結晶構造などに左右される。
【0004】
一般に、鉄鉱石を鉱物組成別に分類すると、磁鉄鉱、赤鉄鉱、褐鉄鉱に大別される。磁鉄鉱は、マグネタイト(Fe34)を主成分とし、密度の高い結晶粒構造を持ち、焼結過程で還元され難く、ほとんどそのままの形態で残る。赤鉄鉱は、ヘマタイト(α−Fe23)を主成分とし、磁鉄鉱と褐鉄鉱の密度の中間の密度を有する結晶粒構造を持ち、焼結過程でFe34に還元されるか、石灰石との同化反応によりカルシウムフェライト(CaO・Fe23)になる。
【0005】
また、褐鉄鉱(リモナイト)(Fe23・nH2O)は、針鉄鉱(ゲーサイト)(Fe23・H2Oまたはα−FeO(OH))を主成分とし、密度の小さい結晶粒構造を持ち、焼結過程でnH2O(結合水)が分解、蒸発し、α−Fe23を経てFe34に還元される。
【0006】
なお、褐鉄鉱(Fe23・nH2O)は、最近の研究により、天然産出形態で、針鉄鉱(ゲーサイト)(Fe23・H2Oまたはα−FeO(OH))、鱗鉄鉱(Fe23・H2Oまたはγ−FeO(OH))、加水赤鉄鉱(Fe23・1/2H2O)などの混合物であることが確認されている。
【0007】
また、鉄鉱石中には、上記の主要酸化鉄または水酸化鉄の他に、脈石として、石英(SiO2)、アルミナ(Al23)、カオリン(基本化学式:Al2Si25(OH)4)、および、モンモリナイトなどが含有されており、鉄鉱石の鉱物組成および結晶構造とともに、脈石の種類および含有量が、焼結鉱を製造するうえでの原料の造粒性や、焼結時の通気性および焼結性に大きな影響をもち、冷間強度、耐還元粉化性などの焼結鉱の品質を左右する。
【0008】
このようなことから、通常の焼結鉱の製造においては、焼結原料の主原料である鉄鉱石の種々の銘柄の配合割合を調製することにより、焼結鉱の所定の製造条件および品質を管理することが行われている。
【0009】
世界の鉄鉱石資源として、これまで多く使用してきた良質な赤鉄鉱は枯渇の方向にあり、現状のままではその主要鉱山は近年中にも掘り尽くしてしまうと予測されている。一方、良質な赤鉄鉱や磁鉄鉱に比べて、褐鉄鉱の鉱床の埋蔵量は莫大であり、かつ、比較的採掘費用が安く供給も安定しているため、該褐鉄鉱を焼結原料として多量に使用できれば、コスト低減などの経済的効果や鉄鉱石資源の有効利用の点から大きな意義がある。
【0010】
しかしながら、褐鉄鉱(Fe23・nH2O)は、同化反応により焼結鉱の冷間強度に寄与するカルシウムフェライト(CaO・Fe23)を生成しやすいが、同化反応が起きる前の加熱過程において、鉱石中の結合水(nH2O)が分解、蒸発することにより鉱石中に亀裂が発生するため、その後の同化反応により、生成した融液が亀裂内に侵入して同化反応が急速に進行し、その冷却凝固後の同化組織は、大きな気孔が残存した脆弱な組織となり、焼結鉱は脆弱なものとなりやすい。
【0011】
さらに、褐鉄鉱中にSiO2やAl23などの脈石が多く含有されている場合は、同化組織が、カルシウムフェライトに比べて脆弱なガラス質シリケートと粒状ヘマタイト粒子との結合組織となりやすく、焼結鉱はさらに脆弱な焼結鉱となる。
【0012】
また、褐鉄鉱の焼結時には、加熱過程において、褐鉄鉱に含有されている結合水(nH2O)を分解、蒸発するために、余計に熱エネルギーを使用することになり、結合水(nH2O)が少ない赤鉄鉱や磁鉄鉱を焼結する時に比べて、焼結時の所定温度(最大加熱温度:1300℃)を維持するために必要なコークス粉、無煙炭等の炭材の使用量が多くなるとともに、炭材の増加により、焼結充填ベットにおいて熱量が過多となる局所的領域が増加し、その結果、赤熱帯の拡大、および、それに起因する通気性の低下を招き、焼結鉱の生産性および製品歩留が低下するという問題が生じる。
【0013】
以上から、焼結原料として褐鉄鉱を多量に使用する場合は、焼結鉱の生産性や製品歩留の低下、冷間強度および耐還元粉化性等の焼結鉱の品質の低下の問題があり、その使用量を制限せざるを得なかった。
【0014】
このような褐鉄鉱を焼結原料として多量に使用する場合の生産上および品質上の問題を改善するための方法として、従来から、例えば、特開昭52−56002号公報、特開平5−339653号公報、および、特開平3−10027公報などに開示されているように、褐鉄鉱を焼結機に装入する前に、ばい焼機などにより加熱処理して褐鉄鉱中の結合水の含有量を低減し、焼成機で焼結する過程での結合水の分解、蒸発、および、それに起因する焼結鉱の生産性、製品歩留、冷間強度および耐還元粉化性などの焼結鉱品質の低下を抑制する方法が開示されている。
【0015】
【発明が解決しようとする課題】
しかしながら、特開昭52−56002号公報、特開平5−339653号公報及び特開平3−10027公報などに開示されている従来法では、褐鉄鉱をばい焼機などにより加熱処理する際の加熱温度は、500℃またはそれ以上の高温に設定されており、褐鉄鉱中の結合水の含有量を効率的に低減できる効果は充分に得られるが、ばい焼後の褐鉄鉱を他の焼結原料と水分と混合して造粒する際の造粒性が、ばい焼前の褐鉄鉱に比べて劣化するという問題があった。
【0016】
本発明は、従来技術の問題点に鑑みて、褐鉄鉱のような含水酸化鉄を含有する鉄鉱石を、事前にばい焼機でばい焼した後、焼結機により焼結鉱を製造する方法において、ばい焼後の鉄鉱石の造粒性を低下することなく、酸化鉄中の結合水の含有量を低減するためのばい焼条件を適正化することにより、焼結原料として褐鉄鉱を多量に使用する場合の焼結鉱の生産性および製品歩留を向上し、耐還元粉化性などの焼結鉱品質を向上できる焼結鉱の製造方法を提供する。
【0017】
【課題を解決するための手段】
本発明者らが鋭意検討した結果、ばい焼後の褐鉄鉱の造粒性が低下する原因が、褐鉄鉱中に含有する粘土鉱物、特に、カオリンが高温で脱水により変質したからであることが判り、褐鉄鉱のような含水酸化鉄を含有する鉄鉱石をばい焼する際の温度条件の最適な設定により、鉄鉱石中のカオリンを変質させず、含水酸化鉄中の結晶水を低減できる方法を見いだした。
【0018】
本発明は、この知見に基づいてなされたものであり、その発明の要旨とするところは、以下のとおりである。
(1)含水酸化鉄を含有する鉄鉱石を事前にばい焼炉でばい焼して含水酸化鉄中の結合水を除去した後、その他の焼結原料と混合および造粒し、焼結機に装入して焼結する焼結鉱の製造方法において、前記ばい焼時の加熱温度を含水酸化鉄中の結合水の解離温度以上、カオリン中の構造水の解離温度未満の温度範囲に設定し、
前記含水酸化鉄中の結合水の解離温度およびカオリン中の構造水の解離温度は、ばい焼時の加熱温度と、該加熱温度でばい焼した後の赤外吸収スペクトルにおける含水酸化鉄中の結合水に起因する吸収強度およびカオリン中の構造水に起因する吸収強度との関係に基づいて決定され、
前記含水酸化鉄中の結合水に起因する吸収強度は、赤外吸収スペクトルの3600〜2800(1/cm)の波数範囲で測定され、前記カオリン中の構造水に起因する吸収強度は、赤外吸収スペクトルの3800〜3600(1/cm)の波数範囲で測定され、
前記ばい焼前後のカオリン含有量を赤外吸収スペクトル測定結果から求め、前記ばい焼により含水酸化鉄を含有する鉄鉱石中の水分量を2.0質量%以下に低減することを特徴とする焼結鉱の製造方法。
)前記ばい焼時の熱源の一部として前記焼結機の冷却器の廃熱の一部を利用することを特徴とする上記(1)記載の焼結鉱の製造方法。
【0019】
【発明の実施の形態】
以下に本発明の詳細を説明する。
【0020】
本発明者らは、褐鉄鉱のような含水酸化鉄を含有する鉄鉱石をばい焼機によりばい焼する場合の鉄鉱石中の粘土鉱物の挙動に着目し、種々の温度条件で鉄鉱石をばい焼した後、鉄鉱石における粘土鉱物中の構造水および含水酸化鉄中の結合水の関係を実験により調査した。
【0021】
一般に、鉄鉱石中には、カオリン、モンモリロナイト、イライト、バーミキュライト、緑泥石などの粘土鉱物が含有され、その中でも、特に、カオリン(Al2Si25(OH)4)の含有量が多い。これらの粘土鉱物は水と混合すると粘性を帯びるため、造粒時の造粒性において重要な役割を果たすと考えられていた。
【0022】
また、褐鉄鉱(Fe23・nH2O)のような鉄鉱石中に存在する含水酸化鉄は、最近の研究により、天然産出形態でその大部分が不純な針鉄鉱(ゲーサイト)(Fe23・H2Oまたはα−FeO(OH))、鱗鉄鉱(Fe23・H2Oまたはγ−FeO(OH))であることが確認されている。
【0023】
鉄鉱石における粘土鉱物中の構造水および含水酸化鉄中の結合水が、加熱時に脱水する挙動を把握する方法としては、赤外吸収スペクトルによる方法、X線回折による方法、熱分析による方法、試料加熱時に発生する水分を測定する方法、および、核磁気共鳴法による方法などが挙げられる。
【0024】
これらの方法のなかで、熱分析による方法および試料加熱時に発生する水分を測定する方法は、一旦ばい焼した試料を再度加熱しながら、試料の重量減少、熱量変化、温度毎の水分発生量をなどを測定する方法であり、測定に長い時間を要する。核磁気共鳴法による方法は、高磁場内で測定するため、磁性体が共存する鉄鉱石には不向きである。X線回折法は、結晶構造から分析するものであるが、結晶性が悪いと感度が得られないという欠点がある。
【0025】
一方、赤外吸収スペクトルによる方法は、試料と臭化カリウムを混合して成形し、赤外分光光度計で測定する方法であり、簡便で精度も良いため、針鉄鉱(α−FeO(OH))、鱗鉄鉱(γ−FeO(OH))、および、カオリン(Al2Si25(OH)4)の脱水状況を把握するのに最適である。
【0026】
図2には、褐鉄鉱中の主な含水酸化鉄である針鉄鉱(α−FeO(OH))および鱗鉄鉱(γ−FeO(OH))と、褐鉄鉱中の粘土鉱物であるカオリン(Al2Si25(OH)4)を、空気中で、50〜600℃まで、10℃/分で加熱したときの熱重量変化(TG)を示す。なお、これらの試料は、何れも市販されている試薬を用いた。
【0027】
含水酸化鉄の主たる成分であるα−FeO(OH)およびγ−FeO(OH)は、加熱により250℃近辺より、その結合水の解離(2FeO(OH)→Fe23+H2O)、蒸発による脱水が始まり、350℃までに脱水は終了する。一方、粘土鉱物であるカオリン(Al2Si25(OH)4)は、これらの含水酸化鉄より高温の450℃近辺より、その構造水の解離(Al2Si25(OH)4→Al2Si27+2H2O)、蒸発による脱水が始まり、600℃までに脱水は終了する。
【0028】
なお、図2の実験では、試料として何れも試薬を使用したので、天然に産出する針鉄鉱(α−FeO(OH))、鱗鉄鉱(γ−FeO(OH))、および、カオリン(Al2Si25(OH)4)とは、結晶性や構造の違いにより脱水温度の変動が生じる可能性がある。したがって、ばい焼温度を最適化するには、実際の褐鉄鉱をばい焼し、針鉄鉱(α−FeO(OH))、鱗鉄鉱(γ−FeO(OH))、および、カオリン(Al2Si25(OH)4)の脱水状況を把握する必要がある。
【0029】
図3には、実際の褐鉄鉱Aを、50〜550℃までの温度範囲を10℃/minの加熱速度で加熱した際の赤外吸収スペクトルの測定結果を示す。なお、α−FeO(OH)に起因する吸収は、3130(1/cm)、および、906(1/cm)、796(1/cm)に見られ、カオリン(Al2Si25(OH)4)に起因する吸収は、3697(1/cm)、および、3620(1/cm)にそれぞれ見られる。
【0030】
赤外吸収スペクトルから含水酸化鉄であるα−FeO(OH)に起因する吸収は、加熱温度が300℃以上で顕著に減少し始め、加熱温度が350℃以上になるとほとんど検出されなくなる。一方、カオリンに起因する吸収は、加熱温度が450℃以上で減少し始め、加熱温度が500℃以上になるとほとんど検出されなくなる。
【0031】
本発明では、含水酸化鉄を含有する鉄鉱石を事前にばい焼炉でばい焼して含水酸化鉄中の結合水を除去する場合の加熱温度を、含水酸化鉄中の結合水の解離温度以上、カオリン中の結合水の解離温度未満の温度範囲に設定する。
【0032】
ここで、含水酸化鉄中の結合水の解離温度とは、例えば、図3に示されるような鉄鉱石の加熱時の赤外吸収スペクトルの測定を用いた場合には、含水酸化鉄であるα−FeO(OH)に起因する吸収(3130(1/cm)、906(1/cm)、および、796(1/cm))が顕著に低減し始める加熱温度と定義し、図3から、300℃である。
【0033】
また、カオリン中の結合水の解離温度とは、例えば、図3に示されるような鉄鉱石の加熱時の赤外吸収スペクトルの測定を用いた場合には、粘土鉱物であるカオリン(Al2Si25(OH)4)に起因する吸収(3697(1/cm)、および、3620(1/cm))がほとんど検出されなくなる加熱温度と定義し、図3から、500℃である。
【0034】
ばい焼炉の加熱温度が含水酸化鉄中の結合水の解離温度未満(例えば、図3に示されるような鉄鉱石の加熱時の赤外吸収スペクトルの測定を用いた場合には、300℃未満)の場合には、含水酸化鉄中の結合水が充分に低減されず、焼結時の加熱過程において、鉱石中の結合水(nH2O)が分解、蒸発することにより鉱石中に亀裂が発生するので、その後の同化反応により生成した融液が亀裂内に侵入して同化反応が急速に進行し、その冷却凝固後の同化組織は、大きな気孔が残存した脆弱な組織となったり、結合水(nH2O)を分解、蒸発するために余分に熱エネルギーを使用して、焼結温度が低下する原因となるなどの問題が生じる。
【0035】
ばい焼炉の加熱温度がカオリン中の結合水の解離温度以上(例えば、図3に示されるような鉄鉱石の加熱時の赤外吸収スペクトルの測定を用いた場合には、500℃以上)の場合には、含水酸化鉄中の結合水は充分に低減されるが、カオリン(Al2Si25(OH)4)中の結合水が、解離(Al2Si25(OH)4→Al2Si27+2H2O)、蒸発して、Al2Si27(Al23・2SiO2)に変態してしまい、カオリン(Al2Si25(OH)4)の特性である、水を添加した際の粘性の向上効果が著しく低下する。
【0036】
従って、含水酸化鉄を含有する鉄鉱石をばい焼した後に、その他の焼結配合原料および水分とを混合し、造粒する際の造粒性が低下するので、焼結機で焼結する際の通気性が低下し、焼結鉱の生産性および製品歩留を低下させるという問題が生じる。
【0037】
このような理由で、ばい焼炉でばい焼する場合の加熱温度を、含水酸化鉄中の結合水の解離温度以上、カオリン中の結合水の解離温度未満の温度範囲(例えば、図3に示されるような鉄鉱石の加熱時の赤外吸収スペクトルの測定を用いた場合は、300℃以上、500℃未満の温度範囲)に設定する必要がある。
【0038】
なお、さらに造粒性を向上させるためには、ばい焼炉でばい焼する場合の加熱温度の上限を450℃(赤外吸収スペクトルの測定による温度)に低く設定することが好ましい。また、含水酸化鉄中の結合水の含有量を短時間で低減するためには、ばい焼炉でばい焼する場合の加熱温度の下限を350℃(赤外吸収スペクトルの測定による温度)に高く設定することが好ましい。
【0039】
上述のように、加熱時の鉄鉱石の赤外吸収スペクトル測定法を用いることにより、簡便で良好な精度で、含水酸化鉄中の結合水およびカオリン中の構造水の脱水状況を把握し、それぞれの解離温度を決定することができるが、例えば、X線回折による方法、熱分析による方法、試料加熱時に発生する水分を測定する方法、および、核磁気共鳴法による方法などの測定方法を用いて、ばい焼時の加熱温度とそれぞれの測定値との関係を基に含水酸化鉄中の結合水およびカオリン中の構造水の各解離温度を決定してもよい。
【0040】
また、本発明では、ばい焼炉でばい焼する際に、含水酸化鉄を含有する鉄鉱石中の水分量を2.0質量%以下に低減するものとする。このように含水酸化鉄を含有する鉄鉱石中の水分量を2.0質量%以下に低減する理由は、それによって、焼結時の加熱過程における鉱石中の結合水(nH2O)の分解、蒸発による鉱石中に亀裂の発生を防止し、同化融液の亀裂内への侵入による同化反応の急速化および同化凝固組織中の残存気孔の発生を抑制することができ、焼結鉱の強度を向上できるとともに、結合水の分解・蒸発のための熱エネルギーロスおよびそれに伴う燃料原単位の増加を抑制するなどの効果を充分に得るためである。
【0041】
本発明のばい焼炉の熱源としては、焼結機の冷却器の廃熱を一部利用してもよい。
【0042】
また、事前熱処理する場所は、製鉄所の焼結機近くでもよいし、製鉄所外、あるいは資源保有国の山元で行っても良い。
【0043】
【実施例】
(実施例)
本発明の実施形態の一例を図1に示す。褐鉄鉱のような含水酸化鉄を含む鉄鉱石を貯鉱槽1からばい焼炉2へ装入して、ばい焼炉2でばい焼して含水酸化鉄中の結合水を2.0質量%以下としてから鉄鉱石貯鉱槽3へ移送する。ばい焼して含水酸化鉄中の結合水が2.0質量%以下になった鉄鉱石を鉄鉱石貯鉱槽3から、その他の焼結原料を鉄鉱石貯鉱槽4および副原料槽5、6から、それぞれミキサー7へ装入し、ミキサー7で混合、造粒した後、それらをサージホッパー8およびドラムフィーダー9を介して焼結機10に装入する。
【0044】
点火炉10により焼結充填層の上層の炭材に点火後、上方から下方に向けて、空気を主排ガスダクト13を介して吸引することにより、焼結原料の燃焼点を上方から下方に移動させながら加熱焼成して所定の焼結帯11を形成し、焼結鉱12として排出する。
【0045】
ばい焼炉2の熱源には、焼結鉱12を冷却する冷却器14の廃熱を活用するのが最もよいが、その他の熱源15を利用してばい焼炉2をより高温化することも可能である。
【0046】
次に、発明例と本発明で規定する条件の範囲から外れた条件で実施した比較例において、それぞれの効果を比較して、本発明の効果を説明する。
【0047】
表1に、発明例および比較例において焼結原料として使用した配合原料割合、表2に、発明例と比較例における褐鉄鉱のばい焼時の加熱温度、ばい焼前後の褐鉄鉱の含水率(含水酸化鉄中の結合水の含有量)およびカオリン含有量、および、粉コークス添加量(焼結原料の外数)、さらに、表3に、発明例と比較例における造粒性、焼結性、および、焼結鉱の還元粉化性の評価結果を示す。
【0048】
なお、ばい焼前後の褐鉄鉱の含水率(含水酸化鉄中の結合水の含有量)は、JIS M8211「鉄鉱石中の化合水定量方法」に基づき、予め試料鉱石を乾燥した窒素気流中で105℃に加熱して吸湿水を除去した後、引き続き乾燥した窒素気流中で950℃まで加熱し、その際、遊離した結合水をエチレングリコール・メタノール混合溶液に吸収させ、カールフィッシャー試薬標準溶液で電気的に滴定して、その量を含水率(質量%)とした。
【0049】
また、ばい焼前後の褐鉄鉱中のカオリン含有量は、次のように赤外吸収スペクトル測定結果から求めた。すなわち、予め、市販試薬のカオリンを用い、異なる量のカオリンにおいて赤外吸収スペクトルを測定し、カオリン由来のO−Hに基因する吸収強度から検量線を作製しておき、次に、ばい焼前後の試料鉱石(褐鉄鉱)の赤外吸収スペクトルを測定し、同じく鉱石中のカオリン由来のO−Hの吸収強度を求め、この吸収強度から予め求めたカオリン量と吸収強度の検量線をもとに、試料鉱石(褐鉄鉱)中のカオリン含有量(質量%)を換算することにより求めた。
【0050】
表3の造粒性の評価は、造粒歩留と造粒物の強度の測定に基づいて行った。造粒歩留(擬似粒化指数:GI0.5(%))は、次式より求めた。
【0051】
GI0.5={(A−B)/A}×100
A:0.5mm以下の真粒子の配合割合
B:0.5mm以下の擬似粒子の配合割合
造粒物の強度はGI0.5の数値を用いて、83以上を○、78〜82を△、77以下を×として評価した。
【0052】
焼結性の評価は、造粒温度、通気性、生産性、および、製品歩留の測定に基づいて行った。焼結温度は、1250〜1400℃を“良”とし、それよりも低い温度を“低”、高い温度を“高”とした。なお、焼結温度については、局所的な「むら」もあるので、焼結後の組織観察を行い、評価の参考とした。
【0053】
通気性は、JPU(Japanease Permeability Unit)により評価した。
【0054】
JPU=(F/A)(h/s)0.6
F:流量(Nm3/min)
A:吸引面積(m2
h:装入層厚(m)
s:負圧(mH2O)
JPUは、設備によって異なるので、50kg鍋試験機を用いて試験し、JPU13以上を○、9〜12を△、8以下を×とした。
【0055】
焼結鉱の品質評価は、還元粉化性により行った。還元粉化性は、焼結鉱の高炉内の比較的低温領域での粉化性を推定するもので、試料を、30%CO、70%N2の還元性雰囲気で550℃で30分間還元した後に、所定の回転試験機に装入して規定の回転数回転させ、所定のふるいでふるい分け、各区分ごとの質量%により評価する。次式に計算式を示す。
【0056】
RDI(%)=(W3/W2)×100
W2:回転試験機に装入した試料の質量(g)
W3:ふるい分け後の3mm以下の試料の質量(g)
発明例No.1〜5は、造粒性、焼結性、および、焼結鉱の還元粉化性の何れも良好であったが、本発明で規定する条件の範囲から外れた条件で実施した比較例No.6〜13は、造粒性、焼結性、および、焼結鉱の還元粉化性の評価のうちの何れかが発明例よりも低い結果となった。
【0057】
つまり、比較例6は、ばい焼していないために含水率が本発明で規定する条件の範囲から外れており、造粒性は確保できるものの、焼結温度が低く、通気性、生産性、成品歩留が低い結果となった。比較例7は、焼結温度の低下を改善するために粉コークス量を増やしたが、局部的な温度の上昇が見られ、通気性はさらに悪化し、生産性も悪い。比較例8、9、10、および、11は、ばい焼温度が低いため、比較例6および7と同様の結果となった。
【0058】
含水酸化鉄は水を含みやすいが、造粒性には寄与せず、造粒歩留は実施例に比べてやや低下する傾向にある。比較例12および13は、ばい焼温度が高すぎるためにカオリンが変質してしまい、造粒性が悪化し、その影響で通気性、生産性、成品歩留が低下し、還元粉化性が悪化した。
【0059】
【表1】

Figure 0004762446
【表2】
Figure 0004762446
【表3】
Figure 0004762446
【0060】
【発明の効果】
以上のように本発明によれば、褐鉄鉱のような含水酸化鉄を含有する鉄鉱石を事前にばい焼機でばい焼後、混合造粒して焼結機により焼結鉱を製造する方法において、ばい焼後の鉄鉱石の造粒性を低下することなく酸化鉄中の結合水の含有量を低減でき、焼結原料として褐鉄鉱を多量に使用する場合の焼結鉱の生産性および製品歩留を向上し、冷間強度及び耐還元粉化性などの焼結鉱品質を向上できる焼結鉱の製造方法を提供できる。
【図面の簡単な説明】
【図1】本発明の実施形態の一例を示した焼結鉱の製造プロセスの模式図である。
【図2】含水酸化物である針鉄鉱(α−FeO(OH))、および、鱗鉄鉱(γ−FeO(OH))と、粘土鉱物であるカオリン(Al2Si25(OH)4)の加熱温度:50〜600℃の範囲における熱重量変化(TG)を示す。
【図3】褐鉄鉱Aを加熱した際の赤外吸収スペクトルの測定結果を示す図である。
【符号の説明】
1…貯鉱槽
2…ばい焼炉
3…鉄鉱石貯鉱槽
4…鉄鉱石貯鉱槽
5…副原料槽
6…副原料槽
7…ミキサー
8…サージホッパー
9…ドラムフィーダー
10…点火炉
11…焼結帯
12…焼結鉱
13…主排ガスダクト
14…冷却器
15…その他の熱源[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing sintered ore using iron ore containing hydrous iron oxide as iron ore to be blended in the sintering raw material, particularly when using iron ore containing hydrous iron oxide. The present invention relates to a method for producing a sintered ore having improved quality during sintering and product yield and excellent quality such as reduction dust resistance.
[0002]
[Prior art]
Sintered ore used as the main raw material for the blast furnace ironmaking method is mixed with iron-containing raw materials such as pulverized iron ore powder, and auxiliary materials such as limestone, dolomite, silica, and serpentine, and carbon materials such as coke powder and anthracite. Then, add a proper amount of moisture to these sintered raw materials, mix and granulate them, and then charge them into a dwellite-type sintering machine or traveling-grate-type firing machine to ignite the carbon material in the surface layer of the raw material packed bed However, mass production is performed by heating and firing the sintered raw material while moving the combustion point of the carbonaceous material from the upper side to the lower side by sucking air downward.
[0003]
In the production of sintered ore, with the improvement of sintered ore productivity and product yield, prescribed quality as raw materials for blast furnaces such as cold strength, reducibility, and reduction dust resistance is required. These depend on the mineral composition and crystal structure of the iron ore that is the main raw material of the sintering raw material.
[0004]
Generally, when iron ore is classified according to mineral composition, it is roughly divided into magnetite, hematite, and limonite. Magnetite is composed mainly of magnetite (Fe 3 O 4 ), has a dense crystal grain structure, is hardly reduced during the sintering process, and remains almost as it is. Hematite is mainly composed of hematite (α-Fe 2 O 3 ) and has a grain structure with an intermediate density between magnetite and limonite and is reduced to Fe 3 O 4 during the sintering process, or limestone It becomes calcium ferrite (CaO.Fe 2 O 3 ) by the assimilation reaction.
[0005]
Limonite (Femonite) (Fe 2 O 3 .nH 2 O) is a crystal having a low density and containing goethite (Fe 2 O 3 .H 2 O or α-FeO (OH)) as a main component. It has a grain structure, and nH 2 O (bonded water) is decomposed and evaporated during the sintering process, and is reduced to Fe 3 O 4 via α-Fe 2 O 3 .
[0006]
Limonite (Fe 2 O 3 · nH 2 O) is a natural product of goethite (Fe 2 O 3 · H 2 O or α-FeO (OH)), iron (Fe 2 O 3 · H 2 O or γ-FeO (OH)), it has been confirmed that a mixture of such hydrolytic hematite (Fe 2 O 3 · 1 / 2H 2 O).
[0007]
Further, in the iron ore, in addition to the main iron oxide or iron hydroxide, quartz (SiO 2 ), alumina (Al 2 O 3 ), kaolin (basic chemical formula: Al 2 Si 2 O 5 ) is used as a gangue. (OH) 4 ), montmorillonite, and the like, and together with the mineral composition and crystal structure of the iron ore, the type and content of the gangue are the granulating properties of the raw material for producing the sintered ore, It has a great influence on the air permeability and sinterability during sintering, and affects the quality of sintered ore, such as cold strength and resistance to reduction dusting.
[0008]
For this reason, in the production of ordinary sintered ore, the prescribed production conditions and quality of the sintered ore can be adjusted by adjusting the mixing ratio of various brands of iron ore, which is the main raw material of the sintered raw material. Management is done.
[0009]
The high-quality hematite used as a global iron ore resource is in the direction of depletion, and it is predicted that the main mine will be exhausted in recent years as it is. On the other hand, compared to good quality hematite and magnetite, the deposits of limonite deposits are enormous, and the mining cost is relatively low and the supply is stable, so if the limonite can be used in large quantities as a sintering raw material, In terms of economic effects such as cost reduction and effective use of iron ore resources, it is very significant.
[0010]
However, limonite (Fe 2 O 3 · nH 2 O) tends to generate calcium ferrite (CaO · Fe 2 O 3 ) that contributes to the cold strength of the sintered ore by an assimilation reaction, but before the assimilation reaction occurs During the heating process, cracks occur in the ore as the bound water (nH 2 O) in the ore decomposes and evaporates, and as a result of the subsequent assimilation reaction, the generated melt enters the crack and the assimilation reaction occurs. The assimilation structure that progresses rapidly and becomes solid after cooling and solidification becomes a fragile structure with large pores remaining, and the sintered ore tends to be fragile.
[0011]
Furthermore, when limonite contains a lot of gangue such as SiO 2 and Al 2 O 3 , the anabolic structure is likely to be a connective structure between vitreous silicate and granular hematite particles as compared with calcium ferrite, The sinter becomes a more fragile sinter.
[0012]
Further, when limonite is sintered, extra heat energy is used to decompose and evaporate the bound water (nH 2 O) contained in the limonite during the heating process, and the bound water (nH 2 O The amount of carbonaceous materials such as coke powder and anthracite needed to maintain a predetermined temperature during sintering (maximum heating temperature: 1300 ° C) is greater than when sintering hematite and magnetite. At the same time, the increase in the carbonaceous material increases the local area where the calorific value is excessive in the sintered packed bed, resulting in the expansion of the red tropics and the resulting decrease in air permeability. The problem arises that performance and product yield are reduced.
[0013]
From the above, when a large amount of limonite is used as a sintering raw material, there are problems of deterioration of sintered ore quality such as productivity of sintered ore, reduction of product yield, cold strength and reduction dust resistance. There was no choice but to limit its usage.
[0014]
As a method for improving the production and quality problems when using such limonite as a sintering raw material in large quantities, conventionally, for example, JP-A-52-56002 and JP-A-5-339653. Prior to charging limonite into the sintering machine, heat treatment is performed with a roasting machine or the like to reduce the content of bound water in limonite as disclosed in Japanese Laid-Open Patent Publication No. HEI 3-1010027 In the process of sintering with a calciner, the decomposition of the bound water, evaporation, and the resulting sinter quality such as sinter productivity, product yield, cold strength and reduction dust resistance A method of suppressing the decrease is disclosed.
[0015]
[Problems to be solved by the invention]
However, in the conventional methods disclosed in JP-A-52-56002, JP-A-5-339653, JP-A-3-10027, etc., the heating temperature at the time of heat treatment of limonite with a roasting machine or the like is It is set at a high temperature of 500 ° C. or higher, and the effect of efficiently reducing the content of bound water in limonite can be sufficiently obtained. However, limonite after roasting is treated with other sintering raw materials and moisture. There was a problem that the granulating property when mixing and granulating deteriorated compared to limonite before roasting.
[0016]
In view of the problems of the prior art, the present invention is a method in which iron ore containing hydrous iron such as limonite is roasted in advance with a roasting machine, and then a sintered ore is produced by a sintering machine. A large amount of limonite is used as a sintering raw material by optimizing roasting conditions to reduce the content of bound water in iron oxide without reducing the granulation of iron ore after roasting A method for producing a sintered ore that can improve the productivity and product yield of the sintered ore and improve the quality of the sintered ore such as resistance to reduction dusting.
[0017]
[Means for Solving the Problems]
As a result of intensive studies by the present inventors, it was found that the cause of the decrease in the granitability of limonite after roasting was because clay minerals contained in limonite, in particular, kaolin was altered by dehydration at high temperatures, We found a method that can reduce crystal water in hydrous iron without altering kaolin in iron ore by optimal setting of temperature conditions when roasting iron ore containing hydrous iron such as limonite. .
[0018]
This invention is made | formed based on this knowledge, The place made into the summary of the invention is as follows.
(1) After iron ore containing hydrous iron oxide is roasted in a roasting furnace in advance to remove the bound water in the hydrous iron oxide, it is mixed and granulated with other sintering raw materials and put into a sintering machine. In the method for producing a sintered ore that is charged and sintered, the heating temperature during the roasting is set to a temperature range that is not less than the dissociation temperature of bonded water in hydrous iron oxide and less than the dissociation temperature of structural water in kaolin. ,
The dissociation temperature of the bound water in the hydrous iron oxide and the dissociation temperature of the structural water in the kaolin are the heating temperature at the time of roasting and the bond in the hydrous iron oxide in the infrared absorption spectrum after roasting at the heating temperature. Determined based on the relationship between the absorption intensity due to water and the absorption intensity due to structural water in kaolin,
The absorption intensity due to bound water in the hydrous iron oxide is measured in the wave number range of 3600 to 2800 (1 / cm) of the infrared absorption spectrum, and the absorption intensity due to structured water in the kaolin is infrared. Measured in the wave number range of 3800-3600 (1 / cm) of the absorption spectrum,
The kaolin content before and after roasting is obtained from infrared absorption spectrum measurement results, and the water content in iron ore containing hydrous iron oxide is reduced to 2.0% by mass or less by roasting. Production method of ore.
( 2 ) The method for producing a sintered ore according to (1) above, wherein a part of waste heat of a cooler of the sintering machine is used as a part of a heat source at the time of roasting.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Details of the present invention will be described below.
[0020]
The present inventors focused on the behavior of clay minerals in iron ore when roasting iron ore containing hydrous iron oxide such as limonite with a roasting machine, and roasting iron ore under various temperature conditions. After that, the relationship between the structural water in the clay mineral and the bound water in the hydrous iron oxide was investigated experimentally.
[0021]
In general, iron ores contain clay minerals such as kaolin, montmorillonite, illite, vermiculite, and chlorite, and among them, the content of kaolin (Al 2 Si 2 O 5 (OH) 4 ) is particularly large. Since these clay minerals become viscous when mixed with water, they were thought to play an important role in granulation properties during granulation.
[0022]
Further, hydrous iron oxides present in iron ores such as limonite (Fe 2 O 3 · nH 2 O) have recently been found in goethite (Feite), which is a naturally occurring form and mostly impure. 2 O 3 .H 2 O or α-FeO (OH)) and spheroite (Fe 2 O 3 .H 2 O or γ-FeO (OH)).
[0023]
Methods for grasping the behavior of dehydrated structure water in clay minerals and hydrous iron oxides in iron ores include methods using infrared absorption spectrum, X-ray diffraction, thermal analysis, and samples Examples thereof include a method for measuring moisture generated during heating and a method by a nuclear magnetic resonance method.
[0024]
Among these methods, the thermal analysis method and the method of measuring the moisture generated during sample heating are performed by re-heating the sample once roasted while measuring the weight loss of the sample, change in calorie, and the amount of moisture generated at each temperature. It takes a long time to measure. Since the method by the nuclear magnetic resonance method is measured in a high magnetic field, it is not suitable for iron ore in which a magnetic substance coexists. The X-ray diffraction method is an analysis from a crystal structure, but has a drawback that sensitivity cannot be obtained if the crystallinity is poor.
[0025]
On the other hand, the method using an infrared absorption spectrum is a method in which a sample and potassium bromide are mixed and molded, and measured with an infrared spectrophotometer. Since it is simple and accurate, goethite (α-FeO (OH) ), Scalerite (γ-FeO (OH)), and kaolin (Al 2 Si 2 O 5 (OH) 4 ).
[0026]
FIG. 2 shows goethite (α-FeO (OH)) and spheroite (γ-FeO (OH)), which are the main hydrous irons in limonite, and kaolin (Al 2 Si), which is a clay mineral in limonite. 2 shows the thermogravimetric change (TG) when 2 O 5 (OH) 4 ) is heated in air at 50 ° C. to 600 ° C. at 10 ° C./min. For these samples, commercially available reagents were used.
[0027]
Α-FeO (OH) and γ-FeO (OH), which are the main components of hydrous iron oxide, dissociate the bound water (2FeO (OH) → Fe 2 O 3 + H 2 O) from around 250 ° C. by heating, Dehydration by evaporation begins and dehydration is completed by 350 ° C. On the other hand, kaolin (Al 2 Si 2 O 5 (OH) 4 ), which is a clay mineral, dissociates its structural water (Al 2 Si 2 O 5 (OH) 4 ) from around 450 ° C., which is higher than these hydrous iron oxides. → Al 2 Si 2 O 7 + 2H 2 O), dehydration by evaporation begins, and dehydration is completed by 600 ° C.
[0028]
In the experiment of FIG. 2, since reagents were used as samples, goethite (α-FeO (OH)), sphalerite (γ-FeO (OH)), and kaolin (Al 2 ) that are naturally produced. With Si 2 O 5 (OH) 4 ), the dehydration temperature may vary due to differences in crystallinity and structure. Therefore, to optimize the roasting temperature, roast the actual limonite, goethite (α-FeO (OH)), spheroidal (γ-FeO (OH)), and kaolin (Al 2 Si 2). It is necessary to grasp the dehydration status of O 5 (OH) 4 ).
[0029]
In FIG. 3, the measurement result of the infrared absorption spectrum at the time of heating the actual limonite A in the temperature range of 50-550 degreeC with the heating rate of 10 degreeC / min is shown. Absorption due to α-FeO (OH) is observed at 3130 (1 / cm), 906 (1 / cm), and 796 (1 / cm), and kaolin (Al 2 Si 2 O 5 (OH ) Absorption due to 4 ) is seen at 3697 (1 / cm) and 3620 (1 / cm), respectively.
[0030]
From the infrared absorption spectrum, absorption caused by α-FeO (OH), which is hydrous iron oxide, begins to decrease significantly when the heating temperature is 300 ° C. or higher, and is hardly detected when the heating temperature is 350 ° C. or higher. On the other hand, absorption due to kaolin begins to decrease when the heating temperature is 450 ° C. or higher, and is hardly detected when the heating temperature is 500 ° C. or higher.
[0031]
In the present invention, when the iron ore containing hydrous iron oxide is roasted in advance in a roasting furnace to remove the bound water in the hydrous iron oxide, the heating temperature is equal to or higher than the dissociation temperature of the bound water in the hydrous iron oxide. And a temperature range below the dissociation temperature of bound water in kaolin.
[0032]
Here, the dissociation temperature of the bound water in the hydrous iron oxide is, for example, α which is the hydrous iron oxide when the measurement of the infrared absorption spectrum during heating of the iron ore as shown in FIG. 3 is used. It is defined as a heating temperature at which absorption due to FeO (OH) (3130 (1 / cm), 906 (1 / cm), and 796 (1 / cm)) starts to decrease significantly. ° C.
[0033]
In addition, the dissociation temperature of bound water in kaolin is, for example, kaolin (Al 2 Si) which is a clay mineral when the measurement of infrared absorption spectrum during heating of iron ore as shown in FIG. 3 is used. It is defined as a heating temperature at which absorption (3697 (1 / cm) and 3620 (1 / cm)) due to 2 O 5 (OH) 4 ) is hardly detected, and is 500 ° C. from FIG.
[0034]
The heating temperature of the roasting furnace is less than the dissociation temperature of the bound water in the hydrous iron oxide (for example, less than 300 ° C. when using the measurement of the infrared absorption spectrum when heating the iron ore as shown in FIG. ), The bound water in the hydrous iron oxide is not sufficiently reduced, and cracks are generated in the ore due to decomposition and evaporation of the bound water (nH 2 O) in the ore during the heating process during sintering. Therefore, the melt generated by the subsequent anabolic reaction penetrates into the crack and the anabolic reaction proceeds rapidly, and the anabolic structure after cooling and solidification becomes a fragile structure with large pores remaining or bonded There is a problem that excessive heat energy is used to decompose and evaporate water (nH 2 O), causing the sintering temperature to decrease.
[0035]
The heating temperature of the roasting furnace is equal to or higher than the dissociation temperature of bound water in kaolin (for example, 500 ° C. or higher when measuring the infrared absorption spectrum when heating iron ore as shown in FIG. 3). In some cases, the bound water in the hydrous iron oxide is sufficiently reduced, but the bound water in the kaolin (Al 2 Si 2 O 5 (OH) 4 ) is dissociated (Al 2 Si 2 O 5 (OH) 4 ). → Al 2 Si 2 O 7 + 2H 2 O), evaporates and transforms into Al 2 Si 2 O 7 (Al 2 O 3 .2SiO 2 ), and kaolin (Al 2 Si 2 O 5 (OH) 4 ) The effect of improving the viscosity when water is added, which is the above characteristic, is remarkably reduced.
[0036]
Therefore, after roasting iron ore containing hydrous iron oxide, the granulation properties when mixing and granulating other sintering compounding raw materials and moisture are reduced, so when sintering with a sintering machine As a result, there is a problem that the air permeability of the sinter is lowered, and the productivity and product yield of the sinter are reduced.
[0037]
For this reason, the heating temperature when roasting in a roasting furnace is a temperature range that is not less than the dissociation temperature of bound water in hydrous iron oxide and less than the dissociation temperature of bound water in kaolin (for example, shown in FIG. 3). When the measurement of the infrared absorption spectrum at the time of heating such iron ore is used, it is necessary to set the temperature range of 300 ° C. or more and less than 500 ° C.).
[0038]
In addition, in order to further improve the granulation property, it is preferable to set the upper limit of the heating temperature when roasting in a roasting furnace as low as 450 ° C. (temperature by measurement of infrared absorption spectrum). In addition, in order to reduce the content of bound water in hydrous iron oxide in a short time, the lower limit of the heating temperature when roasting in a roasting furnace is increased to 350 ° C. (temperature measured by infrared absorption spectrum). It is preferable to set.
[0039]
As mentioned above, by using the infrared absorption spectrum measurement method of iron ore during heating, the dehydration status of the bound water in hydrous iron oxide and the structural water in kaolin is grasped with good accuracy with ease. Dissociation temperature can be determined, for example, by using a measuring method such as a method by X-ray diffraction, a method by thermal analysis, a method for measuring moisture generated during sample heating, and a method by nuclear magnetic resonance method. The dissociation temperatures of bound water in hydrous iron oxide and structured water in kaolin may be determined based on the relationship between the heating temperature during roasting and the respective measured values.
[0040]
Moreover, in this invention, when roasting in a roasting furnace, the water content in iron ore containing hydrous iron oxide is reduced to 2.0 mass% or less. The reason why the water content in the iron ore containing hydrous iron oxide is reduced to 2.0% by mass or less is that the decomposition of the bound water (nH 2 O) in the ore during the heating process during sintering. It prevents the occurrence of cracks in the ore due to evaporation, suppresses the rapid assimilation reaction due to the penetration of the anabolic melt into the cracks, and suppresses the generation of residual pores in the anabolic solidification structure. This is because the heat energy loss due to the decomposition and evaporation of the bound water and the accompanying increase in the fuel consumption rate can be sufficiently obtained.
[0041]
As the heat source of the roasting furnace of the present invention, part of the waste heat of the cooler of the sintering machine may be used.
[0042]
Moreover, the place to pre-heat-treat may be near the sintering machine of an iron mill, or may be performed outside the iron mill or at a mountain in a resource-owning country.
[0043]
【Example】
(Example)
An example of an embodiment of the present invention is shown in FIG. Iron ore containing hydrous iron such as limonite is charged into the roasting furnace 2 from the storage tank 1, and roasted in the roasting furnace 2, and the combined water in the hydrous iron is reduced to 2.0 mass% or less. Then, it is transferred to the iron ore storage tank 3. Iron ore whose combined water in hydrous iron oxide is 2.0% by mass or less after roasting and iron ore storage tank 3, and other sintered raw materials are iron ore storage tank 4 and auxiliary raw material tank 5, 6 are respectively charged into the mixer 7, mixed and granulated by the mixer 7, and then charged into the sintering machine 10 through the surge hopper 8 and the drum feeder 9.
[0044]
After igniting the upper carbon material of the sintered packed bed by the ignition furnace 10, the combustion point of the sintered raw material is moved from the upper side to the lower side by sucking air through the main exhaust gas duct 13 from the upper side to the lower side. Then, it is heated and fired to form a predetermined sintered band 11 and discharged as sintered ore 12.
[0045]
As the heat source of the roasting furnace 2, it is best to utilize the waste heat of the cooler 14 that cools the sintered ore 12, but it is also possible to raise the temperature of the roasting furnace 2 using other heat sources 15. Is possible.
[0046]
Next, the effects of the present invention will be described by comparing the respective effects of the invention example and the comparative example implemented under conditions deviating from the conditions defined in the present invention.
[0047]
Table 1 shows the ratio of raw materials used as sintering raw materials in Invention Examples and Comparative Examples, Table 2 shows heating temperatures during roasting of limonite in Invention Examples and Comparative Examples, and moisture content of limonite before and after roasting (Content of bound water in iron) and kaolin content, and added amount of coke breeze (outside number of sintering raw materials), and Table 3 shows granulation properties, sinterability, and The evaluation result of the reduced powder property of a sintered ore is shown.
[0048]
In addition, the moisture content of limonite before and after roasting (content of bound water in hydrous iron oxide) is 105 based on JIS M8211 “Method for quantifying combined water in iron ore” in a nitrogen stream in which sample ore has been previously dried. After removing the moisture-absorbing water by heating to 950C, it is subsequently heated to 950C in a dry nitrogen stream. At that time, the liberated bound water is absorbed in the ethylene glycol / methanol mixed solution and is electrically used by Karl Fischer reagent standard solution. Titration was carried out to determine the water content (% by mass).
[0049]
The kaolin content in the limonite before and after roasting was determined from the results of infrared absorption spectrum measurement as follows. That is, using a commercially available reagent kaolin, infrared absorption spectra were measured in different amounts of kaolin, a calibration curve was prepared from the absorption intensity caused by kaolin-derived OH, and then before and after roasting. Infrared absorption spectrum of sample ore (limonite) was measured, and the absorption intensity of OH derived from kaolin in the ore was also obtained. Based on the calibration curve of kaolin amount and absorption intensity obtained in advance from this absorption intensity It calculated | required by converting kaolin content (mass%) in a sample ore (limonite).
[0050]
Evaluation of the granulation property of Table 3 was performed based on the measurement of the granulation yield and the strength of the granulated product. The granulation yield (pseudo graining index: GI 0.5 (%)) was obtained from the following equation.
[0051]
GI 0.5 = {(A−B) / A} × 100
A: Mixing ratio of true particles of 0.5 mm or less B: Mixing ratio of pseudo particles of 0.5 mm or less The strength of the granulated product is GF 0.5 , 83 or more is ○, 78 to 82 is Δ, 77 or less is It evaluated as x.
[0052]
Sinterability was evaluated based on measurements of granulation temperature, air permeability, productivity, and product yield. The sintering temperature was 1250 to 1400 ° C. as “good”, lower temperature was “low”, and higher temperature was “high”. In addition, about sintering temperature, since there is also local "unevenness", the structure | tissue observation after sintering was performed and it referred to evaluation.
[0053]
The air permeability was evaluated by JPU (Japanease Permeability Unit).
[0054]
JPU = (F / A) (h / s) 0.6
F: Flow rate (Nm 3 / min)
A: Suction area (m 2 )
h: Charging layer thickness (m)
s: Negative pressure (mH 2 O)
Since JPU differs depending on the equipment, it was tested using a 50 kg pan tester, and JPU13 or higher was evaluated as ◯, 9-12 as Δ, and 8 or lower as X.
[0055]
The quality evaluation of the sintered ore was performed based on the reduced powdering property. Reduced powderability estimates the powderability of sintered ore in a relatively low temperature region in a blast furnace. The sample is reduced at 550 ° C. for 30 minutes in a reducing atmosphere of 30% CO and 70% N 2. After that, the sample is loaded into a predetermined rotation tester and rotated at a specified number of rotations, sieved with a predetermined sieve, and evaluated by mass% for each section. The calculation formula is shown below.
[0056]
RDI (%) = (W3 / W2) x 100
W2: Mass of the sample loaded in the rotation tester (g)
W3: Mass of sample less than 3mm after sieving (g)
Invention Example No. Nos. 1 to 5 were good in all of granulation properties, sinterability, and reduced powdering properties of sintered ore, but Comparative Example No. carried out under conditions deviating from the range of conditions defined in the present invention. . As for 6-13, the result of any of evaluation of granulation property, sinterability, and reduction | restoration powdering property of a sintered ore became lower than the invention example.
[0057]
That is, since Comparative Example 6 is not roasted, the moisture content is out of the range defined by the present invention, and although the granulation property can be secured, the sintering temperature is low, the air permeability, the productivity, The product yield was low. In Comparative Example 7, the amount of powder coke was increased in order to improve the decrease in the sintering temperature, but a local temperature increase was observed, the air permeability was further deteriorated, and the productivity was also poor. Comparative Examples 8, 9, 10, and 11 had the same results as Comparative Examples 6 and 7 because the roasting temperature was low.
[0058]
Although hydrous iron oxide easily contains water, it does not contribute to the granulation property, and the granulation yield tends to be slightly lower than that in Examples. In Comparative Examples 12 and 13, since the roasting temperature is too high, the kaolin is deteriorated, the granulation property is deteriorated, and the air permeability, productivity, product yield are lowered due to the influence, and the reduction powdering property is reduced. It got worse.
[0059]
[Table 1]
Figure 0004762446
[Table 2]
Figure 0004762446
[Table 3]
Figure 0004762446
[0060]
【The invention's effect】
As described above, according to the present invention, the iron ore containing hydrous iron such as limonite is roasted in advance with a roasting machine, then mixed and granulated to produce a sintered ore with a sintering machine. , The content of bound water in iron oxide can be reduced without reducing the granulation of iron ore after roasting, and the productivity and product yield of sintered ore when using a large amount of limonite as a sintering raw material It is possible to provide a method for producing sintered ore that can improve the yield and improve the quality of sintered ore such as cold strength and resistance to reduction dusting.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a sintered ore production process showing an example of an embodiment of the present invention.
FIG. 2 shows goethite (α-FeO (OH)) and hydrated oxide (γ-FeO (OH)), which are hydrous oxides, and kaolin (Al 2 Si 2 O 5 (OH) 4, which is a clay mineral. ) Heating temperature: Thermogravimetric change (TG) in the range of 50 to 600 ° C.
FIG. 3 is a diagram showing a measurement result of an infrared absorption spectrum when limonite A is heated.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Storage tank 2 ... Roasting furnace 3 ... Iron ore storage tank 4 ... Iron ore storage tank 5 ... Secondary raw material tank 6 ... Secondary raw material tank 7 ... Mixer 8 ... Surge hopper 9 ... Drum feeder 10 ... Ignition furnace 11 ... sintered zone 12 ... sintered ore 13 ... main exhaust gas duct 14 ... cooler 15 ... other heat sources

Claims (2)

含水酸化鉄を含有する鉄鉱石を事前にばい焼炉でばい焼して含水酸化鉄中の結合水を除去した後、その他の焼結原料と混合および造粒し、焼結機に装入して焼結する焼結鉱の製造方法において、前記ばい焼時の加熱温度を含水酸化鉄中の結合水の解離温度以上、カオリン中の構造水の解離温度未満の温度範囲に設定し、
前記含水酸化鉄中の結合水の解離温度およびカオリン中の構造水の解離温度は、ばい焼時の加熱温度と、該加熱温度でばい焼した後の赤外吸収スペクトルにおける含水酸化鉄中の結合水に起因する吸収強度およびカオリン中の構造水に起因する吸収強度との関係に基づいて決定され、
前記含水酸化鉄中の結合水に起因する吸収強度は、赤外吸収スペクトルの3600〜2800(1/cm)の波数範囲で測定され、前記カオリン中の構造水に起因する吸収強度は、赤外吸収スペクトルの3800〜3600(1/cm)の波数範囲で測定され、
前記ばい焼前後のカオリン含有量を赤外吸収スペクトル測定結果から求め、前記ばい焼により含水酸化鉄を含有する鉄鉱石中の水分量を2.0質量%以下に低減することを特徴とする焼結鉱の製造方法。
After iron ore containing hydrous iron oxide is roasted in a roasting furnace in advance to remove the bound water in the hydrous iron oxide, it is mixed and granulated with other sintering raw materials and charged into the sintering machine. In the method for producing a sintered ore to be sintered, the heating temperature at the time of roasting is set to a temperature range not lower than the dissociation temperature of bonded water in hydrous iron oxide and lower than the dissociation temperature of structural water in kaolin,
The dissociation temperature of the bound water in the hydrous iron oxide and the dissociation temperature of the structural water in the kaolin are as follows. Determined based on the relationship between the absorption intensity due to water and the absorption intensity due to structural water in kaolin,
The absorption intensity due to bound water in the hydrous iron oxide is measured in the wave number range of 3600 to 2800 (1 / cm) of the infrared absorption spectrum, and the absorption intensity due to structured water in the kaolin is infrared. Measured in the wave number range of 3800-3600 (1 / cm) of the absorption spectrum,
The kaolin content before and after roasting is obtained from infrared absorption spectrum measurement results, and the water content in iron ore containing hydrous iron oxide is reduced to 2.0% by mass or less by roasting. Production method of ore.
前記ばい焼時の熱源の一部として前記焼結機の冷却器の廃熱の一部を利用することを特徴とする請求項1記載の焼結鉱の製造方法。The method for producing a sintered ore according to claim 1 , wherein a part of waste heat of a cooler of the sintering machine is used as a part of a heat source at the time of roasting.
JP2001212480A 2001-07-12 2001-07-12 Method for producing sintered ore Expired - Lifetime JP4762446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001212480A JP4762446B2 (en) 2001-07-12 2001-07-12 Method for producing sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001212480A JP4762446B2 (en) 2001-07-12 2001-07-12 Method for producing sintered ore

Publications (2)

Publication Number Publication Date
JP2003027148A JP2003027148A (en) 2003-01-29
JP4762446B2 true JP4762446B2 (en) 2011-08-31

Family

ID=19047633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001212480A Expired - Lifetime JP4762446B2 (en) 2001-07-12 2001-07-12 Method for producing sintered ore

Country Status (1)

Country Link
JP (1) JP4762446B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5565481B2 (en) * 2013-02-04 2014-08-06 新日鐵住金株式会社 Evaluation method of compound iron ore for sintering
JP6001485B2 (en) * 2013-03-28 2016-10-05 株式会社神戸製鋼所 Method for producing sintered ore for iron making
CN106908473B (en) * 2017-04-18 2023-03-10 安徽工业大学 Device and method for detecting iron ore powder assimilation temperature by simulating different atmospheres
CN108020578B (en) * 2017-08-09 2023-06-23 安徽工业大学 Detection equipment for assimilation temperature of iron ore powder and assembly and detection method thereof
CN116082026A (en) * 2022-12-07 2023-05-09 安徽冶金科技职业学院(马钢(集团)控股有限公司卫生学校) Preparation process of ilmenite and method for inhibiting perovskite from generating in sintering process

Also Published As

Publication number Publication date
JP2003027148A (en) 2003-01-29

Similar Documents

Publication Publication Date Title
RU2288900C2 (en) Method of the cement clinker output increase
JP5287127B2 (en) Evaluation method of compound iron ore for sintering
GB2044235A (en) Process for producing metallized iron pellets
JP5565481B2 (en) Evaluation method of compound iron ore for sintering
JP4762446B2 (en) Method for producing sintered ore
WO2015092136A1 (en) Method for producing manganese ore pellets
JP4935133B2 (en) Ferro-coke and method for producing sintered ore
CN114350939A (en) Pellet for producing alkaline fine iron ore by magnetizing roasting and preparation method thereof
US4326887A (en) Basic process of producing basic fluxed pellets for iron-making
JP5020446B2 (en) Method for producing sintered ore
Chizhikova et al. Production of Iron-Ore Pellets with an Organic Binder.
CN102300965B (en) Carbonaceous material for sintering iron ore
Pal et al. Development of carbon composite iron ore micropellets by using the microfines of iron ore and carbon-bearing materials in iron making
JP6414903B2 (en) Production method of carbon interior ore
JP4725230B2 (en) Method for producing sintered ore
KR102510420B1 (en) Method for upgrading low grade manganese ore
RU2144060C1 (en) Method for increasing combustibility of coal used in cast iron production process
Otomo et al. Granule design for the sintering with less amount of liquid phase formation
KR101187410B1 (en) Reinforcing agent and method for manufacturing sintered ore
CN114591099A (en) Porous material based on blast furnace ash as foaming agent and preparation method thereof
WO2024070135A1 (en) Iron ore pellet production method
WO2016124823A1 (en) Method and arrangement to prepare chromite concentrate for pelletizing and sintering and pelletizing feed
RU2430979C2 (en) Procedure for preparation of charge for manufacture of metallised product
RU2067124C1 (en) Method of fluxed agglomerate production
WO2015092132A1 (en) Method for exploiting dusts generated in a ferronickel process and sintered pellets produced by the method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110608

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4762446

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term