JP2003027148A - Method for manufacturing sintered ore - Google Patents

Method for manufacturing sintered ore

Info

Publication number
JP2003027148A
JP2003027148A JP2001212480A JP2001212480A JP2003027148A JP 2003027148 A JP2003027148 A JP 2003027148A JP 2001212480 A JP2001212480 A JP 2001212480A JP 2001212480 A JP2001212480 A JP 2001212480A JP 2003027148 A JP2003027148 A JP 2003027148A
Authority
JP
Japan
Prior art keywords
roasting
iron oxide
water
sintering
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001212480A
Other languages
Japanese (ja)
Other versions
JP4762446B2 (en
Inventor
Masayuki Nishifuji
将之 西藤
Yuji Fujioka
裕二 藤岡
Muneyuki Imafuku
宗行 今福
Yukimoto Tanaka
幸基 田中
Kouji Saito
公児 齋藤
Shunichi Hayashi
林  俊一
Koji Kanehashi
康二 金橋
Jun Okazaki
潤 岡崎
Yozo Hosoya
陽三 細谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001212480A priority Critical patent/JP4762446B2/en
Publication of JP2003027148A publication Critical patent/JP2003027148A/en
Application granted granted Critical
Publication of JP4762446B2 publication Critical patent/JP4762446B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing sintered ore by which the productivity and product yield of the sintered ore can be improved in the case where iron ore containing hydrous iron oxides is used as a raw material for sintering and also the quality of the sintered ore, such as cold strength and reduction degradation characteristic, can be improved. SOLUTION: The iron ore containing the hydrous iron oxides is previously roasted in a roasting furnace to undergo removal of bound water in the hydrous iron oxides and then mixed with the other raw materials for sintering. The resultant mixture is pelletized and charged into a sintering machine to undergo sintering. In this method for sintering the sintered ore, heating temperature at the above roasting is set at a value not lower than the dissociation temperature of the bound water in the hydrous iron oxides and lower than the dissociation temperature of structure water in clay minerals.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、焼結原料中に配合
される鉄鉱石として、含水酸化鉄を含有する鉄鉱石を用
いて焼結鉱を製造する方法に関し、特に、含水酸化鉄を
含有する鉄鉱石を用いる場合の焼結時の生産性および成
品歩留を向上させ、耐還元粉化性等の品質に優れた焼結
鉱を製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a sintered ore using an iron ore containing iron oxide hydroxide as an iron ore mixed in a sintering raw material, and more particularly, to a method for producing iron ore containing iron oxide hydroxide. The present invention relates to a method for producing a sinter having high quality such as reduction pulverization resistance by improving productivity and product yield during sintering when using iron ore.

【0002】[0002]

【従来の技術】高炉製鉄法の主原料として使用される焼
結鉱は、粉砕した鉄鉱石粉等の鉄含有原料に、石灰石、
ドロマイト、珪石、蛇紋岩等の副原料、およびコークス
粉、無煙炭等の炭材を配合して、これらの焼結原料に適
量の水分を加えて混合、造粒し、その後、ドワイトロイ
ド式焼結機ないしトラベリンググレート式焼成機に装入
し、原料充填ベット表層中の炭材に点火し、下方に向け
て空気を吸引することにより炭材の燃焼点を上方から下
方に移動させながら焼結原料を加熱焼成することにより
大量生産されている。
2. Description of the Related Art Sintered ore used as a main raw material in the blast furnace iron making method is used as an iron-containing raw material such as crushed iron ore powder, limestone,
Dolomite, silica stone, serpentine, and other auxiliary materials, and coke powder, anthracite, and other carbonaceous materials are mixed, and an appropriate amount of water is added to these sintering materials to mix and granulate, and then Dwightroid-type sintering. Machine or traveling great type firing machine, ignite the carbonaceous material in the surface layer of the raw material-filled bed, and suck air downward to move the burning point of the carbonaceous material from above to below. Is mass-produced by heating and baking.

【0003】焼結鉱の製造においては、焼結鉱の生産性
および製品歩留の向上とともに、冷間強度、被還元性、
耐還元粉化性などの高炉用原料としての所定品質が要求
されるが、これらは、焼結原料の主原料である鉄鉱石の
鉱物組成や結晶構造などに左右される。
In the production of sinter, the productivity of sinter and the product yield are improved, as well as cold strength, reducibility,
Although certain qualities such as resistance to reduction pulverization as raw materials for blast furnaces are required, these depend on the mineral composition and crystal structure of iron ore, which is the main raw material of the sintering raw material.

【0004】一般に、鉄鉱石を鉱物組成別に分類する
と、磁鉄鉱、赤鉄鉱、褐鉄鉱に大別される。磁鉄鉱は、
マグネタイト(Fe34)を主成分とし、密度の高い結
晶粒構造を持ち、焼結過程で還元され難く、ほとんどそ
のままの形態で残る。赤鉄鉱は、ヘマタイト(α−Fe
23)を主成分とし、磁鉄鉱と褐鉄鉱の密度の中間の密
度を有する結晶粒構造を持ち、焼結過程でFe34に還
元されるか、石灰石との同化反応によりカルシウムフェ
ライト(CaO・Fe23)になる。
Generally, iron ores are roughly classified into magnetite, hematite, and limonite when classified by mineral composition. Magnetite
It is mainly composed of magnetite (Fe 3 O 4 ), has a high-density crystal grain structure, is hard to be reduced in the sintering process, and remains almost as it is. Hematite is hematite (α-Fe
2 O 3 ) as a main component and has a crystal grain structure having a density intermediate between those of magnetite and limonite, and is reduced to Fe 3 O 4 in the sintering process, or calcium ferrite (CaO・ Fe 2 O 3 )

【0005】また、褐鉄鉱(リモナイト)(Fe23
nH2O)は、針鉄鉱(ゲーサイト)(Fe23・H2
またはα−FeO(OH))を主成分とし、密度の小さ
い結晶粒構造を持ち、焼結過程でnH2O(結合水)が
分解、蒸発し、α−Fe2 3を経てFe34に還元され
る。
Further, limonite (Fe)2O3
nH2O) is Goethite (Fe)2O3・ H2O
Or α-FeO (OH)) as the main component and low density
It has a fine grain structure and nH during the sintering process.2O (bound water)
Decomposes and evaporates, α-Fe2O 3Through Fe3OFourIs reduced to
It

【0006】なお、褐鉄鉱(Fe23・nH2O)は、
最近の研究により、天然産出形態で、針鉄鉱(ゲーサイ
ト)(Fe23・H2Oまたはα−FeO(OH))、
鱗鉄鉱(Fe23・H2Oまたはγ−FeO(O
H))、加水赤鉄鉱(Fe23・1/2H2O)などの
混合物であることが確認されている。
Limonite (Fe 2 O 3 .nH 2 O) is
Recent studies in naturally occurring form, goethite (goethite) (Fe 2 O 3 · H 2 O or α-FeO (OH)),
Hematite (Fe 2 O 3 · H 2 O or γ-FeO (O
H)) and hydrohematite (Fe 2 O 3 .1 / 2H 2 O) and the like.

【0007】また、鉄鉱石中には、上記の主要酸化鉄ま
たは水酸化鉄の他に、脈石として、石英(SiO2)、
アルミナ(Al23)、カオリン(基本化学式:Al2
Si25(OH)4)、および、モンモリナイトなどが
含有されており、鉄鉱石の鉱物組成および結晶構造とと
もに、脈石の種類および含有量が、焼結鉱を製造するう
えでの原料の造粒性や、焼結時の通気性および焼結性に
大きな影響をもち、冷間強度、耐還元粉化性などの焼結
鉱の品質を左右する。
Further, in iron ores, in addition to the above-mentioned main iron oxides or iron hydroxides, quartz (SiO 2 ) as gangue,
Alumina (Al 2 O 3 ), Kaolin (Basic chemical formula: Al 2
Si 2 O 5 (OH) 4 ), montmorillonite, etc. are contained, and the kind and content of gangue, together with the mineral composition and crystal structure of iron ore, are the raw materials for producing sinter. It has a great effect on granulation, air permeability during sintering and sinterability, and affects the quality of sinter such as cold strength and resistance to reduction pulverization.

【0008】このようなことから、通常の焼結鉱の製造
においては、焼結原料の主原料である鉄鉱石の種々の銘
柄の配合割合を調製することにより、焼結鉱の所定の製
造条件および品質を管理することが行われている。
From the above, in the usual production of sintered ore, by adjusting the mixing ratio of various brands of iron ore, which is the main raw material of the sintering raw material, the predetermined production conditions of the sintered ore can be obtained. And quality control is done.

【0009】世界の鉄鉱石資源として、これまで多く使
用してきた良質な赤鉄鉱は枯渇の方向にあり、現状のま
まではその主要鉱山は近年中にも掘り尽くしてしまうと
予測されている。一方、良質な赤鉄鉱や磁鉄鉱に比べ
て、褐鉄鉱の鉱床の埋蔵量は莫大であり、かつ、比較的
採掘費用が安く供給も安定しているため、該褐鉄鉱を焼
結原料として多量に使用できれば、コスト低減などの経
済的効果や鉄鉱石資源の有効利用の点から大きな意義が
ある。
As the world's iron ore resources, high-quality hematite, which has been frequently used up to now, is in the direction of depletion, and it is predicted that its main mine will be exhausted in recent years as it is. On the other hand, as compared with high-quality hematite and magnetite, the deposit of limonite deposit is enormous, and the mining cost is relatively low and the supply is stable, so if a large amount of limonite can be used as a sintering raw material. It has great significance in terms of economic effects such as cost reduction and effective use of iron ore resources.

【0010】しかしながら、褐鉄鉱(Fe23・nH2
O)は、同化反応により焼結鉱の冷間強度に寄与するカ
ルシウムフェライト(CaO・Fe23)を生成しやす
いが、同化反応が起きる前の加熱過程において、鉱石中
の結合水(nH2O)が分解、蒸発することにより鉱石
中に亀裂が発生するため、その後の同化反応により、生
成した融液が亀裂内に侵入して同化反応が急速に進行
し、その冷却凝固後の同化組織は、大きな気孔が残存し
た脆弱な組織となり、焼結鉱は脆弱なものとなりやす
い。
However, limonite (Fe 2 O 3 .nH 2
O) easily produces calcium ferrite (CaO.Fe 2 O 3 ) that contributes to the cold strength of the sinter by the assimilation reaction, but in the heating process before the assimilation reaction occurs, the bound water (nH 2 O) decomposes and evaporates to generate cracks in the ore, and the subsequent assimilation reaction causes the resulting melt to enter the cracks and rapidly promote the assimilation reaction. The structure becomes a fragile structure in which large pores remain, and the sinter tends to become fragile.

【0011】さらに、褐鉄鉱中にSiO2やAl23
どの脈石が多く含有されている場合は、同化組織が、カ
ルシウムフェライトに比べて脆弱なガラス質シリケート
と粒状ヘマタイト粒子との結合組織となりやすく、焼結
鉱はさらに脆弱な焼結鉱となる。
Furthermore, when a large amount of gangue such as SiO 2 and Al 2 O 3 is contained in limonite, the assimilation structure is a connective structure of glassy silicate and granular hematite particles, which are more brittle than calcium ferrite. And the sinter becomes more brittle.

【0012】また、褐鉄鉱の焼結時には、加熱過程にお
いて、褐鉄鉱に含有されている結合水(nH2O)を分
解、蒸発するために、余計に熱エネルギーを使用するこ
とになり、結合水(nH2O)が少ない赤鉄鉱や磁鉄鉱
を焼結する時に比べて、焼結時の所定温度(最大加熱温
度:1300℃)を維持するために必要なコークス粉、
無煙炭等の炭材の使用量が多くなるとともに、炭材の増
加により、焼結充填ベットにおいて熱量が過多となる局
所的領域が増加し、その結果、赤熱帯の拡大、および、
それに起因する通気性の低下を招き、焼結鉱の生産性お
よび製品歩留が低下するという問題が生じる。
When the limonite is sintered, extra heat energy is used in order to decompose and evaporate the bound water (nH 2 O) contained in the limonite in the heating process. Coke powder required to maintain a predetermined temperature (maximum heating temperature: 1300 ° C.) during sintering, as compared with the case of sintering hematite or magnetite containing less nH 2 O),
As the amount of carbonaceous materials such as anthracite increases, the increase in the amount of carbonaceous materials increases the local area where the calorific value is excessive in the sintering filling bed, resulting in the expansion of the red tropical zone, and
As a result, the air permeability is lowered, and the productivity of the sinter and the product yield are lowered.

【0013】以上から、焼結原料として褐鉄鉱を多量に
使用する場合は、焼結鉱の生産性や製品歩留の低下、冷
間強度および耐還元粉化性等の焼結鉱の品質の低下の問
題があり、その使用量を制限せざるを得なかった。
From the above, when a large amount of limonite is used as a sintering raw material, the productivity or product yield of the sinter decreases, and the quality of the sinter such as cold strength and resistance to reduction pulverization deteriorates. However, there was no choice but to limit the amount of use.

【0014】このような褐鉄鉱を焼結原料として多量に
使用する場合の生産上および品質上の問題を改善するた
めの方法として、従来から、例えば、特開昭52−56
002号公報、特開平5−339653号公報、およ
び、特開平3−10027公報などに開示されているよ
うに、褐鉄鉱を焼結機に装入する前に、ばい焼機などに
より加熱処理して褐鉄鉱中の結合水の含有量を低減し、
焼成機で焼結する過程での結合水の分解、蒸発、およ
び、それに起因する焼結鉱の生産性、製品歩留、冷間強
度および耐還元粉化性などの焼結鉱品質の低下を抑制す
る方法が開示されている。
As a method for improving the production and quality problems when a large amount of such limonite is used as a sintering raw material, there is a conventional method, for example, JP-A-52-56.
As disclosed in Japanese Unexamined Patent Application Publication No. 002, Japanese Patent Application Laid-Open No. Hei 5-339653, Japanese Unexamined Patent Application Publication No. 3-10027, etc., before limonite is charged into a sintering machine, it is heated by a roasting machine or the like. Reduce the content of bound water in limonite,
Decomposition and evaporation of bound water in the process of sintering in a calcination machine, and the resulting deterioration of sinter quality such as sinter productivity, product yield, cold strength and resistance to reduction pulverization. A method of suppressing is disclosed.

【0015】[0015]

【発明が解決しようとする課題】しかしながら、特開昭
52−56002号公報、特開平5−339653号公
報及び特開平3−10027公報などに開示されている
従来法では、褐鉄鉱をばい焼機などにより加熱処理する
際の加熱温度は、500℃またはそれ以上の高温に設定
されており、褐鉄鉱中の結合水の含有量を効率的に低減
できる効果は充分に得られるが、ばい焼後の褐鉄鉱を他
の焼結原料と水分と混合して造粒する際の造粒性が、ば
い焼前の褐鉄鉱に比べて劣化するという問題があった。
However, according to the conventional methods disclosed in Japanese Patent Laid-Open Nos. 52-56002, 5-339653, and 3-1-10027, a limonite roasting machine or the like is used. The heating temperature during the heat treatment is set to a high temperature of 500 ° C. or higher, and the effect of efficiently reducing the content of bound water in limonite can be sufficiently obtained. There was a problem in that the granulation property when the powder was mixed with other sintering raw materials and water for granulation was deteriorated as compared with limonite before roasting.

【0016】本発明は、従来技術の問題点に鑑みて、褐
鉄鉱のような含水酸化鉄を含有する鉄鉱石を、事前にば
い焼機でばい焼した後、焼結機により焼結鉱を製造する
方法において、ばい焼後の鉄鉱石の造粒性を低下するこ
となく、酸化鉄中の結合水の含有量を低減するためのば
い焼条件を適正化することにより、焼結原料として褐鉄
鉱を多量に使用する場合の焼結鉱の生産性および製品歩
留を向上し、耐還元粉化性などの焼結鉱品質を向上でき
る焼結鉱の製造方法を提供する。
[0016] In view of the problems of the prior art, the present invention, after roasting iron ore containing hydrous iron oxide such as limonite in advance with a roasting machine, produces a sintered ore with a sintering machine. In the method, by optimizing the roasting conditions for reducing the content of bound water in iron oxide without reducing the granulation properties of the iron ore after roasting, limonite is used as a sintering raw material. Provided is a method for producing a sintered ore, which can improve the productivity and product yield of the sintered ore when used in a large amount and can improve the quality of the sintered ore such as resistance to reduction pulverization.

【0017】[0017]

【課題を解決するための手段】本発明者らが鋭意検討し
た結果、ばい焼後の褐鉄鉱の造粒性が低下する原因が、
褐鉄鉱中に含有する粘土鉱物、特に、カオリンが高温で
脱水により変質したからであることが判り、褐鉄鉱のよ
うな含水酸化鉄を含有する鉄鉱石をばい焼する際の温度
条件の最適な設定により、鉄鉱石中のカオリンを変質さ
せず、含水酸化鉄中の結晶水を低減できる方法を見いだ
した。
Means for Solving the Problems As a result of intensive investigations by the present inventors, the cause of the decrease in the granulating property of limonite after roasting is
It was found that clay minerals contained in limonite, especially kaolin, were altered by dehydration at high temperatures, and it was determined by optimal setting of temperature conditions for roasting iron ores containing hydrous iron oxide such as limonite. , We have found a method that can reduce the water of crystallization in hydrous iron oxide without deteriorating kaolin in iron ore.

【0018】本発明は、この知見に基づいてなされたも
のであり、その発明の要旨とするところは、以下のとお
りである。 (1)含水酸化鉄を含有する鉄鉱石を事前にばい焼炉で
ばい焼して含水酸化鉄中の結合水を除去した後、その他
の焼結原料と混合および造粒し、焼結機に装入して焼結
する焼結鉱の製造方法において、前記ばい焼時の加熱温
度を含水酸化鉄中の結合水の解離温度以上、粘土鉱物中
の構造水の解離温度未満の温度範囲に設定することを特
徴とする焼結鉱の製造方法。 (2)前記含水酸化鉄中の結合水の解離温度および粘土
鉱物中の構造水の解離温度は、ばい焼時の加熱温度と、
該加熱温度でばい焼した後の赤外吸収スペクトルにおけ
る含水酸化鉄中の結合水に起因する吸収強度および粘土
鉱物中の構造水に起因する吸収強度との関係に基づいて
決定されることを特徴とする上記(1)に記載の焼結鉱
の製造方法。 (3)前記含水酸化鉄中の結合水に起因する吸収強度
は、赤外吸収スペクトルの3600〜2800(1/c
m)の波数範囲で測定され、前記粘土鉱物中の構造水に
起因する吸収強度は、赤外吸収スペクトルの3800〜
3600(1/cm)の波数範囲で測定されることを特
徴とする上記(2)に記載の焼結鉱の製造方法。 (4)前記ばい焼により含水酸化鉄を含有する鉄鉱石中
の水分量を2.0質量%以下に低減することを特徴とす
る上記(1)〜(3)の何れかに記載の焼結鉱の製造方
法。 (5)前記ばい焼時の熱源として前記焼結機の冷却器の
廃熱の一部を利用することを特徴とする上記(1)〜
(4)の何れかに記載の焼結鉱の製造方法。 (6)前記粘土鉱物がカオリンであることを特徴とする
上記(1)〜(5)の何れかに記載の焼結鉱の製造方
法。
The present invention was made based on this finding, and the gist of the invention is as follows. (1) Iron ore containing hydrous iron oxide is roasted in a roasting furnace in advance to remove bound water in hydrous iron oxide, and then mixed and granulated with other sintering raw materials, and then used in a sintering machine. In the method for producing a sinter that is charged and sintered, the heating temperature during roasting is set to a temperature range that is equal to or higher than the dissociation temperature of bound water in hydrous iron oxide and is lower than the dissociation temperature of structural water in clay minerals. A method for producing a sinter, comprising: (2) The dissociation temperature of the bound water in the hydrous iron oxide and the dissociation temperature of the structural water in the clay mineral are the heating temperature during roasting,
It is determined based on the relationship between the absorption intensity due to the bound water in the hydrous iron oxide and the absorption intensity due to the structural water in the clay mineral in the infrared absorption spectrum after roasting at the heating temperature. The method for producing a sinter according to (1) above. (3) The absorption intensity resulting from the bound water in the iron oxide hydroxide is 3600 to 2800 (1 / c in the infrared absorption spectrum).
m) is measured in the wave number range, and the absorption intensity due to structural water in the clay mineral is 3800 to
The method for producing a sinter according to (2) above, which is measured in a wave number range of 3600 (1 / cm). (4) The sintering according to any one of (1) to (3) above, wherein the amount of water in the iron ore containing hydrous iron oxide is reduced to 2.0% by mass or less by the roasting. Method of producing ore. (5) A part of the waste heat of the cooler of the sintering machine is used as a heat source during the roasting, (1) to
The method for producing a sintered ore according to any one of (4). (6) The method for producing a sinter according to any of (1) to (5) above, wherein the clay mineral is kaolin.

【0019】[0019]

【発明の実施の形態】以下に本発明の詳細を説明する。BEST MODE FOR CARRYING OUT THE INVENTION The details of the present invention will be described below.

【0020】本発明者らは、褐鉄鉱のような含水酸化鉄
を含有する鉄鉱石をばい焼機によりばい焼する場合の鉄
鉱石中の粘土鉱物の挙動に着目し、種々の温度条件で鉄
鉱石をばい焼した後、鉄鉱石における粘土鉱物中の構造
水および含水酸化鉄中の結合水の関係を実験により調査
した。
The present inventors have paid attention to the behavior of clay minerals in iron ore when roasting iron ore containing hydrous iron oxide such as limonite by a roasting machine, and under various temperature conditions, iron ore After roasting, the relationship between structural water in clay minerals and bound water in hydrous iron oxide was investigated by experiments.

【0021】一般に、鉄鉱石中には、カオリン、モンモ
リロナイト、イライト、バーミキュライト、緑泥石など
の粘土鉱物が含有され、その中でも、特に、カオリン
(Al 2Si25(OH)4)の含有量が多い。これらの
粘土鉱物は水と混合すると粘性を帯びるため、造粒時の
造粒性において重要な役割を果たすと考えられていた。
Generally, kaolin and monmo are contained in iron ore.
Lilonite, illite, vermiculite, chlorite, etc.
Contains clay minerals of
(Al 2Si2OFive(OH)Four) Content is high. these
Clay minerals become viscous when mixed with water, so
It was thought to play an important role in granulation.

【0022】また、褐鉄鉱(Fe23・nH2O)のよ
うな鉄鉱石中に存在する含水酸化鉄は、最近の研究によ
り、天然産出形態でその大部分が不純な針鉄鉱(ゲーサ
イト)(Fe23・H2Oまたはα−FeO(O
H))、鱗鉄鉱(Fe23・H2Oまたはγ−FeO
(OH))であることが確認されている。
Further, iron-containing hydroxides present in iron ores such as limonite (Fe 2 O 3 .nH 2 O) have been recently researched, and most of them are impure goethite (goethite) in a naturally occurring form. ) (Fe 2 O 3 · H 2 O or α-FeO (O
H)), hematite (Fe 2 O 3 .H 2 O or γ-FeO
(OH)) has been confirmed.

【0023】鉄鉱石における粘土鉱物中の構造水および
含水酸化鉄中の結合水が、加熱時に脱水する挙動を把握
する方法としては、赤外吸収スペクトルによる方法、X
線回折による方法、熱分析による方法、試料加熱時に発
生する水分を測定する方法、および、核磁気共鳴法によ
る方法などが挙げられる。
As a method for grasping the behavior of dehydration of structural water in clay minerals and bound water in hydrous iron oxide in iron ore upon heating, an infrared absorption spectrum method, X
Examples include a method by line diffraction, a method by thermal analysis, a method by which water content generated when a sample is heated is measured, and a method by nuclear magnetic resonance method.

【0024】これらの方法のなかで、熱分析による方法
および試料加熱時に発生する水分を測定する方法は、一
旦ばい焼した試料を再度加熱しながら、試料の重量減
少、熱量変化、温度毎の水分発生量をなどを測定する方
法であり、測定に長い時間を要する。核磁気共鳴法によ
る方法は、高磁場内で測定するため、磁性体が共存する
鉄鉱石には不向きである。X線回折法は、結晶構造から
分析するものであるが、結晶性が悪いと感度が得られな
いという欠点がある。
Among these methods, the method by thermal analysis and the method for measuring the water content generated at the time of heating the sample are as follows. This is a method of measuring the amount of generation and the like, and it takes a long time for the measurement. The method based on the nuclear magnetic resonance method is not suitable for iron ore in which a magnetic substance coexists, because the measurement is performed in a high magnetic field. The X-ray diffraction method is an analysis based on the crystal structure, but it has a drawback that sensitivity cannot be obtained if the crystallinity is poor.

【0025】一方、赤外吸収スペクトルによる方法は、
試料と臭化カリウムを混合して成形し、赤外分光光度計
で測定する方法であり、簡便で精度も良いため、針鉄鉱
(α−FeO(OH))、鱗鉄鉱(γ−FeO(O
H))、および、カオリン(Al 2Si25(OH)4
の脱水状況を把握するのに最適である。
On the other hand, the method using infrared absorption spectrum is as follows:
Infrared spectrophotometer by mixing sample with potassium bromide and molding
Is a simple and accurate method, so goethite
(Α-FeO (OH)), hematite (γ-FeO (O)
H)) and kaolin (Al 2Si2OFive(OH)Four)
It is ideal for understanding the dehydration status of.

【0026】図2には、褐鉄鉱中の主な含水酸化鉄であ
る針鉄鉱(α−FeO(OH))および鱗鉄鉱(γ−F
eO(OH))と、褐鉄鉱中の粘土鉱物であるカオリン
(Al2Si25(OH)4)を、空気中で、50〜60
0℃まで、10℃/分で加熱したときの熱重量変化(T
G)を示す。なお、これらの試料は、何れも市販されて
いる試薬を用いた。
In FIG. 2, goethite (α-FeO (OH)) and scheelite (γ-F), which are the main hydrous iron oxides in limonite, are shown.
eO (OH)) and kaolin (Al 2 Si 2 O 5 (OH) 4 ) which is a clay mineral in limonite in air at 50-60
Thermogravimetric change when heated to 0 ° C at 10 ° C / min (T
G) is shown. In addition, as these samples, commercially available reagents were used.

【0027】含水酸化鉄の主たる成分であるα−FeO
(OH)およびγ−FeO(OH)は、加熱により25
0℃近辺より、その結合水の解離(2FeO(OH)→
Fe 23+H2O)、蒸発による脱水が始まり、350
℃までに脱水は終了する。一方、粘土鉱物であるカオリ
ン(Al2Si25(OH)4)は、これらの含水酸化鉄
より高温の450℃近辺より、その構造水の解離(Al
2Si25(OH)4→Al2Si27+2H2O)、蒸発
による脱水が始まり、600℃までに脱水は終了する。
Α-FeO which is the main component of hydrous iron oxide
(OH) and γ-FeO (OH) are heated to 25
From around 0 ° C, dissociation of the bound water (2FeO (OH) →
Fe 2O3+ H2O), dehydration by evaporation begins, 350
The dehydration is completed by the temperature of ℃. On the other hand, kaori, which is a clay mineral,
(Al2Si2OFive(OH)Four) Is the iron oxide hydroxide
The dissociation of the structural water (Al
2Si2OFive(OH)Four→ Al2Si2O7+ 2H2O), evaporation
Dehydration by means of water begins and is completed by 600 ° C.

【0028】なお、図2の実験では、試料として何れも
試薬を使用したので、天然に産出する針鉄鉱(α−Fe
O(OH))、鱗鉄鉱(γ−FeO(OH))、およ
び、カオリン(Al2Si25(OH)4)とは、結晶性
や構造の違いにより脱水温度の変動が生じる可能性があ
る。したがって、ばい焼温度を最適化するには、実際の
褐鉄鉱をばい焼し、針鉄鉱(α−FeO(OH))、鱗
鉄鉱(γ−FeO(OH))、および、カオリン(Al
2Si25(OH)4)の脱水状況を把握する必要があ
る。
In the experiment of FIG. 2, since a reagent was used as a sample, a naturally occurring goethite (α-Fe
O (OH)), hematite (γ-FeO (OH)), and kaolin (Al 2 Si 2 O 5 (OH) 4 ) may cause variations in dehydration temperature due to differences in crystallinity and structure. There is. Therefore, in order to optimize the roasting temperature, the actual limonite is roasted to obtain goethite (α-FeO (OH)), hematite (γ-FeO (OH)), and kaolin (Al).
It is necessary to understand the dehydration status of 2 Si 2 O 5 (OH) 4 ).

【0029】図3には、実際の褐鉄鉱Aを、50〜55
0℃までの温度範囲を10℃/minの加熱速度で加熱
した際の赤外吸収スペクトルの測定結果を示す。なお、
α−FeO(OH)に起因する吸収は、3130(1/
cm)、および、906(1/cm)、796(1/c
m)に見られ、カオリン(Al2Si25(OH)4)に
起因する吸収は、3697(1/cm)、および、36
20(1/cm)にそれぞれ見られる。
In FIG. 3, 50 to 55 of actual limonite A is shown.
The measurement result of the infrared absorption spectrum when heating in the temperature range up to 0 ° C. at a heating rate of 10 ° C./min is shown. In addition,
The absorption due to α-FeO (OH) is 3130 (1 /
cm) and 906 (1 / cm), 796 (1 / c)
m), the absorption due to kaolin (Al 2 Si 2 O 5 (OH) 4 ) is 3697 (1 / cm), and 36
20 (1 / cm) respectively.

【0030】赤外吸収スペクトルから含水酸化鉄である
α−FeO(OH)に起因する吸収は、加熱温度が30
0℃以上で顕著に減少し始め、加熱温度が350℃以上
になるとほとんど検出されなくなる。一方、カオリンに
起因する吸収は、加熱温度が450℃以上で減少し始
め、加熱温度が500℃以上になるとほとんど検出され
なくなる。
From the infrared absorption spectrum, the absorption due to α-FeO (OH), which is iron oxide hydrate, was observed at a heating temperature of 30.
It begins to decrease remarkably at 0 ° C or higher, and becomes almost undetectable at heating temperatures of 350 ° C or higher. On the other hand, the absorption due to kaolin begins to decrease at a heating temperature of 450 ° C. or higher, and is hardly detected at a heating temperature of 500 ° C. or higher.

【0031】本発明では、含水酸化鉄を含有する鉄鉱石
を事前にばい焼炉でばい焼して含水酸化鉄中の結合水を
除去する場合の加熱温度を、含水酸化鉄中の結合水の解
離温度以上、カオリン中の結合水の解離温度未満の温度
範囲に設定する。
In the present invention, the heating temperature when the iron ore containing hydrous iron oxide is roasted in a roasting furnace in advance to remove the bound water in the hydrous iron oxide is the heating temperature. The temperature is set to a temperature range higher than the dissociation temperature and lower than the dissociation temperature of bound water in kaolin.

【0032】ここで、含水酸化鉄中の結合水の解離温度
とは、例えば、図3に示されるような鉄鉱石の加熱時の
赤外吸収スペクトルの測定を用いた場合には、含水酸化
鉄であるα−FeO(OH)に起因する吸収(3130
(1/cm)、906(1/cm)、および、796
(1/cm))が顕著に低減し始める加熱温度と定義
し、図3から、300℃である。
Here, the dissociation temperature of the bound water in the hydrous iron oxide is, for example, when the measurement of the infrared absorption spectrum of the iron ore during heating as shown in FIG. 3 is used. Absorption due to α-FeO (OH) (3130
(1 / cm), 906 (1 / cm), and 796
(1 / cm)) is defined as the heating temperature at which it begins to significantly decrease, and is 300 ° C. from FIG.

【0033】また、カオリン中の結合水の解離温度と
は、例えば、図3に示されるような鉄鉱石の加熱時の赤
外吸収スペクトルの測定を用いた場合には、粘土鉱物で
あるカオリン(Al2Si25(OH)4)に起因する吸
収(3697(1/cm)、および、3620(1/c
m))がほとんど検出されなくなる加熱温度と定義し、
図3から、500℃である。
The dissociation temperature of bound water in kaolin means, for example, when the infrared absorption spectrum of iron ore as shown in FIG. Absorption due to Al 2 Si 2 O 5 (OH) 4 (3697 (1 / cm) and 3620 (1 / c)
m)) is defined as the heating temperature at which
From FIG. 3, it is 500 degreeC.

【0034】ばい焼炉の加熱温度が含水酸化鉄中の結合
水の解離温度未満(例えば、図3に示されるような鉄鉱
石の加熱時の赤外吸収スペクトルの測定を用いた場合に
は、300℃未満)の場合には、含水酸化鉄中の結合水
が充分に低減されず、焼結時の加熱過程において、鉱石
中の結合水(nH2O)が分解、蒸発することにより鉱
石中に亀裂が発生するので、その後の同化反応により生
成した融液が亀裂内に侵入して同化反応が急速に進行
し、その冷却凝固後の同化組織は、大きな気孔が残存し
た脆弱な組織となったり、結合水(nH2O)を分解、
蒸発するために余分に熱エネルギーを使用して、焼結温
度が低下する原因となるなどの問題が生じる。
The heating temperature of the roasting furnace is lower than the dissociation temperature of the bound water in the hydrous iron oxide (for example, when the infrared absorption spectrum measurement of iron ore as shown in FIG. 3 is used, In the case of less than 300 ° C.), the bound water in the hydrous iron oxide is not sufficiently reduced, and the bound water (nH 2 O) in the ore is decomposed and evaporated during the heating process during sintering, and Since a crack occurs in the melt, the melt generated by the subsequent assimilation reaction enters the crack and the assimilation reaction proceeds rapidly, and the assimilated structure after cooling and solidification becomes a fragile structure with large pores remaining. Or decomposes bound water (nH 2 O),
There is a problem in that extra heat energy is used to evaporate, which causes a decrease in the sintering temperature.

【0035】ばい焼炉の加熱温度がカオリン中の結合水
の解離温度以上(例えば、図3に示されるような鉄鉱石
の加熱時の赤外吸収スペクトルの測定を用いた場合に
は、500℃以上)の場合には、含水酸化鉄中の結合水
は充分に低減されるが、カオリン(Al2Si25(O
H)4)中の結合水が、解離(Al2Si25(OH)4
→Al2Si27+2H2O)、蒸発して、Al2Si2
7(Al23・2SiO2)に変態してしまい、カオリン
(Al2Si25(OH)4)の特性である、水を添加し
た際の粘性の向上効果が著しく低下する。
The heating temperature of the roasting furnace is equal to or higher than the dissociation temperature of bound water in kaolin (for example, 500 ° C. when the infrared absorption spectrum of iron ore as shown in FIG. 3 is used for heating). In the above case, the bound water in the hydrous iron oxide is sufficiently reduced, but kaolin (Al 2 Si 2 O 5 (O
The bound water in H) 4 ) is dissociated (Al 2 Si 2 O 5 (OH) 4
→ Al 2 Si 2 O 7 + 2H 2 O), evaporated and Al 2 Si 2 O
7 (Al 2 O 3 · 2SiO 2 ) is transformed, and the effect of improving the viscosity when water is added, which is a characteristic of kaolin (Al 2 Si 2 O 5 (OH) 4 ), is significantly reduced.

【0036】従って、含水酸化鉄を含有する鉄鉱石をば
い焼した後に、その他の焼結配合原料および水分とを混
合し、造粒する際の造粒性が低下するので、焼結機で焼
結する際の通気性が低下し、焼結鉱の生産性および製品
歩留を低下させるという問題が生じる。
Therefore, after the iron ore containing the iron oxide hydroxide is roasted, the granulating property at the time of granulating by mixing with other sintering compounding raw materials and water is reduced, so that it is calcined by a sintering machine. There is a problem that the air permeability at the time of binding is lowered, and the productivity of the sintered ore and the product yield are lowered.

【0037】このような理由で、ばい焼炉でばい焼する
場合の加熱温度を、含水酸化鉄中の結合水の解離温度以
上、カオリン中の結合水の解離温度未満の温度範囲(例
えば、図3に示されるような鉄鉱石の加熱時の赤外吸収
スペクトルの測定を用いた場合は、300℃以上、50
0℃未満の温度範囲)に設定する必要がある。
For this reason, the heating temperature for roasting in a roasting furnace is in a temperature range above the dissociation temperature of bound water in hydrous iron oxide and below the dissociation temperature of bound water in kaolin (for example, When the measurement of the infrared absorption spectrum during heating of the iron ore as shown in 3 is used, 300 ° C. or higher, 50
It is necessary to set the temperature range below 0 ° C.

【0038】なお、さらに造粒性を向上させるために
は、ばい焼炉でばい焼する場合の加熱温度の上限を45
0℃(赤外吸収スペクトルの測定による温度)に低く設
定することが好ましい。また、含水酸化鉄中の結合水の
含有量を短時間で低減するためには、ばい焼炉でばい焼
する場合の加熱温度の上限を350℃(赤外吸収スペク
トルの測定による温度)に高く設定することが好まし
い。
In order to further improve the granulation property, the upper limit of the heating temperature when roasting in a roasting furnace is 45.
It is preferable to set the temperature as low as 0 ° C. (temperature measured by infrared absorption spectrum). Further, in order to reduce the content of bound water in hydrous iron oxide in a short time, the upper limit of the heating temperature when roasting in a roasting furnace is increased to 350 ° C. (temperature measured by infrared absorption spectrum). It is preferable to set.

【0039】上述のように、加熱時の鉄鉱石の赤外吸収
スペクトル測定法を用いることにより、簡便で良好な精
度で、含水酸化鉄中の結合水およびカオリン中の構造水
の脱水状況を把握し、それぞれの解離温度を決定するこ
とができるが、例えば、X線回折による方法、熱分析に
よる方法、試料加熱時に発生する水分を測定する方法、
および、核磁気共鳴法による方法などの測定方法を用い
て、ばい焼時の加熱温度とそれぞれの測定値との関係を
基に含水酸化鉄中の結合水およびカオリン中の構造水の
各解離温度を決定してもよい。
As described above, by using the infrared absorption spectrum measuring method of iron ore at the time of heating, the dehydration state of bound water in hydrous iron oxide and structural water in kaolin can be grasped easily and with good accuracy. The dissociation temperature of each can be determined by, for example, a method by X-ray diffraction, a method by thermal analysis, a method of measuring water generated during sample heating,
Using the measurement method such as the nuclear magnetic resonance method, the dissociation temperature of bound water in hydrous iron oxide and the structural water in kaolin is calculated based on the relationship between the heating temperature during roasting and the measured values. May be determined.

【0040】また、本発明では、ばい焼炉でばい焼する
際に、含水酸化鉄を含有する鉄鉱石中の水分量を2.0
質量%以下に低減するものとする。このように含水酸化
鉄を含有する鉄鉱石中の水分量を2.0質量%以下に低
減する理由は、それによって、焼結時の加熱過程におけ
る鉱石中の結合水(nH2O)の分解、蒸発による鉱石
中に亀裂の発生を防止し、同化融液の亀裂内への侵入に
よる同化反応の急速化および同化凝固組織中の残存気孔
の発生を抑制することができ、焼結鉱の強度を向上でき
るとともに、結合水の分解・蒸発のための熱エネルギー
ロスおよびそれに伴う燃料原単位の増加を抑制するなど
の効果を充分に得るためである。
Further, in the present invention, when roasting in a roasting furnace, the water content in the iron ore containing hydrous iron oxide is 2.0.
It shall be reduced to less than or equal to mass%. The reason for reducing the amount of water in the iron ore containing iron oxide hydroxide to 2.0% by mass or less is to decompose the bound water (nH 2 O) in the ore during the heating process during sintering. , It is possible to prevent the occurrence of cracks in the ore due to evaporation, to suppress the assimilation reaction due to the penetration of the assimilated melt into the cracks, and to suppress the generation of residual pores in the assimilated solidification structure. This is because it is possible to obtain a sufficient effect such that the heat energy loss due to the decomposition / evaporation of bound water and the accompanying increase in the fuel consumption rate can be suppressed.

【0041】本発明のばい焼炉の熱源としては、焼結機
の冷却器の廃熱を一部利用してもよい。
As the heat source of the roasting furnace of the present invention, a part of the waste heat of the cooler of the sintering machine may be used.

【0042】また、事前熱処理する場所は、製鉄所の焼
結機近くでもよいし、製鉄所外、あるいは資源保有国の
山元で行っても良い。
The pre-heat treatment may be performed near the sintering machine of the iron mill, or outside the iron mill, or in Yamamoto, which is a resource-holding country.

【0043】[0043]

【実施例】(実施例)本発明の実施形態の一例を図1に
示す。褐鉄鉱のような含水酸化鉄を含む鉄鉱石を貯鉱槽
1からばい焼炉2へ装入して、ばい焼炉2でばい焼して
含水酸化鉄中の結合水を2.0質量%以下としてから鉄
鉱石貯鉱槽3へ移送する。ばい焼して含水酸化鉄中の結
合水が2.0質量%以下になった鉄鉱石を鉄鉱石貯鉱槽
3から、その他の焼結原料を鉄鉱石貯鉱槽4および副原
料槽5、6から、それぞれミキサー7へ装入し、ミキサ
ー7で混合、造粒した後、それらをサージホッパー8お
よびドラムフィーダー9を介して焼結機10に装入す
る。
EXAMPLE An example of an embodiment of the present invention is shown in FIG. An iron ore containing hydrous iron oxide such as limonite is charged into the roasting furnace 2 from the storage tank 1 and roasted in the roasting furnace 2 so that the combined water in the hydrous iron oxide is 2.0 mass% or less. Then, it is transferred to the iron ore storage tank 3. The iron ore containing 2.0% by mass or less of bound water in the hydrous iron oxide after roasting is taken from the iron ore storage tank 3, and the other sintering raw materials are the iron ore storage tank 4 and the auxiliary raw material tank 5, 6 into the mixer 7, after mixing and granulating with the mixer 7, they are charged into the sintering machine 10 via the surge hopper 8 and the drum feeder 9.

【0044】点火炉10により焼結充填層の上層の炭材
に点火後、上方から下方に向けて、空気を主排ガスダク
ト13を介して吸引することにより、焼結原料の燃焼点
を上方から下方に移動させながら加熱焼成して所定の焼
結帯11を形成し、焼結鉱12として排出する。
After igniting the carbonaceous material in the upper layer of the sintered packed layer by the ignition furnace 10, air is sucked from the upper side to the lower side through the main exhaust gas duct 13 so that the burning point of the sintering raw material is changed from the upper side. While moving downward, it is heated and fired to form a predetermined sintered zone 11 and discharged as a sintered ore 12.

【0045】ばい焼炉2の熱源には、焼結鉱12を冷却
する冷却器14の廃熱を活用するのが最もよいが、その
他の熱源15を利用してばい焼炉2をより高温化するこ
とも可能である。
The heat source of the roasting furnace 2 is best to utilize the waste heat of the cooler 14 for cooling the sinter 12, but the other heat source 15 is used to raise the temperature of the roasting furnace 2 to a higher temperature. It is also possible to do so.

【0046】次に、発明例と本発明で規定する条件の範
囲から外れた条件で実施した比較例において、それぞれ
の効果を比較して、本発明の効果を説明する。
Next, the effects of the present invention will be described by comparing the respective effects in the invention example and the comparative example carried out under the conditions out of the range defined by the present invention.

【0047】表1に、発明例および比較例において焼結
原料として使用した配合原料割合、表2に、発明例と比
較例における褐鉄鉱のばい焼時の加熱温度、ばい焼前後
の褐鉄鉱の含水率(含水酸化鉄中の結合水の含有量)お
よびカオリン含有量、および、粉コークス添加量(焼結
原料の外数)、さらに、表3に、発明例と比較例におけ
る造粒性、焼結性、および、焼結鉱の還元粉化性の評価
結果を示す。
Table 1 shows the proportion of the blended raw materials used as sintering raw materials in the invention examples and comparative examples, and Table 2 shows the heating temperature during roasting of limonite in the inventive examples and comparative examples and the water content of limonite before and after roasting. (Bound water content in hydrous iron oxide) and kaolin content, and powder coke addition amount (external number of sintering raw material). Further, in Table 3, granulation property and sintering in the invention example and the comparative example. The evaluation results of the reducibility and sinter ore reduction powdering property are shown.

【0048】なお、ばい焼前後の褐鉄鉱の含水率(含水
酸化鉄中の結合水の含有量)は、JIS M8211
「鉄鉱石中の化合水定量方法」に基づき、予め試料鉱石
を乾燥した窒素気流中で105℃に加熱して吸湿水を除
去した後、引き続き乾燥した窒素気流中で950℃まで
加熱し、その際、遊離した結合水をエチレングリコール
・メタノール混合溶液に吸収させ、カールフィッシャー
試薬標準溶液で電気的に滴定して、その量を含水率(質
量%)とした。
The water content of limonite before and after roasting (content of bound water in hydrous iron oxide) is JIS M8211.
Based on the "method for determining combined chemical water in iron ore", the sample ore was previously heated to 105 ° C in a dry nitrogen stream to remove hygroscopic water, and subsequently heated to 950 ° C in a dry nitrogen stream, At this time, the liberated bound water was absorbed in a mixed solution of ethylene glycol / methanol and electrically titrated with a Karl Fischer reagent standard solution, and the amount was defined as the water content (mass%).

【0049】また、ばい焼前後の褐鉄鉱中のカオリン含
有量は、次のように赤外吸収スペクトル測定結果から求
めた。すなわち、予め、市販試薬のカオリンを用い、異
なる量のカオリンにおいて赤外吸収スペクトルを測定
し、カオリン由来のO−Hに基因する吸収強度から検量
線を作製しておき、次に、ばい焼前後の試料鉱石(褐鉄
鉱)の赤外吸収スペクトルを測定し、同じく鉱石中のカ
オリン由来のO−Hの吸収強度を求め、この吸収強度か
ら予め求めたカオリン量と吸収強度の検量線をもとに、
試料鉱石(褐鉄鉱)中のカオリン含有量(質量%)を換
算することにより求めた。
The kaolin content in the limonite before and after roasting was determined from the infrared absorption spectrum measurement results as follows. That is, using a commercially available reagent kaolin, infrared absorption spectra were measured in different amounts of kaolin in advance, a calibration curve was prepared from the absorption intensity due to OH derived from kaolin, and then, before and after roasting. Infrared absorption spectrum of the sample ore (limonite) of No. 2 was measured, and the absorption intensity of OH derived from kaolin in the ore was also obtained. Based on this absorption intensity, a calibration curve of the amount of kaolin and the absorption intensity obtained in advance was used. ,
It was calculated by converting the kaolin content (mass%) in the sample ore (limonite).

【0050】表3の造粒性の評価は、造粒歩留と造粒物
の強度の測定に基づいて行った。造粒歩留(擬似粒化指
数:GI0.5(%))は、次式より求めた。
The evaluation of the granulation property in Table 3 was carried out based on the measurement of the granulation yield and the strength of the granulated product. The granulation yield (pseudo-granulation index: GI 0.5 (%)) was calculated from the following formula.

【0051】GI0.5={(A−B)/A}×100 A:0.5mm以下の真粒子の配合割合 B:0.5mm以下の擬似粒子の配合割合 造粒物の強度はGI0.5の数値を用いて、83以上を
○、78〜82を△、77以下を×として評価した。
GI 0.5 = {(AB) / A} × 100 A: Mixing ratio of true particles of 0.5 mm or less B: Mixing ratio of pseudo particles of 0.5 mm or less The strength of the granulated product is GI 0.5 . It was evaluated using 83 or more as o, 78 to 82 as Δ, and 77 or less as x.

【0052】焼結性の評価は、造粒温度、通気性、生産
性、および、製品歩留の測定に基づいて行った。焼結温
度は、1250〜1400℃を“良”とし、それよりも
低い温度を“低”、高い温度を“高”とした。なお、焼
結温度については、局所的な「むら」もあるので、焼結
後の組織観察を行い、評価の参考とした。
The sinterability was evaluated based on the measurement of granulation temperature, air permeability, productivity, and product yield. Regarding the sintering temperature, 1250 to 1400 ° C. was “good”, lower temperature was “low”, and higher temperature was “high”. Regarding the sintering temperature, there is local "unevenness", so the structure was observed after sintering and used as a reference for evaluation.

【0053】通気性は、JPU(Japanease Permeabili
ty Unit)により評価した。
The breathability of the JPU (Japanease Permeabili
ty Unit).

【0054】JPU=(F/A)(h/s)0.6 F:流量(Nm3/min) A:吸引面積(m2) h:装入層厚(m) s:負圧(mH2O) JPUは、設備によって異なるので、50kg鍋試験機
を用いて試験し、JPU13以上を○、9〜12を△、
8以下を×とした。
JPU = (F / A) (h / s) 0.6 F: Flow rate (Nm 3 / min) A: Suction area (m 2 ) h: Charge layer thickness (m) s: Negative pressure (mH 2 O) ) Since the JPU differs depending on the equipment, it is tested using a 50 kg pan tester, and JPU 13 or higher is ○, 9-12 is Δ,
8 or less was designated as x.

【0055】焼結鉱の品質評価は、還元粉化性により行
った。還元粉化性は、焼結鉱の高炉内の比較的低温領域
での粉化性を推定するもので、試料を、30%CO、7
0%N2の還元性雰囲気で550℃で30分間還元した
後に、所定の回転試験機に装入して規定の回転数回転さ
せ、所定のふるいでふるい分け、各区分ごとの質量%に
より評価する。次式に計算式を示す。
The quality of the sintered ore was evaluated by the reduction powdering property. The reduction pulverization property estimates the pulverization property of the sinter in the blast furnace in a relatively low temperature region.
After reducing in a reducing atmosphere of 0% N 2 at 550 ° C. for 30 minutes, it is put into a predetermined rotation tester, rotated at a predetermined rotation speed, sieved with a predetermined sieving, and evaluated by mass% of each section. . The calculation formula is shown below.

【0056】RDI(%)=(W3/W2)×100 W2:回転試験機に装入した試料の質量(g) W3:ふるい分け後の3mm以下の試料の質量(g) 発明例No.1〜5は、造粒性、焼結性、および、焼結
鉱の還元粉化性の何れも良好であったが、本発明で規定
する条件の範囲から外れた条件で実施した比較例No.
6〜13は、造粒性、焼結性、および、焼結鉱の還元粉
化性の評価のうちの何れかが発明例よりも低い結果とな
った。
RDI (%) = (W3 / W2) × 100 W2: Mass of sample loaded in rotary tester (g) W3: Mass of sample of 3 mm or less after sieving (g) Invention Example No. Nos. 1 to 5 were good in both granulation property, sinterability, and reduction powdering property of sinter, but Comparative Example No. carried out under conditions outside the range of the conditions specified in the present invention. .
In Nos. 6 to 13, any one of the evaluation of the granulation property, the sinterability, and the reduction and pulverization property of the sintered ore was lower than that of the invention example.

【0057】つまり、比較例6は、ばい焼していないた
めに含水率が本発明で規定する条件の範囲から外れてお
り、造粒性は確保できるものの、焼結温度が低く、通気
性、生産性、成品歩留が低い結果となった。比較例7
は、焼結温度の低下を改善するために粉コークス量を増
やしたが、局部的な温度の上昇が見られ、通気性はさら
に悪化し、生産性も悪い。比較例8、9、10、およ
び、11は、ばい焼温度が低いため、比較例6および7
と同様の結果となった。
That is, in Comparative Example 6, the moisture content is out of the range defined by the present invention because it is not roasted, and although the granulation property can be secured, the sintering temperature is low, the air permeability, The productivity and product yield were low. Comparative Example 7
Has increased the amount of coke powder in order to improve the decrease in the sintering temperature, but a local increase in temperature is observed, the air permeability is further deteriorated, and the productivity is poor. Since Comparative Examples 8, 9, 10 and 11 have low roasting temperatures, Comparative Examples 6 and 7
The result is similar to.

【0058】含水酸化鉄は水を含みやすいが、造粒性に
は寄与せず、造粒歩留は実施例に比べてやや低下する傾
向にある。比較例12および13は、ばい焼温度が高す
ぎるためにカオリンが変質してしまい、造粒性が悪化
し、その影響で通気性、生産性、成品歩留が低下し、還
元粉化性が悪化した。
Although the iron oxide hydroxide was liable to contain water, it did not contribute to the granulation property, and the granulation yield tended to be slightly lower than in the Examples. In Comparative Examples 12 and 13, the kaolin is deteriorated because the roasting temperature is too high, and the granulation property is deteriorated. As a result, the air permeability, the productivity, the product yield are lowered, and the reduced powdering property is reduced. It got worse.

【0059】[0059]

【表1】 [Table 1]

【表2】 [Table 2]

【表3】 [Table 3]

【0060】[0060]

【発明の効果】以上のように本発明によれば、褐鉄鉱の
ような含水酸化鉄を含有する鉄鉱石を事前にばい焼機で
ばい焼後、混合造粒して焼結機により焼結鉱を製造する
方法において、ばい焼後の鉄鉱石の造粒性を低下するこ
となく酸化鉄中の結合水の含有量を低減でき、焼結原料
として褐鉄鉱を多量に使用する場合の焼結鉱の生産性お
よび製品歩留を向上し、冷間強度及び耐還元粉化性など
の焼結鉱品質を向上できる焼結鉱の製造方法を提供でき
る。
As described above, according to the present invention, iron ore containing hydrous iron oxide such as limonite is roasted in advance by a roasting machine, then mixed and granulated and sintered by a sintering machine. In the method of producing, the content of bound water in iron oxide can be reduced without lowering the granulation property of iron ore after roasting, and the amount of sinter in the case of using a large amount of limonite as a sintering raw material It is possible to provide a method for producing a sinter that can improve productivity and product yield and improve sinter quality such as cold strength and resistance to reduction pulverization.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施形態の一例を示した焼結鉱の製造
プロセスの模式図である。
FIG. 1 is a schematic view of a sinter production process showing an example of an embodiment of the present invention.

【図2】含水酸化物である針鉄鉱(α−FeO(O
H))、および、鱗鉄鉱(γ−FeO(OH))と、粘
土鉱物であるカオリン(Al2Si25(OH)4)の加
熱温度:50〜600℃の範囲における熱重量変化(T
G)を示す。
FIG. 2 is a hydrous oxide, goethite (α-FeO (O
H)) and hematite (γ-FeO (OH)) and clay mineral kaolin (Al 2 Si 2 O 5 (OH) 4 ) at a heating temperature of 50 to 600 ° C. T
G) is shown.

【図3】褐鉄鉱Aを加熱した際の赤外吸収スペクトルの
測定結果を示す図である。
FIG. 3 is a diagram showing measurement results of infrared absorption spectra when limonite A is heated.

【符号の説明】[Explanation of symbols]

1…貯鉱槽 2…ばい焼炉 3…鉄鉱石貯鉱槽 4…鉄鉱石貯鉱槽 5…副原料槽 6…副原料槽 7…ミキサー 8…サージホッパー 9…ドラムフィーダー 10…点火炉 11…焼結帯 12…焼結鉱 13…主排ガスダクト 14…冷却器 15…その他の熱源 1 ... Storage tank 2… Roasting furnace 3 ... Iron ore storage tank 4 ... Iron ore storage tank 5 ... Sub-material tank 6 ... Sub-material tank 7 ... mixer 8 ... Surge hopper 9 ... Drum feeder 10 ... Ignition furnace 11 ... Sintered zone 12 ... Sintered ore 13 ... Main exhaust gas duct 14 ... Cooler 15 ... Other heat sources

フロントページの続き (72)発明者 今福 宗行 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 (72)発明者 田中 幸基 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 (72)発明者 齋藤 公児 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 (72)発明者 林 俊一 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 (72)発明者 金橋 康二 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 (72)発明者 岡崎 潤 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 (72)発明者 細谷 陽三 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 Fターム(参考) 4K001 AA10 BA02 CA11 CA32 CA37 CA45 Continued front page    (72) Inventor Imafuku Muneyuki             20-1 Shintomi, Futtsu-shi, Chiba Nippon Steel shares             Company Technology Development Division (72) Inventor Kouki Tanaka             20-1 Shintomi, Futtsu-shi, Chiba Nippon Steel shares             Company Technology Development Division (72) Inventor Kouji Saito             20-1 Shintomi, Futtsu-shi, Chiba Nippon Steel shares             Company Technology Development Division (72) Inventor Shunichi Hayashi             20-1 Shintomi, Futtsu-shi, Chiba Nippon Steel shares             Company Technology Development Division (72) Inventor Koji Kanahashi             20-1 Shintomi, Futtsu-shi, Chiba Nippon Steel shares             Company Technology Development Division (72) Inventor Jun Okazaki             20-1 Shintomi, Futtsu-shi, Chiba Nippon Steel shares             Company Technology Development Division (72) Inventor Yozo Hosoya             20-1 Shintomi, Futtsu-shi, Chiba Nippon Steel shares             Company Technology Development Division F-term (reference) 4K001 AA10 BA02 CA11 CA32 CA37                       CA45

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 含水酸化鉄を含有する鉄鉱石を事前にば
い焼炉でばい焼して含水酸化鉄中の結合水を除去した
後、その他の焼結原料と混合および造粒し、焼結機に装
入して焼結する焼結鉱の製造方法において、前記ばい焼
時の加熱温度を含水酸化鉄中の結合水の解離温度以上、
粘土鉱物中の構造水の解離温度未満の温度範囲に設定す
ることを特徴とする焼結鉱の製造方法。
1. An iron ore containing iron oxide hydroxide is roasted in a roasting furnace in advance to remove bound water in the iron oxide hydroxide, and then mixed and granulated with other sintering raw materials and sintered. In a method for producing a sinter that is charged into a machine and sintered, the heating temperature at the time of roasting is equal to or higher than the dissociation temperature of bound water in hydrous iron oxide,
A method for producing a sinter, comprising setting a temperature range below a dissociation temperature of structural water in a clay mineral.
【請求項2】 前記含水酸化鉄中の結合水の解離温度お
よび粘土鉱物中の構造水の解離温度は、ばい焼時の加熱
温度と、該加熱温度でばい焼した後の赤外吸収スペクト
ルにおける含水酸化鉄中の結合水に起因する吸収強度お
よび粘土鉱物中の構造水に起因する吸収強度との関係に
基づいて決定されることを特徴とする請求項1に記載の
焼結鉱の製造方法。
2. The dissociation temperature of the bound water in the hydrous iron oxide and the dissociation temperature of the structural water in the clay mineral are determined by the heating temperature during roasting and the infrared absorption spectrum after roasting at the heating temperature. The method for producing a sinter according to claim 1, which is determined on the basis of a relationship between an absorption intensity resulting from bound water in the iron oxide hydroxide and an absorption intensity resulting from structural water in the clay mineral. .
【請求項3】 前記含水酸化鉄中の結合水に起因する吸
収強度は、赤外吸収スペクトルの3600〜2800
(1/cm)の波数範囲で測定され、前記粘土鉱物中の
構造水に起因する吸収強度は、赤外吸収スペクトルの3
800〜3600(1/cm)の波数範囲で測定される
ことを特徴とする請求項2に記載の焼結鉱の製造方法。
3. The absorption intensity resulting from bound water in the hydrous iron oxide is 3600 to 2800 in the infrared absorption spectrum.
The absorption intensity, which is measured in the wave number range of (1 / cm) and is due to the structural water in the clay mineral, is 3 in the infrared absorption spectrum.
The method for producing a sinter according to claim 2, wherein the sinter is measured in a wave number range of 800 to 3600 (1 / cm).
【請求項4】 前記ばい焼により含水酸化鉄を含有する
鉄鉱石中の水分量を2.0質量%以下に低減することを
特徴とする請求項1〜3の何れか1項に記載の焼結鉱の
製造方法。
4. The baking according to any one of claims 1 to 3, wherein the amount of water in the iron ore containing hydrous iron oxide is reduced to 2.0% by mass or less by the roasting. Manufacturing method of calculus.
【請求項5】 前記ばい焼時の熱源として前記焼結機の
冷却器の廃熱の一部を利用することを特徴とする請求項
1〜4の何れか1項に記載の焼結鉱の製造方法。
5. The sintered ore according to claim 1, wherein a part of waste heat of a cooler of the sintering machine is used as a heat source during the roasting. Production method.
【請求項6】 前記粘土鉱物がカオリンであることを特
徴とする請求項1〜5の何れか1項に記載の焼結鉱の製
造方法。
6. The method for producing a sintered ore according to claim 1, wherein the clay mineral is kaolin.
JP2001212480A 2001-07-12 2001-07-12 Method for producing sintered ore Expired - Lifetime JP4762446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001212480A JP4762446B2 (en) 2001-07-12 2001-07-12 Method for producing sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001212480A JP4762446B2 (en) 2001-07-12 2001-07-12 Method for producing sintered ore

Publications (2)

Publication Number Publication Date
JP2003027148A true JP2003027148A (en) 2003-01-29
JP4762446B2 JP4762446B2 (en) 2011-08-31

Family

ID=19047633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001212480A Expired - Lifetime JP4762446B2 (en) 2001-07-12 2001-07-12 Method for producing sintered ore

Country Status (1)

Country Link
JP (1) JP4762446B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013092539A (en) * 2013-02-04 2013-05-16 Nippon Steel & Sumitomo Metal Evaluation method for blended iron ore for sintering
JP2014189889A (en) * 2013-03-28 2014-10-06 Kobe Steel Ltd Method for producing sintered ore for iron making
CN106908473A (en) * 2017-04-18 2017-06-30 安徽工业大学 It is a kind of to simulate the device and method that different atmosphere detection Iron Ore Powder assimilates temperature
CN108020578A (en) * 2017-08-09 2018-05-11 安徽工业大学 A kind of detection device and its assembling, detection method of Iron Ore Powder assimilation temperature
CN116082026A (en) * 2022-12-07 2023-05-09 安徽冶金科技职业学院(马钢(集团)控股有限公司卫生学校) Preparation process of ilmenite and method for inhibiting perovskite from generating in sintering process

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013092539A (en) * 2013-02-04 2013-05-16 Nippon Steel & Sumitomo Metal Evaluation method for blended iron ore for sintering
JP2014189889A (en) * 2013-03-28 2014-10-06 Kobe Steel Ltd Method for producing sintered ore for iron making
CN106908473A (en) * 2017-04-18 2017-06-30 安徽工业大学 It is a kind of to simulate the device and method that different atmosphere detection Iron Ore Powder assimilates temperature
CN106908473B (en) * 2017-04-18 2023-03-10 安徽工业大学 Device and method for detecting iron ore powder assimilation temperature by simulating different atmospheres
CN108020578A (en) * 2017-08-09 2018-05-11 安徽工业大学 A kind of detection device and its assembling, detection method of Iron Ore Powder assimilation temperature
CN108020578B (en) * 2017-08-09 2023-06-23 安徽工业大学 Detection equipment for assimilation temperature of iron ore powder and assembly and detection method thereof
CN116082026A (en) * 2022-12-07 2023-05-09 安徽冶金科技职业学院(马钢(集团)控股有限公司卫生学校) Preparation process of ilmenite and method for inhibiting perovskite from generating in sintering process

Also Published As

Publication number Publication date
JP4762446B2 (en) 2011-08-31

Similar Documents

Publication Publication Date Title
JP2010096592A (en) Evaluation method of blended iron ore for sintering
EP2937427B1 (en) Reduced-iron production method
EA023830B1 (en) Method for producing an agglomerate made of fine material containing metal oxide for use as a blast furnace feed material
JP5565481B2 (en) Evaluation method of compound iron ore for sintering
JP5168802B2 (en) Method for producing sintered ore
JP2003027148A (en) Method for manufacturing sintered ore
US4326887A (en) Basic process of producing basic fluxed pellets for iron-making
JP5020446B2 (en) Method for producing sintered ore
JP2001348623A (en) METHOD FOR PRODUCING HIGH QUALITY AND LOW SiO2 SINTERED ORE FOR BLAST FURNACE
JP4786022B2 (en) Method for producing sintered ore
JP4725230B2 (en) Method for producing sintered ore
JPH10265858A (en) Production of high quality sintered ore
JP3395554B2 (en) Sinter production method
JP2001294945A (en) METHOD FOR PRODUCING HIGH QUALITY AND LOW SiO2 SINTERED ORE FOR BLAST FURNACE
JP2000178660A (en) PRODUCTION OF HIGH QUALITY LOW SiO2 SINTERED ORE
JP3944340B2 (en) Method for producing sintered ore and sintered ore
KR101187410B1 (en) Reinforcing agent and method for manufacturing sintered ore
JP3945323B2 (en) Granulation method of sintering raw material
JPH05247545A (en) Pseudo particle for raw material of sintered ore and raw material of sintered ore
KR102653932B1 (en) Method for manufacturing high-purity C12A7 slag using waste catalyst slag
JP2008088533A (en) Method for manufacturing sintered ore
JP4767425B2 (en) Method for producing sintered ore
RU2048548C1 (en) Method for production of fluxed iron-ore agglomerate
JP5074043B2 (en) Method for producing sintered ore
CA2974476A1 (en) Method and arrangement to prepare chromite concentrate for pelletizing and sintering and pelletizing feed

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110608

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4762446

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term