JP6294135B2 - Method for producing reduced iron - Google Patents

Method for producing reduced iron Download PDF

Info

Publication number
JP6294135B2
JP6294135B2 JP2014084554A JP2014084554A JP6294135B2 JP 6294135 B2 JP6294135 B2 JP 6294135B2 JP 2014084554 A JP2014084554 A JP 2014084554A JP 2014084554 A JP2014084554 A JP 2014084554A JP 6294135 B2 JP6294135 B2 JP 6294135B2
Authority
JP
Japan
Prior art keywords
iron
agglomerate
quartz
total
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014084554A
Other languages
Japanese (ja)
Other versions
JP2015203151A (en
Inventor
正樹 島本
正樹 島本
優維 細野
優維 細野
紳吾 吉田
紳吾 吉田
雅孝 立石
雅孝 立石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2014084554A priority Critical patent/JP6294135B2/en
Publication of JP2015203151A publication Critical patent/JP2015203151A/en
Application granted granted Critical
Publication of JP6294135B2 publication Critical patent/JP6294135B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Iron (AREA)

Description

本発明は、鉄鉱石や製鉄ダスト等の酸化鉄含有物質と、炭材等の炭素質還元剤とを含む塊成物を加熱して還元鉄を製造する方法に関する。   The present invention relates to a method for producing reduced iron by heating an agglomerate containing an iron oxide-containing substance such as iron ore or iron-making dust and a carbonaceous reducing agent such as a carbonaceous material.

原料として鉄鉱石を用いた製鉄プロセスは高炉−転炉法が主流である。しかし、高炉−転炉法は、高炉で鉄鉱石を還元して高炭素の溶銑を製造し、得られた溶銑を転炉で脱炭して鋼を製造するという所謂間接製鉄法であるため、鉄鉱石を還元して直接鋼を製造する直接製鉄法と比べると、CO2ガスの発生量が多くなる。そこで近年では、CO2ガスの排出量を抑制する観点から、直接製鉄法が見直されてきている。 The mainstream of the iron making process using iron ore as a raw material is the blast furnace-converter method. However, the blast furnace-converter method is a so-called indirect iron manufacturing method in which iron ore is reduced in a blast furnace to produce high carbon hot metal, and the obtained hot metal is decarburized in a converter to produce steel. Compared with the direct iron manufacturing method in which iron ore is reduced to directly produce steel, the amount of CO 2 gas generated is increased. Therefore, in recent years, direct iron manufacturing methods have been reviewed from the viewpoint of suppressing CO 2 gas emissions.

直接製鉄法としては、炭素質還元剤として入手が比較的容易な石炭を用いる還元鉄製造プロセスが注目されている。この還元鉄製造プロセスは、酸化鉄含有物質および炭素質還元剤を含む塊成物を加熱炉に装入し、炉内で加熱バーナーによるガス加熱や輻射熱で加熱することによって酸化鉄を還元して塊状の還元鉄を得るというものである。この還元鉄製造プロセスは、炭素質還元剤として石炭を用いることの他にも粉状の鉄鉱石を直接利用できること、還元時には鉄鉱石と還元剤が近接配置されているため、鉄鉱石中の酸化鉄を高速還元できること、還元して得られる製品中の炭素含有量を容易に調整できることといった利点を有している。   As a direct iron manufacturing method, a reduced iron manufacturing process using coal, which is relatively easily available as a carbonaceous reducing agent, has attracted attention. In this reduced iron production process, an agglomerate containing an iron oxide-containing substance and a carbonaceous reducing agent is charged into a heating furnace, and the iron oxide is reduced by heating in the furnace with gas heating or radiant heat using a heating burner. It is to obtain massive reduced iron. In this reduced iron production process, in addition to using coal as a carbonaceous reducing agent, powdered iron ore can be used directly, and during the reduction, the iron ore and the reducing agent are placed in close proximity. There are advantages that iron can be reduced at high speed and that the carbon content in the product obtained by reduction can be easily adjusted.

上記還元鉄製造プロセスで粒状金属鉄を製造する方法として、本出願人は、特許文献1の技術を先に提案している。この文献に開示している粒状金属鉄の製造方法は、酸化鉄含有物質と炭素質還元剤を含む原料混合物を、移動炉床式加熱還元炉の炉床上に装入して加熱し、該原料混合物中の酸化鉄を前記炭素質還元剤により還元し、生成する金属鉄を副生するスラグと分離しつつ粒状に凝集させた後、冷却凝固させて粒状金属鉄を製造する方法において、(1)前記原料混合物に含まれるCaO供給物質、MgO供給物質およびSiO2供給物質の量を調整することによって、前記スラグ中のCaO、MgOおよびSiO2の含有量から求められる該スラグの塩基度[(CaO+MgO)/SiO2]を1.2〜1.5の範囲とし、且つ前記スラグ中のMgO量を5質量%以下(0質量%を含まない)とし、(2)前記原料混合物にCaF2供給物質を配合することによって前記スラグ中のCaF2量を2質量%以上とするものである。 As a method of manufacturing granular metallic iron by the reduced iron manufacturing process, the present applicant has previously proposed the technique of Patent Document 1. In the method for producing granular metallic iron disclosed in this document, a raw material mixture containing an iron oxide-containing substance and a carbonaceous reducing agent is charged on a hearth of a moving hearth type heating reduction furnace, and heated. In the method for producing granular metallic iron by reducing the iron oxide in the mixture with the carbonaceous reducing agent, aggregating the produced metallic iron into particles while separating it from the by-product slag, and then cooling and solidifying it. ) The basicity of the slag determined from the contents of CaO, MgO and SiO 2 in the slag by adjusting the amounts of CaO supply material, MgO supply material and SiO 2 supply material contained in the raw material mixture [( CaO + MgO) / SiO 2 ] is set in the range of 1.2 to 1.5, and the MgO content in the slag is 5% by mass or less (not including 0% by mass). (2) CaF 2 supply to the raw material mixture Mix substances The CaF 2 content of the slag by those to 2 mass% or more.

特開2013−36058号公報JP 2013-36058 A

ところで、上記還元鉄製造プロセスで得られる還元鉄には、原料として用いられる鉄鉱石等の酸化鉄含有物質や石炭等の炭素質還元剤に含まれるCaO、SiO2、Al23といった脈石成分がスラグとして混入する。そのため還元鉄の品位は低くなる。鉄品位の低い還元鉄は、例えば、電気炉で溶解し、スラグを分離除去する必要がある。しかし還元鉄に含まれるスラグ量が増加すると、精錬時の歩留まりが低下するため、上記還元鉄製造プロセスで得られる還元鉄としては、スラグ含有量が少なく、鉄品位が高いものが求められている。 By the way, the reduced iron obtained by the reduced iron production process includes gangue such as CaO, SiO 2 and Al 2 O 3 contained in iron oxide-containing substances such as iron ore used as a raw material and carbonaceous reducing agents such as coal. Ingredients mix as slag. Therefore, the quality of reduced iron becomes low. Reduced iron with low iron grade needs to be dissolved in, for example, an electric furnace, and slag needs to be separated and removed. However, when the amount of slag contained in reduced iron increases, the yield during refining decreases, so reduced iron obtained by the reduced iron production process is required to have low slag content and high iron quality. .

上記還元鉄製造プロセスで得られる還元鉄の鉄品位を高めるには、原料として鉄品位の高い酸化鉄含有物質を用いることが有効である。しかし鉄鋼の生産量は世界的に増大している一方で、高品位鉄鉱石の採掘量は減少傾向にある。そのため高品位鉄鉱石の価格が上昇している。そこでコストを削減するには鉄品位の低い酸化鉄含有物質を用いる必要がある。しかし鉄品位の低い酸化鉄含有物質を用いると、還元鉄の歩留まりが低下し、還元鉄の生産性が悪かった。   In order to increase the iron quality of the reduced iron obtained by the reduced iron production process, it is effective to use an iron oxide-containing substance having a high iron quality as a raw material. However, while steel production is increasing globally, mining of high-grade iron ore is on the decline. As a result, the price of high-grade iron ore is rising. In order to reduce the cost, it is necessary to use an iron oxide-containing material having a low iron quality. However, when an iron oxide-containing substance having a low iron quality was used, the yield of reduced iron was lowered and the productivity of reduced iron was poor.

本発明は上記の様な事情に着目してなされたものであり、その目的は、酸化鉄含有物質および炭素質還元剤を含む塊成物を加熱して還元鉄を製造するにあたり、鉄品位の高い酸化鉄含有物質を用いた場合のみならず、鉄品位の低い酸化鉄含有物質を用いた場合でも、還元鉄の生産性を向上できる手法を提供することにある。   The present invention has been made paying attention to the above-mentioned circumstances, and its purpose is to produce an iron grade by heating an agglomerate containing an iron oxide-containing substance and a carbonaceous reducing agent. An object of the present invention is to provide a technique capable of improving the productivity of reduced iron not only when a high iron oxide-containing substance is used but also when an iron oxide-containing substance having a low iron quality is used.

上記課題を解決することのできた本発明に係る還元鉄の製造方法は、鉄鉱石および炭素質還元剤を含む混合物を塊成化する工程と、得られた塊成物を加熱して、該塊成物中の酸化鉄を還元する工程を含んでいる。そして、前記塊成物として、該塊成物中の全CaO量、全SiO量、および石英量に基づいて下記式(1)で算出されるX値が0.5〜6.0のものを用いる点に要旨を有する。下記式(1)中、( )は、塊成物中の各成分の含有量(質量%)を示している。また、石英とは、X線回折および走査型電子顕微鏡を併用することにより、分析対象からSiとOのみが検出された鉱物相である。
X=(全CaO)/[(全SiO)−(石英)] ・・・(1)
The method for producing reduced iron according to the present invention that has solved the above-described problems includes a step of agglomerating a mixture containing iron ore and a carbonaceous reducing agent, and heating the obtained agglomerate to produce the agglomerate. A step of reducing iron oxide in the composition. Then, as the agglomerate, as the total amount of CaO in the該塊Narubutsu, total amount of SiO 2, and on the basis of the quartz quantity X value calculated by the following formula (1) of 0.5 to 6.0 The point is to use. In the following formula (1), () indicates the content (% by mass) of each component in the agglomerate. Quartz is a mineral phase in which only Si and O are detected from an analysis object by using both X-ray diffraction and a scanning electron microscope.
X = (total CaO) / [(total SiO 2 ) − (quartz)] (1)

前記塊成物は、石英を0.5質量%以上含んでいてもよい。   The agglomerate may contain 0.5% by mass or more of quartz.

本発明によれば、塊成物を加熱して還元鉄を製造するにあたり、塊成物中の全CaO量、全SiO2量、および石英量が所定の関係を満足するように調整しているため、溶融スラグが速やかに形成される。その結果、還元鉄同士の凝集が促進され、還元鉄の歩留まりが向上し、還元鉄の生産性を高めることができる。 According to the present invention, when producing a reduced iron by heating the agglomerate, the total CaO amount, the total SiO 2 amount, and the quartz amount in the agglomerate are adjusted so as to satisfy a predetermined relationship. Therefore, the molten slag is rapidly formed. As a result, aggregation of the reduced iron is promoted, the yield of the reduced iron is improved, and the productivity of the reduced iron can be increased.

図1は、式(1)で算出されるX値と、生産性指数の相対値との関係を示すグラフである。FIG. 1 is a graph showing the relationship between the X value calculated by equation (1) and the relative value of the productivity index.

本発明者らは、塊成物を加熱して還元鉄を製造するにあたり、還元鉄の歩留まりを向上させて、還元鉄の生産性を高めるために鋭意検討を重ねてきた。その結果、塊成物中の全CaO量、全SiO2量、および石英量が所定の関係を満足すれば、脈石が早期に溶融し、溶融スラグが速やかに形成されること、溶融スラグが速やかに形成されることによって還元鉄同士の凝集が促進されるため、還元鉄の生産性を向上できることを見出し、本発明を完成した。 The inventors of the present invention have intensively studied in order to improve the yield of reduced iron by increasing the yield of reduced iron when heating the agglomerate to produce reduced iron. As a result, if the total CaO amount, the total SiO 2 amount, and the quartz amount in the agglomerate satisfy the predetermined relationship, the gangue is melted early, the molten slag is formed quickly, the molten slag is It was found that productivity of reduced iron can be improved because aggregation of reduced iron is promoted by the rapid formation, and the present invention has been completed.

まず、本発明を完成するに至った経緯について説明した後、本発明について詳述する。   First, the background to the completion of the present invention will be described, and then the present invention will be described in detail.

鉄品位の低い酸化鉄含有物質を用いて還元鉄を製造すると、上述したように、還元鉄の歩留まりが低下し、還元鉄の生産性が悪くなった。この原因は、酸化鉄含有物質に含まれる脈石にある。鉄品位の低い酸化鉄含有物質は、脈石を多く含むが、塊成物を加熱したときに、脈石が溶融せずに固体のまま存在すると、還元溶融して得られた還元鉄は、互いに凝集、合体し難くなるからである。そのため、還元鉄は、微細化し、脈石成分との分離性が悪くなり、還元鉄の歩留まりが低下する。そこで従来では、脈石を速やかに溶融させるために、上記特許文献1で提案したように、スラグの塩基度を調整した。   When reduced iron was produced using an iron oxide-containing substance having a low iron quality, as described above, the yield of reduced iron decreased and the productivity of reduced iron deteriorated. This is due to the gangue contained in the iron oxide-containing material. The iron oxide-containing substance with low iron quality contains a lot of gangue, but when the agglomerate is heated and the gangue remains in a solid state without melting, the reduced iron obtained by reductive melting, This is because it becomes difficult to aggregate and coalesce with each other. For this reason, the reduced iron is refined, the separability from the gangue component is deteriorated, and the yield of the reduced iron is reduced. Therefore, conventionally, in order to quickly melt the gangue, the basicity of the slag was adjusted as proposed in Patent Document 1 above.

本発明者らが、脈石の成分と還元鉄の歩留まりとの関係について更に検討したところ、脈石を構成する主要鉱物相である珪酸塩鉱物に含まれる石英の量が、脈石の滓化に大きく影響を及ぼすことが判明した。即ち、従来では、鉄鉱石で代表される酸化鉄含有物質の成分組成を測定する際は、鉄鉱石から検出されたSiは、Siの酸化物(SiO2)に換算して成分組成を測定していた。ところが、酸化鉄含有物質に含まれるSiは、金属のSiとして存在するものもあるが、大部分は、石英(SiO2)、カオリナイト[Al2Si25(OH)4]、カオリナイトに酸化鉄を含んだもの、アクチノ閃石[(Ca2(Mg,Fe)5Si822(OH)2]、カミングトン閃石[(Fe,Mg)7Si822(OH)2]、グリュネ閃石[Fe7Si822(OH)2]などの珪酸塩鉱物として存在する。これらの珪酸塩鉱物のうち、石英は、その他の鉱物相に比べて大型であり、粒径が大きい。また、石英は、共有結合で、各原子が非常に強固に結びついているため、反応性が乏しい。そのため塊成物を加熱しても、塊成物に含まれる石英の滓化には時間がかかる。従って、脈石と鉄鉱石や融点調整剤等が反応して溶融スラグが形成されても、石英は殆ど反応せずに固体のまま存在し、石英が溶融するタイミングは、還元鉄が得られる最終段階であった。そのため上記特許文献1で提案したように、溶融したスラグの流動性を高めるために塊成物の原料の配合割合を調整し、スラグの塩基度が所望の範囲を満足するように制御しても、石英が溶融し、スラグの塩基度が所望の範囲を満足するタイミングが、還元鉄が得られる最終段階であると、スラグの流動性を高めて還元鉄との分離性を良好なものとして還元鉄の歩留まりを高める効果は殆ど享受できない。還元鉄の歩留まり向上効果を享受するには、石英が溶融し、スラグの塩基度が所望の範囲を満足するようになってからも更に加熱を続ける必要がある。しかし加熱時間を長くすると、還元鉄の生産性が悪くなる。 The present inventors further examined the relationship between the components of gangue and the yield of reduced iron, and the amount of quartz contained in the silicate mineral, which is the main mineral phase constituting the gangue, is that of the gangue. It was found to have a great influence on That is, conventionally, when measuring the component composition of an iron oxide-containing substance represented by iron ore, Si detected from the iron ore is converted into an oxide of Si (SiO 2 ) and the component composition is measured. It was. However, some Si contained in the iron oxide-containing material exists as metallic Si, but most of them are quartz (SiO 2 ), kaolinite [Al 2 Si 2 O 5 (OH) 4 ], kaolinite. Containing iron oxide, actinolite [(Ca 2 (Mg, Fe) 5 Si 8 O 22 (OH) 2 ], camingtonite [(Fe, Mg) 7 Si 8 O 22 (OH) 2 ], It exists as a silicate mineral such as glueneite [Fe 7 Si 8 O 22 (OH) 2 ] Among these silicate minerals, quartz is larger than other mineral phases and has a large particle size. Quartz is also poorly reactive because it is covalently bonded and each atom is very tightly bound, so even if the agglomerate is heated, it takes time to hatch the quartz contained in the agglomerate. Therefore, the gangue, iron ore, melting point modifier, etc. react and melt. Even when the lag is formed, quartz hardly reacts and remains in a solid state, and the timing at which the quartz melts was the final stage in which reduced iron was obtained. Even if the mixing ratio of the raw material of the agglomerate is adjusted in order to improve the fluidity of the slag and the basicity of the slag is controlled to satisfy the desired range, the quartz melts and the basicity of the slag is desired When the timing satisfying the above range is the final stage in which reduced iron is obtained, the effect of increasing the yield of reduced iron by increasing the fluidity of slag and improving the separability from reduced iron cannot be enjoyed. In order to enjoy the effect of improving the iron yield, it is necessary to continue heating even after the quartz melts and the basicity of the slag satisfies the desired range, but if the heating time is increased, the reduced iron Productivity Kunar.

そこで本発明者らは、石英の滓化性が悪いことに着目し、石英の特徴を考慮した原料配合を行うことによって、脈石を速やかに溶融させ、液相率を高くし、溶融スラグの流動性を高めて還元鉄の歩留まりを向上させるために検討した。その結果、塊成物として、該塊成物中の全CaO量、全SiO2量、および石英量に基づいて下記式(1)で算出されるX値が0.5〜6.0のものを用いれば、還元鉄の歩留まりを向上させることができ、還元鉄の生産性を高められることを見出した。下記式(1)中、( )は、塊成物中の各成分の含有量(質量%)を示している。
X=(全CaO)/[(全SiO2)−(石英)] ・・・(1)
Therefore, the present inventors pay attention to the fact that quartz has a poor hatchability, and by mixing the raw materials in consideration of the characteristics of quartz, the gangue is rapidly melted, the liquid phase ratio is increased, and the molten slag We studied to improve the yield of reduced iron by increasing fluidity. As a result, as an agglomerate, an X value calculated by the following formula (1) based on the total CaO amount, the total SiO 2 amount, and the quartz amount in the agglomerate is 0.5 to 6.0. It has been found that the use of can improve the yield of reduced iron and increase the productivity of reduced iron. In the following formula (1), () indicates the content (% by mass) of each component in the agglomerate.
X = (total CaO) / [(total SiO 2 ) − (quartz)] (1)

上記式(1)は、石英の滓化性が悪いことを考慮して設計した式であり、分子は、塊成物に含まれるCaをCaOに換算した全CaO量、分母は、塊成物に含まれるSiをSiO2に換算した全SiO2量から、石英の量を引いた値を示している。このX値は、塩基度に相当しており、本発明では、X値を0.5〜6.0と規定する。なお、酸化鉄含有物質に含まれる脈石、および炭素質還元剤に含まれる灰分に、CaOは含まれる他、後述する融点調整剤としても塊成物に配合されるが、CaOは、滓化性が良好であるため、塊成物に含まれるCaをCaOに換算した値を分子とすればよい。 The above formula (1) is an equation designed in consideration of the poor hatchability of quartz. The numerator is the total CaO amount obtained by converting Ca contained in the agglomerate into CaO, and the denominator is the agglomerate. The value obtained by subtracting the amount of quartz from the total amount of SiO 2 obtained by converting Si contained in SiO 2 into SiO 2 is shown. This X value corresponds to basicity, and in the present invention, the X value is defined as 0.5 to 6.0. In addition, CaO is contained in the gangue contained in the iron oxide-containing substance and the ash contained in the carbonaceous reducing agent, and is also blended into the agglomerate as a melting point adjusting agent described later. Since the property is good, a value obtained by converting Ca contained in the agglomerate into CaO may be used as a molecule.

上記X値が0.5を下回ると、塊成物中のSi含有物量が過剰となり、スラグの粘性が向上し、流動性が低下するため、還元鉄の歩留まりが低下する。従って本発明では、上記X値は、0.5以上とし、好ましくは0.6以上、より好ましくは1.0以上とする。しかし、上記X値が6.0を超えると、CaOが過剰となり、スラグの融点が上昇するため、還元鉄の歩留まりが低下する。従って本発明では、上記X値は、6.0以下とし、好ましくは4.0以下、より好ましくは3.0以下とする。   If the X value is less than 0.5, the amount of Si-containing material in the agglomerate becomes excessive, the viscosity of the slag is improved, and the fluidity is lowered, so that the yield of reduced iron is lowered. Accordingly, in the present invention, the X value is 0.5 or more, preferably 0.6 or more, more preferably 1.0 or more. However, when the X value exceeds 6.0, CaO becomes excessive and the melting point of slag rises, so that the yield of reduced iron decreases. Therefore, in the present invention, the X value is 6.0 or less, preferably 4.0 or less, more preferably 3.0 or less.

上記塊成物に含まれる石英の量は、X線回折および走査型電子顕微鏡を併用することによって定量できる。即ち、走査型電子顕微鏡観察におけるマッピング機能で珪酸塩鉱物相を検出し、走査型電子顕微鏡に付属するEDS(Energy dispersive X-ray spectrometry)等で組成分析を行い、分析対象物からSiおよびOのみが検出された場合を石英と判定して定量する。一方、SiおよびO以外に、例えば、Al、Ca、Mg、Fe等の元素が検出された場合は、石英以外の鉱物相と判定して定量する。なお、通常用いられる鉄鉱石は、石英を0.1質量%以上含んでいる。   The amount of quartz contained in the agglomerate can be quantified by using both X-ray diffraction and a scanning electron microscope. In other words, the silicate mineral phase is detected by the mapping function in scanning electron microscope observation, and composition analysis is performed with EDS (Energy dispersive X-ray spectrometry) attached to the scanning electron microscope, and only Si and O are analyzed. When is detected, it is determined as quartz and quantified. On the other hand, when elements other than Si and O, such as Al, Ca, Mg, and Fe, are detected, the mineral phase other than quartz is determined and quantified. In addition, the iron ore used normally contains 0.1 mass% or more of quartz.

以上、本発明を最も特徴付けるX値について説明した。   The X value that characterizes the present invention has been described above.

次に、本発明に係る還元鉄の製造方法について説明する。   Next, the manufacturing method of the reduced iron which concerns on this invention is demonstrated.

本発明に係る還元鉄の製造方法は、
酸化鉄含有物質および炭素質還元剤を含む混合物を塊成化する工程(以下、塊成化工程ということがある)と、
得られた塊成物を加熱して、該塊成物中の酸化鉄を還元する工程(以下、加熱還元工程ということがある)を含み、
前記塊成物として、上述した上記X値が0.5〜6.0のものを用いるところに特徴がある。
The method for producing reduced iron according to the present invention includes:
A process of agglomerating a mixture containing an iron oxide-containing substance and a carbonaceous reducing agent (hereinafter sometimes referred to as an agglomeration process);
Heating the obtained agglomerate and including a step of reducing iron oxide in the agglomerate (hereinafter sometimes referred to as a heat reduction step),
The agglomerate is characterized in that the above-mentioned X value is 0.5 to 6.0.

[塊成化工程]
塊成化工程では、酸化鉄含有物質および炭素質還元剤を含む混合物を塊成化し、塊成物を製造する。
[Agglomeration process]
In the agglomeration step, a mixture containing the iron oxide-containing substance and the carbonaceous reducing agent is agglomerated to produce an agglomerate.

上記酸化鉄含有物質としては、具体的には、鉄鉱石、砂鉄、製鉄ダスト、非鉄精錬残渣、製鉄廃棄物などの酸化鉄含有物質を用いることができる。   As the iron oxide-containing substance, specifically, iron oxide-containing substances such as iron ore, iron sand, iron-making dust, non-ferrous refining residue, and iron-making waste can be used.

上記炭素質還元剤としては、例えば、石炭やコークスなどを用いることができる。   As said carbonaceous reducing agent, coal, coke, etc. can be used, for example.

上記炭素質還元剤は、上記酸化鉄含有物質に含まれる酸化鉄を還元できる量の炭素を含有していればよい。具体的には、上記酸化鉄含有物質に含まれる酸化鉄を還元できる炭素量に対して、0〜5質量%の余剰または0〜5質量%の不足の範囲で含有していればよい。即ち、上記酸化鉄含有物質に含まれる酸化鉄を還元できる炭素量に対して、±5質量%の範囲で含有していればよい。   The said carbonaceous reducing agent should just contain the quantity of carbon which can reduce | restore the iron oxide contained in the said iron oxide containing substance. Specifically, the iron oxide contained in the iron oxide-containing substance may be contained within a range of 0 to 5% by mass surplus or 0 to 5% by mass with respect to the amount of carbon that can be reduced. That is, the iron oxide contained in the iron oxide-containing substance may be contained in a range of ± 5% by mass with respect to the amount of carbon that can be reduced.

上記酸化鉄含有物質および炭素質還元剤を含む上記混合物には、更に融点調整剤またはバインダーを配合してもよい。   You may mix | blend a melting | fusing point regulator or a binder with the said mixture containing the said iron oxide containing substance and a carbonaceous reducing agent further.

上記融点調整剤とは、酸化鉄含有物質中の脈石や、炭素質還元剤中の灰分の融点を下げる作用を有する物質を意味する。即ち、上記混合物に融点調整剤を配合することによって、塊成物に含まれる酸化鉄以外の成分(特に、脈石)の融点に影響を与え、例えばその融点を降下させることができる。それにより脈石は、溶融が促進され、溶融スラグを形成する。このとき酸化鉄の一部は溶融スラグに溶解し、溶融スラグ中で還元されて金属鉄となる。溶融スラグ中で生成した金属鉄は、固体のまま還元された金属鉄と接触することにより、固体の還元鉄として凝集する。   The melting point adjusting agent means a substance having an action of lowering the melting point of gangue in the iron oxide-containing substance and ash in the carbonaceous reducing agent. That is, by adding a melting point modifier to the above mixture, the melting point of components (particularly gangue) other than iron oxide contained in the agglomerate is affected, and for example, the melting point can be lowered. Thereby, the gangue is promoted to melt and forms molten slag. At this time, a part of the iron oxide is dissolved in the molten slag and reduced in the molten slag to become metallic iron. The metallic iron produced in the molten slag is agglomerated as solid reduced iron by coming into contact with the metallic iron reduced in the solid state.

上記融点調整剤としては、例えば、CaO供給物質、MgO供給物質、Al23供給物質などを用いることができる。上記CaO供給物質としては、例えば、CaO(生石灰)、Ca(OH)2(消石灰)、CaCO3(石灰石)、およびCaMg(CO32(ドロマイト)よりなる群から選ばれる少なくとも一つを用いることができる。上記MgO供給物質としては、例えば、MgO粉末、天然鉱石や海水などから抽出されるMg含有物質、MgCO3よりなる群から選ばれる少なくとも一つを配合してもよい。上記Al23供給物質としては、例えば、Al23粉末、ボーキサイト、ベーマイト、ギブサイト、ダイアスポアなどを配合できる。 As the melting point adjusting agent, for example, a CaO supply material, a MgO supply material, an Al 2 O 3 supply material, or the like can be used. As said CaO supply substance, for example, at least one selected from the group consisting of CaO (quick lime), Ca (OH) 2 (slaked lime), CaCO 3 (limestone), and CaMg (CO 3 ) 2 (dolomite) is used. be able to. As the MgO feed materials, for example, MgO powder, Mg-containing material to be extracted, such as from natural ore or seawater, may be blended at least one selected from the group consisting of MgCO 3. Examples of the Al 2 O 3 supply substance include Al 2 O 3 powder, bauxite, boehmite, gibbsite, and diaspore.

上記バインダーとしては、例えば、コーンスターチや小麦粉等の澱粉などの多糖類を用いることができる。   As said binder, polysaccharides, such as starches, such as corn starch and wheat flour, can be used, for example.

本発明では、塊成物中の全CaO量、全SiO2量、および石英量に基づいて算出される上記X値が0.5〜6.0を満足するように、上記酸化鉄含有物質および炭素質還元剤、更に必要に応じて混合する融点調整剤およびバインダー等の配合量を調整することが重要である。 In the present invention, the iron oxide-containing substance and the iron oxide-containing substance are selected so that the X value calculated based on the total CaO amount, the total SiO 2 amount, and the quartz amount in the agglomerate satisfies 0.5 to 6.0. It is important to adjust the blending amounts of the carbonaceous reducing agent, the melting point adjusting agent and the binder to be mixed as necessary.

上記塊成物に含まれる石英の量は、0.5質量%以上であってもよいし、1.0質量%以上であってもよい。更には、1.5質量%以上であってもよい。上記塊成物に含まれる石英の量の上限は、上記式(1)に基づいて算出されるX値が上記範囲を満足すれば特に限定されないが、上限は、例えば、5.0質量%である。なお、石英は、主に酸化鉄含有物質(特に、鉄鉱石)に含まれる成分であり、酸化鉄含有物質に含まれる石英量は、上述したように、X線回折および走査型電子顕微鏡を併用することによって定量できる。   The amount of quartz contained in the agglomerate may be 0.5% by mass or more, or 1.0% by mass or more. Furthermore, 1.5 mass% or more may be sufficient. The upper limit of the amount of quartz contained in the agglomerate is not particularly limited as long as the X value calculated based on the above formula (1) satisfies the above range, but the upper limit is, for example, 5.0% by mass. is there. Quartz is a component mainly contained in iron oxide-containing materials (especially iron ore), and the amount of quartz contained in iron oxide-containing materials is combined with X-ray diffraction and scanning electron microscope as described above. Can be quantified.

上記酸化鉄含有物質、炭素質還元剤、および融点調整剤は、混合する前に予め粉砕しておくことが好ましい。例えば、上記酸化鉄含有物質は平均粒径が10〜60μm、上記炭素質還元剤は平均粒径が10〜1000μm、上記融点調整剤は平均粒径が5〜90μmとなるように粉砕することが推奨される。   The iron oxide-containing substance, the carbonaceous reducing agent, and the melting point adjusting agent are preferably pulverized in advance before mixing. For example, the iron oxide-containing material may be pulverized so that the average particle size is 10 to 60 μm, the carbonaceous reducing agent is 10 to 1000 μm, and the melting point modifier is 5 to 90 μm. Recommended.

上記酸化鉄含有物質等を粉砕する手段は特に限定されず、公知の手段を採用できる。例えば、振動ミル、ロールクラッシャ、ボールミルなどを用いればよい。   The means for pulverizing the iron oxide-containing material or the like is not particularly limited, and known means can be employed. For example, a vibration mill, a roll crusher, a ball mill or the like may be used.

上記原料の混合には、回転容器形や固定容器形の混合機を用いることができる。上記混合機の型式は、回転容器形としては、例えば、回転円筒形、二重円錐形、V形などが挙げられるが、特に限定されない。固定容器形としては、例えば、混合槽内に鋤などの回転羽を設けたものがあるが、特に限定されない。   For mixing the raw materials, a rotating container type or a fixed container type mixer can be used. Examples of the type of the mixer include, but are not particularly limited to, a rotating container shape including a rotating cylindrical shape, a double cone shape, and a V shape. As a fixed container type, for example, there is one in which a rotating blade such as a basket is provided in a mixing tank, but it is not particularly limited.

上記混合物を塊成化する塊成機としては、例えば、皿形造粒機(ディスク形造粒機)、円筒形造粒機(ドラム形造粒機)、双ロール型ブリケット成型機などを用いることができる。   As the agglomerating machine for agglomerating the mixture, for example, a dish granulator (disk granulator), a cylindrical granulator (drum granulator), a twin roll briquette molding machine or the like is used. be able to.

上記塊成物の形状は特に限定されず、成型はペレット、ブリケット、押し出しのどれで実施しても構わない。   The shape of the agglomerate is not particularly limited, and the molding may be performed by any of pellets, briquettes, and extrusion.

[加熱還元工程]
加熱還元工程では、上記塊成化工程で得られた塊成物を加熱して、該塊成物中の酸化鉄を還元することによって還元鉄を製造する。
[Heat reduction process]
In the heat reduction step, the agglomerate obtained in the agglomeration step is heated to reduce the iron oxide in the agglomerate to produce reduced iron.

上記塊成物の加熱は、例えば、電気炉や移動炉床式加熱炉で行えばよい。上記移動炉床式加熱炉とは、炉床がベルトコンベアのように炉内を移動する加熱炉であり、例えば、回転炉床炉やトンネル炉が挙げられる。上記回転炉床炉は、炉床の始点と終点が同じ位置になるように、炉床の外観形状が、円形またはドーナツ状に設計されており、炉床上に装入された塊成物に含まれる酸化鉄は、炉内を一周する間に加熱還元されて還元鉄を生成する。従って、回転炉床炉には、回転方向の最上流側に塊成物を炉内に装入する装入手段が設けられ、回転方向の最下流側に排出手段が設けられる。なお、回転構造であるため、実際には装入手段の直上流側になる。上記トンネル炉とは、炉床が直線方向に炉内を移動する加熱炉である。   The agglomerate may be heated in an electric furnace or a moving hearth type heating furnace, for example. The moving hearth type heating furnace is a heating furnace in which the hearth moves in the furnace like a belt conveyor, and examples thereof include a rotary hearth furnace and a tunnel furnace. The rotary hearth furnace is designed to have a round or donut shape so that the start point and end point of the hearth are in the same position, and is included in the agglomerate charged on the hearth. The iron oxide produced is reduced by heating while making a round in the furnace to produce reduced iron. Therefore, the rotary hearth furnace is provided with charging means for charging the agglomerate into the furnace on the most upstream side in the rotation direction, and with discharging means on the most downstream side in the rotation direction. In addition, since it is a rotating structure, it is actually just upstream of the charging means. The tunnel furnace is a heating furnace in which the hearth moves in the furnace in a linear direction.

上記塊成物は、1300〜1500℃で加熱して加熱還元することが好ましい。加熱温度が1300℃を下回ると、金属鉄やスラグが溶融しにくく、高い生産性が得られない。一方、加熱温度が1500℃を超えると、排ガス温度が高くなるため、排ガス処理設備が大掛かりなものとなって設備コストが増大する。   The agglomerate is preferably heated and reduced at 1300 to 1500 ° C. When the heating temperature is lower than 1300 ° C., metallic iron and slag are difficult to melt, and high productivity cannot be obtained. On the other hand, if the heating temperature exceeds 1500 ° C., the exhaust gas temperature becomes high, so the exhaust gas treatment facility becomes large and the equipment cost increases.

上記電気炉や移動炉床式加熱炉に上記塊成物を装入するに先立ち、炉床保護のために炭素質、耐火セラミックス等の床敷材を敷くことが望ましい。上記床敷材としては、上記炭素質還元剤として例示したものの他、耐火性粒子を用いることができる。上記床敷材の粒径は、塊成物やその溶融物が潜り込まないように、例えば、3mm以下であることが好ましい。上記粒径の下限は、バーナーの燃焼ガスによって吹き飛ばされないように、例えば、0.5mm以上であることが好ましい。   Prior to charging the agglomerate into the electric furnace or moving hearth type heating furnace, it is desirable to lay a flooring material such as carbonaceous material or refractory ceramics to protect the hearth. As the floor covering material, refractory particles can be used in addition to those exemplified as the carbonaceous reducing agent. The particle size of the flooring material is preferably 3 mm or less, for example, so that an agglomerate and a melt thereof do not sink. The lower limit of the particle size is preferably, for example, 0.5 mm or more so as not to be blown off by the burner combustion gas.

[その他]
上記加熱還元工程で得られた還元鉄は、副生したスラグや、必要に応じて敷かれた床敷材等と共に炉内から排出し、篩や磁選機等を用いて選別して還元鉄を回収すればよい。
[Others]
Reduced iron obtained in the heating reduction process is discharged from the furnace together with slag produced as a by-product or flooring material laid if necessary, and sorted using a sieve or a magnetic separator, etc. Collect it.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明は下記実施例によって制限を受けるものではなく、前記および後記の趣旨に適合し得る範囲で変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited by the following examples, and may be implemented with modifications within a range that can meet the above and the gist described below. Of course, these are all possible and are included in the technical scope of the present invention.

酸化鉄含有物質、炭素質還元剤、および融点調整剤を含む混合物を塊成化し、塊成物を製造した。   A mixture containing the iron oxide-containing material, the carbonaceous reducing agent, and the melting point modifier was agglomerated to produce an agglomerate.

上記酸化鉄含有物質としては、下記表1に示す成分組成の鉄鉱石Aまたは鉄鉱石Bを用いた。鉄鉱石の成分組成のうち、T.Fe、および全FeOはニクロム酸カリウム滴定法で、全SiO2、全CaO、全Al23、全MgO、全MnO、全TiO2、およびPはICP発光分光分析法で、S、およびT.Cは燃焼赤外線吸収法で、全Na2Oは原子吸光光度法で定量した。なお、全SiO2には、後記で別途定量する石英も含まれる。また、鉄鉱石に含まれる石英の量は、走査型電子顕微鏡に付属するEDSで鉄鉱石の成分組成を分析し、SiとOのみが検出された場合を石英と判定して定量した。一方、SiとO以外に、例えば、Al、Ca、Mg、Feなどが検出された場合は、石英以外の鉱物相と判定して定量した。 As the iron oxide-containing substance, iron ore A or iron ore B having the composition shown in Table 1 below was used. Among the component compositions of iron ore, T.W. Fe and total FeO are potassium dichromate titrations, total SiO 2 , total CaO, total Al 2 O 3 , total MgO, total MnO, total TiO 2 , and P are ICP emission spectroscopy, S, and T . C was determined by a combustion infrared absorption method, and total Na 2 O was determined by an atomic absorption photometry method. Note that the total SiO 2 includes quartz that is separately quantified later. The amount of quartz contained in the iron ore was quantified by analyzing the component composition of the iron ore with EDS attached to the scanning electron microscope and determining that only Si and O were detected as quartz. On the other hand, in addition to Si and O, for example, when Al, Ca, Mg, Fe, or the like is detected, the mineral phase other than quartz is determined and quantified.

上記炭素質還元剤としては、下記表2に示す成分組成の炭材を用いた。表2において、Fix.Cは固定炭素、T.Cは全炭素を示している。炭材の成分組成のうち、揮発分はJIS M8812で規定される揮発分定量方法で定量した。灰分はJIS M8812で規定される灰分定量方法で定量した。Fix.CはJIS M 8812で規定される固定炭素質量分率算出方法により、Fix.C=100−灰分の質量−揮発分の質量(いずれも単位は質量%)で定量した。また、S、およびT.Cは燃焼赤外線吸収法で定量した。また、灰分の成分組成のうち、全Fe23、全SiO2、全CaO、全Al23、全MgO、全TiO2、全P25はICP発光分光分析法で、全Na2O、全K2Oは原子吸光光度法で定量した。 As the carbonaceous reducing agent, a carbon material having a component composition shown in Table 2 below was used. In Table 2, Fix. C is fixed carbon; C represents all carbon. Of the component composition of the carbonaceous material, the volatile content was quantified by the volatile content determination method defined in JIS M8812. Ash content was quantified by the ash content determination method defined in JIS M8812. Fix. C is a fixed carbon mass fraction calculation method defined in JIS M 8812. C = 100-mass of ash-mass of volatile matter (both units are mass%). S and T. C was quantified by the combustion infrared absorption method. Of the ash component composition, total Fe 2 O 3 , total SiO 2 , total CaO, total Al 2 O 3 , total MgO, total TiO 2 , and total P 2 O 5 are ICP emission spectroscopy, 2 O and total K 2 O were quantified by atomic absorption spectrophotometry.

上記融点調整剤としては、石灰石を用いた。   Limestone was used as the melting point modifier.

上記鉄鉱石、炭材、および石灰石と、更にバインダーとして小麦粉を下記表3に示す割合で配合し、適量の水を加えたものを、タイヤ型造粒機を用いて平均直径が19mmの生ペレットを造粒した。得られた生ペレットを乾燥機に装入し、180℃で1時間加熱して付着水を除去して乾燥した。得られた乾燥ペレットに含まれる全CaO量、全SiO2量、および石英量を下記表3に示す。また、乾燥ペレット中の全CaO量、全SiO2量、および石英量に基づいて上記式(1)によりX値を算出し、その結果を下記表3に示す。 Raw iron pellets having an average diameter of 19 mm using a tire-type granulator, wherein the above iron ore, carbonaceous material, and limestone are further blended with wheat flour as a binder in the ratio shown in Table 3 below and an appropriate amount of water is added. Granulated. The obtained raw pellets were charged into a dryer and heated at 180 ° C. for 1 hour to remove adhering water and dried. Table 3 below shows the total CaO amount, the total SiO 2 amount, and the quartz amount contained in the obtained dried pellets. Further, based on the total CaO amount, the total SiO 2 amount, and the quartz amount in the dried pellet, the X value was calculated by the above formula (1), and the results are shown in Table 3 below.

次に、下記表3に示した配合割合で調製したNo.1〜4の乾燥ペレットを、夫々、30個ずつ加熱炉に供給し、1450℃で加熱し、乾燥ペレット中の酸化鉄を還元して還元鉄を製造した。なお、加熱炉の炉床保護のために、乾燥ペレットの投入に先立ち、炉床に床敷材を敷いた。床敷材としては、最大粒径が2mm以下の炭材(無煙炭)を用いた。加熱中は、加熱炉内に、窒素ガスを40体積%と二酸化炭素ガスを60体積%の割合で混合した混合ガスを、ガス流量が440NL/分となるように流した。還元終了後、加熱炉内から還元鉄を含む被加熱物を排出し、篩分けした。被加熱物の篩分けには、目開きが3.35mmの篩を用い、篩上の残留物を製品として回収した。篩上の残留物の質量(kg)と、加熱炉に装入した鉄の合計質量(kg)に基づいて、下記式(2)により還元鉄の歩留まり(%)を算出した。なお、篩上の残留物には、Fe以外に、C、Si、Mn等も含まれるため、還元鉄の歩留まりは100%を超えることがある。
歩留まり(%)=(篩上の残留物の質量/加熱炉に装入した鉄の合計質量)×100 ・・・(2)
Next, No. 1 prepared at the blending ratio shown in Table 3 below. Each of the 1 to 4 dry pellets was supplied to a heating furnace 30 at a time and heated at 1450 ° C. to reduce the iron oxide in the dry pellets to produce reduced iron. In order to protect the hearth of the heating furnace, a floor covering material was laid on the hearth prior to the introduction of the dry pellets. As the floor covering material, a carbon material (anthracite) having a maximum particle size of 2 mm or less was used. During the heating, a mixed gas in which 40% by volume of nitrogen gas and 60% by volume of carbon dioxide gas were mixed was supplied into the heating furnace so that the gas flow rate was 440 NL / min. After completion of the reduction, the object to be heated containing reduced iron was discharged from the heating furnace and sieved. A sieve having an opening of 3.35 mm was used for sieving the material to be heated, and the residue on the sieve was collected as a product. Based on the mass (kg) of the residue on the sieve and the total mass (kg) of iron charged in the heating furnace, the yield (%) of reduced iron was calculated by the following formula (2). In addition, since the residue on a sieve contains C, Si, Mn, etc. other than Fe, the yield of reduced iron may exceed 100%.
Yield (%) = (Mass of residue on sieve / Total mass of iron charged in heating furnace) × 100 (2)

また、乾燥ペレットを加熱炉に供給してから還元鉄を含む試料を排出するまでの時間を反応時間(時間)として計測した。   Moreover, the time from supplying the dried pellets to the heating furnace until discharging the sample containing reduced iron was measured as the reaction time (hours).

篩上に残留した残留物を製造するときの生産性指数を下記式(3)により算出した。即ち、まず、加熱炉に供給した鉄の合計質量(kg)を、乾燥ペレットを敷いた炉床の面積(m2)で除算して、単位面積当たりの鉄量(kg/m2)を求めた。次に、単位面積当たりの鉄量(kg/m2)に、還元鉄の歩留まり(%)を掛け、単位面積当たりで回収した篩上に残留した残留物の質量(kg/m2)を求めた。次に、単位面積当たりで回収した篩上に残留した残留物の質量(kg/m2)を、反応時間(時間)で除して、篩上に残留した残留物の生産性指数(kg/m2/h)を求めた。
生産性指数(kg/m2/h)=[(加熱炉に供給した鉄の合計質量/乾燥ペレットを敷いた炉床の面積)×歩留まり]/反応時間 ・・・(3)
The productivity index when producing the residue remaining on the sieve was calculated by the following formula (3). That is, first, the total mass (kg) of iron supplied to the heating furnace is divided by the area (m 2 ) of the hearth on which the dried pellets are laid to obtain the iron amount (kg / m 2 ) per unit area. It was. Next, multiply the amount of iron per unit area (kg / m 2 ) by the yield (%) of reduced iron to obtain the mass (kg / m 2 ) of the residue remaining on the sieve collected per unit area. It was. Next, the mass (kg / m 2 ) of the residue remaining on the sieve collected per unit area is divided by the reaction time (hours) to obtain the productivity index (kg / kg) of the residue remaining on the sieve. m 2 / h).
Productivity index (kg / m 2 / h) = [(total mass of iron supplied to heating furnace / area of hearth covered with dry pellets) × yield] / reaction time (3)

下記表3に示したNo.1〜4において、No.4における生産性指数を1.00とし、No.1〜3の生産性指数の相対値を算出し、その結果を下記表3に示す。本発明では、生産性指数の相対値が1.10以上となる場合を合格とし、還元鉄の生産性を向上できていると評価した。   No. shown in Table 3 below. 1-4, no. The productivity index in No. 4 is 1.00. The relative values of the productivity indexes of 1 to 3 were calculated, and the results are shown in Table 3 below. In the present invention, a case where the relative value of the productivity index is 1.10 or more was regarded as acceptable, and it was evaluated that the productivity of reduced iron was improved.

また、式(1)のX値と、生産性指数の相対値との関係を図1に示す。図1において、○印は、No.1〜3の結果を示しており、×印は、No.4の結果を示している。   Further, FIG. 1 shows the relationship between the X value of the formula (1) and the relative value of the productivity index. In FIG. The results of Nos. 1 to 3 are shown. The result of 4 is shown.

下記表3および図1から次のように考察できる。No.4は、本発明で規定する要件を満足しない例である。即ち、乾燥ペレットに含まれる全CaO量、全SiO2量、および石英量に基づいて上記式(1)で算出されるX値が、本発明で規定する要件を満足していない。一方、No.1〜3は、本発明で規定する要件を満足する例である。即ち、乾燥ペレットに含まれる全CaO量、全SiO2量、および石英量に基づいて上記式(1)で算出されるX値が、所定の範囲を満足しているため、生産性は、No.4に比べて10%以上向上した。 The following table 3 and FIG. 1 can be considered as follows. No. 4 is an example that does not satisfy the requirements defined in the present invention. That is, the X value calculated by the above formula (1) based on the total CaO amount, the total SiO 2 amount, and the quartz amount contained in the dry pellets does not satisfy the requirements defined in the present invention. On the other hand, no. 1-3 are examples which satisfy the requirements defined in the present invention. That is, since the X value calculated by the above formula (1) based on the total CaO amount, total SiO 2 amount, and quartz amount contained in the dry pellets satisfies the predetermined range, the productivity is No. . Compared to 4, it was improved by 10% or more.

Figure 0006294135
Figure 0006294135

Figure 0006294135
Figure 0006294135

Figure 0006294135
Figure 0006294135

Claims (2)

鉄鉱石および炭素質還元剤を含む混合物を塊成化する工程と、
得られた塊成物を加熱して、該塊成物中の酸化鉄を還元する工程を含み、
前記塊成物として、該塊成物中の全CaO量、全SiO量、および石英量に基づいて下記式(1)で算出されるX値が0.5〜6.0のものを用いることを特徴とする還元鉄の製造方法。
X=(全CaO)/[(全SiO)−(石英)] ・・・(1)
式(1)中、( )は、塊成物中の各成分の含有量(質量%)を示している。また、石英とは、X線回折および走査型電子顕微鏡を併用することにより、分析対象からSiとOのみが検出された鉱物相である。
Agglomerating a mixture comprising iron ore and a carbonaceous reducing agent;
Heating the resulting agglomerate to reduce iron oxide in the agglomerate,
As the agglomerates, those having an X value of 0.5 to 6.0 calculated by the following formula (1) based on the total CaO amount, the total SiO 2 amount, and the quartz amount in the agglomerates are used. The manufacturing method of reduced iron characterized by the above-mentioned.
X = (total CaO) / [(total SiO 2 ) − (quartz)] (1)
In formula (1), () indicates the content (% by mass) of each component in the agglomerate. Quartz is a mineral phase in which only Si and O are detected from an analysis object by using both X-ray diffraction and a scanning electron microscope.
前記塊成物は、石英を0.5質量%以上含む請求項1に記載の製造方法。   The said agglomerate is a manufacturing method of Claim 1 containing 0.5 mass% or more of quartz.
JP2014084554A 2014-04-16 2014-04-16 Method for producing reduced iron Expired - Fee Related JP6294135B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014084554A JP6294135B2 (en) 2014-04-16 2014-04-16 Method for producing reduced iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014084554A JP6294135B2 (en) 2014-04-16 2014-04-16 Method for producing reduced iron

Publications (2)

Publication Number Publication Date
JP2015203151A JP2015203151A (en) 2015-11-16
JP6294135B2 true JP6294135B2 (en) 2018-03-14

Family

ID=54596790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014084554A Expired - Fee Related JP6294135B2 (en) 2014-04-16 2014-04-16 Method for producing reduced iron

Country Status (1)

Country Link
JP (1) JP6294135B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6623118B2 (en) * 2016-05-20 2019-12-18 株式会社神戸製鋼所 Method for producing reduced iron

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4239530A (en) * 1979-01-10 1980-12-16 Board Of Control Of Michigan Technological University Process for producing metallized iron pellets
JPH07331344A (en) * 1994-06-03 1995-12-19 Nippon Steel Corp Method for controlling permeable gas in exhaust gas circulated sintering
JPH07331341A (en) * 1994-06-08 1995-12-19 Nippon Steel Corp Method for adjusting grain size of limestone for sintered ore
JP5020446B2 (en) * 2001-08-06 2012-09-05 新日本製鐵株式会社 Method for producing sintered ore
JP2009167466A (en) * 2008-01-16 2009-07-30 Jfe Steel Corp Method for producing sintered ore
JP5608144B2 (en) * 2011-10-19 2014-10-15 株式会社神戸製鋼所 Method for producing reduced iron

Also Published As

Publication number Publication date
JP2015203151A (en) 2015-11-16

Similar Documents

Publication Publication Date Title
CA2720896C (en) Titanium oxide-containing agglomerate for producing granular metallic iron
JP6460531B2 (en) Method for producing reduced iron
JP2013209748A (en) Method of manufacturing reduced iron agglomerate
JP6294152B2 (en) Manufacturing method of granular metallic iron
JP6014009B2 (en) Method for producing reduced iron
JP2013249496A (en) Method for manufacturing mixture of reduced iron and slag
JP6294135B2 (en) Method for producing reduced iron
AU2009234763A1 (en) Process for producing granular metallic iron
JP6043271B2 (en) Method for producing reduced iron
JP6235439B2 (en) Manufacturing method of granular metallic iron
WO2014129282A1 (en) Method for manufacturing reduced iron
JP2015063740A (en) Method for producing granular iron
JPH05263155A (en) Production of sintered or pelletized ore as blast-furnace material using lime cake
JP2013221187A (en) Method for producing agglomerate
WO2014065240A1 (en) Process for manufacturing reduced iron
JP2014181369A (en) Method of producing reduced iron
JP2015209570A (en) Production method of reduced iron
JP2015074809A (en) Method for producing granular metal iron
WO2014034589A1 (en) Method for producing reduced iron agglomerates
JP5671426B2 (en) Manufacturing method of granular metallic iron
US10017836B2 (en) Method for producing reduced iron
JP6250482B2 (en) Manufacturing method of granular metallic iron
JP5910542B2 (en) Hot metal manufacturing method using vertical melting furnace
JP2015196900A (en) Method for manufacturing reduced iron
JP2015101740A (en) Method for manufacturing reduced iron

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160901

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170802

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171201

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20171211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180215

R150 Certificate of patent or registration of utility model

Ref document number: 6294135

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees