JPH07331341A - Method for adjusting grain size of limestone for sintered ore - Google Patents

Method for adjusting grain size of limestone for sintered ore

Info

Publication number
JPH07331341A
JPH07331341A JP14877494A JP14877494A JPH07331341A JP H07331341 A JPH07331341 A JP H07331341A JP 14877494 A JP14877494 A JP 14877494A JP 14877494 A JP14877494 A JP 14877494A JP H07331341 A JPH07331341 A JP H07331341A
Authority
JP
Japan
Prior art keywords
limestone
particle size
less
grain size
adjusted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP14877494A
Other languages
Japanese (ja)
Inventor
Jun Okazaki
潤 岡崎
Yukihiro Hida
行博 肥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP14877494A priority Critical patent/JPH07331341A/en
Publication of JPH07331341A publication Critical patent/JPH07331341A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To adjust grain size of limestone for a sintered ore within a suitable range regardless of kind of limestone by heating limestone placed on Fe2O3 calcined tablet and adjusting grain size of the limestone according to a sectional area of unmelted part of the heated limestone. CONSTITUTION:Limestone is placed on the Fe2O3 tablet and both are heated at 1250-1300 deg.C. When area percentage of unmelted part in cross section of the limestone after heating with respect to cross section of the one before heating is below 30%, grain size of the limestone is adjusted to 1 to below 3mm. When the area percentage is 30 to 70%, grain size of the limestone is adjusted to 3 to below 5mm. When the area percentage is above 70%, grain size of the limestone is adjusted to 5 to below 7mm. Either one kind of the limestones having adjusted grain size is used as an anxiliary material for the sintered ore. For adjusting the grain size, cross section of the limestone is polished and then the grain size is adjusted corresponding to crystaline grain size in cross section structure. Thus, the sintered ore having high productivity and high quality is manufactured by adjusting grain size of the limestone.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高炉製鉄法の原料であ
る焼結鉱の製造に使用する焼結鉱用の石灰石の粒度調整
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for adjusting the particle size of limestone for sinter used in the production of sinter, which is a raw material for the blast furnace ironmaking process.

【0002】[0002]

【従来の技術】焼結鉱製造に使用する石灰石の粒度範囲
は5mm未満であり、5mm以上の粒子は粉砕して5m
m未満として使用している。しかし、5mm未満の粒度
分布が一定にならない場合が多いため、歩留、生産率、
強度および耐還元粉化性(RDI)に変動が生じてい
た。また、同一粒度分布を有していても、鉄鉱石との同
化率が異なる石灰石を使用した場合や結晶粒子径の異な
る石灰石を使用した場合には同様の変動を生じていた。
前者の対策例として、特開昭58−84931号公報に
は、使用する石灰石中の0.25mm以下の粒子が19
%以下になるように粒度調整を行うことで歩留、強度お
よびRDIを向上させる技術が記載されている。また、
特開昭61−34119号公報には、石灰石の3〜5m
mの粒度を使用する石灰石中35wt%以上にすること
で生産率およびRDIを向上させる技術が記載されてい
る。しかし、これらは石灰石の粒度構成を粒子径で決定
するため、後者の鉄鉱石との同化率が異なる石灰石ある
いは結晶粒子径の異なる石灰石を使用する場合の対策と
することはできない。
The particle size range of limestone used for the production of sinter is less than 5 mm, and particles of 5 mm or more are crushed to 5 m.
It is used as less than m. However, since the particle size distribution of less than 5 mm is often not constant, the yield, production rate,
There were variations in strength and resistance to reduction dusting (RDI). Moreover, even if they had the same particle size distribution, the same variation occurred when limestone different in assimilation rate with iron ore was used or when limestone different in crystal grain size was used.
As an example of the former countermeasure, Japanese Patent Laid-Open No. 58-84931 discloses that particles of 0.25 mm or less in limestone used have a particle size of 19 or less.
There is described a technique for improving the yield, strength and RDI by adjusting the grain size so as to be not more than%. Also,
Japanese Unexamined Patent Publication No. 61-34119 discloses a limestone of 3-5 m.
A technique for improving the production rate and RDI by setting the particle size of m to 35 wt% or more in limestone is described. However, since the particle size composition of limestone is determined by the particle size, they cannot be used as a countermeasure when using limestone having a different assimilation rate with iron ore or limestone having a different crystal particle size.

【0003】[0003]

【発明が解決しようとする課題】焼結原料中の石灰石は
1205℃付近で鉱石中のFe2 3 と反応し、CaO
−Fe2 3 系融液を生成させる。この融液の生成量は
石灰石のFe2 3 との同化反応性で大きく異なってく
る。同化率が高いと融液過多となり、焼結層内の通気性
を悪化させ生産性を低下させることになる。また、同化
率が低いと融液量は少なくなるため、粘結材としての効
果が小さくなり強度が低下してしまう。
The limestone in the sintering raw material reacts with Fe 2 O 3 in the ore at around 1205 ° C., and CaO
To produce -fe 2 O 3 KeiTorueki. The amount of this melt produced greatly differs depending on the assimilation reactivity of limestone with Fe 2 O 3 . If the assimilation rate is high, the melt becomes excessive, which deteriorates the air permeability in the sintered layer and lowers the productivity. Further, when the assimilation rate is low, the amount of melt is small, so that the effect as a binder is reduced and the strength is reduced.

【0004】また、焼結原料中の石灰石は830℃付近
でCaOとCO2 に分解される。この時、結晶粒子径の
異なる石灰石を用いるとCaOとして強度に差が生じ、
焼結鉱製造時に生焼け部が発生し強度の低下を引き起こ
したり、あるいは溶けすぎて通気性を悪化させ生産性の
低下およびRDIの悪化を引き起こす原因となってい
た。
Further, limestone in the sintering raw material is decomposed into CaO and CO 2 at around 830 ° C. At this time, if limestone having a different crystal particle size is used, a difference occurs in strength as CaO,
This has been a cause of producing a raw burned portion during the production of sinter ore and causing a decrease in strength, or by causing excessive melting to deteriorate air permeability, resulting in a decrease in productivity and a deterioration in RDI.

【0005】以上のように、低品質の焼結鉱製造を回避
するため石灰石の適正な処理方法の開発が望まれてい
た。そこで本発明は、焼結鉱製造に使用する石灰石の種
類に関係なく、石灰石を適切な粒度範囲に調整する方法
を提供する。
As described above, it has been desired to develop a proper treatment method for limestone in order to avoid the production of low-quality sinter. Therefore, the present invention provides a method for adjusting limestone to an appropriate particle size range regardless of the type of limestone used for producing sinter.

【0006】[0006]

【課題を解決するための手段】本発明は、焼結鉱用の石
灰石の粒度調整方法において、Fe2 3 焼成タブレッ
トの上に石灰石をのせてFe2 3 と石灰石を1250
〜1300℃に加熱した後、前記石灰石のうち、加熱前
の石灰石の断面積に対する加熱後の石灰石の断面の未溶
融部の面積率が30%未満の石灰石は1〜3mm未満の
粒度に調整し、該面積率が30〜70%の石灰石は3〜
5mm未満の粒度に調整し、該面積率が70%超の石灰
石は5〜7mm未満の粒度に調整し、いずれか一種を焼
結副原料として用いることを特徴とする焼結鉱用の石灰
石の粒度調整方法、および、焼結鉱用の石灰石の粒度調
整方法において、石灰石の断面を研磨し、該断面組織の
結晶粒子径の平均が10μm未満の石灰石は1〜3mm
未満の粒度に調整し、結晶粒子径の平均が10〜100
μm未満の石灰石は3〜5mm未満の粒度に調整し、結
晶粒子径の平均が100〜2000μm未満の石灰石は
5〜10mm未満の粒度に調整し、いずれか一種を焼結
副原料として用いることを特徴とする焼結鉱用の石灰石
の粒度調整方法である。
According to the present invention, in a method for adjusting the particle size of limestone for sinter, 1250 of Fe 2 O 3 and limestone are placed by placing limestone on a Fe 2 O 3 fired tablet.
After heating to ˜1300 ° C., of the limestone, limestone having an area ratio of the unmelted portion of the cross section of the limestone after heating with respect to the cross-sectional area of the limestone before heating of less than 30% is adjusted to a particle size of less than 1 mm. , The area ratio is 30 ~ 70% limestone is 3 ~
A limestone for sinter that is adjusted to a particle size of less than 5 mm, and the limestone having an area ratio of more than 70% is adjusted to a particle size of 5 to less than 7 mm, and any one of them is used as a sintering auxiliary material. In the particle size adjusting method and the particle size adjusting method of limestone for sinter, the cross section of limestone is polished, and the average crystal particle diameter of the cross sectional structure is 1 to 3 mm for limestone.
Adjusted to a particle size of less than 10 and an average crystal particle size of 10 to 100.
Limestone of less than μm is adjusted to a particle size of 3 to less than 5 mm, limestone having an average crystal grain size of 100 to less than 2000 μm is adjusted to a particle size of 5 to less than 10 mm, and one of them is used as a sintering auxiliary material. It is a characteristic method for adjusting the particle size of limestone for sinter.

【0007】[0007]

【作用】前述の通り、焼結操業における生産率、歩留、
強度およびRDI等の悪化は、焼結層内の過溶融あるい
は焼けむらという融液を介して起こる現象が引き起こし
ており、これには石灰石の鉄鉱石中のFe2 3 との同
化反応性が大きく影響し、同化率が高い石灰石は使用粒
度を大きくする必要があり、逆に同化率の低い石灰石は
使用粒度を小さくする必要がある。このように、石灰石
とFe2 3 の同化反応性は焼結用石灰石の粒度を決定
する大きな指標となっている。
[Function] As mentioned above, the production rate, yield, and
Deterioration of strength and RDI is caused by a phenomenon of over-melting or uneven burning in the sintered layer, and this is due to the assimilation reactivity of limestone with Fe 2 O 3 in iron ore. Limestone, which has a large influence and has a high assimilation rate, needs to have a large use grain size, and conversely, limestone having a low assimilation rate needs to have a small use grain size. As described above, the assimilation reactivity between limestone and Fe 2 O 3 is a great index for determining the particle size of limestone for sintering.

【0008】通常の焼結原料は、T.Fe=55%、C
aO=10%、SiO2 =5%およびMgO=2%に対
し4.5%のコークスを配合し、6%の水分を添加して
5分間ドラムミキサーで造粒し、焼結層内に充填する。
この時の充填密度は1.8t/m3 であり、原料層厚は
500mmである。原料表面に点火バーナーで着火し、
下方からブロワーで吸引し焼結鉱を製造する。この過程
で、石灰石はまず1200℃で鉱石中のFe2 3 と反
応し、CaO−Fe2 3 系の融液を生成させる。Ca
Oはこの反応に80%消費され、残ったCaOと鉱石中
の粘土鉱物あるいは珪石が反応してCaO−SiO2
生成させる。
A usual sintering raw material is T. Fe = 55%, C
4.5% coke was mixed with aO = 10%, SiO 2 = 5%, and MgO = 2%, 6% water was added, and the mixture was granulated with a drum mixer for 5 minutes and filled in the sintered layer. To do.
The packing density at this time is 1.8 t / m 3 , and the raw material layer thickness is 500 mm. Ignite the surface of the raw material with an ignition burner,
Suction with a blower from below to produce sinter. In this process, limestone first reacts with Fe 2 O 3 in the ore at 1200 ° C. to form a CaO—Fe 2 O 3 system melt. Ca
O is consumed 80% reaction, remaining clay mineral or silica of CaO and in the ore to produce in response CaO-SiO 2.

【0009】そこでCaO源である石灰石の同化率は鉄
鉱石との反応量から判定できることがわかる。しかし、
元来鉄鉱石中には粘土鉱物あるいは石英など脈石分が5
〜7%含まれており、脈石分と分布は鉱石によりまちま
ちであるので、石灰石の同化性は鉱石中の脈石形態およ
び脈石分で変わってしまう恐れがある。そこで、本発明
では鉄鉱石の代替として1級または特級の試薬Fe2
3 を使用することにした。
Therefore, it is understood that the assimilation rate of limestone which is the source of CaO can be judged from the reaction amount with iron ore. But,
Originally, iron ore contains 5 gangue components such as clay minerals and quartz.
Since the content is ˜7%, and the gangue content and distribution vary depending on the ore, the assimilation property of limestone may change depending on the gangue form and gangue content in the ore. Therefore, in the present invention, as a substitute for iron ore, a first-grade or special-grade reagent Fe 2 O is used.
Decided to use 3 .

【0010】石灰石の同化性は加熱前の石灰石の断面積
に対する加熱後の石灰石の断面の未溶融部の面積率であ
る同化率として求める。図1に示す様に、試薬Fe2
3 焼成タブレットaの上に測定する石灰石bを任意の寸
法に切り出して置く。その後1250〜1300℃に加
熱し、冷却後石灰石bの断面を研磨し、図1に示す加熱
後の石灰石の未溶融部cの断面積A1と加熱前の石灰石
bの面積A0から数1により同化率を求める。同化性は
同化率の高いほど大きい。
The assimilation property of limestone is determined as the assimilation rate which is the area ratio of the unmelted portion of the cross section of limestone after heating to the cross-sectional area of limestone before heating. As shown in FIG. 1, the reagent Fe 2 O
3 Limestone b to be measured is cut out and placed on a baking tablet a in an arbitrary size. After that, it is heated to 1250 to 1300 ° C., and after cooling, the cross section of the limestone b is polished, and the sectional area A1 of the unmelted portion c of the limestone after heating shown in FIG. 1 and the area A0 of the limestone b before heating are assimilated by Equation 1. Find the rate. The higher the assimilation rate, the greater the assimilation rate.

【0011】[0011]

【数1】同化率(%)=1−(A1/A0)×100## EQU1 ## Assimilation rate (%) = 1- (A1 / A0) × 100

【0012】試薬Fe2 3 焼成タブレットは8〜15
mmφのダイスで10〜20mmHに成形した。タブレ
ットの径が8mm未満だと生成した融液が外にこぼれて
しまい、15mm超になると鉱石中心部の密度が小さく
なり、焼成後の気孔量が一定にならない。高さは10m
m未満だと融液が底面まで浸透してしまい、20mm超
では石灰石をのせる際の安定が著しく低下する。このF
2 3 焼成タブレットを1300℃で3時間焼成し、
100μm以下の気孔量が0.05cm3 /gとなるよ
うにした。この気孔量は鉄鉱石の平均的な値である。
Reagent Fe 2 O 3 baking tablet is 8 to 15
It was molded to 10 to 20 mmH with a mmφ die. If the tablet diameter is less than 8 mm, the generated melt will spill out, and if it exceeds 15 mm, the density of the central portion of the ore will be low, and the amount of pores after firing will not be constant. Height is 10m
If it is less than m, the melt will penetrate to the bottom surface, and if it exceeds 20 mm, the stability when placing limestone will be significantly reduced. This F
e 2 O 3 baking tablets are baked at 1300 ° C. for 3 hours,
The porosity of 100 μm or less was set to be 0.05 cm 3 / g. This porosity is an average value for iron ore.

【0013】石灰石は3〜5mm角に切り出したものを
用いた。3mm未満では全てが溶融してしまう恐れがあ
り、5mm超では実用範囲を越えてしまうためである。
The limestone used was cut into a 3 to 5 mm square. This is because if it is less than 3 mm, there is a possibility that everything will melt, and if it exceeds 5 mm, it will exceed the practical range.

【0014】焼成温度は最高到達温度を実機焼結に近似
させ1300℃とした。
The firing temperature was set to 1300 ° C. by approximating the highest temperature reached to the actual sintering.

【0015】産地の異なる石灰石A、BおよびCについ
て2個ずつのサンプルで同化性を調査した。その結果を
図2に示すが、同化率は石灰石Aが12%、23%、石
灰石Bが33%、67%、石灰石Cが75%、90%と
なった。このように同化率の異なる石灰石を1mm以
下、1〜3mm未満、3〜5mm未満、5〜7mm未満
および7mm以上に分級し、それぞれの粒度毎の1kg
焼結鍋実験を行い、石灰石の同化率と使用石灰石粒度の
関係を調べた。実験条件は現在の焼結操業に近似させ、
配合原料中のSiO2 は5.5%、塩基度(CaO/S
iO2 )は2.0一定とし、コークス配合量は4.5%
とした。結果を表1、表2、表3に示す。石灰石の同化
率により、石灰石Aでは使用粒度が1〜3mm未満、石
灰石Bでは3〜5mm未満、石灰石Cでは5〜7mm未
満の粒度において生産率、歩留、TI強度およびRDI
の値が一番良好であった。そこで、最適粒度との関係
は、同化率30%未満の石灰石は1〜3mm未満、同化
率30〜70%の石灰石は3〜5mm未満、同化率70
%超の石灰石は5〜7mm未満の粒度に調整することに
した。
The assimilability was investigated in two samples of limestones A, B and C having different origins. The results are shown in FIG. 2. The assimilation rates were 12% and 23% for limestone A, 33% and 67% for limestone B, and 75% and 90% for limestone C. In this way, limestones having different assimilation rates are classified into 1 mm or less, 1 to 3 mm, 3 to 5 mm, 5 to 7 mm and 7 mm or more, and 1 kg for each particle size.
A sintering pot experiment was conducted to investigate the relationship between the assimilation rate of limestone and the particle size of limestone used. The experimental conditions are similar to the current sintering operation,
SiO 2 in the blended raw material is 5.5%, basicity (CaO / S
iO 2 ) is constant at 2.0, and the coke content is 4.5%
And The results are shown in Tables 1, 2 and 3. Depending on the assimilation rate of limestone, the particle size used in limestone A is less than 1 to 3 mm, limestone B is less than 3 to 5 mm, and limestone C is less than 5 to 7 mm in production rate, yield, TI strength and RDI.
The value of was the best. Therefore, as for the relationship with the optimum grain size, limestone with an assimilation rate of less than 30% is less than 1 to 3 mm, limestone with an assimilation rate of 30 to 70% is less than 3 to 5 mm, and assimilation rate is 70.
% Of limestone will be adjusted to a particle size of less than 5-7 mm.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【表2】 [Table 2]

【0018】[0018]

【表3】 [Table 3]

【0019】また、結晶粒子径の異なる石灰石は熱分解
により強度の異なるCaOとなる。通常石灰石の強度は
結晶粒子径が大きいほど高く、強度が低い石灰石は粉化
しやすいため、石灰石の粒度をできるだけ大きくする必
要がある。また、強度が低下しないものは石灰石の粒度
を小さくすることができる。石灰石A、石灰石Bおよび
石灰石Cを個別に樹脂または接着剤に埋め込み、断面を
鏡面研磨し、断面組織から結晶粒子の平均径を測定す
る。一般に使用されている画像解析装置を用いる。ま
ず、各試料の断面組織を写真撮影する。撮影装置は結晶
粒子が鮮明に写せるものであればよいが、特に金属顕微
鏡あるいは走査型電子顕微鏡が好ましい。撮影倍率は3
00〜500倍とする。それ以下では画像処理において
5μm以下の結晶を分離する分解能が低下し、それより
大きな倍率になると100μm以上の結晶粒子が撮影画
面に入らなくなるためである。撮影箇所は試料内の5箇
所とし、撮影位置は任意とした。5箇所未満では結果の
バラツキが大きく信頼性に欠け、それ以上では5箇所撮
影時とほとんど同じ結果となったためである。
Further, limestone having different crystal particle diameters becomes CaO having different strength due to thermal decomposition. Usually, the strength of limestone increases as the crystal grain size increases, and limestone with low strength is easily pulverized. Therefore, it is necessary to increase the particle size of limestone as much as possible. If the strength does not decrease, the particle size of limestone can be reduced. Limestone A, limestone B, and limestone C are individually embedded in a resin or an adhesive, the cross section is mirror-polished, and the average diameter of crystal grains is measured from the cross-sectional structure. A generally used image analysis device is used. First, the cross-sectional structure of each sample is photographed. The image capturing device may be any device capable of clearly displaying crystal particles, but a metallographic microscope or a scanning electron microscope is particularly preferable. Shooting magnification is 3
It is set to 00 to 500 times. This is because if the thickness is less than that, the resolution for separating crystals of 5 μm or less in image processing is lowered, and if the magnification is larger than that, crystal particles of 100 μm or more do not enter the photographing screen. There were 5 imaging locations in the sample, and the imaging location was arbitrary. This is because there are large variations in the results when the number is less than 5, and the reliability is low.

【0020】画像解析により求めた各石灰石の粒径分布
と平均結晶粒子径を表4に示す。石灰石Aは5μm、石
灰石Bは65μm、石灰石Cは130μmであった。そ
の粒径分布の範囲は、1〜9μm、10〜100μm未
満および100μm〜1000μmであったため、結晶
粒子径を10μm未満、10〜100μm未満および1
00〜1000μm未満に分類した。これら平均結晶粒
子径の異なる石灰石を1mm以下、1〜3mm未満、3
〜5mm未満、5〜10mm未満および10mm以上に
粒度調整し、各粒度毎実験を行い、石灰石の平均結晶粒
子径と使用石灰石粒度の関係を調べた。
Table 4 shows the particle size distribution and average crystal particle size of each limestone obtained by image analysis. Limestone A was 5 μm, limestone B was 65 μm, and limestone C was 130 μm. Since the range of the particle size distribution was 1 to 9 μm, 10 to less than 100 μm and 100 μm to 1000 μm, the crystal particle size was less than 10 μm, less than 10 to 100 μm and 1
It was classified to be less than 00 to less than 1000 μm. These limestones having different average crystal particle sizes are 1 mm or less, less than 1 to 3 mm, and 3
The particle size was adjusted to less than 5 mm, less than 5 to 10 mm, and 10 mm or more, and an experiment was performed for each particle size to examine the relationship between the average crystal particle size of limestone and the limestone particle size used.

【0021】[0021]

【表4】 [Table 4]

【0022】試験結果を表5、表6、表7に示す。これ
は、購入した石灰石の結晶粒径を予め測定しておき、結
晶粒子径に応じた粒度調整を行い焼結鍋実験をした結果
である。T.Fe=55%、CaO=10%、SiO2
=5%およびMgO=2%になるように鉄鉱石と副原料
を調整し、これに対し4.5%のコークスを配合し、6
%の水分を添加し、5分間ドラムミキサーで造粒した。
The test results are shown in Tables 5, 6 and 7. This is the result of measuring the crystal grain size of the purchased limestone in advance, adjusting the grain size according to the crystal grain size, and conducting a sintering pot experiment. T. Fe = 55%, CaO = 10%, SiO 2
= 5% and MgO = 2%, the iron ore and the auxiliary raw materials were adjusted, and 4.5% of coke was added to this, and
% Moisture was added and granulated for 5 minutes with a drum mixer.

【0023】[0023]

【表5】 [Table 5]

【0024】[0024]

【表6】 [Table 6]

【0025】[0025]

【表7】 [Table 7]

【0026】結果は、石灰石の結晶粒子径により生産
率、成品歩留、TI強度およびRDIが良好な最適な使
用粒度が存在することを示している。結晶粒子径の平均
が10μm未満の石灰石Aは粒度が1〜3mm未満、結
晶粒子径の平均が10〜100μm未満の石灰石Bは3
〜5mm未満、結晶粒子径の平均が100〜2000μ
m未満の石灰石Cは5〜10mm未満の粒度に調整す
る。
The results show that there is an optimum particle size to be used which has a good production rate, product yield, TI strength and RDI depending on the crystal particle size of limestone. Limestone A having an average crystal particle size of less than 10 μm has a particle size of less than 1 to 3 mm, and limestone B having an average crystal particle size of less than 10 to 100 μm has 3
~ Less than 5 mm, average crystal particle size is 100 ~ 2000μ
Limestone C of less than m is adjusted to a particle size of less than 5 to 10 mm.

【0027】[0027]

【実施例1】本発明法により粒度調整した石灰石を焼結
副原料として実機の焼結機で用いたた例を図3に示す。
これは、購入した石灰石の同化率を予め調査した結果同
化率が45%であったので、石灰石を3〜5mm未満に
粒度調整し、焼結操業した結果である。従来の石灰石の
粒度調整は、粒子径5mm未満を使用し、5mm以上は
粉砕して5mm未満にしてから使用していた。
Example 1 FIG. 3 shows an example in which limestone whose grain size was adjusted by the method of the present invention was used as an auxiliary sintering material in an actual sintering machine.
This is a result of performing a sintering operation after adjusting the particle size of limestone to less than 3 to 5 mm, since the assimilation rate of the purchased limestone was 45% as a result of preliminary investigation. In the conventional particle size adjustment of limestone, a particle size of less than 5 mm was used, and a particle size of 5 mm or more was crushed to less than 5 mm before use.

【0028】焼結機あるいは使用原料により多少差はあ
るが、生産率は33〜34t/D/m2 、成品歩留は8
0%、TI強度は70%、RDI値は32〜35%が平
均的な値とされている。本発明を採用する前は生産率が
30.0t/D/m2 、成品歩留が77.4%、TI強
度が68.4%、RDIが33.9%であったが、採用
後は、生産率が4.6%、成品歩留が4.1%、TI強
度が3.8%向上し、RDIが3.6%低下し、高品質
の焼結鉱が製造できた。本発明を採用してから、成品歩
留、TI強度およびRDIのバラツキが減少し、高生産
で高品質の焼結鉱が製造できた。
The production rate is 33 to 34 t / D / m 2 , and the product yield is 8 although there are some differences depending on the sintering machine or the raw materials used.
An average value of 0%, TI strength of 70%, and RDI value of 32 to 35% is set. Before adopting the present invention, the production rate was 30.0 t / D / m 2 , the product yield was 77.4%, the TI strength was 68.4%, and the RDI was 33.9%. The production rate was 4.6%, the product yield was 4.1%, the TI strength was improved by 3.8%, the RDI was decreased by 3.6%, and high-quality sinter was manufactured. Since the present invention was adopted, variations in product yield, TI strength, and RDI were reduced, and high-quality and high-quality sinter was produced.

【0029】[0029]

【実施例2】購入した石灰石の断面を研磨し、結晶粒子
径の平均を測定したところ6μmであったため、本発明
法により1〜3mmに粒度調整し、実機焼結操業した結
果を図4に示す。従来は、石灰石の粒度は、粒子径5m
m未満を使用していた。
[Example 2] The cross-section of the purchased limestone was polished, and the average crystal particle size was measured to be 6 µm. Therefore, the particle size was adjusted to 1 to 3 mm by the method of the present invention, and the result of the actual machine sintering operation is shown in Fig. 4. Show. Conventionally, the particle size of limestone is 5 m
It used less than m.

【0030】本発明を採用する前は生産率が31.4t
/D/m2 、成品歩留が79.2%、TI強度が70.
8%、RDIが32.5%であったが、採用後は、生産
率が4.6%、成品歩留が3.4%、TI強度が3.3
%向上し、RDIが3.2%低下し、高品質の焼結鉱が
製造できた。
Before adopting the present invention, the production rate is 31.4t.
/ D / m 2 , product yield 79.2%, TI strength 70.
8% and RDI was 32.5%, but after adoption, the production rate was 4.6%, the product yield was 3.4%, and the TI strength was 3.3.
%, The RDI was reduced by 3.2%, and high quality sinter was produced.

【0031】[0031]

【発明の効果】本発明法で焼結鉱製造に使用する石灰石
を適切な粒度範囲に調整することにより、高生産で高品
質の焼結鉱を製造することが可能となる。
EFFECTS OF THE INVENTION By adjusting the limestone used for producing sinter according to the method of the present invention within an appropriate particle size range, it becomes possible to produce high-quality sinter with high production.

【図面の簡単な説明】[Brief description of drawings]

【図1】同化率測定実験に使用した試料の断面図であ
る。
FIG. 1 is a cross-sectional view of a sample used in an assimilation rate measurement experiment.

【図2】石灰石の1300℃の同化率を示す図である。FIG. 2 is a diagram showing the assimilation rate of limestone at 1300 ° C.

【図3】本発明実施時の実機焼結実験結果を示す図であ
る。
FIG. 3 is a diagram showing a result of an actual machine sintering experiment when the present invention is carried out.

【図4】本発明実施時の実機焼結実験結果を示す図であ
る。
FIG. 4 is a diagram showing a result of an actual sintering test when the present invention is carried out.

【符号の説明】[Explanation of symbols]

a 試薬Fe2 3 タブレット b 石灰石 c 未溶融部a Reagent Fe 2 O 3 tablet b Limestone c Unmelted part

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 焼結鉱用の石灰石の粒度調整方法におい
て、Fe2 3 焼成タブレットの上に石灰石をのせてF
2 3 と石灰石を1250〜1300℃に加熱した
後、前記石灰石のうち、加熱前の石灰石の断面積に対す
る加熱後の石灰石の断面の未溶融部の面積率が30%未
満の石灰石は1〜3mm未満の粒度に調整し、該面積率
が30〜70%の石灰石は3〜5mm未満の粒度に調整
し、該面積率が70%超の石灰石は5〜7mm未満の粒
度に調整し、いずれか一種を焼結副原料として用いるこ
とを特徴とする焼結鉱用の石灰石の粒度調整方法。
1. A method for adjusting the particle size of limestone for sinter, wherein limestone is placed on a Fe 2 O 3 fired tablet and F is added.
After heating e 2 O 3 and limestone to 1250 to 1300 ° C., among the limestones, 1 is the limestone in which the area ratio of the unmelted portion of the cross section of the limestone after heating to the cross-sectional area of the limestone before heating is less than 30%. Adjusted to a particle size of less than 3 mm, the limestone having an area ratio of 30 to 70% is adjusted to a particle size of less than 3 to 5 mm, and the limestone having an area ratio of more than 70% is adjusted to a particle size of less than 5 to 7 mm, A method for adjusting the particle size of limestone for sinter, comprising using one of them as a sintering auxiliary material.
【請求項2】 焼結鉱用の石灰石の粒度調整方法におい
て、石灰石の断面を研磨し、該断面組織の結晶粒子径の
平均が10μm未満の石灰石は1〜3mm未満の粒度に
調整し、結晶粒子径の平均が10〜100μm未満の石
灰石は3〜5mm未満の粒度に調整し、結晶粒子径の平
均が100〜2000μm未満の石灰石は5〜10mm
未満の粒度に調整し、いずれか一種を焼結副原料として
用いることを特徴とする焼結鉱用の石灰石の粒度調整方
法。
2. A method for adjusting the particle size of limestone for sinter, wherein a cross section of limestone is polished, and limestone having an average crystal particle size of the cross-sectional structure of less than 10 μm is adjusted to a particle size of less than 1 to 3 mm. Limestone having an average particle size of 10 to less than 100 μm is adjusted to a particle size of 3 to less than 5 mm, and limestone having an average crystal particle size of 100 to less than 2000 μm is 5 to 10 mm.
A method for adjusting the particle size of limestone for sinter, comprising adjusting the particle size to less than 1 and using one of them as a sintering auxiliary material.
JP14877494A 1994-06-08 1994-06-08 Method for adjusting grain size of limestone for sintered ore Withdrawn JPH07331341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14877494A JPH07331341A (en) 1994-06-08 1994-06-08 Method for adjusting grain size of limestone for sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14877494A JPH07331341A (en) 1994-06-08 1994-06-08 Method for adjusting grain size of limestone for sintered ore

Publications (1)

Publication Number Publication Date
JPH07331341A true JPH07331341A (en) 1995-12-19

Family

ID=15460370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14877494A Withdrawn JPH07331341A (en) 1994-06-08 1994-06-08 Method for adjusting grain size of limestone for sintered ore

Country Status (1)

Country Link
JP (1) JPH07331341A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002121619A (en) * 2000-08-11 2002-04-26 Nippon Steel Corp Method for producing sintered ore
JP2015203151A (en) * 2014-04-16 2015-11-16 株式会社神戸製鋼所 Production method of reduced iron

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002121619A (en) * 2000-08-11 2002-04-26 Nippon Steel Corp Method for producing sintered ore
JP2015203151A (en) * 2014-04-16 2015-11-16 株式会社神戸製鋼所 Production method of reduced iron

Similar Documents

Publication Publication Date Title
JP4935133B2 (en) Ferro-coke and method for producing sintered ore
JP2007177214A (en) Method for producing ferrocoke
JPH07331341A (en) Method for adjusting grain size of limestone for sintered ore
JP5011956B2 (en) Ferro-coke and method for producing sintered ore
JP4528362B2 (en) Method for producing sintered ore
KR100787359B1 (en) Method for producing sintered steel
JP3166536B2 (en) Method for producing sintered ore of high crystal water ore
JP4767388B2 (en) Method for producing sintered ore with excellent high-temperature properties
JPH0812975A (en) Iron ore-loaded formed coke, production of formed coke, and operation of blast furnace
JP2003049227A (en) Method for producing sintered ore
JP2004137575A (en) Production method for sintered ore
JPH05339652A (en) Preliminary pelletization method for production of sintered ore made by using pisolite ore as main raw material and its pseudo particle structure
JP4661154B2 (en) Method for producing sintered ore
JP4982986B2 (en) Method for producing sintered ore
JP2007031818A (en) Method for manufacturing sintered ore
JPH0881717A (en) Production of sintered ore
JPH05339654A (en) Pretreatment of sintered ore raw material and sintered ore raw material for iron making
JP4392302B2 (en) Method for producing sintered ore
WO1996009415A1 (en) Sintered ore manufacturing method using high crystal water iron ore as raw material
JP4438477B2 (en) Method for producing sintered ore for blast furnace
JP7260786B2 (en) Method for blending raw materials for sintering and method for producing sintered ore
JP4767425B2 (en) Method for producing sintered ore
JP4982993B2 (en) Method for producing sintered ore
JP7343768B2 (en) Method of blending raw materials for sintering
JPH0827525A (en) Production of sintered ore formed by using ore of high crystallization water as raw material

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010904