JP3166536B2 - Method for producing sintered ore of high crystal water ore - Google Patents

Method for producing sintered ore of high crystal water ore

Info

Publication number
JP3166536B2
JP3166536B2 JP04198095A JP4198095A JP3166536B2 JP 3166536 B2 JP3166536 B2 JP 3166536B2 JP 04198095 A JP04198095 A JP 04198095A JP 4198095 A JP4198095 A JP 4198095A JP 3166536 B2 JP3166536 B2 JP 3166536B2
Authority
JP
Japan
Prior art keywords
ore
component
sintering
sio
cao
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04198095A
Other languages
Japanese (ja)
Other versions
JPH08239720A (en
Inventor
尊三 川口
勝 松村
雅彦 星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=12623355&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3166536(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP04198095A priority Critical patent/JP3166536B2/en
Publication of JPH08239720A publication Critical patent/JPH08239720A/en
Application granted granted Critical
Publication of JP3166536B2 publication Critical patent/JP3166536B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、高結晶水含有鉱石を多
配合する焼結鉱製造法に係り、特に成品成分を所定値に
なるように原料および造滓剤の量を調整することで焼結
歩留および焼結生産性を改善する技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a sinter ore containing a large amount of ore having a high water content in crystallized water, and more particularly to a method of adjusting the amounts of raw materials and slag-making agents so that the components of the product become predetermined values. The present invention relates to a technique for improving sintering yield and sintering productivity.

【0002】[0002]

【従来の技術】焼結原料として結晶水を5%(本明細書
において%はすべて質量%を意味する)以上含む鉄鉱石
は広く用いられている。一般に鉄鉱石焼結鉱は、粉鉄鉱
石に造滓剤と燃料であるコークスを混合造粒した原料で
充填層を形成し、この層の上表面に着火後下方吸引する
ことによって燃料を燃焼させ1300℃程度の温度に原
料を加熱し溶融同化させることで塊成化するとともに気
孔構造も変化させることで製造される。
2. Description of the Related Art 5 % of water of crystallization is used as a raw material for sintering .
In all of the above, iron ore containing more than % is widely used. In general, iron ore sinter ore forms a packed bed with raw materials obtained by mixing and granulating a slag-making agent and coke as a fuel on fine iron ore, ignites the upper surface of this bed, and then burns the fuel by sucking it down. The raw material is manufactured by heating and melting and assimilating the raw material to a temperature of about 1300 ° C. to agglomerate and change the pore structure.

【0003】しかるに、粉鉄鉱石の結晶水が5以上の
高結晶水鉱石にあっては、焼結化反応過程の昇温時に結
晶水の分解によって気孔や亀裂が発生するので、溶融同
化性が高く、また焼結ケーキの気孔率も高くなる特徴が
ある。この溶融同化性が高いと言うことは塊成化にとっ
ては重要なことであるが、むしろ過剰気味に高く、高結
晶水鉱石を多配合すると、過溶融から通気性の悪化や通
気ムラを発生させ焼結生産性の低下や焼結歩留の低下の
原因となり大きな問題点となっている。このような観点
から高結晶水鉱石の配合率は20〜25%未満に制限さ
れてきたのが実情であり、多量使用について種々検討が
なされている。
[0003] However, in the case of high crystalline water ore in which the crystallization water of fine iron ore is 5 % or more, pores and cracks are generated by the decomposition of the crystallization water at the time of raising the temperature in the sintering reaction process. And the porosity of the sintered cake is also high. It is important for agglomeration to have high melt assimilation, but it is rather excessively high, and when a large amount of highly crystalline water ore is blended, deterioration of air permeability and uneven ventilation from overmelting occur. This causes a reduction in sintering productivity and a reduction in sintering yield, which is a major problem. From such a point of view, the mixing ratio of the highly crystalline water ore has been limited to less than 20 to 25%, and various studies have been made on its use in large quantities.

【0004】[0004]

【発明が解決しようとする課題】この例として、特開昭
58−141341号公報に記載のように、高結晶水鉱
石にMgO−SiO2 系の造滓剤または低反応性の微粉
鉄鉱石を配合し、予備造粒してミニペレット化し、他の
焼結原料と混合して焼結することで溶融同化性を抑制改
善する技術がある。
As an example of this, as disclosed in Japanese Patent Application Laid-Open No. 58-141341, a highly crystalline water ore is made of a MgO-SiO 2 type slag-making agent or low-reactivity fine iron ore. There is a technique of mixing, pre-granulating, mini-pelleting, mixing with other sintering raw materials and sintering to suppress and improve the melt assimilation.

【0005】しかし、このような予備造粒を手段とする
方法は予備造粒するための搬送と造粒の設備を必要とし
製造コストの上昇を招く。
[0005] However, such a method using pre-granulation requires transportation and granulation equipment for pre-granulation, and raises the production cost.

【0006】また、CAMP−ISIJ Vol.7
(1994)に記載されているように、高結晶水鉱石多
配合時にスケール(高FeO成分)を多配合することで
溶融する融液の流動性を改善することで焼結気孔構造を
改善し焼結歩留の悪化を防止する技術がある。
Further, CAMP-ISIJ Vol. 7
As described in (1994), when a large amount of highly crystalline water ore is blended, a large amount of scale (high FeO component) is blended to improve the fluidity of the melt to be melted, thereby improving the sintered pore structure and firing. There is a technique for preventing deterioration of the yield.

【0007】しかし、この技術はスケールを必要とする
ので、焼結鉱生産量に応じたスケール量が必要で、製板
や製管工程などで発生する量ではとてもまかないきれる
量ではないし、さらにスケールが高FeO成分であるこ
とから焼結鉱成品のFeOも高くなり被還元性が悪化す
る問題点もある。
However, since this technology requires a scale, a scale amount corresponding to the amount of sinter production is required, and the amount generated in the plate making and pipe making processes is not enough to cover the scale. Is a high FeO component, so that the sintered mineralized product also has high FeO, and thus has a problem that the reducibility deteriorates.

【0008】一方、現状焼結鉱の成品成分は、概ねSi
2 で5.4%、MgOで1.0%、CaOで10.0
%で製造されている。焼結鉱はSiO2 ,MgO,Ca
O,Al2 3 の造滓成分が鉄鉱石中のFe2 3 ,F
eOなどの鉄酸化物の溶融同化反応によって塊成化され
るが、CaO成分はFe2 3 との間で、SiO2 成分
はFeOとの間で低融点鉱物を形成し溶融同化反応が促
進するが、Al2 3やMgO成分は逆に溶融同化反応
を抑制する働きをする。
On the other hand, at present, the components of the sintered ore are generally Si
O 2 5.4%, MgO 1.0%, CaO 10.0
%. Sinter is SiO 2 , MgO, Ca
O, Al 2 O 3 slag forming components are Fe 2 O 3 , F in iron ore.
The iron oxides such as eO are agglomerated by the melt assimilation reaction, but the CaO component forms a low melting point mineral with Fe 2 O 3 and the SiO 2 component with FeO to accelerate the melt assimilation reaction. However, Al 2 O 3 and MgO components work to suppress the melt assimilation reaction.

【0009】したがって、CaOとSiO2 成分が低下
すると溶融同化が進まず通気性の悪化から生産性が悪化
するために、前述のとおり、SiO2 成分で5.4%、
CaO成分で10.0%程度が必要であった。またMg
O成分やAl2 3 成分が上昇すると、溶融同化が悪化
し、同様に焼成時通気性の低下より生産性が悪化する。
このためMgO成分やAl2 3 成分の高い焼結鉱は、
CaOやSiO2 成分を高くしておく必要があった。
Accordingly, in order to CaO and SiO 2 component productivity is deteriorated from deterioration in air permeability not proceed melt assimilated lowered, as described above, 5.4% of SiO 2 component,
About 10.0% of the CaO component was required. Also Mg
When the O component or the Al 2 O 3 component increases, melt assimilation deteriorates, and similarly, productivity deteriorates due to a decrease in air permeability during firing.
For this reason, sintered ore with high MgO and Al 2 O 3 components
It was necessary to keep the CaO and SiO 2 components high.

【0010】そこで、本発明は、高結晶水鉱石の焼結に
おいて、焼結の歩留りおよび生産性の高い製造方法を提
供することにある。
[0010] Therefore, an object of the present invention is to provide a production method having a high sintering yield and high productivity in the sintering of highly crystalline water ore.

【0011】[0011]

【課題を解決するための手段】上記課題を解決した本発
明の高結晶水鉱石の焼結鉱製造方法は、結晶水を5.0
以上含む鉄鉱石を25%以上使用して焼結鉱を製造す
るにあたり、成品成分がSiO2 成分で4.0〜4.8
%、MgO成分で1.2〜2.4%、CaO成分で6.
0〜9.0%の範囲に入るように原料または造滓剤量を
調整することを特徴とするものである。
According to the method of the present invention for solving the above-mentioned problems, the method for producing a sintered ore of high-crystal water ore according to the present invention has a crystallization water of 5.0.
% Of iron ore containing at least 25% by weight, the product component is a SiO 2 component of 4.0 to 4.8.
%, 1.2 to 2.4% for MgO component, and 6 for CaO component.
The amount of the raw material or the slag-making agent is adjusted to fall within the range of 0 to 9.0%.

【0012】[0012]

【作用】以下に本発明をさらに詳述する。本発明者ら
は、前述のとおり、高結晶水鉱石はきわめて溶融同化性
が良好であるので、これを25%を越える多配合を行う
と過溶融となるので、この配合で最適となる成分組織を
鋭意調査した結果、後述する実施例に見られるようにC
aO成分では6.0〜9.0%、SiO2 成分では4.
0〜4.8%、MgO成分では1.2〜2.4%の組合
せが良好であることを見出した。すなわち溶融同化性の
良好な高結晶水鉱石を多配合しているので、従来よりも
CaOやSiO2 成分を抑制することで適正な溶融量と
するこによる効果を得るものである。
The present invention will be described below in more detail. As described above, the present inventors have found that highly crystalline water ore has extremely good melt assimilation properties, and if it is mixed more than 25%, it becomes overmelted, so that the composition of the composition that is optimal with this combination As a result of intensive investigation of C,
6.0 to 9.0% for the aO component and 4.0 for the SiO 2 component.
It has been found that a combination of 0 to 4.8% and a combination of 1.2 to 2.4% for the MgO component are good. That since the multi-blended melt assimilable good high crystal water ore, it is intended to obtain an appropriate amount of fusion and the effect of the child by suppressing CaO and SiO 2 components than conventional.

【0013】一方、CaO成分で6.0%未満、SiO
2 成分で4.0%未満となると、溶融同化不足となって
焼結生産性が低下し、逆にCaO成分で9.0%を超
え、SiO2 成分で4.8%を超えると、溶融同化量が
多すぎて通気性の悪化や通気ムラを発生せしめ焼結生産
性が悪化する。
On the other hand, the content of CaO is less than 6.0%,
If less than 4.0% in two components become molten assimilation insufficient sintering productivity is lowered, more than 9.0 percent CaO component Conversely, when it exceeds 4.8% of SiO 2 component, the molten If the amount of assimilation is too large, the air permeability deteriorates and the air flow becomes uneven, and the sintering productivity deteriorates.

【0014】しかし、単にCaO成分とSiO2 成分の
適正化だけを図ると、高結晶水鉱石は焼結ケーキ気孔率
を上昇せしめ焼結歩留は悪化する。これらについては、
融液の流動性を高めることで改善できるので、溶融同化
性を抑制するが融液流動性を高めるMgO成分を1.2
%以上に上昇せしめることが重要であることが判った。
しかし、MgO成分を2.4%を超えると、溶融同化性
が大幅に悪化し焼結生産性が低下する。さらにAl2
3 成分についてはAl2 3 成分が2.0%以上の高A
2 3 前提の方が焼結生産性の改善度が大きく、逆に
Al2 3 成分が低い場合にこの改善度は小さい。Fe
O成分と異なり、Al2 3 とMgO成分を上昇させた
場合には被還元性の低下はなく、Al2 3 成分は焼結
生産性を改善する効果をもっている。
However, if only the CaO component and the SiO 2 component are simply optimized, the high crystal water ore increases the porosity of the sintered cake, and the sintering yield deteriorates. For these,
It can be improved by increasing the fluidity of the melt.
It was found that it was important to raise the percentage to more than%.
However, when the content of the MgO component exceeds 2.4%, the melt assimilation property is significantly deteriorated, and the sintering productivity is reduced. Furthermore, Al 2 O
As for the three components, the Al 2 O 3 component has a high A of 2.0% or more.
The improvement in sintering productivity is larger on the assumption of l 2 O 3 , and conversely, the improvement is smaller when the Al 2 O 3 component is low. Fe
Unlike the O component, when the Al 2 O 3 and MgO components are increased, the reducibility does not decrease, and the Al 2 O 3 component has the effect of improving sintering productivity.

【0015】[0015]

【実施例】表1に示すように、結晶水5.0以上の鉄
鉱石を15%含む配合条件(ケース1)で、直径300
mmφ高さ500mm送風圧力1200mmH2 Oの焼結鍋試
験装置を用いて焼結鉱を製造し、現状のSiO2 =5.
4%、MgO=1.0%、CaO=10.0%の焼結鉱
を製造する時の焼結歩留と焼結生産性との比較を行っ
た。
EXAMPLE As shown in Table 1, under a compounding condition (case 1) containing 15% of iron ore having a crystallization water of 5.0 % or more, a diameter of 300% was obtained.
Sinter ore was manufactured using a sintering pot tester with a height of 500 mm mm and a blowing pressure of 1200 mmH 2 O, and the current SiO 2 = 5.
A comparison was made between the sintering yield and the sintering productivity when producing a sintered ore of 4%, MgO = 1.0%, and CaO = 10.0%.

【0016】次に、結晶水5.0以上の鉄鉱石を25
%含む配合条件(ケース2)で、同様に直径300mmφ
高さ500mm送風圧力1200mmH2 Oの焼結鍋試験装
置を用いて焼結鉱を製造する試験を、Al2 3 =2.
0%の条件とAl2 3 =1.6%の条件において、C
aO、SiO2 、MgO成分を変更する試験を実施し、
焼結歩留と焼結生産性を比較した。
Next, 25 % or more of iron ore having water of crystallization of 5.0 % or more was added.
% In the same condition (case 2)
A test for producing a sintered ore using a sintering pot tester having a height of 500 mm and a blowing pressure of 1200 mmH 2 O was performed using Al 2 O 3 = 2.
Under the conditions of 0% and Al 2 O 3 = 1.6%, C
A test for changing aO, SiO 2 , and MgO components was carried out,
The sintering yield and sintering productivity were compared.

【0017】なお、高結晶水鉱石としてはピソライト鉱
とマラマンバ鉱を用い、CaO、SiO2 、MgO成分
の調整には高SiO2 鉄鉱石であるリオドセ鉱とMtニ
ューマン鉱および副原料である蛇紋岩、石灰石、ドロマ
イト、硅石などの配合量を変更させて実施した。各銘柄
の成分表を表2に示す。
As the high crystalline water ore, pisolite ore and maramamba ore were used. For the adjustment of CaO, SiO 2 and MgO components, high SiO 2 iron ore, liodose ore and Mt Newman ore, and serpentine as an auxiliary material were used. The amount of limestone, dolomite, silica stone, etc. was changed to implement. Table 2 shows the composition table of each brand.

【0018】さらに結晶水5.0以上の鉄鉱石を50
%含む配合条件(ケース3)でも同様の試験を行い比較
評価した。
[0018] Further, the crystal water of 5.0% or more of iron ore 50
The same test was carried out under the blending condition containing% (case 3), and comparative evaluation was performed.

【0019】なお、本鍋試験にあっては燃料となる粉コ
ークスは4.5%で、返鉱を14.0%の配合率で外数
として加えた。
In this pot test, coke breeze used as fuel was 4.5%, and returned ore was added as an external number at a mixing ratio of 14.0%.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【表2】 [Table 2]

【0022】高結晶水鉱石15%前提でのSiO2
5.4%、MgO=1.0%、CaO=10.0%の焼
結鉱製造時の焼結歩留及び焼結生産率を表3に示す。
SiO 2 = 15% of high crystalline water ore
Table 3 shows the sintering yield and the sintering production rate at the time of sinter production of 5.4%, MgO = 1.0%, and CaO = 10.0%.

【0023】[0023]

【表3】 [Table 3]

【0024】次に高結晶水鉱石25%前提での焼結鉱C
aO成分とSiO2 成分を変更した時の焼結生産率を図
1および図2に示す。この図1および図2では、それぞ
れ焼結鉱MgO=1.7%一定で、Al2 3 =1.6
%とAl2 3 =2.0%一定の場合を示した。そして
前述のベースとなる表3の結果を基準線として図中に記
入した。
Next, the sintered ore C on the assumption that the high crystalline water ore is 25%
FIGS. 1 and 2 show the sintering productivity when the aO component and the SiO 2 component were changed. In FIGS. 1 and 2, the sintered ore MgO is constant at 1.7%, and Al 2 O 3 is 1.6.
% And Al 2 O 3 = 2.0% are shown. Then, the results in Table 3 as the base described above were entered in the figure as reference lines.

【0025】図1および図2から、本発明法の範囲にす
ると、ベースの生産率以上の結果を得ることができ、高
結晶水の特性を活用したCaO、SiO2 成分の設計で
あることが判る。
From FIGS. 1 and 2, when the method of the present invention is applied, a result higher than the production rate of the base can be obtained, and the design of the CaO and SiO 2 components utilizing the characteristics of high crystallization water. I understand.

【0026】さらに高結晶水鉱石25%前提で、CaO
=8%、SiO2 =4%一定時のMgO成分を変更した
ときの焼結歩留を図3に、焼結生産率を図4に示した。
Further, on the assumption that the high crystalline water ore is 25%, CaO
= 8%, showed a baked YuifuTome of changing the SiO 2 = 4% MgO component of a certain time in FIG. 3, the sintered production rates in FIG.

【0027】図3および図4により、本発明法の範囲で
はベース以上の生産率と歩留を確保しており、上記と同
様に高結晶水の特性を活用した成分設計であることが判
る。
3 and 4, it can be seen that a production rate and yield higher than the base are ensured in the range of the method of the present invention, and that the component design utilizes the characteristics of high crystal water similarly to the above.

【0028】表4には、製造焼結鉱の被還元性を調べた
結果を示すが、低下傾向は示していない。
Table 4 shows the results of examining the reducibility of the manufactured sintered ore, but does not show a decreasing tendency.

【0029】[0029]

【表4】 [Table 4]

【0030】さらに高結晶水鉱石50%配合前提での結
果を図5および図6に示す。高結晶水鉱石25%配合と
同様に、本発明法の成分範囲はベース以上の歩留と生産
率を示しており、本発明法が高結晶水多配合時に多大な
効果発揮する技術であることを示している。
5 and 6 show the results on the premise that 50% of the high crystalline water ore is blended. As with the 25% high crystal water ore blending, the component range of the method of the present invention shows a yield and production rate higher than the base, and the method of the present invention is a technology that exerts a great effect when multiple high crystal waters are blended. Is shown.

【0031】[0031]

【発明の効果】以上のとおり、本発明によれば、高結晶
水鉱石の焼結において、焼結の歩留りおよび生産性を高
めることができる。
As described above, according to the present invention, the sintering yield and productivity can be improved in the sintering of highly crystalline water ore.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の高結晶水鉱石25%配合における焼結
生産率を従来法との対比で示すグラフである。
FIG. 1 is a graph showing the sintering production rate in a 25% high crystalline water ore blend of the present invention in comparison with the conventional method.

【図2】本発明の高結晶水鉱石25%配合における焼結
生産率を従来法との対比で示すグラフである。
FIG. 2 is a graph showing a sintering production rate in a 25% high crystalline water ore compound of the present invention in comparison with a conventional method.

【図3】本発明の高結晶水鉱石25%配合における焼結
成品歩留を従来法との対比で示すグラフである。
FIG. 3 is a graph showing a sintered product yield in a 25% high crystalline water ore blend of the present invention in comparison with a conventional method.

【図4】本発明の高結晶水鉱石25%配合における焼結
生産率を従来法との対比で示すグラフである。
FIG. 4 is a graph showing the sintering production rate in a 25% high crystalline water ore blend of the present invention in comparison with the conventional method.

【図5】本発明の高結晶水鉱石50%配合における焼結
成品歩留を従来法との対比で示すグラフである。
FIG. 5 is a graph showing the yield of a sintered product in a high crystalline water ore blend of 50% according to the present invention in comparison with the conventional method.

【図6】本発明の高結晶水鉱石50%配合における焼結
生産率を従来法との対比で示すグラフである。
FIG. 6 is a graph showing the sintering production rate in a case where the high crystalline water ore of the present invention is blended by 50% in comparison with the conventional method.

フロントページの続き (56)参考文献 特開 昭53−30403(JP,A) 特開 平1−316427(JP,A) 特開 平1−184236(JP,A) 特開 昭58−153737(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22B 1/00 - 61/00 Continuation of the front page (56) References JP-A-53-30403 (JP, A) JP-A-1-316427 (JP, A) JP-A-1-184236 (JP, A) JP-A-58-153737 (JP) , A) (58) Fields investigated (Int. Cl. 7 , DB name) C22B 1/00-61/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】結晶水を5.0以上含む鉄鉱石を25%
以上使用して焼結鉱を製造するにあたり、成品成分がS
iO2 成分で4.0〜4.8%、MgO成分で1.2〜
2.4%、CaO成分で6.0〜9.0%の範囲に入る
ように原料または造滓剤量を調整することを特徴とする
高結晶水鉱石の焼結鉱製造方法。
An iron ore containing 5.0 % or more of crystallization water is 25%.
In producing the sintered ore using the above, the product component is S
4.0 to 4.8% for the iO 2 component and 1.2 to 1.2 for the MgO component
A method for producing a sintered ore of a highly crystalline water ore, wherein the amount of the raw material or the slag-making agent is adjusted to fall within a range of 2.4% and a CaO component of 6.0 to 9.0%.
【請求項2】成品成分のAl2 3 が2.0%以上であ
る請求項1記載の高結晶水鉱石の焼結鉱製造方法。
2. The method according to claim 1, wherein the content of Al 2 O 3 is at least 2.0%.
JP04198095A 1995-03-01 1995-03-01 Method for producing sintered ore of high crystal water ore Expired - Fee Related JP3166536B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04198095A JP3166536B2 (en) 1995-03-01 1995-03-01 Method for producing sintered ore of high crystal water ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04198095A JP3166536B2 (en) 1995-03-01 1995-03-01 Method for producing sintered ore of high crystal water ore

Publications (2)

Publication Number Publication Date
JPH08239720A JPH08239720A (en) 1996-09-17
JP3166536B2 true JP3166536B2 (en) 2001-05-14

Family

ID=12623355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04198095A Expired - Fee Related JP3166536B2 (en) 1995-03-01 1995-03-01 Method for producing sintered ore of high crystal water ore

Country Status (1)

Country Link
JP (1) JP3166536B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005307253A (en) * 2004-04-20 2005-11-04 Jfe Steel Kk Method for producing sintered ore
JP4982986B2 (en) * 2005-09-13 2012-07-25 Jfeスチール株式会社 Method for producing sintered ore
JP2007100150A (en) * 2005-10-03 2007-04-19 Jfe Steel Kk Method for producing sintered ore
JP4982993B2 (en) * 2005-10-03 2012-07-25 Jfeスチール株式会社 Method for producing sintered ore
CN100465306C (en) * 2006-11-30 2009-03-04 武汉钢铁(集团)公司 Sintered ore capable of improving viscosity of blast furnace slag and process for preparing same
JP7343768B2 (en) * 2019-10-29 2023-09-13 日本製鉄株式会社 Method of blending raw materials for sintering
CN111172385B (en) * 2020-01-20 2022-04-08 包头钢铁(集团)有限责任公司 Method for preparing sintered ore by using high-crystallization-water iron ore powder

Also Published As

Publication number Publication date
JPH08239720A (en) 1996-09-17

Similar Documents

Publication Publication Date Title
JP3166536B2 (en) Method for producing sintered ore of high crystal water ore
JP2003096521A (en) Sintered ore blended with high alumina iron ore, and production method therefor
JP3050493B2 (en) Method for producing sintered ore using limonite ore as raw material
JP2711758B2 (en) Manganese sintered ore for steelmaking and refining and its production method
JPH0816249B2 (en) Pretreatment method in agglomerated ore production
JPH08269584A (en) Production of sintered ore
JP4661077B2 (en) Method for producing sintered ore
JP5004421B2 (en) Method for producing sintered ore
JP2005187839A (en) METHOD FOR PRODUCING LOW SiO2 SINTERED ORE
JP2515639B2 (en) Method for producing agglomerated ore using converter slag
JPH05339654A (en) Pretreatment of sintered ore raw material and sintered ore raw material for iron making
JP4501656B2 (en) Method for producing sintered ore
JPH0587571B2 (en)
JPH05311254A (en) Production of sintered ore
JPH08176686A (en) Production for sintered ore compounded at high ratio with high alumina iron ore
EP0015085B1 (en) An improved raw materials mix and process for producing self-fluxing, sintered ores
JPH09272925A (en) Production of sintered ore excellent in property at high temperature and cold strength
JPH11131151A (en) Production of sintered ore and operation of blast furnace in injecting a large quantity of pulverized fine coal.
JPH08104927A (en) Manufacture of sintered ore having high reducibility
JPH06220549A (en) Pretreatment of raw material to be sintered
JPH0827525A (en) Production of sintered ore formed by using ore of high crystallization water as raw material
JPH07278684A (en) Production of sintered ore
KR20030048319A (en) Manufacturing method of iron ore sinter
JPH066754B2 (en) Sintering method of iron ore
JP2548647B2 (en) Manufacturing method of sintered ore for iron making from high goethite iron ore

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080309

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090309

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 12

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140309

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees