JP6250482B2 - Manufacturing method of granular metallic iron - Google Patents

Manufacturing method of granular metallic iron Download PDF

Info

Publication number
JP6250482B2
JP6250482B2 JP2014122287A JP2014122287A JP6250482B2 JP 6250482 B2 JP6250482 B2 JP 6250482B2 JP 2014122287 A JP2014122287 A JP 2014122287A JP 2014122287 A JP2014122287 A JP 2014122287A JP 6250482 B2 JP6250482 B2 JP 6250482B2
Authority
JP
Japan
Prior art keywords
iron
agglomerate
amount
carbon
contained
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014122287A
Other languages
Japanese (ja)
Other versions
JP2016003341A (en
Inventor
昌麟 王
昌麟 王
修三 伊東
修三 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2014122287A priority Critical patent/JP6250482B2/en
Publication of JP2016003341A publication Critical patent/JP2016003341A/en
Application granted granted Critical
Publication of JP6250482B2 publication Critical patent/JP6250482B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、鉄鉱石や製鉄ダスト等の酸化鉄含有物質と、炭材等の炭素質還元剤とを含む塊成物を加熱、還元、溶融して粒状金属鉄を製造する方法に関する。   The present invention relates to a method for producing granular metallic iron by heating, reducing and melting an agglomerate containing an iron oxide-containing substance such as iron ore and iron-making dust and a carbonaceous reducing agent such as a carbonaceous material.

原料として鉄鉱石を用いた製鉄プロセスは高炉−転炉法が主流である。しかし高炉−転炉法は、高炉で鉄鉱石を還元して高炭素の溶銑を製造し、得られた溶銑を転炉で脱炭して鋼を製造するという所謂間接製鉄法であるため、鉄鉱石を還元して直接鋼を製造する直接製鉄法と比べるとCO2ガスの発生量が多くなる。そこで近年では、CO2ガスの排出量を抑制する観点から直接製鉄法が見直されてきている。 The mainstream of the iron making process using iron ore as a raw material is the blast furnace-converter method. However, the blast furnace-converter method is a so-called indirect iron manufacturing method in which iron ore is reduced in a blast furnace to produce high carbon hot metal, and the obtained hot metal is decarburized in a converter to produce steel. Compared with the direct iron manufacturing method in which the steel is directly produced by reducing the stone, the amount of CO 2 gas generated is increased. Therefore, in recent years, direct iron manufacturing methods have been reviewed from the viewpoint of suppressing CO 2 gas emission.

上記直接製鉄法としては、炭素質還元剤として入手が比較的容易な石炭を用いる還元鉄製造プロセスが注目されている。この還元鉄製造プロセスは、酸化鉄含有物質および炭素質還元剤を含む塊成物を加熱炉に装入し、炉内で加熱バーナーによるガス加熱や輻射熱で加熱することによって酸化鉄を還元して塊状の還元鉄を得るというものである。また、上記還元鉄製造プロセスとしては、酸化鉄含有物質と炭素質還元剤とを混合して塊成化した塊成物を加熱炉に供給して加熱し、該塊成物に含まれる酸化鉄を還元したのちに、更に加熱して還元鉄を溶融させ、塊成物中の炭素質還元剤もしくは炉床上に敷かれた床敷材が浸炭して粒状の金属鉄が生成され、粒状金属鉄とスラグに分離する方法もある。前者の方法は、FASTMET法、後者の方法は、ITmk3法と呼ばれることがある。   As the direct iron production method, a reduced iron production process using coal, which is relatively easily available as a carbonaceous reducing agent, has attracted attention. In this reduced iron production process, an agglomerate containing an iron oxide-containing substance and a carbonaceous reducing agent is charged into a heating furnace, and the iron oxide is reduced by heating in the furnace with gas heating or radiant heat using a heating burner. It is to obtain massive reduced iron. Further, as the reduced iron production process, an agglomerate obtained by mixing an agglomerated iron oxide-containing substance and a carbonaceous reducing agent is supplied to a heating furnace and heated, and the iron oxide contained in the agglomerate is heated. After the reduction, the heated iron is further melted, and the carbonaceous reductant in the agglomerate or the flooring material laid on the hearth is carburized to produce granular metallic iron. There is also a method of separating into slag. The former method is sometimes called the FASTMET method, and the latter method is sometimes called the ITmk3 method.

こうした還元鉄製造プロセスは、炭素質還元剤として石炭を用いることの他にも粉状の鉄鉱石を直接利用できること、還元時には鉄鉱石と還元剤が近接配置されているため、鉄鉱石中の酸化鉄を高速還元できること、還元して得られる製品中の炭素含有量を容易に調整できることといった利点を有している。   In this reduced iron production process, in addition to using coal as a carbonaceous reducing agent, powdered iron ore can be used directly, and during the reduction, iron ore and the reducing agent are placed in close proximity. There are advantages that iron can be reduced at high speed and that the carbon content in the product obtained by reduction can be easily adjusted.

上記ITmk3法について開示する文献として、特許文献1が知られている。この文献には、移動型炉床炉の移動炉床上に、鉄含有酸化物、炭素系固体還元材および造滓材を含む混合原料を積載した状態で、その移動型炉床炉内を移動させながら加熱することにより、上記鉄含有酸化物を還元すると共に、溶融して銑滓分離を導くことにより、還元鉄を製造するにあたり、上記混合原料として、鉄含有酸化物の平均粒径と、混合原料中の被還元酸素濃度および炭素濃度の比として表わされる炭材比との関係が下記式を満足するように配合したものを用いる移動型炉床炉による還元鉄の製造方法が記載されている。下記式において、rは鉄含有酸化物の半径、炭材比は(混合原料中の炭素濃度)/(混合原料中の被還元酸素濃度)/12×16を意味している。
0.5<(炭材比)<1.6
log(1/r)<(−2.0×(炭材比)+2.5)
Patent Document 1 is known as a document disclosing the ITmk3 method. In this document, the inside of a mobile hearth furnace is moved in a state where a mixed raw material containing an iron-containing oxide, a carbon-based solid reducing material, and a slagging material is loaded on the mobile hearth of the mobile hearth furnace. In the production of reduced iron by reducing the iron-containing oxide by heating while melting and leading to soot separation, the average particle size of the iron-containing oxide is mixed as the mixed raw material. A method for producing reduced iron by a mobile hearth furnace using a composition in which the relationship between the reducible oxygen concentration in the raw material and the carbon material ratio expressed as a ratio of the carbon concentration satisfies the following formula is described. . In the following formula, r means the radius of the iron-containing oxide, and the carbon material ratio means (carbon concentration in the mixed raw material) / (reduced oxygen concentration in the mixed raw material) / 12 × 16.
0.5 <(carbon material ratio) <1.6
log (1 / r) <(− 2.0 × (carbon material ratio) +2.5)

この製造方法によれば、混合原料中の炭素濃度と被還元酸素濃度とで表わされる炭材比、および混合原料中の鉄含有酸化物の平均粒径が一定の関係をもつようにすることにより、還元鉄の炭素濃度が4mass%以上の高炭素含有還元鉄を確実にかつ容易に製造できるようになる。その結果、電気炉等での還元鉄の溶解が容易になり、製品コストの低下に寄与できる。   According to this production method, by making the carbon material ratio represented by the carbon concentration and the reducible oxygen concentration in the mixed raw material and the average particle diameter of the iron-containing oxide in the mixed raw material have a certain relationship Thus, it becomes possible to reliably and easily produce reduced carbon-containing reduced iron having a reduced iron concentration of 4 mass% or more. As a result, it is easy to dissolve reduced iron in an electric furnace or the like, which can contribute to a reduction in product cost.

特開2011−74438号公報JP 2011-74438 A

ところで工業的に上記ITmk3法により粒状金属鉄を製造するにあたっては、粒状金属鉄の歩留まりが良好であることも求められる。しかし上記特許文献1では、粒状金属鉄の歩留まりについては特段考慮されていなかった。   By the way, when manufacturing granular metal iron by said ITmk3 method industrially, it is also calculated | required that the yield of granular metal iron is favorable. However, in the said patent document 1, the yield of granular metal iron was not considered specially.

本発明は上記の様な事情に着目してなされたものであって、その目的は、酸化鉄含有物質と炭素質還元剤を含む混合物を塊成化し、得られた塊成物を加熱炉に装入して加熱することによって、該塊成物中の酸化鉄を還元し、更に加熱して還元鉄を溶融し、還元鉄を凝集させて粒状金属鉄を製造するにあたり、粒状金属鉄の歩留まりを高められる技術を確立することにある。   The present invention has been made paying attention to the above circumstances, and its purpose is to agglomerate a mixture containing an iron oxide-containing substance and a carbonaceous reducing agent, and use the obtained agglomerate in a heating furnace. In the production of granular metallic iron by reducing the iron oxide in the agglomerate by charging and heating, further heating to melt the reduced iron and agglomerating the reduced iron, the yield of granular metallic iron It is to establish the technology that can be improved.

上記課題を解決することのできた本発明に係る粒状金属鉄の製造方法とは、酸化鉄含有物質と炭素質還元剤を含む混合物を塊成化し、得られた塊成物を加熱炉に装入して加熱することによって、該塊成物中の酸化鉄を還元し、更に加熱して還元鉄を溶融し、還元鉄を凝集させて粒状金属鉄を製造する方法であり、前記塊成物の平均粒径R(mm)、該塊成物に含まれる酸化鉄含有物質由来の酸素量(質量%)、該塊成物に含まれる炭素質還元剤由来の固定炭素量(質量%)、および該塊成物に含まれる炭素質還元剤由来の揮発分中の炭素量[CVM](質量%)が、下記式(1)を満足する点に要旨を有している。
6.91≦0.5×酸素量/(固定炭素量+0.3×[CVM])≦7.19 ・・・(1)
The method for producing granular metallic iron according to the present invention, which has solved the above-mentioned problems, agglomerates a mixture containing an iron oxide-containing substance and a carbonaceous reducing agent, and charges the obtained agglomerate into a heating furnace. Heating to reduce the iron oxide in the agglomerate, further heating to melt the reduced iron, and agglomerating the reduced iron to produce granular metallic iron, Average particle size R (mm), oxygen content (mass%) derived from iron oxide-containing material contained in the agglomerate, fixed carbon content (mass%) derived from a carbonaceous reducing agent contained in the agglomerate, and該塊formed product of carbon content in the volatiles from the carbonaceous reducing agent contained in the [C VM] (wt%) has a gist in that satisfies the following formula (1).
6.91 ≦ R 0.5 × oxygen amount / (fixed carbon amount + 0.3 × [C VM ]) ≦ 7.19 (1)

前記塊成物の平均粒径Rは、10〜30mmであることが好ましい。   It is preferable that the average particle diameter R of the said agglomerate is 10-30 mm.

本発明によれば、加熱炉に装入する塊成物について、該塊成物の平均粒径R(mm)、該塊成物に含まれる酸化鉄含有物質由来の酸素量(質量%)、該塊成物に含まれる炭素質還元剤由来の固定炭素量(質量%)、および該塊成物に含まれる炭素質還元剤由来の揮発分中の炭素量[CVM](質量%)の関係を適切に制御しているため、塊成物に含まれる酸化鉄を還元剤により過不足なく還元できる。その結果、粒状金属鉄の歩留まりを向上できる。 According to the present invention, for the agglomerate charged into the heating furnace, the average particle size R (mm) of the agglomerate, the amount of oxygen derived from the iron oxide-containing substance contained in the agglomerate (mass%), The amount of fixed carbon derived from the carbonaceous reducing agent contained in the agglomerate (mass%) and the amount of carbon [C VM ] (mass%) in the volatile matter derived from the carbonaceous reducing agent contained in the agglomerated material. Since the relationship is appropriately controlled, the iron oxide contained in the agglomerate can be reduced by the reducing agent without excess or deficiency. As a result, the yield of granular metallic iron can be improved.

図1は、R0.5×酸素量/(固定炭素量+0.3×[CVM])の値(Z値)と、粒状金属鉄の歩留まりとの関係を示すグラフである。FIG. 1 is a graph showing the relationship between the value of R 0.5 × oxygen amount / (fixed carbon amount + 0.3 × [C VM ]) (Z value) and the yield of granular metallic iron.

本発明者らは、酸化鉄含有物質と炭素質還元剤を含む塊成物を加熱炉で加熱、還元、溶融して粒状金属鉄を製造するにあたり、粒状金属鉄の歩留まりを向上させるために、鋭意検討を重ねてきた。その結果、酸化鉄の還元に影響を及ぼす塊成物に含まれる酸化鉄含有物質由来の酸素量と該塊成物に含まれる炭素質還元剤由来の固定炭素量に加えて、従来では注目されていなかった該塊成物の平均粒径Rおよび該塊成物に含まれる炭素質還元剤由来の揮発分中の炭素量[CVM]を適切に制御すれば、粒状金属鉄の歩留まりを向上できることを見出し、本発明を完成した。以下、本発明を完成するに至った経緯を交えて本発明の特徴部分について説明する。 In the production of granular metallic iron by heating, reducing and melting an agglomerate containing an iron oxide-containing substance and a carbonaceous reducing agent in a heating furnace, in order to improve the yield of granular metallic iron, We have been studying earnestly. As a result, in addition to the amount of oxygen derived from the iron oxide-containing substance contained in the agglomerate that affects the reduction of iron oxide and the amount of fixed carbon derived from the carbonaceous reducing agent contained in the agglomerate, attention has been paid in the past. By appropriately controlling the average particle size R of the agglomerate that was not present and the amount of carbon [C VM ] in the volatile matter derived from the carbonaceous reducing agent contained in the agglomerate, the yield of granular metallic iron is improved. The present invention has been completed by finding out what can be done. The characteristic portions of the present invention will be described below along with the background that led to the completion of the present invention.

塊成物に含まれる酸化鉄含有物由来の酸素量に対して、炭素質還元剤の量が過剰になると、酸化鉄の還元で消費されずに残留した炭素によって、還元鉄の凝集阻害が起こり、粒状金属鉄の歩留まりが低下する。一方、塊成物に含まれる酸化鉄含有物由来の酸素量に対して、炭素質還元剤の量が不足すると、酸化鉄を還元できないため、還元鉄を生成させることができず、粒状金属鉄の歩留まりが低下する。   If the amount of carbonaceous reducing agent is excessive relative to the amount of oxygen derived from the iron oxide-containing material contained in the agglomerated material, the remaining carbon that is not consumed by the reduction of iron oxide will inhibit the aggregation of reduced iron. The yield of granular metallic iron is reduced. On the other hand, if the amount of the carbonaceous reducing agent is insufficient with respect to the amount of oxygen derived from the iron oxide-containing material contained in the agglomerate, the iron oxide cannot be reduced, so that reduced iron cannot be produced, and granular metallic iron Yield decreases.

上記炭素質還元剤として工業的に用いられるものとしては石炭が主流である。この石炭は、加熱しても残留する固定炭素(Fixed Carbon。以下、Fix.Cと略記することがある。)と、加熱によって揮発する揮発分(Volatile Matter。以下、VMと略記することがある。)を含んでいる。これらのうち固定炭素は、そのほぼ100%が酸化鉄の還元に寄与する。一方、揮発分の全てが酸化鉄の還元に寄与するわけではないが、揮発分は炭素を含んでいるため、この炭素の一部が酸化鉄の還元に寄与することが分かった。そして本発明者らが検討を重ねたところ、塊成物に含まれる炭素質還元剤由来の揮発分中の炭素のうち、30%が酸化鉄の還元に寄与することが判明した。即ち、試験時に発生したCOガスとCO2ガス比、および酸化物中に含有される酸素量から計算される還元により消費された炭素量は、塊成物中の固体炭素含有量よりも多いことが判明した。この超過分は、炭素質還元剤由来の揮発分に含まれる炭素のうち30%に相当することが分かった。なお、本明細書では、塊成物に含まれる炭素質還元剤由来の揮発分中の炭素量を[CVM](質量%)と表記する。 Coal is mainly used as the carbonaceous reducing agent industrially. This coal has fixed carbon (Fixed Carbon, hereinafter abbreviated as “Fix.C”) that remains even when heated, and volatile matter (Volatile Matter; hereinafter, abbreviated as “VM”). .) Of these, almost 100% of fixed carbon contributes to the reduction of iron oxide. On the other hand, although not all volatiles contribute to the reduction of iron oxide, it has been found that a part of this carbon contributes to the reduction of iron oxide because the volatile matter contains carbon. And when the present inventors repeated examination, it became clear that 30% of the carbon in the volatile matter derived from the carbonaceous reducing agent contained in the agglomerate contributes to the reduction of iron oxide. That is, the amount of carbon consumed by the reduction calculated from the ratio of CO gas to CO 2 gas generated during the test and the amount of oxygen contained in the oxide is greater than the solid carbon content in the agglomerate. There was found. This excess amount was found to correspond to 30% of the carbon contained in the volatile matter derived from the carbonaceous reducing agent. In the present specification, the amount of carbon in the volatile matter derived from the carbonaceous reducing agent contained in the agglomerate is expressed as [C VM ] (mass%).

そこで塊成物に含まれる酸化鉄含有物質中の酸化鉄を還元するには、塊成物に含まれる炭素質還元剤由来の固定炭素量(質量%)と、該炭素質還元剤由来の揮発分中の炭素量[CVM](質量%)の30%との合計量に対する、塊成物に含まれる酸化鉄含有物質由来の酸素量(質量%)との比[酸素量/(固定炭素量+0.3×[CVM])]を制御する必要がある。この比は、還元する酸素量に対してどれだけの炭素量が存在するかを示す指標となる。この比が小さいと、還元に充分な炭素が存在することを示しており、この比が大きいと、炭素が不足気味になることを示している。 Therefore, in order to reduce the iron oxide in the iron oxide-containing material contained in the agglomerate, the amount of fixed carbon (mass%) derived from the carbonaceous reducing agent contained in the agglomerate and the volatilization derived from the carbonaceous reducing agent. Ratio of oxygen content (mass%) derived from iron oxide-containing substances contained in the agglomerate to the total quantity of carbon content [C VM ] (mass%) of 30% in the fraction [oxygen content / (fixed carbon The amount + 0.3 × [C VM ])] needs to be controlled. This ratio is an index indicating how much carbon is present relative to the amount of oxygen to be reduced. When this ratio is small, it indicates that there is sufficient carbon for reduction, and when this ratio is large, it indicates that carbon becomes deficient.

上記塊成物に含まれる酸化鉄含有物質由来の酸素量は、次の手順で算出できる。   The amount of oxygen derived from the iron oxide-containing substance contained in the agglomerate can be calculated by the following procedure.

まず、塊成物中の全鉄(T.Fe)量およびFeO量を化学分析によって求める。   First, the total iron (T.Fe) amount and FeO amount in the agglomerate are determined by chemical analysis.

次に、T.Feのうち、FeOとして存在していないFeは、Fe23やFe34などの酸化鉄として存在するが、全てFe23として存在していると仮定し、下記式(i)により、塊成物に含まれるFe23の質量(WFe2O3)を算出する。 Next, T.W. Of Fe, Fe that does not exist as FeO exists as iron oxide such as Fe 2 O 3 and Fe 3 O 4, but it is assumed that all exist as Fe 2 O 3 , and the following formula (i) To calculate the mass of Fe 2 O 3 (W Fe2O3 ) contained in the agglomerate.

下記式(i)において、Wxは成分Xの質量(質量%)、Mxは成分Xの分子量を夫々示している。具体的には、WT.FeはT.Feの質量(質量%)、WFeOはFeOの質量(質量%)、WFe2O3はFe23の質量(質量%)を意味している。また、MFeはFeの分子量で55.85、MFeOはFeOの分子量で71.85、MFe2O3はFe23の分子量で159.7である。 In the following formula (i), W x represents the mass (mass%) of the component X, and M x represents the molecular weight of the component X. Specifically, W T.Fe is T.Fe. The mass (mass%) of Fe, W FeO means the mass (mass%) of FeO, and W Fe2O3 means the mass (mass%) of Fe 2 O 3 . M Fe is 55.85 in terms of the molecular weight of Fe, M FeO is 71.85 in terms of the molecular weight of FeO, and M Fe2O3 is 159.7 in terms of the molecular weight of Fe 2 O 3 .

Figure 0006250482
Figure 0006250482

次に、下記式(ii)に基づいて、Fe23に含まれる酸素量と、FeOに含まれる酸素量の合計として、塊成物に含まれる酸化鉄含有物質由来の酸素量(質量%)を算出する。下記式(ii)中、MOは酸素の分子量で16である。 Next, based on the following formula (ii), the total amount of oxygen contained in Fe 2 O 3 and the amount of oxygen contained in FeO is the amount of oxygen (% by mass) derived from the iron oxide-containing substance contained in the agglomerate. ) Is calculated. In the following formula (ii), M 2 O is 16 as the molecular weight of oxygen.

Figure 0006250482
Figure 0006250482

ところで、塊成物に含まれる炭素は、上述したように、酸化鉄を還元する際に消費されるが、炭素の消費量は、塊成物の大きさに影響を受けることが分かった。即ち、酸化鉄を還元すると、塊成物の内部でCO2ガスが生成する。生成したCO2ガスは、塊成物の内部を通って外部へ放出される。このとき塊成物が大きく、ガス流路が長くなると、CO2ガスは、塊成物の外部へ放出される流路の途中に存在する炭素と反応し、還元され、COガスを生成する。そのため、塊成物が大きくなるほど、塊成物内部で生成したCO2ガスによる炭素の消費が多くなる。 By the way, as described above, carbon contained in the agglomerate is consumed when iron oxide is reduced, and it has been found that the amount of carbon consumed is affected by the size of the agglomerate. That is, when iron oxide is reduced, CO 2 gas is generated inside the agglomerate. The produced CO 2 gas is released to the outside through the inside of the agglomerate. At this time, if the agglomerate is large and the gas flow path becomes long, the CO 2 gas reacts with carbon existing in the middle of the flow path discharged to the outside of the agglomerate and is reduced to produce CO gas. Therefore, the larger the agglomerate, the more carbon is consumed by the CO 2 gas produced inside the agglomerate.

そこで本発明では、塊成物に含まれる酸化鉄含有物質由来の酸素量と、該塊成物に含まれる炭素質還元剤由来の固定炭素量および揮発分中の炭素量[CVM]に基づいて算出される比[酸素量/(固定炭素量+0.3×[CVM])]に、塊成物の大きさによる影響分を乗ずる必要があること、この塊成物の大きさによる影響度合いは、塊成物の平均粒径をRとしたとき、R0.5であることが判明し、下記式(1)を導いた。R0.5は、本発明者らが種々検討を繰り返して導いた値である。
0.5×酸素量/(固定炭素量+0.3×[CVM])≧6.2 ・・・(1)
Therefore, in the present invention, based on the amount of oxygen derived from the iron oxide-containing substance contained in the agglomerate, the amount of fixed carbon derived from the carbonaceous reducing agent contained in the agglomerate, and the amount of carbon in the volatile matter [C VM ]. It is necessary to multiply the ratio [oxygen amount / (fixed carbon amount + 0.3 × [C VM ])] calculated by the above-mentioned effect of the size of the agglomerate, and the effect of the size of the agglomerate. The degree was found to be R 0.5 when the average particle size of the agglomerate was R, and the following formula (1) was derived. R 0.5 is a value derived by the present inventors through repeated studies.
R 0.5 × oxygen amount / (fixed carbon amount + 0.3 × [C VM ]) ≧ 6.2 (1)

上記式(1)の左辺の値[R0.5×酸素量/(固定炭素量+0.3×[CVM])]をZ値としたとき、このZ値は6.2以上とする。Z値が6.2を下回ると、炭素量が不足気味となるため、還元鉄を充分生成させることができず、粒状金属鉄の歩留まりが低下する。従って本発明では、Z値は6.2以上とし、好ましくは6.5以上、より好ましくは6.8以上とする。Z値の上限は特に限定されないが、Z値が大き過ぎると、粒状金属鉄の生成に時間がかかり過ぎるため、生産性が低下する。従ってZ値は8.0以下とすることが好ましい。Z値は、より好ましくは7.8以下、更に好ましくは7.6以下である。 When the value [R 0.5 × oxygen amount / (fixed carbon amount + 0.3 × [C VM ])) on the left side of the above formula (1) is taken as the Z value, this Z value is set to 6.2 or more. If the Z value is less than 6.2, the amount of carbon tends to be insufficient, so that reduced iron cannot be produced sufficiently and the yield of granular metallic iron is reduced. Therefore, in the present invention, the Z value is 6.2 or more, preferably 6.5 or more, more preferably 6.8 or more. The upper limit of the Z value is not particularly limited, but if the Z value is too large, the production of granular metallic iron takes too much time, so the productivity is lowered. Therefore, the Z value is preferably 8.0 or less. The Z value is more preferably 7.8 or less, still more preferably 7.6 or less.

上記塊成物の粒径を測定する方法は特に限定されないが、例えば、塊成物がペレットのように球形の場合は、ノギスを用い、互いに直交するx軸,y軸,z軸の三方向の直径を測定し、これらを平均することによって塊成物の平均粒径Rを測定すればよい。塊成物が、球形ではなく、ブリケットのような形状の場合は、該塊成物の体積を求め、球相当直径を算出し、これを塊成物の平均粒径Rとすればよい。   The method for measuring the particle size of the agglomerate is not particularly limited. For example, when the agglomerate is spherical like a pellet, calipers are used, and the three directions of x axis, y axis, and z axis perpendicular to each other are used. What is necessary is just to measure the average particle diameter R of an agglomerate by measuring the diameter of these and averaging these. If the agglomerate is not spherical but shaped like a briquette, the volume of the agglomerate is obtained, the equivalent sphere diameter is calculated, and this may be used as the average particle size R of the agglomerate.

上記塊成物の平均粒径R(mm)は特に限定されないが、好ましくは10mm以上、より好ましくは15mm以上であり、好ましくは30mm以下、より好ましくは25mm以下である。   The average particle size R (mm) of the agglomerate is not particularly limited, but is preferably 10 mm or more, more preferably 15 mm or more, preferably 30 mm or less, more preferably 25 mm or less.

次に、粒状金属鉄の製造方法について説明する。   Next, the manufacturing method of granular metallic iron is demonstrated.

本発明に係る粒状金属鉄の製造方法は、酸化鉄含有物質および炭素質還元剤を含む混合物を塊成化し、得られた塊成物を加熱炉に装入して加熱することによって、該塊成物中の酸化鉄を還元し、更に加熱して還元鉄を溶融し、還元鉄を凝集させて粒状金属鉄を製造するものである。そして、上述したように、上記塊成物の平均粒径R(mm)、該塊成物に含まれる酸化鉄含有物質由来の酸素量(質量%)、該塊成物に含まれる炭素質還元剤由来の固定炭素量(質量%)、および該塊成物に含まれる炭素質還元剤由来の揮発分中の炭素量[CVM](質量%)が、上記式(1)を満足するところに特徴がある。以下、酸化鉄含有物質および炭素質還元剤を含む混合物を塊成化する工程(以下、塊成化工程ということがある)と、得られた塊成物を加熱炉に装入して加熱することによって、該塊成物中の酸化鉄を還元し、更に加熱して還元鉄を溶融し、還元鉄を凝集させて粒状金属鉄を製造する工程(以下、加熱工程ということがある)について説明する。 The method for producing granular metallic iron according to the present invention comprises agglomerating a mixture containing an iron oxide-containing substance and a carbonaceous reducing agent, charging the obtained agglomerate into a heating furnace, and heating the agglomerate. The iron oxide in the composition is reduced, further heated to melt the reduced iron, and the reduced iron is aggregated to produce granular metallic iron. And as above-mentioned, the average particle diameter R (mm) of the said agglomerate, the oxygen amount (mass%) derived from the iron oxide containing material contained in this agglomerate, the carbonaceous reduction contained in this agglomerate The amount of fixed carbon derived from the agent (% by mass) and the amount of carbon [C VM ] (% by mass) in the volatile component derived from the carbonaceous reducing agent contained in the agglomerate satisfy the above formula (1). There is a feature. Hereinafter, a step of agglomerating a mixture containing an iron oxide-containing substance and a carbonaceous reducing agent (hereinafter sometimes referred to as an agglomeration step), and the obtained agglomerate is charged into a heating furnace and heated. The process of reducing the iron oxide in the agglomerate, further heating to melt the reduced iron, and agglomerating the reduced iron to produce granular metal iron (hereinafter sometimes referred to as a heating process) is described. To do.

[塊成化工程]
塊成化工程では、酸化鉄含有物質および炭素質還元剤を含む混合物を塊成化し、塊成物を製造する。
[Agglomeration process]
In the agglomeration step, a mixture containing the iron oxide-containing substance and the carbonaceous reducing agent is agglomerated to produce an agglomerate.

上記酸化鉄含有物質としては、具体的には、鉄鉱石、砂鉄、製鉄ダスト、非鉄精錬残渣、製鉄廃棄物などの酸化鉄含有物質を用いることができる。   As the iron oxide-containing substance, specifically, iron oxide-containing substances such as iron ore, iron sand, iron-making dust, non-ferrous refining residue, and iron-making waste can be used.

上記炭素質還元剤としては、例えば、石炭やコークスなどを用いることができる。   As said carbonaceous reducing agent, coal, coke, etc. can be used, for example.

上記炭素質還元剤は、上記酸化鉄含有物質に含まれる酸化鉄を還元できる量の炭素を含有していればよい。具体的には、上記酸化鉄含有物質に含まれる酸化鉄を還元できる炭素量に対して、0〜5質量%の余剰または0〜5質量%の不足の範囲で含有していればよい。即ち、上記酸化鉄含有物質に含まれる酸化鉄を還元できる炭素量に対して、±5質量%の範囲で含有していればよい。   The said carbonaceous reducing agent should just contain the quantity of carbon which can reduce | restore the iron oxide contained in the said iron oxide containing substance. Specifically, the iron oxide contained in the iron oxide-containing substance may be contained within a range of 0 to 5% by mass surplus or 0 to 5% by mass with respect to the amount of carbon that can be reduced. That is, the iron oxide contained in the iron oxide-containing substance may be contained in a range of ± 5% by mass with respect to the amount of carbon that can be reduced.

上記酸化鉄含有物質および炭素質還元剤を含む上記混合物には、更に融点調整剤またはバインダーを配合してもよい。   You may mix | blend a melting | fusing point regulator or a binder with the said mixture containing the said iron oxide containing substance and a carbonaceous reducing agent further.

上記融点調整剤とは、酸化鉄含有物質中の脈石や、炭素質還元剤中の灰分の融点を下げる作用を有する物質を意味する。即ち、上記混合物に融点調整剤を配合することによって、塊成物に含まれる酸化鉄以外の成分(特に、脈石)の融点に影響を与え、例えばその融点を降下させることができる。それにより脈石は、溶融が促進され、溶融スラグを形成する。このとき酸化鉄の一部は溶融スラグに溶解し、溶融スラグ中で還元されて金属鉄となる。溶融スラグ中で生成した金属鉄は、固体のまま還元された金属鉄と接触することにより、固体の還元鉄として凝集する。   The melting point adjusting agent means a substance having an action of lowering the melting point of gangue in the iron oxide-containing substance and ash in the carbonaceous reducing agent. That is, by adding a melting point modifier to the above mixture, the melting point of components (particularly gangue) other than iron oxide contained in the agglomerate is affected, and for example, the melting point can be lowered. Thereby, the gangue is promoted to melt and forms molten slag. At this time, a part of the iron oxide is dissolved in the molten slag and reduced in the molten slag to become metallic iron. The metallic iron produced in the molten slag is agglomerated as solid reduced iron by coming into contact with the metallic iron reduced in the solid state.

上記融点調整剤としては、例えば、CaO供給物質、MgO供給物質、Al23供給物質、SiO2供給物質などを用いることができる。上記CaO供給物質としては、例えば、CaO(生石灰)、Ca(OH)2(消石灰)、CaCO3(石灰石)、およびCaMg(CO32(ドロマイト)よりなる群から選ばれる少なくとも一つを用いることができる。上記MgO供給物質としては、例えば、MgO粉末、天然鉱石や海水などから抽出されるMg含有物質、MgCO3よりなる群から選ばれる少なくとも一つを配合してもよい。上記Al23供給物質としては、例えば、Al23粉末、ボーキサイト、ベーマイト、ギブサイト、ダイアスポアなどを配合できる。上記SiO2供給物質としては、例えば、SiO2粉末や珪砂などを用いることができる。 As the melting point adjusting agent, for example, a CaO supply material, a MgO supply material, an Al 2 O 3 supply material, a SiO 2 supply material, or the like can be used. As said CaO supply substance, for example, at least one selected from the group consisting of CaO (quick lime), Ca (OH) 2 (slaked lime), CaCO 3 (limestone), and CaMg (CO 3 ) 2 (dolomite) is used. be able to. As the MgO feed materials, for example, MgO powder, Mg-containing material to be extracted, such as from natural ore or seawater, may be blended at least one selected from the group consisting of MgCO 3. Examples of the Al 2 O 3 supply substance include Al 2 O 3 powder, bauxite, boehmite, gibbsite, and diaspore. As the SiO 2 supply substance, for example, SiO 2 powder or silica sand can be used.

上記バインダーとしては、例えば、コーンスターチや小麦粉等の澱粉などの多糖類を用いることができる。   As said binder, polysaccharides, such as starches, such as corn starch and wheat flour, can be used, for example.

上記酸化鉄含有物質、炭素質還元剤、および融点調整剤は、混合する前に予め粉砕しておくことが好ましい。例えば、上記酸化鉄含有物質は平均粒径が10〜60μm、上記炭素質還元剤は平均粒径が10〜1000μm、上記融点調整剤は平均粒径が5〜90μmとなるように粉砕することが推奨される。   The iron oxide-containing substance, the carbonaceous reducing agent, and the melting point adjusting agent are preferably pulverized in advance before mixing. For example, the iron oxide-containing material may be pulverized so that the average particle size is 10 to 60 μm, the carbonaceous reducing agent is 10 to 1000 μm, and the melting point modifier is 5 to 90 μm. Recommended.

上記酸化鉄含有物質等を粉砕する手段は特に限定されず、公知の手段を採用できる。例えば、振動ミル、ロールクラッシャ、ボールミルなどを用いればよい。   The means for pulverizing the iron oxide-containing material or the like is not particularly limited, and known means can be employed. For example, a vibration mill, a roll crusher, a ball mill or the like may be used.

上記原料の混合には、回転容器形や固定容器形の混合機を用いることができる。上記混合機の型式は、回転容器形としては、例えば、回転円筒形、二重円錐形、V形などが挙げられるが、特に限定されない。固定容器形としては、例えば、混合槽内に鋤などの回転羽を設けたものがあるが、特に限定されない。   For mixing the raw materials, a rotating container type or a fixed container type mixer can be used. Examples of the type of the mixer include, but are not particularly limited to, a rotating container shape including a rotating cylindrical shape, a double cone shape, and a V shape. As a fixed container type, for example, there is one in which a rotating blade such as a basket is provided in a mixing tank, but it is not particularly limited.

上記混合物を塊成化する塊成機としては、例えば、皿形造粒機(ディスク形造粒機)、円筒形造粒機(ドラム形造粒機)、双ロール型ブリケット成型機、タイヤ型造粒機などを用いることができる。   Examples of the agglomerating machine for agglomerating the mixture include, for example, a dish granulator (disk granulator), a cylindrical granulator (drum granulator), a twin roll briquette molding machine, and a tire mold. A granulator or the like can be used.

上記塊成物の形状は特に限定されず、成型はペレット、ブリケット、押し出しのどれで実施しても構わない。   The shape of the agglomerate is not particularly limited, and the molding may be performed by any of pellets, briquettes, and extrusion.

[加熱工程]
加熱工程では、上記塊成化工程で得られた塊成物を加熱炉に装入して加熱することによって、該塊成物中の酸化鉄を還元し、更に加熱して還元鉄を溶融し、還元鉄を凝集させて粒状金属鉄を製造する。
[Heating process]
In the heating step, the agglomerate obtained in the agglomeration step is charged into a heating furnace and heated to reduce iron oxide in the agglomerate and further heated to melt the reduced iron. Then, reduced iron is agglomerated to produce granular metallic iron.

上記塊成物の加熱は、例えば、電気炉や移動炉床式加熱炉で行えばよい。   The agglomerate may be heated in an electric furnace or a moving hearth type heating furnace, for example.

上記移動炉床式加熱炉とは、炉床がベルトコンベアのように炉内を移動する加熱炉であり、例えば、回転炉床炉やトンネル炉が挙げられる。上記回転炉床炉は、炉床の始点と終点が同じ位置になるように、炉床の外観形状が、円形またはドーナツ状に設計されており、炉床上に装入された塊成物に含まれる酸化鉄は、炉内を一周する間に加熱還元されて還元鉄を生成する。従って、回転炉床炉には、回転方向の最上流側に塊成物を炉内に装入する装入手段が設けられ、回転方向の最下流側に排出手段が設けられる。なお、回転構造であるため、実際には装入手段の直上流側になる。上記トンネル炉とは、炉床が直線方向に炉内を移動する加熱炉である。   The moving hearth type heating furnace is a heating furnace in which the hearth moves in the furnace like a belt conveyor, and examples thereof include a rotary hearth furnace and a tunnel furnace. The rotary hearth furnace is designed to have a round or donut shape so that the start point and end point of the hearth are in the same position, and is included in the agglomerate charged on the hearth. The iron oxide produced is reduced by heating while making a round in the furnace to produce reduced iron. Therefore, the rotary hearth furnace is provided with charging means for charging the agglomerate into the furnace on the most upstream side in the rotation direction, and with discharging means on the most downstream side in the rotation direction. In addition, since it is a rotating structure, it is actually just upstream of the charging means. The tunnel furnace is a heating furnace in which the hearth moves in the furnace in a linear direction.

上記塊成物は、1300〜1500℃で加熱して還元および溶融することが好ましい。上記加熱温度が1300℃を下回ると、金属鉄やスラグが溶融しにくく、高い生産性が得られない。一方、上記加熱温度が1500℃を超えると、排ガス温度が高くなるため、排ガス処理設備が大掛かりなものとなって設備コストが増大する。   The agglomerates are preferably reduced and melted by heating at 1300-1500 ° C. When the heating temperature is lower than 1300 ° C., metallic iron and slag are difficult to melt, and high productivity cannot be obtained. On the other hand, if the heating temperature exceeds 1500 ° C., the exhaust gas temperature becomes high, so the exhaust gas treatment facility becomes large and the equipment cost increases.

上記電気炉や移動炉床式加熱炉に上記塊成物を装入するに先立ち、炉床保護のために炭素質、耐火セラミックス等の床敷材を敷くことが望ましい。   Prior to charging the agglomerate into the electric furnace or moving hearth type heating furnace, it is desirable to lay a flooring material such as carbonaceous material or refractory ceramics to protect the hearth.

上記床敷材としては、上記炭素質還元剤として例示したものの他、耐火性粒子を用いることができる。   As the floor covering material, refractory particles can be used in addition to those exemplified as the carbonaceous reducing agent.

上記床敷材の粒径は、塊成物やその溶融物が潜り込まないように、例えば、3mm以下であることが好ましい。上記粒径の下限は、バーナーの燃焼ガスによって吹き飛ばされないように、例えば、0.5mm以上であることが好ましい。   The particle size of the flooring material is preferably 3 mm or less, for example, so that an agglomerate and a melt thereof do not sink. The lower limit of the particle size is preferably, for example, 0.5 mm or more so as not to be blown off by the burner combustion gas.

[その他]
上記加熱工程で得られた還元鉄は、副生したスラグや、必要に応じて敷かれた床敷材等と共に炉内から排出し、篩や磁選機等を用いて選別して還元鉄を回収すればよい。
[Others]
Reduced iron obtained in the above heating process is discharged from the furnace together with slag produced as a by-product or flooring material laid as necessary, and collected using a sieve or a magnetic separator to recover the reduced iron do it.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明は下記実施例によって制限を受けるものではなく、前記および後記の趣旨に適合し得る範囲で変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited by the following examples, and may be implemented with modifications within a range that can meet the above and the gist described below. Of course, these are all possible and are included in the technical scope of the present invention.

酸化鉄含有物質と炭素質還元剤を含む混合物を塊成化し、得られた塊成物を加熱炉に装入して加熱することによって、該塊成物中の酸化鉄を還元し、更に加熱して還元鉄を溶融し、還元鉄を凝集させて粒状金属鉄を製造した。このとき、塊成物の平均粒径、塊成物に含まれる酸化鉄含有物質由来の酸素量、塊成物に含まれる炭素質還元剤由来の固定炭素量、および塊成物に含まれる炭素質還元剤由来の揮発分中の炭素量[CVM]の関係が、粒状金属鉄の歩留まりに及ぼす影響を調べた。 The mixture containing the iron oxide-containing substance and the carbonaceous reducing agent is agglomerated, and the obtained agglomerate is charged in a heating furnace and heated, thereby reducing the iron oxide in the agglomerate and further heating. Then, the reduced iron was melted and the reduced iron was agglomerated to produce granular metallic iron. At this time, the average particle size of the agglomerate, the amount of oxygen derived from the iron oxide-containing substance contained in the agglomerate, the amount of fixed carbon derived from the carbonaceous reducing agent contained in the agglomerate, and the carbon contained in the agglomerate The effect of the amount of carbon [C VM ] in the volatile matter derived from the quality reducing agent on the yield of granular metallic iron was investigated.

上記酸化鉄含有物質としては、下記表1に示す成分組成の鉄鉱石A、Bを用いた。下記表1において、T.Feは全鉄を意味している。また、鉄鉱石に含まれるFeO中の酸素量、鉄鉱石に含まれるFe23中の酸素量を算出した結果を下記表1に併せて示す。また、鉄鉱石に含まれるFeOおよびFe23をFeOxと総称したとき、鉄鉱石に含まれるFeOx中の酸素量を下記表1に併せて示す。 As the iron oxide-containing substance, iron ores A and B having the composition shown in Table 1 below were used. In Table 1 below, T.W. Fe means total iron. The results of calculating the amount of oxygen in FeO contained in iron ore and the amount of oxygen in Fe 2 O 3 contained in iron ore are also shown in Table 1 below. Further, when FeO and Fe 2 O 3 contained in iron ore are collectively referred to as FeOx, the amount of oxygen in FeOx contained in iron ore is also shown in Table 1 below.

上記炭素質還元剤としては、下記表2に示す成分組成の炭材a〜fを用いた。下記表2において、T.Cは全炭素を意味している。   As the carbonaceous reducing agent, carbon materials a to f having the component compositions shown in Table 2 below were used. In Table 2 below, T.M. C means all carbon.

上記鉄鉱石と上記炭材に、融点調整剤およびバインダーを混合し、更に適量の水を配合した混合物を、タイヤ型造粒機を用いて生ペレットに造粒した。得られた生ペレットを乾燥機に装入し、付着水を除去し、球状の乾燥ペレットを製造した。得られた乾燥ペレットの成分組成を下記表3に示す。下記表3に示した「その他」とは、融点調整剤およびバインダーである。融点調整剤としては、石灰石、ドロマイト、および蛍石を用いた。バインダーとしては、小麦粉を用いた。   A mixture obtained by mixing the iron ore and the carbonaceous material with a melting point adjusting agent and a binder and further blending an appropriate amount of water was granulated into raw pellets using a tire type granulator. The obtained raw pellets were charged into a dryer to remove adhered water, and spherical dry pellets were produced. The component composition of the obtained dry pellet is shown in Table 3 below. “Others” shown in Table 3 below are melting point adjusting agents and binders. Limestone, dolomite, and fluorite were used as the melting point modifier. As the binder, flour was used.

また、得られた乾燥ペレット10個の粒径をノギスで測定し、平均粒径R(mm)を算出した。算出結果を下記表3に示す。また、下記表3には、Rの0.5乗の値(即ち、√Rの値)を算出し、その結果も示す。   Moreover, the particle diameter of ten obtained dry pellets was measured with calipers, and the average particle diameter R (mm) was calculated. The calculation results are shown in Table 3 below. Table 3 below calculates the value of R to the 0.5th power (that is, the value of √R) and also shows the result.

次に、得られた乾燥ペレットに含まれる酸化鉄含有物質由来の酸素量、乾燥ペレットに含まれる炭素質還元剤由来の固定炭素量、乾燥ペレットに含まれる炭素質還元剤由来のT.C、および乾燥ペレットに含まれる炭素質還元剤由来の揮発分中の炭素量[CVM]を算出し、その結果を下記表3に示す。 Next, the amount of oxygen derived from the iron oxide-containing substance contained in the obtained dried pellet, the amount of fixed carbon derived from the carbonaceous reducing agent contained in the dried pellet, and the T.O. derived from the carbonaceous reducing agent contained in the dried pellet. C and the amount of carbon [C VM ] in the volatile matter derived from the carbonaceous reducing agent contained in the dry pellets were calculated, and the results are shown in Table 3 below.

ここで、下記表3に示したNo.1の乾燥ペレットを取り上げ、算出手順を具体的に説明する。   Here, No. 1 shown in Table 3 below. The calculation procedure will be specifically described with reference to 1 dry pellet.

(酸素量)
下記表3に示されるように、乾燥ペレットNo.1に含まれる鉄鉱石量は71.34%であり、該鉄鉱石に含まれるFeOx中の酸素量は下記表1から27.67%であるから、乾燥ペレットNo.1の質量を100%としたときの該乾燥ペレットNo.1に含まれる鉄鉱石由来の酸素量は19.74%となる。
71.34×(27.67/100)=19.74
(Oxygen content)
As shown in Table 3 below, dry pellet No. 1 is 71.34%, and the amount of oxygen in FeOx contained in the iron ore is 27.67% from Table 1 below. 1 when the mass of 1 is 100%. The amount of oxygen derived from iron ore contained in 1 is 19.74%.
71.34 × (27.67 / 100) = 19.74

(固定炭素量)
下記表3に示されるように、乾燥ペレットNo.1に含まれる炭材量は16.27%であり、該炭材に含まれる固定炭素量は下記表2から78.00%であるから、乾燥ペレットNo.1の質量を100%としたときの該乾燥ペレットNo.1に含まれる炭材由来の固定炭素量は12.69%となる。
16.27×(78.00/100)=12.69
(Fixed carbon content)
As shown in Table 3 below, dry pellet No. 1 is 16.27%, and the amount of fixed carbon contained in the carbon material is 78.00% from Table 2 below. 1 when the mass of 1 is 100%. The amount of fixed carbon derived from the carbonaceous material contained in 1 is 12.69%.
16.27 × (78.00 / 100) = 12.69

(T.C)
下記表3に示されるように、乾燥ペレットNo.1に含まれる炭材量は16.27%であり、該炭材に含まれるT.Cは下記表2から86.87%であるから、乾燥ペレットNo.1の質量を100%としたときの該乾燥ペレットNo.1に含まれる炭材由来のT.Cは14.13%となる。
16.27×(86.87/100)=14.13
(TC)
As shown in Table 3 below, dry pellet No. The amount of carbon material contained in 1 is 16.27%. Since C is 86.87% from the following Table 2, dry pellet No. 1 when the mass of 1 is 100%. 1 derived from carbonaceous materials contained in 1. C is 14.13%.
16.27 × (86.87 / 100) = 14.13

(炭素量[CVM])
下記表3に示されるように、乾燥ペレットNo.1の質量を100%としたときの該乾燥ペレットNo.1に含まれる炭材由来のT.Cは14.13%で、乾燥ペレットNo.1の質量を100%としたときの該乾燥ペレットNo.1に含まれる炭材由来の固定炭素量は12.69%であるから、乾燥ペレットNo.1に含まれる炭材由来の揮発分中の炭素量[CVM]は1.44%となる。
14.13−12.69=1.44
(Carbon content [C VM ])
As shown in Table 3 below, dry pellet No. 1 when the mass of 1 is 100%. 1 derived from carbonaceous materials contained in 1. C is 14.13%, and dry pellet No. 1 when the mass of 1 is 100%. 1 is 12.69% from the carbonaceous material contained in the carbonaceous material, The carbon content [C VM ] in the volatile matter derived from the carbonaceous material contained in 1 is 1.44%.
14.13-12.69 = 1.44

このようにして算出した乾燥ペレットに含まれる炭素質還元剤由来の固定炭素量(質量%)、および該乾燥ペレットに含まれる炭素質還元剤由来の揮発分中の炭素量[CVM](質量%)に基づいて、「固定炭素量+0.3×[CVM]」の値を算出する。その結果、13.12%となる。
12.69+0.3×1.44=13.12
The amount of fixed carbon derived from the carbonaceous reducing agent contained in the dry pellet thus calculated (mass%), and the amount of carbon [C VM ] (mass in the volatile matter derived from the carbonaceous reducing agent contained in the dry pellet. %), A value of “fixed carbon amount + 0.3 × [C VM ]” is calculated. As a result, it becomes 13.12%.
12.69 + 0.3 × 1.44 = 13.12

また、乾燥ペレットに含まれる酸化鉄含有物質由来の酸素量(質量%)を、上記「固定炭素量+0.3×[CVM]」の値で除すと、1.50%となる。
19.74/13.12=1.50
Moreover, when the oxygen amount (mass%) derived from the iron oxide-containing substance contained in the dried pellet is divided by the above-mentioned “fixed carbon amount + 0.3 × [C VM ]”, it becomes 1.50%.
19.74 / 13.12 = 1.50

よって、下記表3に示した「酸素量/固定炭素量+0.3×[CVM]」の値に、「R0.5」の値を掛けると、上記式(1)の左辺の値(Z値)を算出でき、その値は、6.56となる。
Z値=R0.5×酸素量/(固定炭素量+0.3×[CVM])=6.56
Therefore, when the value of “R 0.5 ” is multiplied by the value of “oxygen amount / fixed carbon amount + 0.3 × [C VM ]” shown in Table 3 below, the value on the left side of the above equation (1) (Z value) ) And its value is 6.56.
Z value = R 0.5 × oxygen amount / (fixed carbon amount + 0.3 × [C VM ]) = 6.56

次に、得られた乾燥ペレットを加熱炉の炉床上に装入して1450℃で加熱し、乾燥ペレット中の酸化鉄を還元し、更に加熱して還元鉄を溶融し、還元鉄を凝集させて粒状金属鉄を製造した。上記加熱炉としては、電気炉を用いた。なお、乾燥ペレットの装入に先立ち、上記電気炉の炉床上には、炉床保護のため、最大粒径が3.35mm以下の無煙炭を敷いた。上記乾燥ペレットを上記電気炉の炉床上で加熱する際は、該電気炉内における雰囲気ガスの組成は、体積比で、窒素ガス/二酸化炭素ガスが60/40となるよう調整した。   Next, the obtained dry pellets are charged on the hearth of a heating furnace and heated at 1450 ° C. to reduce the iron oxide in the dry pellets, and further heated to melt the reduced iron and aggregate the reduced iron. To produce granular metallic iron. An electric furnace was used as the heating furnace. Prior to charging the dry pellets, anthracite having a maximum particle size of 3.35 mm or less was laid on the hearth of the electric furnace to protect the hearth. When heating the dried pellets on the hearth of the electric furnace, the composition of the atmospheric gas in the electric furnace was adjusted so that the volume ratio of nitrogen gas / carbon dioxide gas was 60/40.

還元終了後、粒状金属鉄を含む試料を電気炉から排出した。得られた試料を、磁選し、磁着物を、目開きが3.35mmの篩を用いて分級し、篩上に残った残留物を製品として回収した。製品として回収した残留物は、主に粒状金属鉄であり、その質量を測定した。粒状金属鉄の質量(g)と、乾燥ペレットに含まれるT.Feの質量(g)に基づいて、粒状金属鉄の歩留まり(%)を算出し、結果を下記表3に示す。なお、粒状金属鉄にはFeの他にC等が含まれるため、粒状金属鉄の歩留まりは100%を超えることもある。
歩留まり(%)=(粒状金属鉄の質量/乾燥ペレットに含まれるT.Feの質量)×100
After the reduction, the sample containing granular metallic iron was discharged from the electric furnace. The obtained sample was magnetically selected, and the magnetic deposits were classified using a sieve having an opening of 3.35 mm, and the residue remaining on the sieve was collected as a product. The residue collected as a product was mainly granular metallic iron, and its mass was measured. The mass (g) of granular metallic iron and T.O. Based on the mass (g) of Fe, the yield (%) of granular metallic iron was calculated, and the results are shown in Table 3 below. In addition, since granular metal iron contains C etc. in addition to Fe, the yield of granular metal iron may exceed 100%.
Yield (%) = (mass of granular metallic iron / mass of T.Fe contained in dry pellet) × 100

なお、上記塊成物を加熱、還元、溶融すると、粒状金属鉄およびスラグの混合物が得られる。この混合物は、冷却後、篩分けおよび磁選により粒状金属鉄とスラグとに分離される。しかし粒度が小さい粒状金属鉄は、磁選してもスラグと良好に分離できないため、純度の高い粒状金属鉄を得ることは困難である。そこで本発明では、粒状金属鉄の歩留まりを算出するにあたり、質量に基準を設け、一定以上の大きさの粒状金属鉄のみをカウントすることとした。具体的には、目開きが3.35mmの篩を用いて上記混合物を分級したときに、篩上に残った残留物を製品とし、この製品の質量を粒状金属鉄の歩留まり計算に用いた。   When the agglomerate is heated, reduced, and melted, a mixture of granular metallic iron and slag is obtained. After cooling, this mixture is separated into granular metallic iron and slag by sieving and magnetic separation. However, since granular metal iron with a small particle size cannot be separated well from slag even by magnetic separation, it is difficult to obtain granular metal iron with high purity. Therefore, in the present invention, when calculating the yield of granular metallic iron, a reference is provided for mass, and only granular metallic iron having a certain size or more is counted. Specifically, when the above mixture was classified using a sieve having an opening of 3.35 mm, the residue remaining on the sieve was used as a product, and the mass of this product was used for calculating the yield of granular metallic iron.

図1に、Z値と、粒状金属鉄の歩留まりとの関係を示す。   FIG. 1 shows the relationship between the Z value and the yield of granular metallic iron.

下記表3および図1から次のように考察できる。No.5、6、8〜10、13は、本発明で規定する要件を満足する発明例、No.1、2、7、12、14、16、17は参考例であり、Z値を6.2以上に制御できているため、粒状金属鉄の歩留まりは95%以上を達成できている。一方、No.3、4、11、15は、本発明で規定するいずれかの要件を満足しない比較例であり、Z値が6.2未満であるため、粒状金属鉄の歩留まりは95%未満となった。 The following table 3 and FIG. 1 can be considered as follows. No. Nos. 5 , 6 , 8-10 , and 13 are invention examples satisfying the requirements defined in the present invention , No. 1, 2, 7, 12, 14, 16 , and 17 are reference examples , and since the Z value can be controlled to 6.2 or more, the yield of granular metallic iron can achieve 95% or more. On the other hand, no. 3, 4, 11, and 15 are comparative examples that do not satisfy any of the requirements defined in the present invention. Since the Z value is less than 6.2, the yield of granular metallic iron is less than 95%.

Figure 0006250482
Figure 0006250482

Figure 0006250482
Figure 0006250482

Figure 0006250482
Figure 0006250482

Claims (2)

酸化鉄含有物質と炭素質還元剤を含む混合物を塊成化し、得られた塊成物を加熱炉に装入して加熱することによって、該塊成物中の酸化鉄を還元し、更に加熱して還元鉄を溶融し、還元鉄を凝集させて粒状金属鉄を製造する方法であって、
前記塊成物の平均粒径R(mm)、
該塊成物に含まれる酸化鉄含有物質由来の酸素量(質量%)、
該塊成物に含まれる炭素質還元剤由来の固定炭素量(質量%)、および
該塊成物に含まれる炭素質還元剤由来の揮発分中の炭素量[CVM](質量%)が、下記式(1)を満足することを特徴とする粒状金属鉄の製造方法。
6.91≦0.5×酸素量/(固定炭素量+0.3×[CVM])≦7.19 ・・・(1)
The mixture containing the iron oxide-containing substance and the carbonaceous reducing agent is agglomerated, and the obtained agglomerate is charged in a heating furnace and heated, thereby reducing the iron oxide in the agglomerate and further heating. A method for producing granular metallic iron by melting reduced iron and agglomerating the reduced iron,
Average particle diameter R (mm) of the agglomerates,
The amount of oxygen (% by mass) derived from the iron oxide-containing substance contained in the agglomerate,
The amount of fixed carbon derived from the carbonaceous reducing agent contained in the agglomerate (mass%) and the amount of carbon [C VM ] (mass%) in the volatile matter derived from the carbonaceous reducing agent contained in the agglomerated material The manufacturing method of granular metallic iron characterized by satisfying the following formula (1).
6.91 ≦ R 0.5 × oxygen amount / (fixed carbon amount + 0.3 × [C VM ]) ≦ 7.19 (1)
前記塊成物の平均粒径Rは、10〜30mmである請求項1に記載の製造方法。   The manufacturing method according to claim 1, wherein an average particle diameter R of the agglomerate is 10 to 30 mm.
JP2014122287A 2014-06-13 2014-06-13 Manufacturing method of granular metallic iron Active JP6250482B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014122287A JP6250482B2 (en) 2014-06-13 2014-06-13 Manufacturing method of granular metallic iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014122287A JP6250482B2 (en) 2014-06-13 2014-06-13 Manufacturing method of granular metallic iron

Publications (2)

Publication Number Publication Date
JP2016003341A JP2016003341A (en) 2016-01-12
JP6250482B2 true JP6250482B2 (en) 2017-12-20

Family

ID=55222868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014122287A Active JP6250482B2 (en) 2014-06-13 2014-06-13 Manufacturing method of granular metallic iron

Country Status (1)

Country Link
JP (1) JP6250482B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2745763A1 (en) * 2009-01-23 2010-07-29 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Process for manufacturing granular iron
JP5503495B2 (en) * 2010-03-25 2014-05-28 株式会社神戸製鋼所 Carbonaceous material agglomerated material, method for producing the same, and method for producing reduced iron using the same

Also Published As

Publication number Publication date
JP2016003341A (en) 2016-01-12

Similar Documents

Publication Publication Date Title
JP2004285399A (en) Method for producing granular metallic iron
WO2009125814A1 (en) Agglomerate, containing titanium oxide, for manufacturing granular metallic iron
JP6460531B2 (en) Method for producing reduced iron
JP2013209748A (en) Method of manufacturing reduced iron agglomerate
JP6294152B2 (en) Manufacturing method of granular metallic iron
JP6014009B2 (en) Method for producing reduced iron
JP5420935B2 (en) Manufacturing method of granular metallic iron
JP6235439B2 (en) Manufacturing method of granular metallic iron
JP6043271B2 (en) Method for producing reduced iron
JP6250482B2 (en) Manufacturing method of granular metallic iron
JP2013174001A (en) Method for producing granular metallic iron
WO2014129282A1 (en) Method for manufacturing reduced iron
JP2014062321A (en) Method of manufacturing reduced iron agglomerated product
WO2014065240A1 (en) Process for manufacturing reduced iron
JP6294135B2 (en) Method for producing reduced iron
JP5671426B2 (en) Manufacturing method of granular metallic iron
JP2014181369A (en) Method of producing reduced iron
JP2015209570A (en) Production method of reduced iron
JP2015196900A (en) Method for manufacturing reduced iron
JP2015074809A (en) Method for producing granular metal iron
JP2015101740A (en) Method for manufacturing reduced iron
JP2014167164A (en) Method for manufacturing reduced iron
JP2013142167A (en) Method for producing granular metal iron
JP5096811B2 (en) Manufacturing method of granular metallic iron
JP2014167150A (en) Method of manufacturing reduced iron agglomerate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160901

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171122

R150 Certificate of patent or registration of utility model

Ref document number: 6250482

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150