JP6996485B2 - Method for manufacturing charcoal interior particles and method for manufacturing charcoal interior sintered ore - Google Patents

Method for manufacturing charcoal interior particles and method for manufacturing charcoal interior sintered ore Download PDF

Info

Publication number
JP6996485B2
JP6996485B2 JP2018234087A JP2018234087A JP6996485B2 JP 6996485 B2 JP6996485 B2 JP 6996485B2 JP 2018234087 A JP2018234087 A JP 2018234087A JP 2018234087 A JP2018234087 A JP 2018234087A JP 6996485 B2 JP6996485 B2 JP 6996485B2
Authority
JP
Japan
Prior art keywords
particles
carbonaceous
interior
carbonaceous material
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018234087A
Other languages
Japanese (ja)
Other versions
JP2020094248A (en
Inventor
頌平 藤原
一洋 岩瀬
隆英 樋口
哲也 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2018234087A priority Critical patent/JP6996485B2/en
Publication of JP2020094248A publication Critical patent/JP2020094248A/en
Application granted granted Critical
Publication of JP6996485B2 publication Critical patent/JP6996485B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、高炉などの製鉄原料として使用される焼結鉱の製造技術に関するものであり、具体的には、炭材を内装した炭材内装粒子の製造方法および該炭材内装粒子を焼結原料の一部として製造される炭材内装焼結鉱の製造方法に関する。 The present invention relates to a technique for producing a sintered ore used as a raw material for iron making in a blast furnace or the like, and specifically, a method for producing a carbonaceous material interior particle containing a carbonaceous material and a method for producing the carbonaceous material interior particle and sintering the carbonaceous material interior particle. The present invention relates to a method for producing a carbonaceous interior sinter produced as a part of a raw material.

高炉製鉄法では、一般に、鉄源として焼結鉱や鉄鉱石、ペレットなどの鉄含有原料を主に用いている。ここで、焼結鉱は、塊成鉱の一種であり、以下の手順にて製造される。すなわち、まず、粒径が10mm以下の鉄鉱石やダスト等の鉄含有原料や、石灰石や生石灰、製鋼スラグなどの石灰含有原料、精錬ニッケルスラグやドロマイト、蛇紋岩などのMgO含有原料と、珪石などからなるSiO含有原料、粉コークスや無煙炭などの凝結材にて構成される造粒原料に適量の水を添加したうえで、ドラムミキサーなどを用いて混合、造粒して擬似粒子とし、次いで、その擬似粒子化した造粒原料を、焼結機の循環移動するパレット上に装入し、造粒原料に含まれる凝結材を燃焼させて焼結ケーキとし、その後、該焼結ケーキを破砕し、冷却し、整粒し、一定の粒径以上のものを成品焼結鉱として回収している。 In the blast furnace ironmaking method, generally, iron-containing raw materials such as sinter, iron ore, and pellets are mainly used as an iron source. Here, the sinter is a kind of lump ore and is produced by the following procedure. That is, first, iron-containing raw materials such as iron ore and dust having a grain size of 10 mm or less, lime-containing raw materials such as limestone, fresh lime, and steelmaking slag, MgO-containing raw materials such as refined nickel slag, dolomite, and serpentine, and silica stone, etc. After adding an appropriate amount of water to a granulation raw material composed of a SiO 2 -containing raw material composed of, a coagulant such as powdered iron ore and smokeless charcoal, the mixture is mixed and granulated using a drum mixer or the like to obtain pseudo particles, and then The pseudo-granulated raw material is charged onto a pallet that circulates and moves in the granulator, and the coagulant contained in the granulated raw material is burned to form a sintered cake, and then the sintered cake is crushed. Then, it is cooled, granulated, and the one having a certain particle size or more is recovered as a product sintered ore.

従来、焼結機の装入層(以下、焼結ベッドという)全体を均一に液相焼結する方法が主体であった。しかし、近年、従来どおり液相焼結主体の部分と、液相生成を抑えた部分とを焼結ベッドに混在させ、あえて不均一な構造を指向する焼結方法が検討されている。その理由は、融点が高く溶融しにくい部分には焼成後に多くの細かい気孔が残存し、還元性ガスとの接触面積が増え、還元されやすい焼結鉱組織を形成することができるからである。 Conventionally, a method of uniformly liquid-phase sintering the entire charging layer (hereinafter referred to as a sintering bed) of a sintering machine has been the main method. However, in recent years, a sintering method has been studied in which a portion mainly composed of liquid phase sintering and a portion in which liquid phase formation is suppressed are mixed in a sintered bed as in the conventional case, and a non-uniform structure is intentionally aimed at. The reason is that many fine pores remain after firing in the portion having a high melting point and being difficult to melt, the contact area with the reducing gas increases, and a sintered ore structure that is easily reduced can be formed.

このような焼結鉱の製造方法として、例えば、特許文献1には、高融点で液相生成を抑えたものとして、炭材を鉄鉱石粉とCaO含有原料で被覆した炭材内装粒子を作製し、これを従来の液相焼結主体の焼結原料に混合後、下方吸引型焼結機において焼結する方法が開示されている。 As a method for producing such a sinter, for example, in Patent Document 1, as a method for suppressing liquid phase formation at a high melting point, carbonaceous material interior particles in which a carbonaceous material is coated with iron ore powder and a CaO-containing raw material are produced. , A method of mixing this with a conventional sintering raw material mainly composed of liquid phase sintering and then sintering it in a downward suction type sintering machine is disclosed.

特許第5790966号公報Japanese Patent No. 5790966

特許文献1に開示されているような炭材内装粒子は、焼結機に装入するまでの間に粉化してしまうという問題があった。この粉化を低減するために炭材内装粒子の強度を向上させる方法として、上記炭材内装粒子の配合原料にセメント粉を使用する方法(特願2017-249329)が考えられる。ところが、配合原料にセメント粉を混合する場合、配合原料中の水分量によっては炭材内装粒子同士が固着するという問題が発生し、輸送が困難になるほか、焼結機内で炭材内装粒子が分散しなくなるという弊害も生じる。 There is a problem that the carbonaceous material interior particles as disclosed in Patent Document 1 are pulverized before being charged into the sintering machine. As a method for improving the strength of the carbonaceous material interior particles in order to reduce this pulverization, a method of using cement powder as a compounding raw material for the carbonaceous material interior particles (Japanese Patent Application No. 2017-249329) can be considered. However, when cement powder is mixed with the compounding raw material, there is a problem that the carbonaceous material interior particles stick to each other depending on the water content in the compounding material, which makes transportation difficult and also causes the carbonaceous material interior particles to be generated in the sintering machine. There is also the harmful effect of not being dispersed.

そこで、本発明は上述のような問題点に鑑みて開発したものであって、その目的は、焼結機へ搬送され、装入される段階において炭材内装粒子の粒子同士の固着を抑制できるとともに円滑に炭材内装粒子を製造すること、および炭材内装型の焼結鉱を製造する方法を提案することにある。 Therefore, the present invention has been developed in view of the above-mentioned problems, and an object thereof is to prevent the particles of the carbonaceous material interior particles from sticking to each other at the stage of being transported to the sintering machine and charged. At the same time, it is intended to smoothly produce carbonaceous material interior particles and to propose a method for producing carbonaceous material interior type sinter.

発明者らは、上記の課題を解決するために鋭意検討を重ねた結果、造粒後の粒子を一定期間養生した後、一旦解砕してから、さらに養生を重ねることが有効であることを見出し、本発明を開発するに至った。すなわち、本発明は、第一に、鉄含有原料、石灰含有副原料およびセメント粉を混合してなる混合原料粉と核となる炭材とを造粒することにより、炭材核の周囲に上記混合原料粉の外層を形成して炭材内装粒子を得る造粒工程と、上記造粒後の炭材内装粒子を静置する第一の養生工程と、上記第一の養生工程の後に炭材内装粒子を解砕する解砕工程と、上記解砕工程の後に解砕した炭材内装粒子を静置する第二の養生工程と、を経ることを特徴とする炭材内装粒子の製造方法を提案する。 As a result of diligent studies to solve the above problems, the inventors have found that it is effective to cure the granulated particles for a certain period of time, crush them once, and then perform further curing. The headline led to the development of the present invention. That is, in the present invention, first, by granulating a mixed raw material powder formed by mixing an iron-containing raw material, a lime-containing auxiliary raw material, and cement powder and a core carbon material, the above-mentioned is described around the carbon material core. The granulation step of forming the outer layer of the mixed raw material powder to obtain the carbonaceous material inner particles, the first curing step of allowing the carbonic material inner particles after the granulation to stand still, and the carbonaceous material after the first curing step. A method for producing carbonaceous interior particles, which comprises a crushing step of crushing the internal particles and a second curing step of allowing the crushed carbonaceous interior particles to stand after the above crushing step. suggest.

なお、本発明に係る炭材内装粒子の製造方法については、
a.上記第一の養生工程は、養生期間が3日~10日であること、
b.上記第二の養生工程は、上記造粒工程後の20日後以降に終了すること、
c.上記第一の養生工程は、フレキシブルコンテナバッグ内に上記炭材内装粒子を収容して行なうこと、
がより好ましい解決手段になり得るものと考えられる。
Regarding the method for producing the carbonaceous material interior particles according to the present invention, refer to the method.
a. The first curing process described above is that the curing period is 3 to 10 days.
b. The second curing step should be completed 20 days after the granulation step.
c. The first curing step is performed by accommodating the carbonaceous material interior particles in a flexible container bag.
Can be a more preferred solution.

本発明は、第二に、上記の方法によって製造された炭材内装粒子と、通常の焼結鉱製造用造粒粒子を混合し、その混合粒子を下方吸引式焼結機に装入して焼結することを特徴とする炭材内装焼結鉱の製造方法を提案する。 Secondly, in the present invention, the carbonaceous material interior particles produced by the above method and the granulated particles for ordinary sinter production are mixed, and the mixed particles are charged into a downward suction type sinter. We propose a method for producing a carbonaceous interior sinter, which is characterized by sintering.

本発明によれば、造粒後の粒子同士が固着して塊状化するようなことなく、高い圧潰強度をもつ炭材内装粒子を効率よく製造することができる。また、本発明によれば、焼結機へ搬送され、焼結機に装入される段階において、崩壊する炭材内装粒子を少なくできる。しかも、こうした炭材内装粒子を含む焼結原料を焼結して炭材内装焼結鉱を製造することで、還元されやすい焼結鉱組織が形成され、還元効率の高い焼結鉱を製造することができる。 According to the present invention, it is possible to efficiently produce carbonaceous material interior particles having high crushing strength without the particles after granulation sticking to each other and agglomerating. Further, according to the present invention, it is possible to reduce the amount of carbonaceous material interior particles that disintegrate at the stage of being transported to the sintering machine and charged into the sintering machine. Moreover, by sintering the sinter raw material containing such sinter interior particles to produce the sinter interior sinter, a sinter structure that is easily reduced is formed, and a sinter with high reduction efficiency is produced. be able to.

本発明の一実施形態にかかる炭材内装粒子の造粒工程の一例を示す模式図である。It is a schematic diagram which shows an example of the granulation process of the carbonaceous material interior particle which concerns on one Embodiment of this invention. 本発明の一実施形態にかかる造粒機内部の炭材内装粒子の状態を示す写真である。It is a photograph which shows the state of the carbonaceous material interior particle in the granulation machine which concerns on one Embodiment of this invention. 本発明の一実施形態にかかる炭材内装焼結鉱の製造工程の一例を示す模式図である。It is a schematic diagram which shows an example of the manufacturing process of the carbonaceous material interior sinter which concerns on one Embodiment of this invention. 本発明の一実施形態にかかる炭材内装粒子の圧潰強度と養生期間の関係を示すグラフである。It is a graph which shows the relationship between the crushing strength and the curing period of the carbonaceous material interior particle which concerns on one Embodiment of this invention. 本発明の一実施形態にかかる炭材内装粒子の塊率と養生期間の関係を示すグラフである。It is a graph which shows the relationship between the mass ratio of the carbonaceous material interior particle and the curing period which concerns on one Embodiment of this invention.

以下、本発明の好適実施形態を、図面を参照して説明する。本発明の第一の実施形態は、炭材内装粒子の製造方法に係るものである。図1は、この実施形態に係る炭材内装粒子の製造方法を説明するための模式図であり、造粒工程10の一例を示す。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. The first embodiment of the present invention relates to a method for producing carbonaceous material interior particles. FIG. 1 is a schematic diagram for explaining a method for producing carbonaceous material interior particles according to this embodiment, and shows an example of a granulation step 10.

炭材内装粒子の造粒工程10では、まず、貯蔵槽14に貯蔵された粉状の鉄含有原料である鉄鉱石粉12と、貯蔵槽18に貯蔵された石灰含有副原料である、例えば生石灰16と、貯蔵槽22に貯蔵されたセメント粉20とをそれぞれの貯蔵槽から搬送機24上に所定量を切り出す。鉄鉱石粉12、生石灰16およびセメント粉20は、搬送機24によってインテンシブミキサーなどの混練機28に搬送され、その混練機28で適量の水26を加えて混合することで混合原料粉30となる。 In the granulation step 10 of the carbonaceous material interior particles, first, the iron ore powder 12 which is a powdery iron-containing raw material stored in the storage tank 14 and the lime-containing auxiliary raw material stored in the storage tank 18, for example, quicklime 16. And the cement powder 20 stored in the storage tank 22 are cut out from each storage tank in a predetermined amount on the transporter 24. The iron ore powder 12, the quicklime 16 and the cement powder 20 are transferred to a kneader 28 such as an intensive mixer by a transporter 24, and an appropriate amount of water 26 is added and mixed by the kneader 28 to obtain a mixed raw material powder 30.

この実施形態において、鉄鉱石粉12は、粉状の鉄含有原料の一例であり、例えば、粒径が150μm以下、比表面積が1500cm/g程度の鉄鉱石粉が用いられる。生石灰16は、石灰含有副原料の一例であり、生石灰[CaO]に代えて、または生石灰とともに石灰石[CaCO]を用いてもよい。但し、混合原料紛30を造粒するという観点から、造粒効果の高い生石灰を用いることが好ましい。また、焼結時に生じる融液の粘度を増加させるドロマイト[CaMg(CO]を生石灰および/または石灰石に添加してもよい。すなわち、石灰含有副原料とは、主として、生石灰、石灰石およびドロマイトから選ばれる1つ以上を含有する原料であり、セメントを含まない。 In this embodiment, the iron ore powder 12 is an example of a powdery iron-containing raw material, and for example, iron ore powder having a particle size of 150 μm or less and a specific surface area of about 1500 cm 2 / g is used. Quicklime 16 is an example of a lime-containing auxiliary material, and limestone [CaCO 3 ] may be used in place of quicklime [CaO] or together with quicklime. However, from the viewpoint of granulating the mixed raw material powder 30, it is preferable to use quicklime having a high granulation effect. In addition, dolomite [CaMg (CO 3 ) 2 ], which increases the viscosity of the melt produced during sintering, may be added to quicklime and / or limestone. That is, the lime-containing auxiliary raw material is a raw material containing one or more selected from quicklime, limestone and dolomite, and does not contain cement.

本発明において、特徴的なことは、上記石灰含有副原料の他に、セメント粉20を配合することにある、このセメント粉20は、水硬性のセメント、例えば、ポルトランドセメントや混合セメント、高炉スラグセメントなどが好適である。なお、セメント粉20には石灰分も含まれるので、セメント粉20に含まれる石灰分に相当する石灰含有副原料の切り出し量を減少させることが好ましい。なお、以下の実施形態ではセメント粉20として、下記の表1に示す化学組成を有するポルトランドセメントを用いた。セメントは種類によって数か月の長期強度に差があるが、本発明の用途では4週間かそれ以内の強度があればよく、数か月の長期強度は求められていない。このため、本発明では、いずれの種類のセメントをも用いることができる。なお、寒冷地などではアルミナセメントを用いることでさらに短時間で強度が発現するので、より好ましい。 The characteristic of the present invention is that cement powder 20 is blended in addition to the lime-containing auxiliary raw material. The cement powder 20 is a water-hard cement such as Portland cement, mixed cement, and blast furnace slag. Cement or the like is suitable. Since the cement powder 20 also contains lime, it is preferable to reduce the amount of the lime-containing auxiliary material cut out corresponding to the lime contained in the cement powder 20. In the following embodiment, Portland cement having the chemical composition shown in Table 1 below was used as the cement powder 20. Although the long-term strength of cement varies depending on the type, the strength of the present invention may be as long as 4 weeks or less, and the long-term strength of several months is not required. Therefore, in the present invention, any kind of cement can be used. In cold regions and the like, it is more preferable to use alumina cement because the strength is developed in a shorter time.

Figure 0006996485000001
Figure 0006996485000001

次に、混練機28で混合された混合原料粉30と、貯蔵槽34に貯蔵された炭材核となるコークス粒子32とが搬送機36に所定量切り出され、造粒されて所定の造粒用混合原料となる。なお、この実施形態では、造粒用混合原料に対するコークス粒子32の配合割合が1質量%以上5質量%以下、より好ましくは、2質量%以上4質量%以下になるように、混合原料紛30およびコークス粒子32を切り出す。 Next, the mixed raw material powder 30 mixed by the kneader 28 and the coke particles 32 which are the cores of the carbonaceous material stored in the storage tank 34 are cut out in a predetermined amount by the transport machine 36, granulated and granulated. It is a mixed raw material for use. In this embodiment, the mixed raw material powder 30 is such that the mixing ratio of the coke particles 32 to the mixed raw material for granulation is 1% by mass or more and 5% by mass or less, more preferably 2% by mass or more and 4% by mass or less. And the coke particles 32 are cut out.

また、この実施形態において、コークス粒子32は、炭材の一例であり、当該炭材は、周囲に混合原料紛30からなる外層が形成されて炭材核となる。その炭材としては、例えば無煙炭であるホンゲイ炭などを用いることができる。なお、コークス粒子やホンゲイ炭は揮発分が少ないので、これらを用いることで焼結時に炭材から生じる燃焼ガスが少なくでき、当該炭材内装粒子を用いて製造される炭材内装焼結鉱の強度低下が抑制できる。これにより、炭材内装焼結鉱の歩留低下を抑制できる。 Further, in this embodiment, the coke particles 32 are an example of the charcoal material, and the coke material 32 has an outer layer made of the mixed raw material powder 30 formed around the coke material to form a core of the charcoal material. As the charcoal material, for example, anthracite charcoal such as Hongei charcoal can be used. Since coke particles and Hongei charcoal have a small amount of volatile matter, the amount of combustion gas generated from the charcoal material during sintering can be reduced by using these, and the coal material interior sintered ore produced using the carbon material interior particles can be used. The decrease in strength can be suppressed. As a result, it is possible to suppress a decrease in the yield of the sinter for the interior of the carbonaceous material.

上記造粒用混合原料は、搬送機36によってディスクペレタイザーなどの造粒機38に搬送され、造粒機38にて適量の水26添加の下に転動され、水の架橋力等によってコークス粒子32が炭材核となり、その周囲に混合原料紛30からなる外層が形成(被覆)された炭材内装粒子40が製造される。 The above-mentioned mixed raw material for granulation is conveyed to a granulator 38 such as a disc pelletizer by a conveyor 36, rolled by the granulator 38 under the addition of an appropriate amount of water 26, and coke particles due to the cross-linking force of water or the like. 32 is the core of the carbonaceous material, and the carbonaceous material interior particles 40 having an outer layer made of the mixed raw material powder 30 formed (coated) around the core are produced.

図2は、造粒機38に存在する混合原料紛30、コークス粒子32(成長途中の炭材内装粒子を含む)および炭材内装粒子40を示す写真である。図1に示した炭材内装粒子の造粒工程10に従って炭材内装粒子40が製造されるが、炭材内装粒子40の強度が低いと、炭材内装粒子40を焼結機へ搬送し、焼結機に装入する際に崩壊するおそれがある。そのため、本発明の実施形態に係る炭材内装粒子の製造方法では、鉄鉱石粉12および生石灰16にセメント粉20を配合することとした。このセメント粉20の配合(添加)により、コークス粒子32の周囲に外層として形成される混合原料紛30の強度が高められ、焼結機へ搬送し、焼結機に装入する際の炭材内装粒子40の崩壊を抑制できる。 FIG. 2 is a photograph showing the mixed raw material powder 30, coke particles 32 (including growing carbonaceous material interior particles), and carbonaceous material interior particles 40 existing in the granulator 38. The carbonaceous material interior particles 40 are manufactured according to the granulation step 10 of the carbonaceous material interior particles shown in FIG. 1, but if the strength of the carbonaceous material interior particles 40 is low, the carbon material interior particles 40 are conveyed to the sintering machine. There is a risk of collapse when charging into the sintering machine. Therefore, in the method for producing carbonaceous material interior particles according to the embodiment of the present invention, cement powder 20 is blended with iron ore powder 12 and quicklime 16. By blending (adding) the cement powder 20, the strength of the mixed raw material powder 30 formed as an outer layer around the coke particles 32 is increased, and the carbonaceous material is transferred to the sintering machine and charged into the sintering machine. The collapse of the interior particles 40 can be suppressed.

次に、上記炭材内装粒子40の強度向上策について説明する。図3に模式的に示すように炭材内装粒子40が製造されてから下方吸引式焼結機60に装入されるまでに、上記炭材内装粒子40は、複数の搬送コンベアを乗り継ぐことになる。そのため、該炭材内装粒子40は、複数の搬送コンベアの乗り継ぎと、下方吸引式焼結機60のパレット装入時の衝撃に耐える強度を有することが好ましい。そこで、圧潰強度を変えた炭材内装粒子を試験的に製造し、搬送コンベアの乗り継ぎとパレット装入を行った後における炭材内装粒子の崩壊状況を調査した。その結果、炭材内装粒子の圧潰強度を9.8N/個以上にすることで、複数の搬送コンベアの乗り継ぎと、下方吸引式焼結機60のパレット装入時の衝撃によく耐え、下方吸引式焼結機60への直送が可能になることが判明した。なお、本発明において、圧潰強度とは、圧縮試験機を用いて、圧縮速度1mm/minで炭材内装粒子を圧縮して測定される最大強度である。 Next, measures for improving the strength of the carbonaceous material interior particles 40 will be described. As schematically shown in FIG. 3, the carbonaceous material interior particles 40 transfer to a plurality of conveyors from the time when the carbonaceous material interior particles 40 are manufactured to the time when they are charged into the downward suction type sintering machine 60. Become. Therefore, it is preferable that the carbonaceous material interior particles 40 have strength to withstand the connection between a plurality of conveyors and the impact at the time of loading the pallet of the lower suction type sintering machine 60. Therefore, we produced carbonaceous interior particles with different crushing strengths on a trial basis, and investigated the state of decay of the carbonaceous interior particles after the transfer of conveyors and the loading of pallets. As a result, by setting the crushing strength of the carbonaceous material interior particles to 9.8 N / piece or more, it can withstand the impact of connecting multiple conveyors and the pallet loading of the downward suction type sintering machine 60 well, and downward suction. It has been found that direct delivery to the type sintering machine 60 is possible. In the present invention, the crushing strength is the maximum strength measured by compressing the carbonaceous material interior particles at a compression rate of 1 mm / min using a compression tester.

炭材内装粒子の圧潰強度を9.8N/個以上にするには、ヘマタイトを主体鉱物とする鉄鉱石粉であれば、1800~2000cm/g程度のBlaine比表面積または粒径45μm以下となる鉄鉱石粉の含有割合が80質量%以上となる鉄鉱石粉を使用する必要がある。しかしながら、現在、鉄鉱石市場で流通しているヘマタイト精鉱微粉の多くは、Blaine比表面積が500~1500cm/g程度、45μm以下となる鉄鉱石粉の含有割合が35~75質量%程度である。従って、これら原料をこのまま用いても圧潰強度9.8N/個以上の炭材内装粒子を製造することはできない。 In order to increase the crushing strength of the carbonaceous material interior particles to 9.8 N / piece or more, in the case of iron ore powder containing hematite as the main mineral, an iron ore having a Braine specific surface area of about 1800 to 2000 cm 2 / g or a particle size of 45 μm or less. It is necessary to use iron ore powder having a stone powder content of 80% by mass or more. However, most of the hematite concentrate fine powder currently distributed in the iron ore market has a Braine specific surface area of about 500 to 1500 cm 2 / g and a content ratio of iron ore powder of about 45 μm or less of about 35 to 75% by mass. .. Therefore, even if these raw materials are used as they are, it is not possible to produce carbonaceous material interior particles having a crushing strength of 9.8 N / piece or more.

一方、鉄鉱石粉を、ボールミル等を用いて粉砕することで、1800cm/g以上のBlaine比表面積または粒径45μm以下となる鉄鉱石粉の含有割合を80質量%以上とすることができるが、設備コストやランニングコストが高くなる。そこで、炭材32の周囲に形成される外層の混合原料紛30にセメント粉20を配合し、炭材内装粒子40の圧潰強度を9.8N/個以上にできるか否かを確認すべく、図1に示した炭材内装粒子40の造粒工程10に従って、炭材内装粒子の製造試験を行った。 On the other hand, by crushing the iron ore powder using a ball mill or the like, the content ratio of the iron ore powder having a Braine specific surface area of 1800 cm 2 / g or more or a particle size of 45 μm or less can be set to 80% by mass or more. The cost and running cost will be high. Therefore, in order to confirm whether or not the crushing strength of the carbonaceous material inner particles 40 can be increased to 9.8 N / piece or more by blending the cement powder 20 with the mixed raw material powder 30 of the outer layer formed around the carbonaceous material 32. The production test of the carbonaceous material interior particles was performed according to the granulation step 10 of the carbonaceous material interior particles 40 shown in FIG.

炭材内装粒子の製造試験は、以下の手順にて実施した。まず、粒径150μm以下であってBlaine比表面積が1500cm/gの鉄鉱石粉と、粒径75μm以下の生石灰と、粒径150μm以下のセメント粉とを、質量比で95:1:4の割合で配合し、インテンシブミキサーを用いて均一に混合して混合原料紛とした。この混合原料紛と、粒径2mm以上8mm以下のコークス粒子を質量比98:2の割合で配合した造粒用混合原料とした。この造粒用混合原料を、ディスクペレタイザーを用いて転動させて造粒用混合原料を造粒し、炭材の周囲に混合原料紛からなる外層が形成された炭材内装粒子を製造した。造粒用混合原料の造粒に必要な水は、インテンシブミキサーおよびディスクペレタイザー内へ適量噴霧して供給した。 The production test of the carbonaceous material interior particles was carried out according to the following procedure. First, iron ore powder having a particle size of 150 μm or less and a Braine specific surface area of 1500 cm 2 / g, fresh lime having a particle size of 75 μm or less, and cement powder having a particle size of 150 μm or less are mixed in a mass ratio of 95: 1: 4. And mixed uniformly using an intensive mixer to obtain a mixed raw material powder. This mixed raw material powder and coke particles having a particle size of 2 mm or more and 8 mm or less were mixed at a mass ratio of 98: 2 to prepare a mixed raw material for granulation. This mixed raw material for granulation was rolled using a disc pelletizer to granulate the mixed raw material for granulation, and the carbonaceous material inner particles in which the outer layer made of the mixed raw material powder was formed around the carbonaceous material were produced. The water required for granulation of the mixed raw material for granulation was supplied by spraying an appropriate amount into an intensive mixer and a disc pelletizer.

上記造粒後の炭材内装粒子について、これを静置する第一の養生工程をおこなった。この第一の養生工程では、セメントなどによる硬化の進行中に振動や外力の悪影響を受けないように保護する作業を行う。一般に、セメントの硬化は水分との反応(水和反応)であり、湿度が影響するので、特に硬化の初期においては、強風や直射日光を避けて水分の蒸散を低減すること、あるいは、保熱や給熱により水和反応の進行を促進したり水分の凍結を抑制したりすることが好ましい。この第一の養生工程中での炭材内装粒子の荷姿は特に限定されないが、フレコン(フレキシブルコンテナバッグ)に収容した状態で養生をおこなうと、その保水効果によりセメントの硬化に必要な水分が表層を含めて全体的に高位に保たれるために硬化がより均質化するので望ましい。また、フレコンに収容した状態で養生をおこなうと、上記の保水効果により水分の蒸発熱による抜熱が抑制されることに加えて、セメントの硬化にともなう反応熱の放散が抑制されるので、炭材内装粒子の温度を外気の温度と同じかそれ以上に保てるので望ましい。さらに、フレコンに収容した状態で養生をおこなうと、炭材内装粒子の一部が互いに固着した場合でも過剰な力を加えることなく解砕をおこなうことができ粉化をさらに抑制できるので望ましい。 The first curing step of allowing the carbonaceous interior particles after granulation to stand still was performed. In this first curing step, work is performed to protect the material from being adversely affected by vibration and external force during the progress of curing by cement or the like. In general, hardening of cement is a reaction with water (hydration reaction) and is affected by humidity. Therefore, especially in the early stage of hardening, avoiding strong wind and direct sunlight to reduce the evaporation of water, or heat retention. It is preferable to promote the progress of the hydration reaction or suppress the freezing of water by supplying heat or heat. The packaging of the carbonaceous material interior particles in this first curing process is not particularly limited, but if curing is performed while housed in a flexible container (flexible container bag), the water retention effect will release the water required for cement hardening. It is desirable because the curing is more homogenized because it is kept at a high level as a whole including the surface layer. In addition, when curing is performed while housed in a flexible container, the above-mentioned water retention effect suppresses heat removal due to the heat of vaporization of water, and also suppresses the dissipation of reaction heat due to the hardening of cement. It is desirable because the temperature of the material interior particles can be kept equal to or higher than the temperature of the outside air. Further, it is desirable to perform curing while the particles are housed in a flexible container because even if some of the carbonaceous material interior particles adhere to each other, they can be crushed without applying excessive force and pulverization can be further suppressed.

次に、上記第一の養生工程に続き、炭材内装粒子を解砕する解砕工程を設けた。ここで、上記解砕とは、造粒された複数の炭材内装粒子同士が接着して団塊化した場合に、その接着を解きほぐし、造粒直後と同様のばらばらの状態に戻す、あるいは近づけることである。たとえば、第一の養生工程をおこなった場所から移動させたり、フレコンから排出したりする作業自体が炭材内装粒子同士の接着を解きほぐすことになる。また、粉を篩い分け除去するために、たとえば目開き4mmの篩にかける作業も炭材内装粒子同士の接着を解きほぐす解砕の作用がある。 Next, following the first curing step, a crushing step for crushing the carbonaceous material interior particles was provided. Here, the above-mentioned crushing means that when a plurality of granulated carbonaceous material interior particles adhere to each other to form a nodule, the adhesion is loosened and the particles are returned to the same disjointed state as immediately after granulation or brought closer to each other. Is. For example, the work itself of moving from the place where the first curing process was performed or discharging from the flexible container will break the adhesion between the carbonaceous interior particles. Further, in order to sieve and remove the powder, for example, the work of sieving with a mesh opening of 4 mm also has a crushing action of breaking the adhesion between the carbonaceous material interior particles.

前述した作業でもなお炭材内装粒子同士の団塊化が解消しない場合は、移動を繰り返したり、重機で衝撃を与えて解きほぐしたりして解砕することができる。炭材内装粒子同士の接着団塊化が進まないうちは、運搬すること自体や、接着を解きほぐすこと自体が容易であり、また、解きほぐす際に炭材内装粒子自体が粉化する量をより少なくできるので、炭材内装粒子同士の接着団塊化が軽微なうちに解砕を施すことが望ましい。しかし、炭材内装粒子同士の接着団塊化が軽微なうち、つまり養生期間が短い場合には、炭材内装粒子自身の強度は十分でなく、搬送コンベア等で輸送し、貯蔵槽に貯蔵する際に潰れて粉化しやすいおそれがある。 If the agglomeration of the carbonaceous interior particles is still not resolved by the above-mentioned work, the particles can be crushed by repeating the movement or by giving an impact with a heavy machine to loosen them. Adhesion between carbonaceous interior particles As long as nodules do not progress, it is easy to transport and loosen the adhesion, and the amount of powdered carbonaceous interior particles themselves when loosening can be reduced. Therefore, it is desirable to crush the carbonaceous material interior particles while the agglomeration of the adhesive nodules is slight. However, when the adhesion of the carbonaceous interior particles to each other is slight, that is, when the curing period is short, the strength of the carbonaceous interior particles themselves is not sufficient, and when they are transported by a conveyor or the like and stored in a storage tank. It may be crushed and easily powdered.

そこで、上記解砕工程の後で、再び炭材内装粒子を静置する第二の養生工程を設けることとした。このような第二の養生工程を施すことで、第一の養生工程後よりも圧潰強度の高い炭材内装粒子を得ることができる。そして、一旦解砕した炭材内装粒子は、第二の養生工程では、団塊化がほとんど進行しないという特徴がある。
以上説明したところから明らかなように、本発明にかかる炭材内装粒子の製造方法では、上記炭材内装粒子の造粒工程10の後、前記第一の養生工程、前記解砕工程および前記第二の養生工程を経ることが必要となる。
Therefore, after the crushing step, it was decided to provide a second curing step in which the carbonaceous material interior particles are allowed to stand again. By performing such a second curing step, it is possible to obtain carbonaceous material interior particles having a higher crushing strength than after the first curing step. The charcoal interior particles once crushed are characterized in that nodule formation hardly progresses in the second curing step.
As is clear from the above description, in the method for producing carbonaceous interior particles according to the present invention, after the granulation step 10 of the carbonaceous material interior particles, the first curing step, the crushing step, and the first. It is necessary to go through the second curing process.

図4は、養生期間と炭材内装粒子の圧潰強度との関係を示すグラフである。図4において、横軸は養生期間(日数)であり、縦軸は炭材内装粒子の圧潰強度(N/個)である。また、図4において、白丸プロットは圧潰強度の実測値を示し、黒丸プロットは圧潰強度の平均値を示す。この図4に示すように、養生後1日でも炭材内装粒子の圧潰強度は9.8N/個以上となるものがあり、養生後3日ではほぼ全量の炭材内装粒子の圧潰強度が9.8N/個以上となると考えられる。また、養生期間を20日以上にすれば、養生後に重機やリクレーマーでハンドリングしたとしても崩壊しない圧潰強度である49N/個以上にまで強度が上昇することがわかる。 FIG. 4 is a graph showing the relationship between the curing period and the crushing strength of the carbonaceous material interior particles. In FIG. 4, the horizontal axis is the curing period (days), and the vertical axis is the crushing strength (N / piece) of the carbonaceous material interior particles. Further, in FIG. 4, the white circle plot shows the measured value of the crushing strength, and the black circle plot shows the average value of the crushing strength. As shown in FIG. 4, the crushing strength of the carbonaceous interior particles may be 9.8 N / piece or more even one day after curing, and the crushing strength of almost the entire amount of the carbonaceous interior particles is 9 three days after curing. It is considered to be 8.8N / piece or more. Further, it can be seen that if the curing period is set to 20 days or more, the strength increases to 49 N / piece or more, which is a crushing strength that does not collapse even when handled with a heavy machine or a reclaimer after curing.

図5は、養生期間と炭材内装粒子の塊率との関係を表すグラフである。ここで、塊率とは、養生後の炭材内装粒子のうち、団塊化した炭材内装粒子の割合を質量比で示したものである。養生期間(日数)が長くなるにしたがって塊率(質量%)が上昇し、15日経過時点では塊率が80質量%を超えた。また、塊率が上昇するにしたがって塊が大きくなり、ハンドリング困難となるおそれがあった。ハンドリング容易となる塊率10質量%以下とするためには、1段階目の養生期間(第一の養生工程)を10日以内とすることが望ましい。また、塊率10質量%以下の場合は塊を構成する炭材内装粒子同士の結合も強くないため、過半量がハンドリング中に造粒直後と同様のばらばらの状態に戻った。 FIG. 5 is a graph showing the relationship between the curing period and the mass ratio of the carbonaceous material interior particles. Here, the agglomeration ratio indicates the ratio of the agglomerated carbonaceous material interior particles among the cured carbonaceous material interior particles by mass ratio. The mass ratio (mass%) increased as the curing period (days) became longer, and the mass ratio exceeded 80% by mass after 15 days. In addition, as the lump ratio increases, the lump becomes larger, which may make handling difficult. In order to reduce the mass ratio to 10% by mass or less for easy handling, it is desirable that the first-stage curing period (first curing step) is 10 days or less. Further, when the lump ratio was 10% by mass or less, the bond between the carbonaceous interior particles constituting the lump was not strong, so that the majority of the particles returned to the same disjointed state as immediately after granulation during handling.

次に、本発明の第二の実施形態である炭材内装焼結鉱の製造方法について説明する。図3は、炭材内装焼結鉱の製造方法が実施できる炭材内装焼結鉱の製造工程100の一例を示す模式図である。炭材内装焼結鉱の製造工程100では、図1に示した炭材内装粒子40の造粒工程10と並行して、粒径が10mm以下の鉄鉱石やダスト等の鉄含有原料と、石灰石、生石灰、製鋼スラグなどのCaO含有原料を含む副原料と、粒径3mm未満の粉コークスや無煙炭などからなる凝結材と、を含む原料50を、ドラムミキサー等の造粒機52で造粒して通常の焼結鉱製造用造粒粒子54を製造する。なお、副原料には、精錬ニッケルスラグやドロマイト、蛇紋岩などのMgO含有原料や、珪石などからなるSiO含有原料が含まれてもよい。 Next, a method for producing a carbonaceous interior sintered ore, which is a second embodiment of the present invention, will be described. FIG. 3 is a schematic view showing an example of a production process 100 of a carbonaceous interior sintered ore in which a method for producing a carbonaceous interior sintered ore can be carried out. In the production process 100 of the carbon material interior sintered ore, in parallel with the granulation step 10 of the carbon material interior particles 40 shown in FIG. 1, iron-containing raw materials such as iron ore and dust having a particle size of 10 mm or less and limestone. A raw material 50 containing an auxiliary raw material containing CaO-containing raw materials such as fresh lime and steel slag and a coagulant composed of powdered coke and smokeless charcoal having a particle size of less than 3 mm is granulated by a granulator 52 such as a drum mixer. To produce ordinary granulated particles 54 for producing sintered ore. The auxiliary raw material may include an MgO-containing raw material such as refined nickel slag, dolomite, and serpentinite, and a SiO 2 -containing raw material made of silica stone or the like.

次いで、原料50を造粒した通常の焼結鉱製造用造粒粒子54に、炭材内装粒子40を混合して混合粒子56とする。混合粒子56のうち、通常の焼結鉱製造用造粒粒子54が液相焼結主体の部分となり、炭材内装粒子40が液相生成を抑えた部分となる。本実施形態では、混合粒子56に対する炭材内装粒子40の配合割合が10質量%以上30質量%以下になるように、造粒粒子54に炭材内装粒子40を配合することが好ましい。これにより、混合粒子56の通気性が向上し、炭材内装焼結鉱の生産性が向上する。 Next, the carbonaceous material interior particles 40 are mixed with the ordinary granulated particles 54 for producing sinter, which are obtained by granulating the raw material 50, to obtain mixed particles 56. Of the mixed particles 56, the ordinary granulated particles 54 for producing sinter are mainly liquid phase sintered parts, and the carbonaceous material inner particles 40 are the parts where liquid phase formation is suppressed. In the present embodiment, it is preferable to add the carbonaceous material interior particles 40 to the granulated particles 54 so that the mixing ratio of the carbonaceous material interior particles 40 with respect to the mixed particles 56 is 10% by mass or more and 30% by mass or less. As a result, the air permeability of the mixed particles 56 is improved, and the productivity of the carbonaceous material interior sinter is improved.

炭材内装粒子40が混合された混合粒子56は、下方吸引式焼結機60のサージホッパーに搬入される。混合粒子56は、サージホッパーから無端移動式のパレットに装入され、装入層が形成される。装入層は、上方に設置された点火炉によって点火され、下方に設置されたウインドボックスから上方のガスを下方に吸引されることで装入層は順次に燃焼し、焼結される。装入層は、当該燃焼により発生する燃焼熱で焼結されて焼結ケーキとなる。焼結ケーキは、排鉱部で破砕および整粒され、粒径4mm以上の塊成物が成品の炭材内装焼結鉱として回収される。このようにして製造された炭材内装焼結鉱が高炉70の製鉄原料として使用される。なお、本実施形態における粒径とは、JIS(日本工業規格) Z 8801-1:2006に準拠した公称目開きの篩を用いて篩分けされた粒径であり、例えば、粒径4mm以上とは、JIS Z 8801-1:2006に準拠した公称目開き4mmの篩を用いて篩上に篩分けされる粒径をいう。 The mixed particles 56 mixed with the carbonaceous material interior particles 40 are carried into the surge hopper of the downward suction type sintering machine 60. The mixed particles 56 are charged from the surge hopper into an endlessly movable pallet to form an charging layer. The charge layer is ignited by an ignition furnace installed above, and the charge layer is sequentially burned and sintered by sucking the upper gas downward from the wind box installed below. The charging layer is sintered by the combustion heat generated by the combustion to form a sintered cake. The sintered cake is crushed and sized at the sinter portion, and agglomerates having a particle size of 4 mm or more are recovered as an adult carbonaceous interior sintered ore. The carbonaceous interior sinter produced in this way is used as a raw material for iron production in the blast furnace 70. The particle size in the present embodiment is a particle size sieved using a sieve having a nominal opening according to JIS (Japanese Industrial Standards) Z8801-1: 2006, and is, for example, a particle size of 4 mm or more. Refers to the particle size to be sieved on a sieve using a sieve having a nominal opening of 4 mm according to JIS Z 8801-1: 2006.

この実施形態に係る炭材内装粒子の製造方法で用いる炭材の粒径は、2mm以上であることが好ましい。粒径が2mm以上の炭材を用いることで、炭材内装粒子を混合した混合粒子を焼結機で焼結する工程で炭材核が消失してしまうことを抑制できる。炭材の粒径は、3mm以上であることがより好ましい。粒径が3mm以上の炭材を用いることで、炭材の消失をさらに抑制できる。 The particle size of the charcoal material used in the method for producing the carbonaceous material interior particles according to this embodiment is preferably 2 mm or more. By using a carbonaceous material having a particle size of 2 mm or more, it is possible to prevent the carbonaceous material core from disappearing in the step of sintering the mixed particles mixed with the carbonaceous material interior particles with a sintering machine. The particle size of the carbonaceous material is more preferably 3 mm or more. By using a charcoal material having a particle size of 3 mm or more, the disappearance of the charcoal material can be further suppressed.

一方、粒径が大きい炭材を用いると、焼結時に炭材から発生する燃焼ガス量が増加し、炭材内装焼結鉱において炭材核を被覆する外層に亀裂が生じる。炭材核を被覆する外層に亀裂が生じると炭材内装焼結鉱の強度が大きく低下し、この結果、炭材内装焼結鉱の歩留が大きく低下する。このため、炭材の粒径は、8mm以下であることが好ましく、6mm以下であることがより好ましい。 On the other hand, when a charcoal material having a large particle size is used, the amount of combustion gas generated from the charcoal material during sintering increases, and cracks occur in the outer layer covering the coal material core in the coal material inner sintered ore. When a crack occurs in the outer layer covering the carbonaceous core, the strength of the carbonaceous interior sinter is greatly reduced, and as a result, the yield of the carbonaceous interior sinter is greatly reduced. Therefore, the particle size of the carbonaceous material is preferably 8 mm or less, and more preferably 6 mm or less.

また、製造される炭材内装粒子40の粒径は、8mm以上18mm以下であることが好ましい。上述したように、粒径が4mm以上の炭材内装焼結鉱が成品焼結鉱として回収され、粒径4mm未満の焼結鉱は、焼結原料にリサイクル(返鉱)される。また、炭材内装粒子40は、焼結機で焼結すると水分の蒸発や部分的な溶融によって体積が小さくなる。従って、炭材内装粒子40がそのまま焼結されたとしても返鉱にならないように、炭材内装粒子40の粒径は、8mm以上であることが好ましく、10mm以上であることがより好ましい。 Further, the particle size of the produced carbonaceous material interior particles 40 is preferably 8 mm or more and 18 mm or less. As described above, the carbonaceous interior sinter having a particle size of 4 mm or more is recovered as a product sinter, and the sinter having a particle size of less than 4 mm is recycled (returned) into a sinter raw material. Further, when the carbonaceous material interior particles 40 are sintered by a sintering machine, the volume becomes smaller due to evaporation of water or partial melting. Therefore, the particle size of the carbonaceous material interior particles 40 is preferably 8 mm or more, and more preferably 10 mm or more so that even if the carbonaceous material interior particles 40 are sintered as they are, they do not return ore.

前記炭材内装粒子40に形成された外層の厚みは、最も薄いところで2mm以上とすることが好ましい。2mm未満では、焼結した外層のバリヤ効果が不十分で、炭材核が焼結時に燃焼して消失するおそれがある。一方、炭材内装粒子40に形成された外層の厚さが5mmを超えると、限られた焼結時間内に炭材内装粒子40の全ての外層を焼結することが困難になる。焼結が不十分な部分が炭材内装焼結鉱に存在すると、炭材内装焼結鉱の強度は低下し、炭材内装焼結鉱の歩留が低下する。従って、炭材内装粒子40の外層の厚さは5mm以下であることが好ましく、例えば、コークス粒子32の粒径が8mmであって外層の厚さが5mmである場合の炭材内装粒子の粒径は18mmになる。このため、炭材内装粒子40の粒径は18mm以下であることが好ましい。 The thickness of the outer layer formed on the carbonaceous material interior particles 40 is preferably 2 mm or more at the thinnest point. If it is less than 2 mm, the barrier effect of the sintered outer layer is insufficient, and the carbonaceous material core may burn and disappear during sintering. On the other hand, if the thickness of the outer layer formed on the carbon material interior particles 40 exceeds 5 mm, it becomes difficult to sinter all the outer layers of the carbon material interior particles 40 within a limited sintering time. If a portion of insufficient sinter is present in the sinter inside the sinter, the strength of the sinter inside the sinter is reduced and the yield of the sinter inside the sinter is reduced. Therefore, the thickness of the outer layer of the carbonaceous material interior particles 40 is preferably 5 mm or less. For example, the particles of the carbonaceous material interior particles when the particle size of the coke particles 32 is 8 mm and the thickness of the outer layer is 5 mm. The diameter will be 18 mm. Therefore, the particle size of the carbonaceous material interior particles 40 is preferably 18 mm or less.

この実施形態に係る炭材内装粒子の製造方法では、混合原料紛にセメント粉20を配合し、これにより製造される炭材内装粒子40の強度を高めている。セメント粉は安価なので、焼結鉱の製造といった大量生産プロセスに用いることで、製造コスト抑制効果が高くなる。 In the method for producing carbonaceous interior particles according to this embodiment, cement powder 20 is mixed with the mixed raw material powder to increase the strength of the carbonaceous interior particles 40 produced by the cement powder 20. Since cement powder is inexpensive, its production cost control effect is enhanced by using it in a mass production process such as the production of sinter.

本発明の技術は、上記に説明した実施例に限定されるものではなく、例えば、焼結熱源として、焼結原料中に添加した炭材に加えて、気体燃料を供給する焼結技術や、さらに、酸素を富化して供給する焼結技術にも適用することができる。 The technique of the present invention is not limited to the above-described embodiment, for example, a sintering technique for supplying gaseous fuel in addition to the carbonaceous material added to the sintering raw material as a sintering heat source. Further, it can be applied to a sintering technique for enriching and supplying oxygen.

10 炭材内装粒子の造粒工程
12 鉄鉱石粉
14 貯蔵槽
16 生石灰
18 貯蔵槽
20 セメント粉
22 貯蔵槽
24 搬送機
26 水
28 混練機
30 混合原料粉
32 コークス粒子
34 貯蔵槽
36 搬送機
38 造粒機
40 炭材内装粒子
50 原料
52 造粒機
54 造粒粒子
56 混合粒子
60 下方吸引式焼結機
70 高炉
100 炭材内装焼結鉱の製造工程
10 Granulation process of carbonaceous material interior particles 12 Iron ore powder 14 Storage tank 16 Fresh lime 18 Storage tank 20 Cement powder 22 Storage tank 24 Transporter 26 Water 28 Kneader 30 Mixing raw material powder 32 Coke particles 34 Storage tank 36 Transporter 38 Granulation Machine 40 Charcoal interior particles 50 Raw material 52 Granulation machine 54 Granulation particles 56 Mixed particles 60 Downward suction type sintering machine 70 blast furnace 100 Charcoal interior sintered ore manufacturing process

Claims (5)

鉄含有原料、石灰含有副原料およびセメント粉を混合してなる混合原料粉と核となる粒径2mm以上8mm以下の炭材とを造粒することにより、造粒用混合原料に対する配合割合が1質量%以上5質量%以下である炭材核の周囲に前記混合原料粉の外層を形成して炭材内装粒子を得る造粒工程と、
前記造粒後の炭材内装粒子を静置する第一の養生工程と、
前記第一の養生工程の後に炭材内装粒子を解砕する解砕工程と、
前記解砕工程の後に解砕した炭材内装粒子を静置する第二の養生工程と、
を経ることを特徴とする炭材内装粒子の製造方法。
By granulating a mixed raw material powder made by mixing an iron-containing raw material, a lime-containing auxiliary raw material and cement powder, and a carbonaceous material having a core particle size of 2 mm or more and 8 mm or less, the mixing ratio to the mixed raw material for granulation is 1. A granulation step of forming an outer layer of the mixed raw material powder around a carbonaceous material core having a mass% or more and 5% by mass or less to obtain carbonaceous material internal particles.
The first curing step of allowing the carbonaceous interior particles after granulation to stand still, and
After the first curing step, a crushing step of crushing the carbonaceous material interior particles and a crushing step.
A second curing step in which the crushed carbonaceous material interior particles are allowed to stand after the crushing step, and
A method for manufacturing carbonaceous interior particles, which is characterized by passing through.
前記第一の養生工程は、養生期間が3日~10日であることを特徴とする請求項1に記載の炭材内装粒子の製造方法。 The method for producing carbonaceous interior particles according to claim 1, wherein the first curing step has a curing period of 3 to 10 days. 前記第二の養生工程は、前記造粒工程後の20日後以降に終了することを特徴とする請求項1または2に記載の炭材内装粒子の製造方法。 The method for producing carbonaceous interior particles according to claim 1 or 2, wherein the second curing step is completed 20 days after the granulation step. 前記第一の養生工程は、フレキシブルコンテナバッグ内に前記炭材内装粒子を収容して行なうことを特徴とする請求項1~3のいずれか1項に記載の炭材内装粒子の製造方法。 The method for producing carbonaceous interior particles according to any one of claims 1 to 3, wherein the first curing step is performed by accommodating the carbonaceous material interior particles in a flexible container bag. 請求項1~4のいずれか1項に記載の方法で製造した炭材内装粒子と、
通常の焼結鉱製造用造粒粒子を混合し、その混合粒子を下方吸引式焼結機に装入して焼結することを特徴とする炭材内装焼結鉱の製造方法。
The carbonaceous material interior particles produced by the method according to any one of claims 1 to 4.
A method for producing a carbonaceous interior sinter, which comprises mixing ordinary granulated particles for sinter production and charging the mixed particles into a downward suction type sinter to sinter.
JP2018234087A 2018-12-14 2018-12-14 Method for manufacturing charcoal interior particles and method for manufacturing charcoal interior sintered ore Active JP6996485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018234087A JP6996485B2 (en) 2018-12-14 2018-12-14 Method for manufacturing charcoal interior particles and method for manufacturing charcoal interior sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018234087A JP6996485B2 (en) 2018-12-14 2018-12-14 Method for manufacturing charcoal interior particles and method for manufacturing charcoal interior sintered ore

Publications (2)

Publication Number Publication Date
JP2020094248A JP2020094248A (en) 2020-06-18
JP6996485B2 true JP6996485B2 (en) 2022-01-17

Family

ID=71084646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018234087A Active JP6996485B2 (en) 2018-12-14 2018-12-14 Method for manufacturing charcoal interior particles and method for manufacturing charcoal interior sintered ore

Country Status (1)

Country Link
JP (1) JP6996485B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016104901A (en) 2014-11-21 2016-06-09 新日鐵住金株式会社 Modified carbonaceous material for manufacturing sinter ore and manufacturing method of sinter ore using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5125402A (en) * 1974-08-28 1976-03-02 Nippon Steel Corp Kinzokusankabutsu no reikanketsugoperetsuto no seizoho
JPH02228428A (en) * 1989-03-02 1990-09-11 Sumitomo Metal Ind Ltd Charging material for blast furnace and its production
JPH02294418A (en) * 1989-05-01 1990-12-05 Sumitomo Metal Ind Ltd Manufacture of charging material in blast furnace

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016104901A (en) 2014-11-21 2016-06-09 新日鐵住金株式会社 Modified carbonaceous material for manufacturing sinter ore and manufacturing method of sinter ore using the same

Also Published As

Publication number Publication date
JP2020094248A (en) 2020-06-18

Similar Documents

Publication Publication Date Title
JP2008214715A (en) Method for manufacturing nonfired agglomerated ore for iron manufacture
JP5375742B2 (en) Granulation method of sintering raw material
JP2007284744A (en) Method for manufacturing sintered ore
JP5451568B2 (en) Pretreatment method for sintering raw materials
JP6996485B2 (en) Method for manufacturing charcoal interior particles and method for manufacturing charcoal interior sintered ore
AU2017388174B2 (en) Sintered ore manufacturing method
JP2007169707A (en) Method for producing dephosphorizing agent for steelmaking using sintering machine
JP2020158848A (en) Method for using steel slag in sintering
AU2009233017B2 (en) Process for producing cement-bonded ore agglomerates
JP6734370B2 (en) Raw material processing apparatus and raw material processing method
JP6885386B2 (en) Manufacturing method of carbon material interior particles and manufacturing method of carbon material interior sintered ore
WO2012015066A1 (en) Method for producing starting material for sintering
JP6992734B2 (en) Method for manufacturing charcoal interior particles and method for manufacturing charcoal interior sintered ore
JP3058015B2 (en) Granulation method of sintering raw material
JP6809446B2 (en) Manufacturing method of carbon material interior particles and manufacturing method of carbon material interior sintered ore
CN107674971B (en) Raw material treatment method
JP2009030116A (en) Method for producing ore raw material for blast furnace
JP6805672B2 (en) Manufacturing method of carbonaceous interior granulated particles and manufacturing method of carbonaceous interior agglomerate
JP5167641B2 (en) Method for producing sintered ore
JP2003277838A (en) High crystal water ore used for sintering raw material for blast furnace, sintering raw material for blast furnace and its producing method
JP7227053B2 (en) Method for producing sintered ore
JP5131058B2 (en) Iron-containing dust agglomerate and hot metal production method
JPH05339653A (en) Pretreatment of sintered ore raw material and sintered ore raw material for iron making
JP6988778B2 (en) Manufacturing method of charcoal interior sinter and equipment for manufacturing charcoal interior sinter
KR102045597B1 (en) The method for recycling by-product emitted from coal-based iron making process and equipment for hot compacting iron

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211129

R150 Certificate of patent or registration of utility model

Ref document number: 6996485

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150