JPH02294418A - Manufacture of charging material in blast furnace - Google Patents

Manufacture of charging material in blast furnace

Info

Publication number
JPH02294418A
JPH02294418A JP11268989A JP11268989A JPH02294418A JP H02294418 A JPH02294418 A JP H02294418A JP 11268989 A JP11268989 A JP 11268989A JP 11268989 A JP11268989 A JP 11268989A JP H02294418 A JPH02294418 A JP H02294418A
Authority
JP
Japan
Prior art keywords
blast furnace
coke
iron ore
lump
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11268989A
Other languages
Japanese (ja)
Inventor
Shun Sato
駿 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP11268989A priority Critical patent/JPH02294418A/en
Publication of JPH02294418A publication Critical patent/JPH02294418A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To stabilize furnace condition and to improve the productivity of the blast furnace by using material applying fine powdery iron ore and lime stone at the specific ratio with using cement as binder on outer circumference of lump coke for blast furnace as charging material for blast furnace. CONSTITUTION:As the charging material in the case of producing molten iron in the blast furnace, raw material coating layer and kneading mixing 100 parts of the iron ore powder having <=1mm grain diameter and 19-25 parts of the lime stone powder having <=1mm grain diameter with 5-10 parts of hydraulic binder of the blast furnace cement, Portland cement, etc., is applied on the whole outer circumference of the lump coke for blast furnace having 10-30mm grain size so as to come to the wt. ratio in the range of (1:1)-(4:1) to the lump coke as core and the above material is cured in the atmosphere for about one week and hardened. By using this lump raw material, control of the mixed layer of the coke and the iron ore in the furnace can be executed and the productivity under stable furnace condition is improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、原燃料一体型の高炉装入物の製造方法に関し
、詳細には、高炉用冶金塊コークス粒子を核として、そ
の外殻表面に微粉鉄鉱石を主体とする冷間結合被覆を造
粒付着させる方法に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a method for producing a blast furnace charge integrated with raw material and fuel, and more specifically, the present invention relates to a method for producing a blast furnace charge integrated with raw materials and fuel. This invention relates to a method for granulating and depositing a cold bond coating mainly composed of fine iron ore.

(従来の技術) 製鉄用高炉に供せられる装入原料は、現状では、鉄鉱石
粉粒体(粉鉱石)に適量の石灰石粉と粉コークスとを混
合して焼結した自溶性焼結鉱を主体に一部の塊状鉄鉱石
やペレントを配合した鉄鉱石類と、コークス炉にて原料
炭を乾留した冶金用コークスとに大別される.第2図の
工程図に示すように、焼結鉱は、焼結原料である粉鉱石
、石灰石粉および粉コークスを混合・造粒(工程1)し
た後、焼結機2で焼結し、最後に破砕・整粒(工稈3)
して得られる.一方、冶金用コークスは、独立した別系
統により、原料炭を粉砕・混合(工程4)シた後、コー
クス炉5で乾留し、最後に破砕・整粒(工程6)シて得
られる.得られた塊状焼結鉱を含む鉄鉱石類と塊状コー
クスとは別々に貯蔵され、適旨ずつ交互に切り出して、
高炉操業条件によって決定される一定の重量比で、交互
に層状となるように高炉7に装入されている。
(Prior technology) Currently, the raw material charged to a blast furnace for steelmaking is self-soluble sintered ore, which is made by mixing iron ore powder (fine ore) with appropriate amounts of limestone powder and coke powder. It is broadly divided into iron ore, which is mainly mixed with some lump iron ore and pellets, and metallurgical coke, which is made by carbonizing coking coal in a coke oven. As shown in the process diagram in Figure 2, sintered ore is produced by mixing and granulating the sintering raw materials, ore powder, limestone powder, and coke powder (step 1), and then sintering it in a sintering machine 2. Finally, crushing and grading (culm 3)
It can be obtained by On the other hand, metallurgical coke is obtained by crushing and mixing coking coal (step 4) in an independent system, carbonizing it in a coke oven 5, and finally crushing and sizing (step 6). The iron ore containing the obtained lump sintered ore and the lump coke are stored separately, and the appropriate pieces are cut out alternately.
The materials are charged into the blast furnace 7 in alternating layers at a constant weight ratio determined by blast furnace operating conditions.

このような装入法によれば、鉄鉱石とコークスは層状の
充填構造を維持しながら高炉内を降下し、鉄鉱石は炉内
を降下するにしたがって順次加熱・還元され、シャフト
下段付近で軟化し、融着層を形成する.この融着層はコ
ークス層に比べて空隙率が著しく小さく、層内をほとん
どガスが流れないため、コークス層がガスの主要な流路
となる。
According to this charging method, iron ore and coke descend through the blast furnace while maintaining a layered packing structure, and the iron ore is sequentially heated and reduced as it descends through the furnace, softening near the bottom of the shaft. to form a fused layer. This cohesive layer has a significantly smaller porosity than the coke layer, and almost no gas flows within the layer, so the coke layer becomes the main flow path for gas.

このため、融着層は炉全体の圧力tM失と炉内のガス流
れとを支配し、高炉の安定性と効率を決定することにな
る.層状装入を実施する限り融着層が存在することは避
けられないため、融@層の集合体である融着帯の形状を
制御することが高炉操業技術の大きな課題となっている
Therefore, the cohesive layer controls the pressure tM loss across the furnace and the gas flow within the furnace, and determines the stability and efficiency of the blast furnace. As long as layered charging is carried out, the presence of a cohesive layer is unavoidable, so controlling the shape of the cohesive zone, which is an aggregate of the molten layer, is a major challenge in blast furnace operation technology.

上記層状装入に対して、鉄鉱石とコークスとをあらかじ
め混合し、その混合物を高炉内に装入する混合装入法(
例えば、特開昭55−79810号公報)が提案されて
いる。この混合装入法によれば、比較的通気性の良好な
融着帯が生成し、炉全体の圧力損失は大幅に低下すると
述べられているが、現状の旋回シュート・ベル式装入設
備では、炉内装入までの輸送系において、あるいは炉内
での落下・降下過程において鉄鉱石とコークスとの分離
は避けられない.これは、両装入物の粒径、密度、形状
等が異なるためであり、両装入物の混合層を、炉内に意
図した通りに制御して形成させることは非常に難しい. このような両装入物の分離を避けるために、予め両者を
結合材で結合した原燃料一体型の装入物を高炉に装入す
る方法が捉案されている。特開昭60−262907号
公報には、セメント等の水硬性結合材を添加して鉄鉱石
とコークスとの結合を図る方法が提案されている。この
方法は、所定の割合から成るコークス・鉄鉱石・セメン
トを混合し、さらに水を加えて混錬したものを鋳型に流
し込んで大気中で養生する、結合塊の製造方法である。
In contrast to the layered charging described above, the mixed charging method (in which iron ore and coke are mixed in advance and the mixture is charged into the blast furnace)
For example, JP-A-55-79810) has been proposed. According to this mixed charging method, a cohesive zone with relatively good permeability is generated, and the pressure loss across the furnace is said to be significantly reduced. However, the current rotating chute/bell type charging equipment Separation of iron ore and coke is unavoidable in the transport system up to the point where it enters the furnace, or during the falling/descending process within the furnace. This is because the grain size, density, shape, etc. of both charges are different, and it is extremely difficult to control and form a mixed layer of both charges in the furnace as intended. In order to avoid such separation of the two charges, a method has been proposed in which the raw and fuel integrated charges are bonded in advance with a binding material and charged into the blast furnace. JP-A-60-262907 proposes a method of adding a hydraulic binder such as cement to bond iron ore and coke. This method involves mixing coke, iron ore, and cement in a predetermined ratio, adding water, kneading the mixture, pouring it into a mold, and curing it in the atmosphere.

この方法の目的は、単に高炉内落下衝撃で破懐されない
強度を有l′る鉄鉱石とコークスとの結合塊を製造する
手段を提供するにすぎず、積極的に高炉装入物としての
性状を改善する効果は期待できないものである, (発明が解決しようとする課題) 本発明の目的は、現状の旋回シュート・ベル式装入設備
を用いても、高炉内に鉄鉱石とコークスとの混合層を意
図した通りに制御して形成することができ、その結果、
高炉操業成績を著しく向上させることが可能な高炉装入
物の製造方法を提供することである. 本発明の別の目的は、高炉内の反応過程を考慮して、積
極的に鉄鉱石とコークスとの配置を改善し、高炉内性状
を著しく向上させることができる原燃料一体型の高炉装
入物の製造方法を提供することである. (課題を解決するための手段) 本発明者等は、高炉操業に悪影響を及ぼさない適当な結
合材を用いて鉄鉱石とコークスとを一体化すること、お
よび一体化の際には高炉内の反応過程を考慮して鉄鉱石
・コークス間の配置の工夫により装入物の高炉性状を向
上させることを発想して、種々検討を重ねた結果、セメ
ント等の水硬性結合材をバインダーとして利用し、塊コ
ークスを核としてその外殻表面を微粉鉄鉱石で造粒被覆
することにより上記目的が達成されることを知り、本発
明を完成した, ここに、本発明の要旨は、高炉用冶金塊コークスの外表
面に、セメント等の水硬性結合材をバインダーとして含
む微粉鉄鉱石を主体とする被覆形成材を、前記塊コーク
スに対する重量比が1:1〜4Ctの範囲内となる量で
造粒被覆した後、養生硬化させることを特徴とする高炉
装入物の製造方法である. (作用) 本発明による高炉装入物の製造方法の概略工程を第1図
に示す。
The purpose of this method is simply to provide a means for producing a bonded lump of iron ore and coke that is strong enough to withstand the impact of falling into the blast furnace, and to actively improve the properties of the iron ore and coke as a blast furnace charge. (Problems to be Solved by the Invention) The purpose of the present invention is to prevent iron ore and coke from flowing into the blast furnace even if the current rotating chute/bell type charging equipment is used. The mixed layer can be controlled and formed as intended, resulting in
The purpose of this invention is to provide a method for manufacturing blast furnace charge that can significantly improve blast furnace operating performance. Another object of the present invention is to provide a raw and fuel-integrated blast furnace charging system that can actively improve the arrangement of iron ore and coke in consideration of the reaction process within the blast furnace, and significantly improve the internal properties of the blast furnace. The goal is to provide methods for manufacturing things. (Means for Solving the Problems) The present inventors have proposed that iron ore and coke be integrated using a suitable binding material that does not adversely affect blast furnace operation, and that during the integration, iron ore and coke should be The idea was to improve the blast furnace properties of the charge by devising the arrangement between iron ore and coke in consideration of the reaction process, and as a result of various studies, we decided to use a hydraulic binder such as cement as a binder. The present invention was completed based on the knowledge that the above object can be achieved by granulating and coating the outer shell surface with fine iron ore using lump coke as a core. A coating material mainly composed of fine iron ore containing a hydraulic binder such as cement as a binder is granulated on the outer surface of the coke in an amount such that the weight ratio to the lump coke is within the range of 1:1 to 4 Ct. This is a method for manufacturing blast furnace charge, which is characterized by curing and hardening after coating. (Function) The schematic steps of the method for manufacturing blast furnace charge according to the present invention are shown in FIG.

高炉用冶金塊コークスは、従来法と同様に、原料炭を粉
砕・混合(工程4)した後、コークス炉5にて乾留し、
破砕・整粒(工程6)することにより得られる.得られ
た塊コークスの全量もしくは一部を高炉7へ直送せず、
被覆形成材、つまり微粉鉄鉱石を主体とする粉体、セメ
ント等の水硬性結合材、および水を加えて混合・造粒(
工程8)して、塊コークスの表面外殻に微粉鉄鉱石層を
被覆し、二重構造の原燃料一体化複合物を製造する.工
程8のこの被覆形成材を使った塊コークス造粒・被覆は
任意の造粒装置で実施できるが、製鉄所内のべレタイザ
ーを利用することが便利である。
Metallurgical lump coke for blast furnaces is produced by pulverizing and mixing coking coal (step 4) in the same way as in the conventional method, and then carbonizing it in a coke oven 5.
Obtained by crushing and sizing (Step 6). All or part of the obtained lump coke is not sent directly to the blast furnace 7,
Mixing and granulation by adding coating forming material, that is, powder mainly composed of finely divided iron ore, hydraulic binder such as cement, and water.
In step 8), the outer shell of the lump coke is coated with a layer of fine iron ore to produce a double-structure raw material and fuel integrated composite. The lump coke granulation and coating using this coating forming material in step 8 can be carried out using any granulation equipment, but it is convenient to use a pelletizer in a steelworks.

得られた一体化複合物を養生ヤード9に一時貯鉱し、強
度発現のために養生を行う.この養生は、使用するバイ
ンダーの種類にもよるが、通常7日程度行う。十分に養
生された一体化複合物はそのまま高炉7へ輸送され、高
炉装入物として利用される。これとは別に、慣用法によ
る混合・造粒工程1、焼結工程2、および破砕・整粒工
程3を経た焼結鉱も用意され、高炉7に装入されてもよ
い。
The resulting integrated composite is temporarily stored in a curing yard 9 and cured to develop strength. This curing is usually carried out for about 7 days, although it depends on the type of binder used. The fully cured integrated composite is transported as it is to the blast furnace 7 and used as blast furnace charge. Separately, sintered ore that has undergone a mixing/granulation process 1, a sintering process 2, and a crushing/sizing process 3 according to a conventional method may also be prepared and charged into the blast furnace 7.

高炉内での反応過程の初期において、還元ガスと核とな
っている塊コークスとの接触を防止するために、必要最
小限のバインダー添加量により緻密で強固な鉄鉱石被覆
を形成することが望まれるが、そのためには、塊コーク
スの外表面に造粒被覆する被覆形成材を構成する微粉鉄
鉱石を主体とする粉体の粒度は、平均粒径がlm以下、
好ましくは100一以下程度が適している.したがって
、微粉鉄鉱石としてはベレソト製造用(ペレソトフィー
ド、P.F.)の微粉鉱石を用いることができる。
In order to prevent the reducing gas from coming into contact with the lump coke that forms the nucleus at the early stage of the reaction process in the blast furnace, it is desirable to form a dense and strong iron ore coating by adding the minimum amount of binder necessary. However, in order to do so, the particle size of the powder mainly composed of fine iron ore, which constitutes the coating material that is granulated and coated on the outer surface of the lump coke, must be such that the average particle size is 1 m or less,
Preferably, it is about 100-1 or less. Therefore, as the fine iron ore, fine ore for producing beresoto (Peresoto Feed, P.F.) can be used.

また、塊コークスの平均粒径は30〜70m1程度が好
ましい。
Further, the average particle size of the lump coke is preferably about 30 to 70 m1.

一体化複合物の被覆を形成する被覆形成材眉の化学組成
は特に限定されるものではないが、高炉内下部の高温溶
融帯でこの被覆形成材鉄鉱石層が軟化溶融する際に、従
来の自溶性焼結鉱と同様の溶融スラグを形成するように
、高塩基度材料であることが望ましい。したがって、適
量の石灰石微粉(ドロマイトや蛇紋岩などのMgO i
liをさらに添加してもよい)を配合して、鉄鉱石層の
塩基度を所望の値に高めることができる. 本発明における被覆形成材の適当な配合例は、重!基準
で微粉鉄鉱石100部に対して、一般には水硬性結合材
4〜8部を含むものであり、好ましくは、微粉鉄鉱石1
00部に対,し、石灰石f′A19〜25部、バインダ
ーとしての水硬性セメント5〜10部を含むものである
が、これに限定されるものではない.さらにコークス粉
を一部配合してもよい。
The chemical composition of the coating-forming material that forms the coating of the integrated composite is not particularly limited, but when the coating-forming material iron ore layer softens and melts in the high-temperature melting zone at the bottom of the blast furnace, it High basicity materials are desirable so that they form a molten slag similar to self-fusing sinter. Therefore, an appropriate amount of limestone fine powder (MgO i such as dolomite and serpentinite)
Li may be further added) to increase the basicity of the iron ore layer to a desired value. An example of a suitable formulation of the coating forming material in the present invention is heavy! It generally contains 4 to 8 parts of hydraulic binder per 100 parts of fine iron ore, preferably 1 part of fine iron ore.
00 parts, 19 to 25 parts of limestone f'A, and 5 to 10 parts of hydraulic cement as a binder, but are not limited thereto. Furthermore, a portion of coke powder may be added.

本発明において、バインダーとして使用可能な水硬性結
合材は特に限定されず、慣用の自硬性、層在水硬性など
の無a質セメント、硬焼セソコ一などのいずれでもよい
. 前記一体化複合物の造粒において、核の塊コークスに対
して被覆形成材の量が多すぎると被覆が厚くなり、高炉
内での1元の進行が妨げられたり、輸送過程の衝撃で被
覆が脱落する恐れが出てくるため、高炉操業にとって好
ましくない.逆に、被覆形成材の量が少な《すぎて被覆
が薄くなると、一体化複合物の造粒作業のバラツキによ
り一部塊コークスがむき出しとなる個所が発生し、高炉
内でこの部分から還元ガスとの反応が起って、不均一な
還元の進行や塊コークスの反応劣化が生じるため好まし
くない。
In the present invention, the hydraulic binder that can be used as the binder is not particularly limited, and may be any of conventional self-hardening, layered hydraulic, aluminous cements, and hard-burned cement. In the granulation of the integrated composite, if the amount of coating forming material is too large relative to the lump coke core, the coating will become thick and the progress of the monomer in the blast furnace may be hindered, or the coating may be damaged by impact during the transportation process. This is not desirable for blast furnace operation as there is a risk that the particles may fall off. On the other hand, if the amount of coating forming material is too small and the coating becomes thin, some lump coke will be exposed due to variations in the granulation process of the integrated composite, and reducing gas will be removed from this area in the blast furnace. This is undesirable because a reaction with the coke occurs, resulting in uneven reduction progress and reaction deterioration of the lump coke.

このような被覆形成材の適正配合量について調査したと
ころ、第3図に示すように、適正な被覆形成材量は、核
の塊コークス量に対して重量比でtri〜4:1の範囲
に存在することが判明した.ここで試験に用いた一体化
複合体は、平均粒径10〜30蒙鵬の塊コークスを核と
して、粒径11g01以下の微粉鉱石(ペレソト製造用
原料:クドレムク)と石灰石粉の混合物に、6重量%の
高炉セメントと適量の水分を添加したものを、前記塊コ
ークスの外殻表面に例えば皿型造粒機を使って造粒被覆
させた後、大気中で1週間養生したものである。
When we investigated the appropriate blending amount of such coating forming material, we found that the appropriate amount of coating forming material is in the range of tri to 4:1 in terms of weight ratio to the amount of lump coke in the core, as shown in Figure 3. It turns out that it exists. The integrated composite used in the test was made of a mixture of lump coke with an average particle size of 10 to 30 g01 as a core, fine ore with a particle size of 11 g01 or less (raw material for Peresot production: Kudremuk), and limestone powder, 6 After adding % by weight of blast furnace cement and an appropriate amount of water, the outer shell surface of the lump coke was granulated and coated using, for example, a dish-type granulator, and then cured in the atmosphere for one week.

被覆形成材量と塊コークスとの重量比はO.5:t〜5
:lの間で変化させた。塊コークスの反応率は、一体化
複合物約200gを、炭酸ガスto j! /minを
流しながら高炉内昇温パターンに近似させた条件で12
50℃まで昇渇させた後、コークスのガス化に伴う一体
化複合物の重量減少率で表わした。また、鉱石被覆剥離
率は直径1.0+w、長さ0.5mの130回転強度試
験機中で試料20kgを25rpmで200回回転衝撃
後の粒径10mm未満のものの比率(ト)により決定し
た。
The weight ratio of the amount of coating forming material to the lump coke is O. 5:t~5
: It was varied between 1 and 2. The reaction rate of lump coke is about 200g of integrated composite, carbon dioxide to j! 12 under conditions approximating the temperature rise pattern in the blast furnace while flowing /min.
After raising the temperature to 50°C, the weight loss rate of the integrated composite due to gasification of coke was expressed. In addition, the ore coating peeling rate was determined by the ratio (g) of particles having a particle size of less than 10 mm after impacting a 20 kg sample by rotating it 200 times at 25 rpm in a 130-rotation strength testing machine with a diameter of 1.0 + W and a length of 0.5 m.

この結果によれば、第3図にグラフで示すように、被覆
形成材量と塊コークスの重量比が1;1より小さくなる
と、塊コークス外殻の被覆層の厚さが十分でないために
一部塊コークスの露出が生じ、塊コークスの反応率(す
なわち焼ta率)は急激に上昇する。従って、被覆形成
材量は、塊コークスに対する重量比で1以上必要となる
According to this result, as shown in the graph in Fig. 3, when the weight ratio of the coating forming material to the lump coke becomes smaller than 1:1, the thickness of the coating layer of the lump coke outer shell is not sufficient. The lump coke is exposed, and the reaction rate of the lump coke (ie, the sinter rate) increases rapidly. Therefore, the amount of coating forming material needs to be 1 or more in weight ratio to lump coke.

また、一体化複合物を高炉まで輸送する過程においては
、ヘルトコンベア等の乗継ぎ時の落下41i撃により、
塊コークス外殻に被覆させた微粉鉄鉱石の一部が塊コー
クス表面より剥離して粉化する.この粉化率、つまり鉱
石被覆剥離率は、通常高炉操業で管理されている程度の
量ならば大きい障害とはならないが、第3図に示すよう
に、塊コークス量に対する被覆形成材量の配合重量比が
5を超えると急激に増加するため、この重量比を4以下
とすることが必要である. 以上のように本発明の方法で製造された高炉装入物は、
塊コークスを核としその外殻表面を微粉鉄鉱石を主体と
する被覆形成材で造粒被覆した原燃料一体化複合物であ
るため、鉄鉱石は表面積を拡大された形で高炉内還元ガ
スと接触することになり、還元反応が促進される。一方
、鉄鉱石の被覆で覆われた核である塊コークスは還元ガ
スとの接触が防止されるため、高炉上部での粉化と反応
劣化の可能性が軽減される.このような二重構造の一体
化複合物は、高炉内を降下する過程で表面の鉄鉱石層が
効率よく還元され、1200℃以上の高温帯で軟化溶融
して鉱石融液が分離し、むき出しとなったコークス粒子
の充填空隙を通って流動滴下する.また、塊コークス外
殻に鉄鉱石層を被覆した分だけ高炉装入物の平均粒子径
は上昇し、炉内全圧損の低城にも有効に作用することが
期待できる. さらに、本発明の方法では、一体化複合物の製造原料と
して微粉鉱石を使用するが、通常の焼結遇程で通気の阻
害となるような粒度の小さいm s>3鉱石を、多量に
本発明の方法で消化できるため、焼結プロセス自体の負
担軽減と成績向上にも寄与することができる. 本発明の高炉装入物においては、鉄鉱石とコークスとを
一体化するためのバインダーとして、セメント等の水硬
性結合材を使用する。近年の鉄鋼業に対する環境保全の
要請は継続的に高まっており、従来からの熱間塊成化法
では、生産工程上ぽい塵やSO,l,NO,l等有害ガ
スの発生を避けることができないため、環境保全用付帯
設備の強化を必要とする.これに対して、セメント等の
水硬性結合材をバインダーとして適用することは、付帯
設備に対する投資の軽減が可能となり、環境対策上好都
合である. 以下、実施例により、本発明の方法で製造した高炉装入
物による効果を説明する. 実土斑 一体化複合物の核となる塊コークスには、通常のコーク
ス炉で製造された冶金用の塊コークスを10〜30m+
mに篩分けて整粒したものを用いた。塊コークスの外殻
表面の被覆形成材としては、第1表に示すような2種の
べレソトフィード(P.F.と略記)より成る微粉鉱石
、石灰石粉、およびバインダーとして高炉セメントを所
定の比率で混合し、水を添加しながら直径2銅の皿型造
粒機で、でき上り直径が30〜40霧驕になるように造
粒を行った.造粒時水分は固体分を基準にして8.0%
、塊コークス重量に対する被覆形成材の重量比(0/C
値)は3.0となるようにした.この造粒物を大気中で
1週間養生した後の成品品質について、通常の自溶性焼
結鉱の品質試験法と同様の方法で調査した結果を第1表
に示す.表中、落下強度は、JIS M 8711に規
定された焼結鉱の落下強度試験法に準じて、成品を2m
の高さから鉄板上の4回繰り返し落下させた後の+5m
mの粒子の割合である.還元粉化率および還元率も、そ
れぞれ焼結鉱の還元粉化試験法および還元試験法に従っ
て測定した.第1表に示すように、得られた成品は通常
の自溶性焼結鉱と比較して、その品質に何ら遜色なく、
むしろ還元率は焼結鉱の通常60〜70%を上廻る結果
が得られた。また、得られた成品の断面写真を第4図に
示すが、塊コークス表面を微粉鉄鉱石が被覆した原燃料
一体型の塊成物となっていることがわかる。
In addition, during the process of transporting the integrated composite to the blast furnace, falling 41i strikes during transfer to the helt conveyor, etc.
A part of the fine iron ore coated on the outer shell of the lump coke is peeled off from the surface of the lump coke and pulverized. This pulverization rate, that is, the ore coating peeling rate, does not pose a major problem if the amount is controlled in normal blast furnace operation, but as shown in Figure 3, the ratio of the amount of coating forming material to the amount of lump coke is Since the weight ratio increases rapidly when it exceeds 5, it is necessary to keep this weight ratio at 4 or less. The blast furnace charge manufactured by the method of the present invention as described above is
It is a raw/fuel integrated composite with lump coke as the core and the outer shell surface granulated and coated with a coating material mainly composed of fine iron ore. contact, promoting the reduction reaction. On the other hand, the lump coke, which is the core covered by the iron ore coating, is prevented from coming into contact with the reducing gas, which reduces the possibility of pulverization and reaction deterioration in the upper part of the blast furnace. In this kind of double-structured integrated composite, the iron ore layer on the surface is efficiently reduced during the process of descending inside the blast furnace, softens and melts in a high temperature zone of 1,200℃ or more, and the ore melt separates, leaving it bare. The coke particles flow and drip through the filled voids. In addition, the average particle diameter of the blast furnace charge increases to the extent that the outer shell of the lump coke is coated with an iron ore layer, which is expected to have an effective effect on reducing the total pressure drop in the furnace. Furthermore, in the method of the present invention, fine ore is used as a raw material for producing the integrated composite, but a large amount of ore with a small particle size of m s > 3, which obstructs ventilation during normal sintering, is used. Since it can be digested using the method of the invention, it can also contribute to reducing the burden on the sintering process itself and improving results. In the blast furnace charge of the present invention, a hydraulic binder such as cement is used as a binder for integrating iron ore and coke. In recent years, demands for environmental protection in the steel industry have been increasing continuously, and with the conventional hot agglomeration method, it is difficult to avoid the generation of dust and harmful gases such as SO, L, NO, and L during the production process. Therefore, it is necessary to strengthen the incidental equipment for environmental conservation. On the other hand, using a hydraulic binder such as cement as a binder makes it possible to reduce investment in ancillary equipment, which is advantageous in terms of environmental measures. Hereinafter, the effects of the blast furnace charge manufactured by the method of the present invention will be explained using Examples. For the lump coke that forms the core of the integrated soil patch composite, 10 to 30 m+ of metallurgical lump coke produced in a normal coke oven is used.
The grains were sieved and sized to a size of 500 mm. The materials used to form the coating on the outer shell surface of the lump coke include fine ore consisting of two types of beresoto feed (abbreviated as P.F.) as shown in Table 1, limestone powder, and blast furnace cement as a binder. They were mixed in the same proportions and granulated with a dish-type granulator with a diameter of 2 copper while adding water so that the finished diameter was 30 to 40 mm. Moisture during granulation is 8.0% based on solid content
, the weight ratio of coating material to lump coke weight (0/C
value) was set to 3.0. Table 1 shows the results of investigating the quality of the finished product after curing the granules for one week in the atmosphere using a method similar to the quality testing method used for ordinary self-fusing sintered ore. In the table, the drop strength is determined based on the drop strength test method for sintered ore stipulated in JIS M 8711.
+5m after repeatedly dropping from a height of 4 times onto a steel plate
is the proportion of particles in m. The reduction powdering rate and reduction rate were also measured according to the reduction powdering test method and reduction test method for sintered ore, respectively. As shown in Table 1, the quality of the obtained product is comparable to that of ordinary self-fusing sintered ore.
In fact, the reduction rate exceeded the normal 60 to 70% of sintered ore. Further, a cross-sectional photograph of the obtained product is shown in FIG. 4, and it can be seen that the coke surface is coated with fine iron ore, making it an agglomerate integrated with raw materials and fuel.

(以下余白) 第1表 50n?の小型高炉で焼結鉱配合率は85%である。(Margin below) Table 1 50n? The sintered ore content in this small blast furnace is 85%.

第2表に、本実施例による高炉試験操業の結果を示す.
一体化複合物の置換率は、上述したように、高炉内全装
入物(ただし副原料を除く)を100としたときの値に
対応する。つまり、上述の焼結鉱+コークス塊の全装入
量を100としてそのうちどれだけを前述の高炉装入物
で置き換えたかを意味する。実施例1では一体化複合物
置換率20重量%の、実施例2では置喚率40重量%の
例を示した。
Table 2 shows the results of the blast furnace test operation according to this example.
As mentioned above, the replacement rate of the integrated composite corresponds to the value when the total charge in the blast furnace (excluding auxiliary raw materials) is taken as 100. In other words, it means how much of the above-mentioned sintered ore + coke lump is replaced by the above-mentioned blast furnace charge, assuming that the total charge amount is 100. Example 1 shows an example in which the integrated composite substitution rate is 20% by weight, and Example 2 shows an example in which the substitution rate is 40% by weight.

第2表 この一体化複合物のO/C値は3であり、実際の高炉に
おける通常の層状挿入操業時の0/C値3.2と比較し
て1チャージ当たりの鉱石とコークスとの装入量の比率
には大差がないため、得られた一体化複合物を、従来の
層状に装入する絋石一コークスの一部と直接置換して装
入する方式で、比較操業を行った。なお、試験操業に用
いた高炉は通常のベル・アーマー型装入設備を有する内
容積18この結果によれば、一体化複合物の置換率が増
加するのに伴って、全圧…、送風圧変動指数および燃料
比の低下とガス利用率の向上が明らかであり、原燃料を
一体化することによる高炉内コークス・鉱石混合層の制
11I効果が十分に発揮され、高炉操業の安定化がより
効果的に達成されているのが分かる.さらに、この安定
化効果に加えて、二層構造化することによる被還元性の
向上は燃料比の低減につながり、高炉操業成績の改善に
寄与している. (発明の効果) 以上詳述したように、本発明にかかる方法の適用により
高炉内コークス・鉄鉱石混合層の制御が可能となり、高
炉操業のより一層の安定化と高炉抛業成績の向上が可能
となる。
Table 2 The O/C value of this integrated composite is 3, compared to the O/C value of 3.2 during normal bed insertion operation in an actual blast furnace. Since there was no significant difference in the ratio of input amounts, a comparison operation was conducted in which the resulting integrated composite was charged directly by replacing part of the Kiseki coke that was charged in layers in the conventional method. . The internal volume of the blast furnace used in the test operation was equipped with a normal Bell Armor type charging equipment.18 According to these results, as the replacement rate of the integrated composite increases, the total pressure..., blowing pressure... It is clear that the fluctuation index and fuel ratio are reduced and the gas utilization rate is improved, and the 11I effect of controlling the coke and ore mixed layer in the blast furnace by integrating the raw fuel is fully exerted, making blast furnace operation more stable. It can be seen that this has been achieved effectively. Furthermore, in addition to this stabilizing effect, the improvement in reducibility due to the double-layer structure leads to a reduction in the fuel ratio, contributing to improved blast furnace operating performance. (Effects of the invention) As detailed above, by applying the method according to the present invention, it becomes possible to control the coke/iron ore mixed layer in the blast furnace, further stabilizing blast furnace operation and improving blast furnace performance. It becomes possible.

また、本発明における一体化複合物の原料として、焼結
鉱製造プロセス用原料から大量にふるい落とされる粒度
の小さい微粉鉄鉱石を使用することができる.そのため
本発明の方法を適用することは、焼結過程において焼結
原料層の通気性を向上させることにつながり、焼結操業
の成績向上に間接的に寄与することになる.
Further, as a raw material for the integrated composite in the present invention, fine iron ore with a small particle size, which is sieved in large quantities from the raw material for the sinter production process, can be used. Therefore, applying the method of the present invention leads to improving the permeability of the sintering raw material layer during the sintering process, and indirectly contributes to improving the performance of sintering operations.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明による高炉装入物製造工程の概略フロ
ー図: 第2図は、従来法による同概略フロー図;第3図は、一
体化複合物の被覆形成材量/塊コークス比の変化による
、塊コークス反応率および鉱石被覆剥離率への影響を示
すグラフ;および第4図は、本発明の方法により製造さ
れた高炉装入物の粒子構造を示す写真である。 1、8:混合・造粒工程 2:焼結機 3、6:破砕・整粒工程 4:扮砕・混合工程5:コー
クス炉   7:高炉 9:養生ヤード
Figure 1 is a schematic flow diagram of the blast furnace charge production process according to the present invention; Figure 2 is a schematic flow diagram of the same process according to the conventional method; Figure 3 is the ratio of coating material amount/lump coke of the integrated composite. A graph showing the influence of changes in lump coke reaction rate and ore coating stripping rate; and FIG. 4 is a photograph showing the particle structure of the blast furnace charge produced by the method of the present invention. 1, 8: Mixing and granulation process 2: Sintering machine 3, 6: Crushing and sizing process 4: Crushing and mixing process 5: Coke oven 7: Blast furnace 9: Curing yard

Claims (1)

【特許請求の範囲】[Claims] 高炉用冶金塊コークスの外表面に、水硬性結合材を含む
微粉鉄鉱石を主体とする被覆形成材を、前記塊コークス
に対する重量比が1:1〜4:1の範囲内となる量で造
粒被覆した後、養生硬化させることを特徴とする高炉装
入物の製造方法。
On the outer surface of the metallurgical lump coke for blast furnaces, a coating forming material mainly composed of fine iron ore containing a hydraulic binder is formed in an amount such that the weight ratio to the lump coke is within the range of 1:1 to 4:1. A method for producing a blast furnace charge, which comprises coating grains and then curing and hardening them.
JP11268989A 1989-05-01 1989-05-01 Manufacture of charging material in blast furnace Pending JPH02294418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11268989A JPH02294418A (en) 1989-05-01 1989-05-01 Manufacture of charging material in blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11268989A JPH02294418A (en) 1989-05-01 1989-05-01 Manufacture of charging material in blast furnace

Publications (1)

Publication Number Publication Date
JPH02294418A true JPH02294418A (en) 1990-12-05

Family

ID=14593020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11268989A Pending JPH02294418A (en) 1989-05-01 1989-05-01 Manufacture of charging material in blast furnace

Country Status (1)

Country Link
JP (1) JPH02294418A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020084258A (en) * 2018-11-22 2020-06-04 Jfeスチール株式会社 Method for producing carbonaceous material-containing particles and method for producing carbonaceous material-containing sintered ore
JP2020094248A (en) * 2018-12-14 2020-06-18 Jfeスチール株式会社 Manufacturing method of carbonaceous material inner package particle, and manufacturing method of carbonaceous material inner package sintered ore

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020084258A (en) * 2018-11-22 2020-06-04 Jfeスチール株式会社 Method for producing carbonaceous material-containing particles and method for producing carbonaceous material-containing sintered ore
JP2020094248A (en) * 2018-12-14 2020-06-18 Jfeスチール株式会社 Manufacturing method of carbonaceous material inner package particle, and manufacturing method of carbonaceous material inner package sintered ore

Similar Documents

Publication Publication Date Title
JP2008214715A (en) Method for manufacturing nonfired agglomerated ore for iron manufacture
EA023830B1 (en) Method for producing an agglomerate made of fine material containing metal oxide for use as a blast furnace feed material
WO2010041770A1 (en) Blast furnace operating method using carbon-containing unfired pellets
JP5114742B2 (en) Method for producing carbon-containing unfired pellets for blast furnace
JPH02228428A (en) Charging material for blast furnace and its production
JP2003138319A (en) Method for manufacturing raw material for sintering
JPH02294418A (en) Manufacture of charging material in blast furnace
JP3840891B2 (en) High-grade fired agglomerate for iron making and method for producing the same
TW200925289A (en) A blast furnace self fluxing pellet and a method for fabricating the same
JP2003301205A (en) Method for charging blast furnace material
CN107674971B (en) Raw material treatment method
JP2009030116A (en) Method for producing ore raw material for blast furnace
JP4867394B2 (en) Non-calcined agglomerate for iron making
JP6996485B2 (en) Method for manufacturing charcoal interior particles and method for manufacturing charcoal interior sintered ore
JP6885386B2 (en) Manufacturing method of carbon material interior particles and manufacturing method of carbon material interior sintered ore
JP6992734B2 (en) Method for manufacturing charcoal interior particles and method for manufacturing charcoal interior sintered ore
JP7073959B2 (en) Sintered ore manufacturing method
JP5131058B2 (en) Iron-containing dust agglomerate and hot metal production method
JP2701178B2 (en) Pre-treatment method of sinter ore raw material for blast furnace
JP2001262241A (en) Method for producing sintered ore containing carbon
JP6988778B2 (en) Manufacturing method of charcoal interior sinter and equipment for manufacturing charcoal interior sinter
JPH02232322A (en) Charging material for blast furnace and its production
JP2589633B2 (en) Pre-treatment method of sinter ore raw material for blast furnace
JP2004225147A (en) Method for manufacturing sintered ore for blast furnace
KR100431840B1 (en) A method for producing a cold bonded pellet