JP2589633B2 - Pre-treatment method of sinter ore raw material for blast furnace - Google Patents

Pre-treatment method of sinter ore raw material for blast furnace

Info

Publication number
JP2589633B2
JP2589633B2 JP25199492A JP25199492A JP2589633B2 JP 2589633 B2 JP2589633 B2 JP 2589633B2 JP 25199492 A JP25199492 A JP 25199492A JP 25199492 A JP25199492 A JP 25199492A JP 2589633 B2 JP2589633 B2 JP 2589633B2
Authority
JP
Japan
Prior art keywords
ore
raw material
fine
granulated
grained
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25199492A
Other languages
Japanese (ja)
Other versions
JPH05195088A (en
Inventor
光伸 右田
正則 中野
行博 肥田
啓司 安藤
正 出野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP25199492A priority Critical patent/JP2589633B2/en
Publication of JPH05195088A publication Critical patent/JPH05195088A/en
Application granted granted Critical
Publication of JP2589633B2 publication Critical patent/JP2589633B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、高ゲーサイト鉱石を使
用する高炉用焼結鉱原料の事前処理に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pretreatment of a sinter raw material for a blast furnace using high goethite ore.

【0002】[0002]

【従来の技術】高炉製銑法の主要原料である焼結鉱は、
以下のようにして製造されるのが一般的である。まず約
10mm以下の鉄鉱石粉に石灰石、ドロマイト、転炉滓
などの含CaO系原料、珪石、蛇紋岩などの含SiO2
系原料等の副原料および粉コークス、無煙炭などの固体
燃料、さらに適量の水分を加えて、造粒機例えばドラム
ミキサーにより混合・造粒して擬似粒子化(複数の粒子
が相互に結合したもの、又は粗粒子の周囲を微粉で被覆
したものが混在した平均粒径が2〜3mm程度の粒子)
する。
2. Description of the Related Art Sinter, which is a main raw material for blast furnace iron making,
It is generally manufactured as follows. First limestone about 10mm below the iron ore fines, dolomite, containing CaO-based raw materials such as converter slag, silica, containing SiO 2, such as serpentinite
Auxiliary raw materials such as raw materials and solid fuels such as coke breeze and anthracite, and an appropriate amount of water are added, and mixed and granulated by a granulator such as a drum mixer to form pseudo-particles (multiple particles are bonded to each other) Or particles having an average particle size of about 2 to 3 mm in which coarse particles are coated with fine powder.
I do.

【0003】つぎにこの擬似粒子化した原料を、火格子
移動式の焼結パレット上に500mm前後の高さに充填
し、この充填ベット表層部の固体燃料に点火し、下方に
向けて空気を吸引しながらコークスを燃焼させてその時
に発生する燃焼熱によって原料を焼結し、焼結ケーキを
製造する。この焼結ケーキを破砕、整粒し、3mm以上
の粒子とする。
[0003] Next, the quasi-particled raw material is filled on a grate-moving sintering pallet to a height of about 500 mm, the solid fuel on the surface of the packed bed is ignited, and air is directed downward. The coke is burned while being sucked, and the raw material is sintered by the combustion heat generated at that time to produce a sintered cake. This sintered cake is crushed and sized to obtain particles of 3 mm or more.

【0004】前記鉄鉱石は、従来磁鉄鉱(マグネタイ
ト、Fe3 4 )と赤鉄鉱(ヘマタイト、Fe2 3
を主体としたものであったが、世界の良質鉄鉱石賦存状
態等の鉱石事情により敬遠されがちであったゲーサイト
(Fe2 3 ・H2 O)を多く含む鉄鉱石の使用比率が
次第に増大してきている。
The iron ore is conventionally made of magnetite (magnetite, Fe 3 O 4 ) and hematite (hematite, Fe 2 O 3 ).
However, the use ratio of iron ore containing a large amount of goethite (Fe 2 O 3 .H 2 O), which was often shunned by ore circumstances such as the state of good iron ore Increasingly.

【0005】しかしゲーサイトは結晶水を多く含有して
おり、特に結晶水/T.Fe≧0.03のようなゲーサ
イトを多く含む鉱石(高ゲーサイト鉱石)は、焼結ベッ
ド内で脱水して多孔質化し、歩留、強度、還元性状を低
下させる問題を引き起こす。つまり高ゲーサイト鉱石
は、前記焼結パレット上で250〜500℃前後になる
と、結晶水が分解・脱水しかつ亀裂も発生して多孔質な
ものに変わる。
However, goethite contains a large amount of water of crystallization. Ores containing a large amount of goethite such as Fe ≧ 0.03 (high-gaesite ores) are dehydrated in a sintering bed to be porous, causing a problem of lowering yield, strength, and reducing properties. That is, when the high goethite ore is heated to about 250 to 500 ° C. on the sintering pallet, the crystallization water is decomposed and dehydrated and cracks are generated, and the ore becomes porous.

【0006】一方CaOとヘマタイトは、焼結過程で略
1,200℃になると反応して粘性の低い融液となる。
ここでその融液は、直ちに多孔質となった前記高ゲーサ
イト鉱石の気孔および亀裂のなかへ浸入する。この浸入
によりヘマタイト粒子間は急速に分断されて、一部は融
液に溶け込み同化反応を起こす。
On the other hand, CaO and hematite react at approximately 1,200 ° C. in the sintering process to form a low-viscosity melt.
Here, the melt immediately penetrates into the pores and cracks of the high goethite ore that has become porous. Due to this infiltration, the hematite particles are rapidly separated, and a part of them is dissolved in the melt to cause an assimilation reaction.

【0007】また融液の浸入が速いために、気孔および
亀裂内にあった気体が融液中に取り残される。この状態
で冷却された焼結鉱は、多量の粒状ヘマタイト粒子、お
よび多量の100〜1,000μmの粗大気孔から構成
されるようになる。この多量の粒状ヘマタイトと多量の
粗大気孔の存在によって、耐還元粉化性が低下すると共
に、強度、歩留が低下することになる。さらに焼結時に
発生する融液との同化が速いために、焼結ベッド内の融
液生成帯の空隙が急速に閉塞し、コークスなどの固形燃
料の燃焼が遅れ、生産性が低下する。
[0007] Further, since the infiltration of the melt is fast, gas existing in the pores and cracks is left behind in the melt. The sintered ore cooled in this state is composed of a large amount of particulate hematite particles and a large amount of coarse pores of 100 to 1,000 μm. Due to the presence of the large amount of granular hematite and the large amount of coarse pores, resistance to reduction powdering is reduced, and strength and yield are reduced. Further, since the assimilation with the melt generated during sintering is fast, the gap in the melt generation zone in the sintering bed is rapidly closed, and the combustion of solid fuel such as coke is delayed, and the productivity is reduced.

【0008】このような問題は、高ゲーサイト鉱石のな
かでも焼結過程での亀裂の発生の多い粗粒(2mm以
上)部分での発生が多い。
[0008] Such a problem often occurs in coarse grains (2 mm or more) where cracks are frequently generated in the sintering process, even in high goethite ores.

【0009】以上の問題のため、高ゲーサイト鉱石の使
用量は増えてきているとはいえ、まださほど多くはな
い。しかし前述のような鉄鉱石事情に鑑みれば、高ゲー
サイト鉱石の効果的使用の開発の意義は大きく、この高
ゲーサイト鉱石を多量に使用することが試み始められて
いる。
Due to the above problems, the use of high goethite ore is increasing, but not so much. However, in view of the iron ore situation as described above, the development of effective use of high goethite ore is significant, and attempts have been made to use large amounts of this high goethite ore.

【0010】この方法として、例えば特開平1−191
750号公報の提案がある。これは粗粒の高ゲーサイト
鉱石と蛇紋岩粉をドラムミキサーで混合造粒し、この高
ゲーサイト鉱石の周囲を蛇紋岩で被覆造粒した粒径6m
m程度の造粒物(以下、単に造粒物と称す)と前記した
従来の焼結原料と配合して、更にミキサーで造粒して焼
結原料とすることにより、前記融液とMgO−SiO2
系原料と反応させて融液の流動性を抑制し、高ゲーサイ
ト鉱石との同化を阻止しようとするものである。
As this method, for example, Japanese Patent Application Laid-Open No. Hei 1-191
There is a proposal of Japanese Patent Publication No. 750. In this method, coarse high-gaesite ore and serpentine powder are mixed and granulated with a drum mixer, and the periphery of this high-goesite ore is covered with serpentine to form a granule of 6 m in diameter.
m is mixed with the above-mentioned conventional sintering raw material and granulated with a mixer to obtain a sintering raw material. SiO 2
It is intended to suppress the fluidity of the melt by reacting with the system raw material and prevent assimilation with high-gaesite ore.

【0011】又、最近の焼結機においては、焼結パレッ
ト上の焼結原料の上層への熱源偏析を強化するため、該
上層部に細粒を、下層部に粗粒を装入することが行われ
ている。
In recent sintering machines, fine particles are charged into the upper layer and coarse particles are charged into the lower layer in order to strengthen the segregation of the heat source on the upper layer of the sintering raw material on the sintering pallet. Has been done.

【0012】[0012]

【発明が解決しようとする課題】しかし特開平1−19
1750号公報は、高ゲーサイト鉱石と蛇紋岩を造粒し
た造粒物を再び従来より使用している焼結原料と共に造
粒するために、前記造粒物の高ゲーサイト鉱石の周囲を
被覆した蛇紋岩の一部が剥離して、蛇紋岩が従来より使
用している焼結鉱原料に混入する結果、充分な効果を発
揮することができない。
However, Japanese Patent Laid-Open No. 1-19 / 1990
No. 1750 discloses coating the periphery of high-gaesite ore of granulated material in order to granulate the granulated material of high-goesite ore and serpentine again together with the conventionally used sintering raw material. As a result, a part of the serpentine is peeled off and the serpentine is mixed into the conventionally used sinter material, so that a sufficient effect cannot be exhibited.

【0013】更に、この造粒物は6〜7mmと他の焼結
原料より粗いため、前記のように偏析装入した場合には
焼結ベッド上の下層に装入される。このため、粒度の小
さいCaO系原料が少なく、前記融液が不足して周囲の
組織と前記造粒物の結合状態が弱くなり、焼結鉱の歩留
を低下させるものであった。
Further, since the granulated material is 6 to 7 mm, which is coarser than other sintering raw materials, when it is segregated and charged as described above, it is charged into the lower layer on the sintering bed. For this reason, the CaO-based raw material having a small particle size is small, the melt is insufficient, and the bonding state between the surrounding structure and the granulated material is weakened, and the yield of the sintered ore is reduced.

【0014】本発明は前記造粒物の被覆層を剥離させる
ことなく焼結ベッドに装入し、しかも焼結パレットの下
層の高ゲーサイト鉱石造粒物相互及び該造粒物と上部組
織と反応させて結合することによって品質を有する焼結
鉱とすることにより、焼結鉱生産性、歩留、強度、還元
性状を低下させることなく2mm以上を主体とする高ゲ
ーサイト鉱石を多量に使用することを可能とする焼結鉱
原料の事前処理方法を提供するものである。
According to the present invention, the coating layer of the granules is charged into a sintering bed without peeling off, and the high-gaesite ore granules below the sintering pallet and the granules and the superstructure are combined. A large amount of high-gaesite ore mainly composed of 2 mm or more is used without reducing the sinter productivity, yield, strength, and reduction properties by reducing the sinter productivity, yield, strength, and reduction properties by reacting and combining. The present invention provides a method for pre-treating a sinter material that can be performed.

【0015】[0015]

【課題を解決するための手段】本発明の要旨は、鉄鉱
石、副原料、及び固体燃料を第1ミキサーで混合造粒し
て平均粒径が2〜3mmに擬似粒化した擬似粒化物を製
造すると共に粒径2mm以上を主体とする高ゲーサイト
鉱石及び粒径1mm以下を主体とする細粒原料を前記第
1ミキサーとは別に設けた造粒用第2ミキサーに導入し
て、水を添加して造粒し、該造粒物と前記擬似粒化物と
を焼結機に供給する高炉用焼結鉱原料の事前処理方法に
おいて、造粒用第2ミキサーに導入する前記細粒原料を
20〜60重量%、前記粒径2mm以上を主体とする高
ゲーサイト鉱石を40〜80重量%、水分を外掛けで8
〜14重量%にすると共に、前記細粒原料としてMgO
−SiO2 系原料、CaO系原料、ヘマタイト含有鉱石
を主体とし、しかも、該ヘマタイト含有鉱石がCaO系
原料の15〜85重量%で、且つ、塩基度を0.4〜
1.4とし、更に、第2ミキサーからの造粒物5〜60
重量%、前記第1ミキサーからの擬似粒化物40〜95
重量%にして焼結機に供給することを特徴とする高炉用
焼結鉱原料の事前処理方法である。上記細粒原料とし
て、上記種類の原料の他に1mm以下を主体とする固体
燃料を16重量%以下配合すること、前記高ゲーサイト
鉱石を2〜10mmとすることは好ましい。尚、本発明
における粒径はJISZ8801の標準篩法で測定した
ものである。
The gist of the present invention is to provide a quasi-granulated material obtained by mixing and granulating iron ore, an auxiliary material, and a solid fuel with a first mixer and quasi-granulating to an average particle size of 2 to 3 mm. The high-gaesite ore produced and mainly having a particle size of 2 mm or more and the fine-grained material mainly having a particle size of 1 mm or less are introduced into a second mixer for granulation provided separately from the first mixer, and water is produced. In the pretreatment method of the blast furnace sinter material for adding and granulating, and supplying the granulated material and the pseudo-granulated material to a sintering machine, the fine-grained raw material to be introduced into the second mixer for granulation is used. 20 to 60% by weight, 40 to 80% by weight of high-gaesite ore having a particle size of 2 mm or more, and 8
To 14% by weight, and MgO
-SiO 2 based material, CaO-based material, a hematite-containing ore mainly, moreover, the hematite-containing ore with 15 to 85 wt% of the CaO-based material, and the basicity 0.4
1.4, and 5 to 60 granules from the second mixer.
% By weight, 40-95 pseudo-granules from the first mixer
This is a pretreatment method for a sinter material for a blast furnace, which is supplied to a sintering machine in a weight%. As the fine-grained raw material, it is preferable that 16 wt% or less of a solid fuel mainly composed of 1 mm or less be blended in addition to the above-mentioned raw material, and the high goethite ore be 2 to 10 mm. The particle size in the present invention is measured by the standard sieving method of JISZ8801.

【0016】[0016]

【作用】上記課題を解決するため、本発明者等は種々の
実験検討を重ねた結果、2mm以上の高ゲーサイト鉱
石を1mm以下の含MgO−SiO2 系原料(蛇紋岩、
橄欖石、滑石など数多くの粘土鉱物があるが、造粒性及
び焼結の改善効果は原料銘柄で大きく変わらなかったの
で、以下には最も産出量の多い蛇紋石の例で説明する)
とCaO系原料(以下石灰石の例で説明する)及びヘマ
タイトを含有する鉱石(赤鉄鉱、高ゲーサイト鉱石等で
あり、以下高ゲーサイト鉱石粉で説明する)を主体とす
る細粒原料で被覆した造粒物の被覆層厚が、焼結ベッド
内で400μm以上あれば前記焼結鉱の生産性、歩留、
強度、還元性状を低下することなく、従来の焼結鉱と同
等レベルの生産性、歩留、強度、還元性状を確保でき、
2mm以上の高ゲーサイト鉱石の周囲を前記細粒原料
で造粒被覆した粒径6mm程度の造粒物の強度を、小型
I型ドラム(JIS 3452のSGP−5B)にその
造粒物を300g装入し、20rpmで2分間回転後3
mm以上の比率が95%以上有れば、上記高ゲーサイト
鉱石を細粒原料により造粒被覆した状態のまま、他の焼
結原料と一緒にベルトコンベアーで焼結機へ搬送する際
に、その乗継部等による落下衝撃による細粒原料の剥離
が少なくなり、効率的な搬送が出来ることの知見を得
た。
In order to solve the above-mentioned problems, the present inventors have conducted various experiments and studies, and as a result, it has been found that high-gaesite ores of 2 mm or more can be converted to MgO-SiO 2 -based raw materials of 1 mm or less (serpentine,
There are many clay minerals such as olivine and talc, but the effect of improving granulation and sintering did not vary greatly depending on the raw material brand, so the example of serpentine with the highest yield will be described below.)
And fine particles mainly composed of CaO-based raw material (hereinafter described as an example of limestone) and ore containing hematite (such as hematite and high goethite ore, and hereinafter described as high goethite ore powder) If the coating layer thickness of the granulated material is 400 μm or more in the sintering bed, productivity of the sinter, yield,
The same level of productivity, yield, strength, and reduction properties as conventional sinter can be secured without reducing strength and reduction properties.
The strength of a granulated material having a particle diameter of about 6 mm obtained by granulating and coating the periphery of a high-gaesite ore having a size of 2 mm or more with the fine-grained raw material was reduced by using a small I-type drum (SGP-5B of JIS 3452) in an amount of 300 g. After loading and rotating at 20 rpm for 2 minutes 3
If the ratio of at least 95 mm is 95% or more, the high goethite ore is transferred to a sintering machine on a belt conveyor together with other sintering raw materials while being granulated and coated with the fine raw materials. It has been found that the separation of the fine-grained raw material due to the drop impact at the connecting portion and the like is reduced, and that the material can be efficiently transported.

【0017】これらの知見に基づいて、本発明はなされ
たものであり、その要旨は、鉄鉱石、副原料、及び固体
燃料を第1ミキサーで混合造粒して平均粒径が2〜3m
mに擬似粒化した擬似粒化物を製造すると共に粒径2m
m以上を主体とする高ゲーサイト鉱石及び粒径1mm以
下を主体とする細粒原料を前記第1ミキサーとは別に設
けた造粒用第2ミキサーに導入して、水を添加して造粒
し、該造粒物と前記擬似粒化物とを焼結機に供給する高
炉用焼結鉱原料の事前処理方法において、造粒用第2ミ
キサーに導入する前記細粒原料を20〜60重量%、前
記粒径2mm以上を主体とする高ゲーサイト鉱石を40
〜80重量%、水分を外掛けで8〜14重量%にすると
共に、前記細粒原料としてMgO−SiO2 系原料、C
aO系原料、ヘマタイト含有鉱石を主体とし、しかも、
該ヘマタイト含有鉱石がCaO系原料の15〜85重量
%で、且つ、塩基度を0.4〜1.4とし、更に、第2
ミキサーからの造粒物5〜60重量%、前記第1ミキサ
ーからの擬似粒化物40〜95重量%にして焼結機に供
給することを特徴とする高炉用焼結鉱原料の事前処理方
法である。
The present invention has been made based on these findings. The gist of the present invention is that iron ore, auxiliary materials, and solid fuel are mixed and granulated in a first mixer to have an average particle size of 2 to 3 m.
m and a grain size of 2 m
The high-gaesite ore mainly composed of m or more and the fine-grained raw material mainly composed of 1 mm or less in diameter are introduced into a second mixer for granulation provided separately from the first mixer, and water is added to granulate. In the pretreatment method of the sinter ore raw material for a blast furnace, which supplies the granulated material and the pseudo-granulated material to a sintering machine, the fine-grained raw material to be introduced into the second mixer for granulation is 20 to 60% by weight. The high goethite ore mainly composed of 2 mm or more
To 80% by weight and water to 8 to 14% by weight, and MgO—SiO 2 based material, C
aO-based raw material, mainly hematite-containing ore, and
The hematite-containing ore is 15 to 85% by weight of the CaO-based raw material, has a basicity of 0.4 to 1.4, and has a second basicity.
A granulated material from a mixer, 5 to 60% by weight, and a pseudo-granulated material from the first mixer, 40 to 95% by weight, which are supplied to a sintering machine. is there.

【0018】尚、第1、第2ミキサーは、焼結工程で一
般に使用されている構造のドラムミキサー、又はパンペ
レットでよい。
The first and second mixers may be drum mixers or bread pellets generally used in the sintering process.

【0019】本発明は高ゲーサイト鉱石のなかでも焼結
過程での亀裂の発生が多く、しかも造粒に際して核とな
る2mm以上の粗粒部分と、1mm以下の蛇紋岩、石灰
石、高ゲーサイト鉱石粉の細粒原料を前記配合割合で第
2ミキサー(以下、ドラムミキサーの例で説明する)に
導入して造粒することにより、2mm以上の粗粒高ゲー
サイト鉱石を上記細粒原料で被覆した造粒物を作るもの
である。この際、細粒原料の粒度を1mm超とすると、
2mm以上の高ゲーサイト鉱石表面への付着性が悪くな
り層厚が400μm以上の造粒物とするための造粒歩留
りが大幅に低下するため、その粒度を1mm以下とす
る。
According to the present invention, among high-gaesite ores, a large number of cracks are generated during the sintering process in the sintering process, and a coarse-grained portion of 2 mm or more serving as a nucleus during granulation, and serpentine, limestone, or high-gaesite of 1 mm or less The fine-grained raw material of the ore powder is introduced into the second mixer (to be described below with reference to an example of a drum mixer) at the above-described mixing ratio and granulated, whereby the coarse-grained high goethite ore of 2 mm or more is mixed with the fine-grained raw material. This is to make a coated granule. At this time, if the particle size of the fine-grained raw material is more than 1 mm,
Since the adhesion to the high-gaesite ore surface of 2 mm or more is deteriorated and the yield of granules having a layer thickness of 400 μm or more is greatly reduced, the particle size is set to 1 mm or less.

【0020】更に粗粒部分の高ゲーサイト鉱石を2mm
未満にすると、そのままの状態でも該高ゲーサイト鉱石
が焼結過程で亀裂の発生がないために造粒する効果がな
くなる。
Further, the coarse goethite ore in the coarse portion is 2 mm
If it is less than 50%, the effect of granulating the high goethite ore will be lost since the high goethite ore does not crack during the sintering process.

【0021】また水分(JIS M 8105での測定
値)を被覆造粒物重量の外掛けで8〜14重量%(以
下、%と称す)、好ましくは9〜12%に調整すること
によって、細粒原料による2mm以上の粗粒高ゲーサイ
ト鉱石の被覆造粒を良好に促進して、第2ドラムミキサ
ー出口で細粒原料の被覆層厚を900μm以上に形成す
ると共に、図2に示すように造粒物の前記I型強度を9
5%以上にする。
By adjusting the water content (measured value according to JIS M 8105) to 8 to 14% by weight (hereinafter referred to as%), preferably 9 to 12%, based on the weight of the coated granulated product, The coating granulation of coarse-grained high goethite ore of 2 mm or more by the granular raw material is favorably promoted, and the coating layer thickness of the fine-grained raw material is formed at the outlet of the second drum mixer to 900 μm or more, as shown in FIG. The above-mentioned I-type strength of the granulated product is 9
Increase to 5% or more.

【0022】これによって、他の擬似粒化焼結鉱原料と
合流させて、コンベヤーベルトを乗継いでサージホッパ
ーを介して焼結ベット上に装入しても、図3に示すごと
く細粒原料被覆層厚は前記400μm以上を維持して前
記効能を確保させることが出来る。
As a result, as shown in FIG. 3, even if the raw material is combined with another quasi-granulated sinter material and charged on a sintering bed via a surge hopper by connecting a conveyor belt, as shown in FIG. The effect can be ensured by maintaining the coating layer thickness of 400 μm or more.

【0023】即ち水分(配合原料が第2ドラムミキサー
内に持込んだ水分量+第2ドラムミキサー内で添加した
水分量)が2mm以上の粗粒高ゲーサイト鉱石表面に細
粒原料を付着させるバインダーの役目をするのであっ
て、その水分が8%以下になると、バインダーとしての
水分が不足して、前記細粒原料が粗粒高ゲーサイト鉱石
表面に付着し難くなり、該細粒原料層が薄くなる。更に
その細粒原料被覆層の付着力が弱く、その強度も弱く、
ベルトコンベヤーで焼結機に搬送中、その乗継部等にお
ける衝撃により簡単に破損や剥離してしまう。
That is, the fine-grained raw material adheres to the surface of the coarse-grained high goethite ore having a water content (amount of water brought into the second drum mixer plus the amount of water added in the second drum mixer) of 2 mm or more. When the water content is 8% or less, the water content of the binder is insufficient, and the fine-grained raw material hardly adheres to the surface of the coarse-grained high-gaesite ore. Becomes thinner. Furthermore, the adhesive force of the fine-grained raw material coating layer is weak, and its strength is also weak,
While being conveyed to the sintering machine by the belt conveyor, it is easily damaged or peeled off by an impact at a connecting portion or the like.

【0024】また水分が14%以上では、水分過多とな
り細粒原料がスラリー状となり、前記同様に細粒原料が
高ゲーサイト鉱石表面に付着し難くなる。また、付着し
たとしても非常に軟らかく強度的に弱いものとなる。
On the other hand, if the water content is 14% or more, the water content becomes excessive and the fine-grained raw material becomes a slurry, which makes it difficult for the fine-grained raw material to adhere to the surface of the high goethite ore. Even if it adheres, it is very soft and weak in strength.

【0025】2mm以上の高ゲーサイト鉱石と細粒原料
の配合割合で、細粒原料を20%以下にすると、第2ド
ラムミキサーで造粒の際、核となる2mm以上の高ゲー
サイト鉱石に対して細粒原料が不足し前記焼結で必要と
する細粒原料被覆層(900μm以上)の確保が困難と
なり、細粒原料被覆の下記作用を充分に得られなくな
る。
When the fine-grained raw material is set to 20% or less in a mixing ratio of the high-gaesite ore of 2 mm or more and the fine-grained raw material, the high-goesite ore of 2 mm or more serving as a nucleus when granulated by the second drum mixer is used. On the other hand, the fine-grained raw material is insufficient, and it is difficult to secure a fine-grained raw material coating layer (900 μm or more) required for the sintering, and the following effects of the fine-grained raw material coating cannot be sufficiently obtained.

【0026】また60%以上にすると、2mm以上の高
ゲーサイト鉱石に対して細粒原料が多くなり、細粒原料
被覆層が必要以上に厚くなり過ぎたり、細粒原料のみの
造粒物が出来て、2mm以上の粗粒高ゲーサイト鉱石を
核とする造粒歩留が悪くなり、コスト的に不利になる。
On the other hand, if the content is 60% or more, the fine-grained raw material increases with respect to the high-gaesite ore of 2 mm or more, and the fine-grained raw material coating layer becomes excessively thick, or the granulated material containing only the fine-grained raw material becomes too fine. As a result, the granulation yield centered on coarse-grained high-gaesite ore of 2 mm or more is deteriorated, which is disadvantageous in cost.

【0027】次に、細粒原料について説明する。該細粒
原料中の塩基度が0.4〜1.4になるように蛇紋岩と
石灰石を配合し、且つ、1mm以下の高ゲーサイト鉱石
粉を石灰石の15〜85%配合すれば焼結機での加熱に
より、前記石灰石と高ゲーサイト鉱石粉が反応してカル
シウムフェライトを多量に含んだ融液を生成する。そし
て、この融液は蛇紋岩により流動性が低下する。この結
果、焼結機の下層においては造粒物相互又は造粒物と周
囲の通常の焼結鉱と容易に融着する。一方、該融液は前
記のように流動性が悪いために造粒核となっている粗粒
高ゲーサイト鉱石の気孔、亀裂に侵入することがほとん
どなくなる。これにより、高強度のしかも粒度の大きい
焼結鉱の製造が可能となる。
Next, the fine grain raw material will be described. Serpentine and limestone are blended so that the basicity in the fine-grained raw material is 0.4 to 1.4, and sintering is performed by blending 15 to 85% of limestone with high-gaesite ore powder of 1 mm or less. The limestone and the high goethite ore powder react by heating in the machine to generate a melt containing a large amount of calcium ferrite. Then, the fluidity of the melt is reduced by the serpentine. As a result, in the lower layer of the sintering machine, the granules are easily fused with each other or with the surrounding ordinary sinter. On the other hand, since the melt has poor fluidity as described above, it hardly penetrates into the pores and cracks of the coarse-grained high goethite ore that is the granulation nucleus. This makes it possible to produce high-strength and large-grain sintered ore.

【0028】細粒原料の各原料の配合割合は該細粒原料
を100%とすると、蛇紋岩:75〜35%、石灰石:
45〜22%、細粒高ゲーサイト鉱石粉:30〜3%が
好ましい。
Assuming that the fine-grained raw material is 100%, the mixing ratio of each fine-grained raw material is as follows: serpentine: 75 to 35%, limestone:
45-22%, fine-grained high goethite ore powder: 30-3% is preferred.

【0029】即ち、蛇紋岩を35%未満にすると、前記
のように粒径2mm以上を主体とする細粒高ゲーサイト
鉱石粉と石灰石が反応して生成したカルシュームフェラ
イト融液の流動性抑制効果が不足し、焼結後の強度が低
下する。また、蛇紋岩を75%超にすると、前記カルシ
ュームフェライト融液の流動性が殆どなくなり周囲にあ
る他の焼結原料と融着し難くなり、焼結歩留りが低下す
る。
That is, when the serpentinite content is less than 35%, the effect of suppressing the fluidity of the calcium ferrite melt produced by the reaction between the fine-grained high-gaesite ore powder having a particle size of at least 2 mm and limestone as described above is obtained. And the strength after sintering decreases. On the other hand, if the serpentine content exceeds 75%, the flowability of the calcium ferrite melt is almost lost, making it difficult to fuse with other surrounding sintering raw materials, and lowering the sintering yield.

【0030】更に、石灰石を22%未満にすると、細粒
原料の融点が下がり前記カルシュームフェライト融液の
生成が前記粗粒高ゲーサイト鉱石の緻密化温度より低く
なり過ぎて、焼結ベッド上に於いて、粗粒高ゲーサイト
鉱石の緻密化時より早期にカルシュームフェライト融液
を生成する。また、45%超にすると、上記とは反対に
細粒原料の融点が上がり粗粒高ゲーサイト鉱石の緻密化
温度より高くなり過ぎて、該粗粒高ゲーサイト鉱石の緻
密化時より遅れてカルシュームフェライト融液を生成す
る。このため、何れにおいても、粗粒高ゲーサイト鉱石
の緻密化時に上記融液を生成することが出来ず焼結品質
が低下する。
Further, when the content of limestone is less than 22%, the melting point of the fine-grained raw material decreases, and the formation of the calcium ferrite melt becomes too low below the densification temperature of the coarse-grained high-gaesite ore, so that the limestone is formed on the sintering bed. In this process, a calcium ferrite melt is formed earlier than when the coarse-grained high goethite ore is densified. On the other hand, if the content exceeds 45%, the melting point of the fine-grained raw material rises and becomes higher than the densification temperature of the coarse-grained high-geesite ore, contrary to the above. A calcium ferrite melt is produced. Therefore, in any case, the above-mentioned melt cannot be generated during densification of the coarse-grained high goethite ore, and the sintering quality is reduced.

【0031】また、細粒高ゲーサイト鉱石粉の30〜3
%は該細粒高ゲーサイト鉱石粉と石灰石の割合が15〜
85%であることから決まる値である。
In addition, 30 to 3 of fine-grained high goethite ore powder
% Of the fine-grained high-geesite ore powder and limestone is 15 to
This is a value determined from 85%.

【0032】尚、上記のように本発明は1mm以下を主
体とする細粒原料及び2mm以上を主体とする粗粒高ゲ
ーサイト鉱石を各々別々のホッパーより切り出してドラ
ムミキサーに導入するものであるが、この各ホッパーよ
り切り出す各原料、つまり、細粒原料としての蛇紋岩、
石灰石、細粒高ゲーサイト鉱石粉の全て(100%)が
1mm以下、更に、粗粒高ゲーサイト鉱石の全てが2m
m以上であると、第2ドラムミキサーでの造粒歩留りが
極めて良好になる反面、整粒(破砕、分級)のための設
備コストが高くなる。
As described above, in the present invention, a fine-grained raw material mainly composed of 1 mm or less and a coarse-grained high-geesite ore composed mainly of 2 mm or more are cut out from separate hoppers and introduced into a drum mixer. However, each raw material cut out from each hopper, that is, serpentine as fine-grained raw material,
All of limestone and fine-grained high goethite ore powder (100%) is 1 mm or less, and all of coarse-grained high goethite ore is 2 m
If it is not less than m, the granulation yield in the second drum mixer will be extremely good, but the equipment cost for sizing (crushing, classification) will increase.

【0033】このことから、実操業においては、前記細
粒部の各原料の粒度は5mm以下のもので、この中で1
mm以下が70%程度、前記粗粒部の高ゲーサイト鉱石
の粒度は10mm以下のもので、この中で2mm以上が
80%程度とすることが、造粒歩留りを大幅に低下する
ことなく、整粒設備コストを安価とすることが出来好ま
しい。
From the above, in the actual operation, the particle size of each raw material in the fine grain portion is 5 mm or less.
mm or less is about 70%, and the grain size of the high goethite ore in the coarse-grained portion is 10 mm or less, and 2 mm or more of the coarse goethite ore is about 80% without significantly reducing the granulation yield. This is preferable because the sizing equipment cost can be reduced.

【0034】更に、第1ドラムミキサーからの擬似粒化
物(通常の焼結原料)40〜95%と、第2ドラムミキ
サーからの被覆粒化物の配合割合を5〜60%とするの
は、被覆粒化物の配合割合が60%超になると焼結鉱の
品質が劣化し、これを装入して操業する高炉に悪影響を
与える。又、5%未満になるとその量が少なくなり設備
的の見合わないものとなる。
Further, the mixing ratio of the pseudo-granulated material (normal sintering raw material) from the first drum mixer to 40 to 95% and the coated granulated material from the second drum mixer to 5 to 60% is determined by the coating ratio. When the blending ratio of the granulated product exceeds 60%, the quality of the sintered ore is deteriorated, and this has a bad influence on the blast furnace charged and operated. On the other hand, if it is less than 5%, the amount becomes small and the equipment is not suitable.

【0035】また、前記被覆造粒物を焼結するには結晶
水、水分を飛散させると共に被覆層を溶融させなければ
ならず、多量の熱源が必要となる。
Further, in order to sinter the coated granules, crystallization water and water must be scattered and the coating layer must be melted, and a large amount of heat source is required.

【0036】このことから、第2ドラムミキサーに導入
する前記細粒原料中に熱源となる1mm以下の固体燃料
(コークス、無煙炭)を16%以下、好ましくは10%
を配合し、被覆層内に該固体燃料を含有することが、被
覆造粒物を均等に、しかも、効率的に焼結することが可
能となり好ましい。
From this, 16% or less, preferably 10% or less of solid fuel (coke, anthracite) of 1 mm or less as a heat source in the fine-grained raw material introduced into the second drum mixer.
It is preferable that the solid fuel be contained in the coating layer because the coated granules can be sintered uniformly and efficiently.

【0037】しかし、この固体燃料の配合割合を被覆造
粒物量の16%以上とすると、焼結ベット上で被覆造粒
物が熱過剰となり、被覆造粒物の核としての2mm以上
の高ゲーサイト鉱石が溶融することがあり、細粒原料で
2mm以上の高ゲーサイト鉱石を被覆する効果がなくな
る。
However, if the blending ratio of the solid fuel is 16% or more of the amount of the coated granules, the coated granules become excessive in heat on the sintering bed, and a high gap of 2 mm or more as a core of the coated granules is formed. The site ore may be melted, and the effect of coating the high-gaesite ore of 2 mm or more with the fine-grained raw material is lost.

【0038】この際における細粒原料の配合割合は固体
燃料の配合割合をXとすると、〔1−X〕を前記配合割
合で構成したものでよい。つまり、固体燃料の配合割合
をXとすると、蛇紋岩は〔75×(100−X)〕〜
〔35×(100−X)〕%、石灰石は〔45×(10
0−X)〕〜〔22×(100−X)〕%、高ゲーサイ
ト鉱石粉は〔30×(100−X)〕〜〔3×(100
−X)〕%である。
In this case, assuming that the mixing ratio of the solid fuel is X, the mixing ratio of the fine-grained raw material may be such that [1-X] is constituted by the mixing ratio. That is, assuming that the mixing ratio of the solid fuel is X, the serpentinite is [75 × (100−X)] to
[35 × (100-X)]%, limestone is [45 × (10-X)]
0-X)] to [22 × (100-X)]%, and high goethite ore powder is [30 × (100-X)] to [3 × (100
-X)]%.

【0039】尚、この配合割合にするのは上記の理由と
同一である。
The reason for setting the mixing ratio is the same as that described above.

【0040】又、被覆造粒物の細粒原料の原料銘柄が変
化すると焼結原料の品質が変化する場合があり、この際
は、擬似粒化物に混合する固体燃料比率を16%以下の
範囲内で調製することが好ましいが、このときは、被覆
造粒物の混合する固体燃料量分に相当する量だけ擬似粒
化物に混合する固体燃料量を低減することが安定した品
質の焼結鉱が製造出来るので好ましい。
When the raw material brand of the fine granules of the coated granules changes, the quality of the sintering raw materials may change. In this case, the ratio of the solid fuel mixed with the pseudo-granules is in the range of 16% or less. In this case, it is preferable to reduce the amount of solid fuel mixed with the pseudo-granulated material by an amount corresponding to the amount of solid fuel mixed with the coated granulated material. Is preferred because it can be produced.

【0041】又、前記高ゲーサイト鉱石の粒径を10m
m以上にすると細粒原料で被覆した状態の被覆造粒物の
粒径が大きくなり、更に、これを焼結パレット上に装入
すると、その殆どが最下層に偏析する結果、前記被覆造
粒物を焼成するための融液源が不足傾向となり、焼結鉱
品質が低下することから、高ゲーサイト鉱石の粒径を1
0mm以下にすることが好ましい。
The high goethite ore has a particle size of 10 m.
m or more, the particle size of the coated granulated material coated with the fine-grained raw material increases, and when the granulated material is charged on a sintering pallet, most of the particles are segregated to the lowermost layer. Since the melt source for firing the material tends to be insufficient and the quality of the sinter decreases, the particle size of the high goethite ore is reduced to 1%.
It is preferable to set it to 0 mm or less.

【0042】[0042]

【実施例】本発明の一実施例を図1を参照して説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described with reference to FIG.

【0043】高ゲーサイト鉱石ホッパー1aより造粒核
となる2mm以上を主体(80%以上含有)とする粗粒
高ゲーサイト鉱石を切り出す。
Coarse-grained high goethite ore mainly composed of 2 mm or more (containing 80% or more) serving as granulation nuclei is cut out from the high goethite ore hopper 1a.

【0044】更に、1mm以下を主体とする細粒原料と
して、MgO−SiO2 系原料ホッパー1bより1m
m以下を80%以上有する蛇紋岩又は橄欖岩と、Ca
O系原料ホッパー1cより1mm以下を70%以上有す
る石灰石と、ヘマタイト鉱石ホッパー1dより1mm
以下を70%以上有する高ゲーサイト鉱石粉又は赤鉄鉱
と、燃料ホッパー1eより燃料として1mm以下を8
0%以上有する粉コークスを各々別々に切り出す。そし
て、この切り出した原料をベルトコンベアー6aを介し
て造粒用第2ドラムミキサー2(直径:5m、長さ:2
5m、回転数:6rpm、滞留時間:5分間)に導入す
る。
Further, as a fine-grained raw material mainly composed of 1 mm or less, 1 m from the MgO—SiO 2 based raw material hopper 1b is used.
m and 80% or more of serpentine or peridotite, and Ca
Limestone having 70% or more of 1 mm or less from the O-based raw material hopper 1c, and 1 mm from the hematite ore hopper 1d
High goethite ore powder or hematite having 70% or more of the following, and 1 mm or less as fuel from fuel hopper 1e:
Coke flour having 0% or more is cut out separately. Then, the cut-out raw material is passed through a belt conveyor 6a to a second drum mixer for granulation 2 (diameter: 5 m, length: 2
5 m, rotation speed: 6 rpm, residence time: 5 minutes).

【0045】この際の高ゲーサイト鉱石、蛇紋岩、橄欖
岩、赤鉄鉱、石灰石の成分を表1に示し、表2、表3に
前記ベルトコンベアー6a上に於ける各原料の粒度別配
合重量割合、及び1mm以下の細粒原料における塩基度
を示す。
The components of the high goethite ore, serpentine, peridotite, hematite and limestone are shown in Table 1, and Tables 2 and 3 show the compounding weight of each raw material on the belt conveyor 6a according to the particle size. It shows the ratio and the basicity in fine-grained raw materials of 1 mm or less.

【0046】[0046]

【表1】 [Table 1]

【0047】[0047]

【表2】 [Table 2]

【0048】[0048]

【表3】 [Table 3]

【0049】表2中、本発明例I〜IIIは高ゲーサイ
ト鉱石ホッパー1aより粗粒高ゲーサイト鉱石、MgO
−SiO2 系原料ホッパー1bより蛇紋岩、CaO系原
料ホッパー1cより石灰石、ヘマタイト鉱石ホッパー1
dより高ゲーサイト鉱石粉、燃料ホッパー1eより粉コ
ークスを各々切り出して、第2ドラムミキサー2で造粒
した場合である。
In Table 2, Examples I to III of the present invention show that the high goethite ore hopper 1a has a coarser high
-Serpentine from the SiO 2 material hopper 1b, limestone and hematite ore hopper 1 from the CaO material hopper 1c
This is the case where high goethite ore powder is cut out from d and coke breeze is cut out from the fuel hopper 1e and granulated by the second drum mixer 2.

【0050】本発明例IVは高ゲーサイト鉱石ホッパー
1aより粗粒高ゲーサイト鉱石、MgO−SiO2 系原
料ホッパー1bより蛇紋岩、CaO系原料ホッパー1c
より石灰石、燃料ホッパー1eより粉コークスを各々切
り出して、第2ドラムミキサー2で造粒し、1mm以下
の高ゲーサイト鉱石粉を高ゲーサイト鉱石ホッパー1a
より切り出した粗粒高ゲーサイト鉱石中に含まれている
細粒分で賄った場合である。
Inventive Example IV is composed of coarse-grained high-geesite ore from the high-goesite ore hopper 1a, serpentinite from the MgO—SiO 2 -based hopper 1b, and CaO-based hopper 1c.
Limestone, and coke breeze are cut out from the fuel hopper 1e and granulated by the second drum mixer 2, and high goethite ore powder of 1 mm or less is used as the high goethite ore hopper 1a.
In this case, the fine grains contained in the coarse-grained high-geesite ore obtained from the cutting were used to cover the fine grains.

【0051】本発明例Vは高ゲーサイト鉱石ホッパー1
aより2mm未満を含まない粗粒高ゲーサイト鉱石、M
gO−SiO2 系原料ホッパー1bより1mm超を含ま
ない蛇紋岩、CaO系原料ホッパー1cより1mm超を
含まない石灰石、ヘマタイト鉱石ホッパー1dより1m
m超を含まない高ゲーサイト鉱石粉を各々切り出して、
第2ドラムミキサー2で造粒した場合である。
Inventive Example V is a high goethite ore hopper 1
Coarse high goethite ore containing no less than 2 mm from a
Serpentine not containing more than 1 mm from the gO-SiO 2 material hopper 1b, limestone not containing more than 1mm from the CaO material hopper 1c, 1m from the hematite ore hopper 1d
m each high goethite ore powder not containing
This is a case where granulation is performed by the second drum mixer 2.

【0052】本発明例VIは高ゲーサイト鉱石ホッパー
1aより2mm未満を含まない粗粒高ゲーサイト鉱石、
MgO−SiO2 系原料ホッパー1bより蛇紋岩、Ca
O系原料ホッパー1cより石灰石、ヘマタイト鉱石ホッ
パー1dより赤鉄鉱、燃料ホッパー1eよりコークス粉
を各々切り出して、第2ドラムミキサー2で造粒した場
合である。
Inventive Example VI is a coarse-grained high goethite ore containing no less than 2 mm from the high goethite ore hopper 1a;
Serpentine, Ca from MgO-SiO 2 raw material hopper 1b
In this case, limestone is extracted from the O-based raw material hopper 1c, hematite is extracted from the hematite ore hopper 1d, and coke powder is extracted from the fuel hopper 1e, and granulated by the second drum mixer 2.

【0053】本発明例VIIは高ゲーサイト鉱石ホッパ
ー1aより粗粒高ゲーサイト鉱石、MgO−SiO2
原料ホッパー1bより橄欖岩、CaO系原料ホッパー1
cより石灰石、ヘマタイト鉱石ホッパー1dより高ゲー
サイト鉱石粉、燃料ホッパー1eより粉コークスを各々
切り出して、第2ドラムミキサー2で造粒した場合であ
る。
Inventive Example VII is a coarse-grained high goethite ore from the high goethite ore hopper 1a, and a peridotite and a CaO-based raw hopper 1 from the MgO-SiO 2 raw hopper 1b.
In this case, limestone is extracted from c, high goethite ore powder is extracted from the hematite ore hopper 1d, and coke breeze is extracted from the fuel hopper 1e and granulated by the second drum mixer 2.

【0054】本発明例VIIIは粗粒高ゲーサイト鉱石
の配合比率を増大した場合である。即ち、高ゲーサイト
鉱石ホッパー1aより粗粒高ゲーサイト鉱石、MgO−
SiO2 系原料ホッパー1bより蛇紋岩、CaO系原料
ホッパー1cより石灰石、ヘマタイト鉱石ホッパー1d
より高ゲーサイト鉱石粉、燃料ホッパー1eよりコーク
ス粉を各々切り出して、第2ドラムミキサー2で造粒し
た場合である。
Example VIII of the present invention is a case where the mixing ratio of the coarse-grained high goethite ore is increased. That is, the coarse-grained high goethite ore, MgO-
Serpentinite from SiO 2 raw material hopper 1b, limestone and hematite ore hopper 1d from CaO raw material hopper 1c
In this case, coke powder is cut out from the higher goethite ore powder and the fuel hopper 1e, and granulated by the second drum mixer 2.

【0055】本発明例IXは10mm以上の粒径の高ゲ
ーサイト鉱石を全く含まない場合で、その他は本発明例
IVと同一である。これは本発明例IVに比較して、焼
結鉱特性が良好となっている。
Inventive Example IX is a case where no high goethite ore having a particle size of 10 mm or more is contained at all, and is otherwise the same as Inventive Example IV. This shows that the sinter properties are better than those of Example IV of the present invention.

【0056】尚、上記粗粒部の高ゲーサイト鉱石中に1
mm以下の高ゲーサイト鉱石粉が適正量(配合する1m
m以下の石灰石の15%以上)混在しているものを使用
した場合には、本発明例IVのようにヘマタイト含有鉱
石ホッパー1dを設ける必要がなく経済的である。
It should be noted that one or more of the above coarse-grained high goethite ores
mm or less of high goethite ore powder (approx.
(15% or more of limestone of m or less) is used, it is economical because it is not necessary to provide a hematite-containing ore hopper 1d as in Example IV of the present invention.

【0057】更に、この造粒用第2ドラムミキサー2
で、水分を表2、表3の条件で加えて原料のトータル水
分を調整し、該造粒用ドラムミキサー2で造粒する。
Further, the second drum mixer for granulation 2
Then, water is added under the conditions shown in Tables 2 and 3 to adjust the total water content of the raw materials, and the raw material is granulated by the drum mixer 2 for granulation.

【0058】このように2mm以上、1mm以下の両高
ゲーサイト鉱石と蛇紋岩、石灰石、コークスは造粒用第
2ドラムミキサー2で造粒されて、2mm以上の高ゲー
サイト鉱石を核としてその周囲に1mm以下の各蛇紋
岩、高ゲーサイト鉱石粉、石灰石、コークスの細粒原料
が付着して造粒物となる。
As described above, both high-gaesite ores of 2 mm or more and 1 mm or less, serpentine, limestone, and coke are granulated by the second drum mixer 2 for granulation, and the high-gaesite ore of 2 mm or more is used as a core. Fine-grained raw materials such as serpentine, high-gaesite ore powder, limestone, and coke of 1 mm or less adhere to the periphery to form granules.

【0059】一方、各ホッパー1f〜1iから、表1に
示す成分を有する通常の焼結原料として使用する鉄鉱石
としての均鉱、副原料としての石灰石、固体燃料として
の粉コークス、さらには返し鉱等のその他の原料を表4
に示す配合割合で切り出して第1ドラムミキサー3に装
入し、水分を加え造粒して擬似粒子化する。
On the other hand, from each of the hoppers 1f to 1i, ore as iron ore, limestone as an auxiliary material, coke breeze as a solid fuel, and further recycle from the hoppers 1f to 1i having the components shown in Table 1 Table 4 shows other raw materials such as ore.
The mixture is cut out at the mixing ratio shown in (1) and charged into the first drum mixer 3 and granulated by adding water to form granules.

【0060】[0060]

【表4】 [Table 4]

【0061】そしてこの第1ドラムミキサー3から払出
した擬似粒化物を、ベルトコンベアー6d、6eにより
焼結ベッド5上に設けたサージホッパー4へ搬送する。
The pseudo-granulated matter discharged from the first drum mixer 3 is conveyed to the surge hopper 4 provided on the sintering bed 5 by the belt conveyors 6d and 6e.

【0062】この搬送途中で、前記第2ドラムミキサー
2で造粒してベルトコンベアー6cで搬送されて来た2
mm以上の高ゲーサイト鉱石を、細粒原料で被覆した造
粒物を乗せて搬送する。
In the course of this conveyance, the granules are granulated by the second drum mixer 2 and conveyed by the belt conveyor 6c.
A high goethite ore of at least mm is transported with a granulated material coated with a fine-grained raw material.

【0063】更に該造粒物と擬似粒化物は、ベルトコン
ベアー6d、6eの乗継部及びサージホッパー4に装入
される際に落下して混合される。
Further, the granulated product and the pseudo-granulated product are dropped and mixed when they are charged into the connecting portions of the belt conveyors 6 d and 6 e and the surge hopper 4.

【0064】このサージホッパー4より所定量の造粒物
と擬似粒化物を切り出して焼結ベッド5に装入する。
A predetermined amount of granulated material and pseudo-granulated material are cut out from the surge hopper 4 and charged into the sintering bed 5.

【0065】このサージホッパー4直下の焼結ベッド5
上における造粒物をサンプリングして、該造粒物の被覆
細粒原料の被覆層厚、配合割合及び水分、塩基度、粒
度、I型強度を測定した結果を表2、表3に示す。
The sintering bed 5 immediately below the surge hopper 4
Tables 2 and 3 show the results obtained by sampling the above granulated material and measuring the coating layer thickness, the mixing ratio, the moisture, the basicity, the particle size, and the I-type strength of the coated fine granular material of the granulated material.

【0066】かくして焼結原料を焼結ベッド上で焼結し
た結果、表2、表3に示す特性を有する焼結鉱を製造す
ることが出来た。
As a result of sintering the sintering raw materials on the sintering bed, sintered ores having the properties shown in Tables 2 and 3 could be produced.

【0067】表2、表3と表5、表6からわかるよう
に、本発明例は比較例に比して良好な焼結鉱特性を有す
る。
As can be seen from Tables 2 and 3, Tables 5 and 6, the inventive examples have better sinter properties than the comparative examples.

【0068】[0068]

【表5】 [Table 5]

【0069】[0069]

【表6】 [Table 6]

【0070】表5に示す比較例Iは1mm以下主体の細
粒原料と2mm以上主体の高ゲーサイト鉱石の配合割
合、及び、ヘマタイト含有鉱石とCaO系原料の配合重
量割合、コークス粉の配合割合が本発明の範囲から外れ
た場合の例である。
In Comparative Example I shown in Table 5, the mixing ratio of the fine-grained raw material mainly composed of 1 mm or less and the high goethite ore mainly composed of 2 mm or more, the mixing weight ratio of the hematite-containing ore and the CaO-based raw material, and the mixing ratio of the coke powder Are examples outside the scope of the present invention.

【0071】比較例IIは上記石灰石に対してヘマタイ
ト含有鉱石の配合重量割合及び1mm以下主体の細粒原
料の塩基度が本発明の範囲から外れた場合の例である。
Comparative Example II is an example in which the compounding weight ratio of the hematite-containing ore to the limestone and the basicity of the fine-grained raw material mainly composed of 1 mm or less are out of the range of the present invention.

【0072】比較例III〜Vは細粒原料の水分が本発
明の範囲から外れた場合の例である。
Comparative Examples III to V are examples in which the water content of the fine-grained raw material is out of the range of the present invention.

【0073】比較例VI、VIIIは造粒物と擬似粒化
焼結鉱原料の混合割合が本発明の範囲から外れた場合の
例である。
Comparative Examples VI and VIII are examples in which the mixing ratio of the granulated material and the pseudo-granulated sintered ore raw material is out of the range of the present invention.

【0074】比較例VIIは2mm以上の高ゲーサイト
鉱石に対する1mm以下の細粒原料の配合割合及び1m
m以下主体の細粒原料の塩基度が本発明の範囲から外れ
た場合の例である。
In Comparative Example VII, the mixing ratio of fine-grained raw material of 1 mm or less to high-gaesite ore of 2 mm or more and 1 m
This is an example in the case where the basicity of the fine-grained raw material mainly composed of m or less is out of the range of the present invention.

【0075】尚、本実施例の造粒用第2ドラムミキサー
2と第1ドラムミキサー3に供給する石灰石とコークス
を各々の粒度に区分することが好ましいが、分級装置等
が必要となり、設備及びメンテナンス費用が高価となる
ことからこれを回避するため1mm以下の石灰石、コー
クスを含んだ同一のものを使用しても実用上差支えな
い。
It is preferable that limestone and coke supplied to the second drum mixer 2 and the first drum mixer 3 for granulation of this embodiment be classified into respective particle sizes. In order to avoid the high maintenance cost, it is practically acceptable to use the same limestone or coke containing 1 mm or less to avoid this.

【0076】[0076]

【発明の効果】以上に説明したように本発明は、従来焼
結原料として多量に使用することが困難であった2mm
以上の高ゲーサイト鉱石を、その表面に1mm以下の含
MgO−SiO2 系原料及びヘマタイト含有系原料、C
aO系原料、固体燃料からなる細粒原料で被覆して、焼
結原料中のCaO−Fe2 3 と同化することを防止す
ると共に造粒物相互、造粒物と周囲の通常の焼結鉱と容
易に結合することによって、焼結ベッド上に偏析装入し
ても焼結鉱の生産性、歩留、品質を低下させることなく
多量に使用することができ、また、所定粒度の核となる
べき粗粒高ゲーサイト鉱石と、付着粉と成るべき所定粒
度の細粒原料を組み合わせると共に、水分量を所定範囲
に調整することにより、セメント、タール等のバインダ
ー類を添加することなく造粒することができるので、焼
結鉱製造コストを大幅に低減することができる等、多大
な効果を奏する。
As described above, according to the present invention, it has been difficult to use a large amount of 2 mm
The above high goethite ore is coated on its surface with an MgO-SiO 2 -based raw material and a hematite-containing raw material of 1 mm or less, C
aO-based material, coated with fine material consisting of solid fuel, the granules each other, granules and the surrounding is prevented from being merged with CaO-Fe 2 O 3 in the sintered material conventional sintering By easily bonding with ore, it can be used in large quantities without deteriorating the productivity, yield and quality of sinter even when segregated on the sintering bed. By combining the coarse-grained high-gaesite ore to be formed with the fine-grained raw material having a predetermined particle size to be formed into the adhering powder, and adjusting the water content to a predetermined range, it can be formed without adding binders such as cement and tar. Since it can be granulated, a great effect is exhibited, such as a great reduction in sinter production cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の設備フロー図である。FIG. 1 is a facility flow diagram of an embodiment of the present invention.

【図2】蛇紋岩被覆層のI型強度と水分量との関係を示
す図である。
FIG. 2 is a diagram showing the relationship between the I-type strength of a serpentine covering layer and the amount of moisture.

【図3】焼結ベッド内の蛇紋岩被覆層厚と水分量との関
係を示す図である。
FIG. 3 is a diagram showing the relationship between the thickness of a serpentine coating layer and the amount of moisture in a sintering bed.

【符号の説明】[Explanation of symbols]

1a 高ゲーサイト鉱石ホッパー 1b MgO−SiO2 系原料ホッパー 1c CaO系原料ホッパー 1d ヘマタイト含有鉱石ホッパー 1e 燃料ホッパー 1f 均鉱ホッパー 1g 石灰石ホッパー 1h 粉コークスホッパー 1i 返鉱ホッパー 2 造粒用第2ドラムミキサー 3 第1ドラムミキサー 4 サージホッパー 5 焼結ベッド 6a〜e ベルトコンベアー1a High goethite ore hopper 1b MgO-SiO 2 raw material hopper 1c CaO based raw material hopper 1d Hematite-containing ore hopper 1e Fuel hopper 1f Uniform ore hopper 1g Limestone hopper 1h Powder coke hopper 1i Returning hopper 2 Granulating second drum mixer 3 first drum mixer 4 surge hopper 5 sintering bed 6a-e belt conveyor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 安藤 啓司 大分県大分市大字西ノ洲1 新日本製鐵 株式会社 大分製鐵所内 (72)発明者 出野 正 大分県大分市大字西ノ洲1 新日本製鐵 株式会社 大分製鐵所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Keiji Ando Oishi, Oita, Oita, Nippon Steel Corporation 1 Nippon Steel Corporation Inside the Oita Works (72) Inventor Tadashi Deno, Oita, Oita, Oita Nishi No. 1 Nippon Steel Corporation Oita Works

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 鉄鉱石、副原料、及び固体燃料を第1ミ
キサーで混合造粒して平均粒径が2〜3mmに擬似粒化
した擬似粒化物を製造すると共に粒径2mm以上を主体
とする高ゲーサイト鉱石及び粒径1mm以下を主体とす
る細粒原料を前記第1ミキサーとは別に設けた造粒用第
2ミキサーに導入して、水を添加して造粒し、該造粒物
と前記擬似粒化物とを焼結機に供給する高炉用焼結鉱原
料の事前処理方法において、造粒用第2ミキサーに導入
する前記細粒原料を20〜60重量%、前記粒径2mm
以上を主体とする高ゲーサイト鉱石を40〜80重量
%、水分を外掛けで8〜14重量%にすると共に、前記
細粒原料としてMgO−SiO2 系原料、CaO系原
料、ヘマタイト含有鉱石を主体とし、しかも、該ヘマタ
イト含有鉱石がCaO系原料の15〜85重量%で、且
つ、塩基度を0.4〜1.4とし、更に、第2ミキサー
からの造粒物5〜60重量%、前記第1ミキサーからの
擬似粒化物40〜95重量%にして焼結機に供給するこ
とを特徴とする高炉用焼結鉱原料の事前処理方法。
An iron ore, an auxiliary material, and a solid fuel are mixed and granulated by a first mixer to produce a pseudo-granulated product in which the average particle size is pseudo-granulated to 2 to 3 mm. The high-geesite ore and the fine-grained raw material having a particle size of 1 mm or less are introduced into a second mixer for granulation provided separately from the first mixer, and water is added thereto to perform granulation. In the method for pre-treating the raw material for a blast furnace, which supplies the raw material and the pseudo-granulated material to a sintering machine, the fine-grain raw material introduced into the second mixer for granulation is 20 to 60% by weight, and the particle size is 2 mm.
High goethite ore 40 to 80 wt% of a main component or, as well as the 8 to 14 wt% water in outer percentage, MgO-SiO 2 based material as the fine material, CaO-based material, a hematite-containing ores The hematite-containing ore is 15 to 85% by weight of the CaO-based raw material, the basicity is 0.4 to 1.4, and the granulated material from the second mixer is 5 to 60% by weight. Wherein the pseudo-granulated material from the first mixer is supplied to a sintering machine at 40 to 95% by weight.
【請求項2】 上記細粒原料として、上記種類の原料の
他に1mm以下を主体とする固体燃料を16重量%以下
配合することを特徴とする請求項1記載の高炉用焼結鉱
原料の事前処理方法。
2. The sinter ore raw material for a blast furnace according to claim 1, wherein 16% by weight or less of a solid fuel mainly composed of 1 mm or less is blended as the fine-grained raw material in addition to the above-mentioned raw material. Pre-processing method.
【請求項3】 前記高ゲーサイト鉱石を2〜10mmと
することを特徴とする請求項1または2記載の高炉用焼
結鉱原料の事前処理方法。
3. The pretreatment method for a blast furnace sinter material according to claim 1, wherein the high goethite ore has a thickness of 2 to 10 mm.
JP25199492A 1991-11-08 1992-08-28 Pre-treatment method of sinter ore raw material for blast furnace Expired - Lifetime JP2589633B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25199492A JP2589633B2 (en) 1991-11-08 1992-08-28 Pre-treatment method of sinter ore raw material for blast furnace

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP31966291 1991-11-08
JP3-319662 1991-11-08
JP25199492A JP2589633B2 (en) 1991-11-08 1992-08-28 Pre-treatment method of sinter ore raw material for blast furnace

Publications (2)

Publication Number Publication Date
JPH05195088A JPH05195088A (en) 1993-08-03
JP2589633B2 true JP2589633B2 (en) 1997-03-12

Family

ID=26540481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25199492A Expired - Lifetime JP2589633B2 (en) 1991-11-08 1992-08-28 Pre-treatment method of sinter ore raw material for blast furnace

Country Status (1)

Country Link
JP (1) JP2589633B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3902629B2 (en) * 2004-05-13 2007-04-11 新日本製鐵株式会社 Pretreatment method of sintering raw materials
JP4830728B2 (en) * 2006-09-04 2011-12-07 住友金属工業株式会社 Method for producing sintered ore

Also Published As

Publication number Publication date
JPH05195088A (en) 1993-08-03

Similar Documents

Publication Publication Date Title
JP5699567B2 (en) Method for producing sintered ore
JP6273957B2 (en) Sinter ore manufacturing method
EP0614993B1 (en) Method for producing sintered ore
JP2003138319A (en) Method for manufacturing raw material for sintering
JP2589633B2 (en) Pre-treatment method of sinter ore raw material for blast furnace
EP0769074A1 (en) Sintering an iron ore blend containing porous ores
JPH02228428A (en) Charging material for blast furnace and its production
CN110709663A (en) Method for operating a sintering device
JP2701178B2 (en) Pre-treatment method of sinter ore raw material for blast furnace
JP2009019224A (en) Method for manufacturing sintered ore
JP2000290732A (en) Method for granulating raw material for sintering, excellent in combustibility
JP2002129246A (en) Method for producing sintered ore
JP2000063960A (en) Production of sintered ore
JP3888981B2 (en) Method for producing sintered ore
JP2018066046A (en) Manufacturing method of sintered ore
JP2014159622A (en) Method of producing reduced iron
JPH0778256B2 (en) Manufacturing method of mini pellet for sintering
JP6996485B2 (en) Method for manufacturing charcoal interior particles and method for manufacturing charcoal interior sintered ore
JPH0625758A (en) Sintering accelerator and production of sintered ore by using this accelerator
JP7024649B2 (en) Granulation method of raw material for sintering
JPS62130226A (en) Method for feeding ore for sintering
JP2000303121A (en) Pretreatment of sintering raw material
JPH06220549A (en) Pretreatment of raw material to be sintered
JP2003113426A (en) Method for manufacturing sintered ore
JP2004225147A (en) Method for manufacturing sintered ore for blast furnace

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960924