JPH02232322A - Charging material for blast furnace and its production - Google Patents

Charging material for blast furnace and its production

Info

Publication number
JPH02232322A
JPH02232322A JP5085389A JP5085389A JPH02232322A JP H02232322 A JPH02232322 A JP H02232322A JP 5085389 A JP5085389 A JP 5085389A JP 5085389 A JP5085389 A JP 5085389A JP H02232322 A JPH02232322 A JP H02232322A
Authority
JP
Japan
Prior art keywords
blast furnace
coke
ore
binder
lump coke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5085389A
Other languages
Japanese (ja)
Inventor
Shun Sato
駿 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP5085389A priority Critical patent/JPH02232322A/en
Publication of JPH02232322A publication Critical patent/JPH02232322A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To produce a charging material for blast furnace capable of improving a blast furnace operation record by coating the external surface of metallurgical lump coke with a mixture of specific amounts of iron ore fines and binder and then burning the resulting raw fuel compound material. CONSTITUTION:Lump coke (about 10-50mm average diameter) is used as a core and the outer core surface of this core is coated with a mixture of iron ore fines (<=1mm average diameter) and binder (quick lime, slaked lime, etc.), by which a raw fuel compound material is formed. At this time, the weight ratio of the iron ore fines to the lump coke is regulated to 1:1 to 4:1, and the blending amount of the binder is regulated so that the binder comprises about 3-6wt.% of the compound material. Subsequently, the raw fuel compound material formed as mentioned above is burned in the air at about 1200 deg.C for about 15min so as to be formed into the charging material for blast furnace. By using this charging material, the mixture layer of coke and ore in the blast furnace can be controlled, and blast furnace operation can be stabilized to a greater extent.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高炉操業成績の向上を図るための高炉装入物
およびその製造方法に関するものである.(従来の技術
) 製鉄用高炉に供給する装入原料は、現状では、鉄鉱石粉
粒体に適量の石灰石粉と粉コークスを混合して焼結して
得た自溶性焼結鉱と塊状鉄鉱石と、コークス炉にて原料
炭を乾留した冶金用の塊コークスとに大きく分けられる
.自溶性焼結鉱を主体として、これに塊状鉄鉱石および
塊コークスが適宜装入される, 第1図には従来法での高炉装入物製造プロセスの概略フ
ロー図を示す. 図中、予め所定量配合された原料鉄鉱石類(粉絋石、石
灰石粉、粉コークス)は混合・造粒工程lのあと焼結機
による焼結工程2で焼結され、最後に破砕・整粒工程3
を経て自溶性焼結鉱として高炉7へ搬送される.一方、
所定量の原料炭も独立した別系統によりまず紛砕・混合
工程4のあとコークス炉による乾留工程5で乾留され、
最後に破砕・整粒工程6を経て塊コークスとして高炉7
へ搬送される.前述したように、高炉7では一部塊状鉄
鉱石とともにこれら原燃料を別々に貯蔵した後適量ずつ
交互に切り出して高炉炉内へ層状に交互に装入している
. これらの塊状鉄鉱石、焼結鉱そして塊コークスは高炉操
業条件によって定められる一定の重量比率で交互に層状
となるよう高炉に装入されている.この従来法による装
入法によれば、鉱石・コークスは層状の充填構造を維持
しながら高炉内を降下し、鉱石は炉内を降下するに伴っ
て順次加熱・還元され、シャフト下段付近で軟化し、融
着屠を形成する.この融着層はコークス層に較べ空隙率
が著しく小さく層内をほとんどガスが流れないため、コ
ークス層がガスの主要な波路となる.このため融看層は
炉全体の圧力損失、炉内のガス流れを支配し、高炉の安
定性・効率を決定づける.しかしながら、層状装入を実
施する限り融着層が存在することは避けられず、その集
合体である融着帯の形状の制御が高炉操業技術の大きな
課題となっている. このような層状装入法に対して、鉱石とコークスを混合
しその混合物を高炉内に装入する混合装入法(特開昭5
5−79810号公報)が提案されている.混合装入に
よれば、比較的通気性の良好な融着帯が生成し、全圧損
は大幅に低下するとされているが、現状の旋回シュート
・ベル式装入設備では高炉へ装入するまでの輸送系で、
あるいは高炉内での落下・降下過程において鉱石とコー
クスの分離は避けられない.これは鉱石とコークスとの
両装入物の粒径、密度、形状等が異なるためであって、
高炉内に混合層を意図した通りに制?■して形成させる
ことは非常にむずかしい. そこで両装入物の分離を避ける方法として、予め両者を
バインダーで結合したものを装入することが考えられ、
特開昭60 − 262907号公報ではセメント等の
水硬性バインダーを添加して、予め鉱石とコークスを一
体的に結合したものを装入する方法が提案されている.
この一体化複合物装入方法によれば、バインダーの強度
が失われない限り鉱石とコークスとの混合一体化は確保
されるものと考えられるが、水硬性バインダーの使用は
塊成化の段階で強度発現のため養生期間を必要とするこ
と、および得られる一体化複合物とともにかなりの量の
水分が高炉内に持ち込まれるため、水分蒸発用の熱分の
コークス原単位が不経済となる問題がある.また、鉱石
とコークスとの結合を図ることがら粉絋の使用は想定さ
れていない.(発明が解決しようとする課題) 本発明は、現状の旋回シュート・ベル式装入設備を用い
ても、高炉内に混合層を意図した通りにm御して形成せ
しめ、この結果、高炉操業成績を十分に向上させること
が可能な高炉装入物およびその製造方法を徒供すること
を目的とするものである, しかも本発明は単に鉱石とコークスとの一体化結合した
塊成物を製造するにとどまらず、高炉内での反応過程を
考慮して、積極的に鉱石・コークス間の配置を改善し、
装入物の高炉内性状をも向上せしめることが可能な高炉
装入物およびその製造方法を提供することをも目的とす
る.(課題を解決するための手段) そこで本発明者は、高炉操業に悪影響を及ぼさない適当
なバインダーを用いて鉱石・コークスを一体化すること
と、一体化の際には高炉内での反応通程を考慮して鉱石
・コークス間の配!を工夫し装入物の高炉内性状を向上
させることを発想し、種々墳討の結果以下の発明に至っ
た. すなわち、本発明の要点は、冶金用の塊コークスと、そ
の外表面を包囲した、前記塊コークスに対し重量比でl
;1〜4:1になる量の微粉鉄鉱石の焼結体とから成る
高炉袋入物である.また別の面から本発明は、冶金用の
塊コークスの外表面にバインダーとして微粉鉄鉱石を前
記塊コークスに対して重量比で1:1〜1:4になるよ
う造粒被覆して得た原燃料複合物を、例えばロータリー
・キルンにて焼成することを特徴とする高炉用装入物の
製造方法である. 本発明の好適態様にあって、一体化するためのバインダ
ーに関しては、現在最も適切な高炉装入物として評価さ
れている自溶性焼結鉱の組織そのものを利用することと
し、焼結原料鉄鉱石類が焼結反応を起こす際に発生する
カルシウムフェライト系軟化融体をコークス周囲に配し
冷却時に固化結合せしめるものとする.かかる特性を有
するバインダーとしては、例えば生石灰、消石灰、もし
〈はセメント等が挙げられるが、本発明の目的が実現さ
れる限り特定のものに制限されない.さらにこの種の被
覆バインダーはロータリー・キルンにより転#JJ焼成
される時点で上記軟化融体は核となるコークス粒子に対
して圧縮力を及ぼすからより強固な被膜結合が達成され
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a blast furnace charge and a method for producing the same for improving blast furnace operating performance. (Prior technology) Currently, the charging materials supplied to a blast furnace for steelmaking are self-soluble sintered ore obtained by mixing and sintering iron ore powder with appropriate amounts of limestone powder and fine coke, and lumped iron ore. It is broadly divided into metallurgical lump coke, which is produced by carbonizing coking coal in a coke oven. Figure 1 shows a schematic flow diagram of the process for manufacturing blast furnace charge using the conventional method, which consists mainly of self-fluxing sintered ore, to which lump iron ore and lump coke are charged as appropriate. In the figure, raw iron ores (fine stone, limestone powder, coke powder) that have been blended in a predetermined amount in advance are sintered in a sintering process 2 using a sintering machine after a mixing and granulating process 1, and finally crushed and Sizing process 3
After that, it is transported to blast furnace 7 as self-fusing sintered ore. on the other hand,
A predetermined amount of coking coal is also carbonized in an independent system through a crushing and mixing step 4, followed by a carbonization step 5 in a coke oven.
Finally, through the crushing and sizing process 6, it is turned into lump coke in the blast furnace 7.
will be transported to. As mentioned above, in the blast furnace 7, these raw materials and fuels are stored separately together with some lumped iron ore, and then cut out alternately in appropriate amounts and charged alternately in layers into the blast furnace. These lump iron ore, sintered ore, and lump coke are charged into the blast furnace in alternating layers at a constant weight ratio determined by the blast furnace operating conditions. According to this conventional charging method, ore and coke descend through the blast furnace while maintaining a layered packing structure, and as the ore descends through the furnace, it is sequentially heated and reduced, softening near the bottom of the shaft. and form a fused carcass. This cohesive layer has a significantly lower porosity than the coke layer, so almost no gas flows within the layer, so the coke layer becomes the main wave path for gas. Therefore, the fusion layer controls the pressure loss throughout the furnace and the gas flow within the furnace, and determines the stability and efficiency of the blast furnace. However, as long as layered charging is carried out, the existence of a cohesive layer is unavoidable, and controlling the shape of the cohesive zone, which is an aggregate of the cohesive layers, is a major issue in blast furnace operation technology. In contrast to this layered charging method, a mixed charging method (Japanese Patent Application Laid-Open No. 5-1173) in which ore and coke are mixed and the mixture is charged into a blast furnace is proposed.
5-79810) has been proposed. According to mixed charging, a cohesive zone with relatively good permeability is formed and the total pressure drop is said to be significantly reduced. However, with the current rotating chute/bell type charging equipment, the In the transportation system of
Alternatively, separation of ore and coke during the falling and descending process in the blast furnace is unavoidable. This is because the grain size, density, shape, etc. of the ore and coke charges are different.
Is the mixed layer in the blast furnace controlled as intended? ■It is very difficult to form it. Therefore, as a way to avoid separation of both charges, it is possible to charge them by binding them together with a binder.
JP-A-60-262907 proposes a method in which a hydraulic binder such as cement is added and ore and coke are combined in advance and charged.
According to this integrated composite charging method, it is thought that the mixing and integration of ore and coke will be ensured as long as the strength of the binder is not lost, but the use of a hydraulic binder is necessary at the agglomeration stage. A curing period is required to develop strength, and a considerable amount of moisture is brought into the blast furnace with the resulting integrated composite, resulting in an uneconomic coke unit consumption of heat for moisture evaporation. be. In addition, the use of powdered silk is not envisaged since the aim is to combine the ore and coke. (Problems to be Solved by the Invention) The present invention allows a mixed layer to be formed in the blast furnace as intended even if the current rotating chute/bell type charging equipment is used, and as a result, blast furnace operation is improved. The purpose of the present invention is to provide a blast furnace charge and a method for producing the same that can sufficiently improve the performance of the blast furnace.Moreover, the present invention simply produces an agglomerate in which ore and coke are integrally combined. In addition to this, we actively improve the arrangement between ore and coke, taking into account the reaction process in the blast furnace.
Another purpose of the present invention is to provide a blast furnace charge and a method for producing the same that can improve the internal properties of the charge. (Means for Solving the Problems) Therefore, the inventor of the present invention aimed to integrate ore and coke using a suitable binder that does not adversely affect blast furnace operation, and to prevent the reaction flow in the blast furnace during integration. The arrangement between ore and coke should be taken into consideration! We came up with the idea of improving the properties of the charge inside the blast furnace by devising the following, and as a result of various investigations, we came up with the following invention. That is, the main point of the present invention is to use lump coke for metallurgy, and to surround the outer surface of the lump coke, and to
; It is a blast furnace bag consisting of a sintered body of fine iron ore in an amount of 1 to 4:1. From another aspect, the present invention is obtained by granulating and coating the outer surface of lump coke for metallurgy with fine iron ore as a binder at a weight ratio of 1:1 to 1:4 to the lump coke. This is a method for producing a charge for a blast furnace, which is characterized by firing a raw fuel composite in, for example, a rotary kiln. In a preferred embodiment of the present invention, as for the binder for integration, the structure of self-fusing sintered ore, which is currently evaluated as the most suitable blast furnace charge, is used. Calcium ferrite-based softened melt generated when the coke undergoes a sintering reaction is placed around the coke and solidified and bonded during cooling. Examples of the binder having such characteristics include quicklime, slaked lime, and cement, but the binder is not limited to a specific one as long as the object of the present invention is achieved. Furthermore, when this type of coated binder is subjected to rotary kiln sintering, the softened melt exerts a compressive force on the core coke particles, thereby achieving a stronger coating bond.

バインダーの配合量は特に制限されないが、体化復金物
の3〜6重量%程度あれば十分である.また、一体化に
際して、塊コークスを核としてその外殻に焼結wL組織
を配した二重構造をとることによって、表面の焼結鉱層
の還元反応は促進されるとともに、逆に内部の核コーク
ス粒子は炉内のガスとの接触を妨げられてソリューショ
ンロス反応とコークスの反応劣化作用は遅延することが
期待される. (作用) 次に、添付図面によって本発明をさらに詳細に説明する
. 第2図は本発明にかかる高炉装入物の製造方法のフロー
図であり、まず原料炭を従来のように紛砕・混合工程4
および乾留工程5を経てから破砕・整粒工程6によって
塊コークスとするが、この破砕・整粒工程6後の塊コー
クスの全量もしくはその一部を高炉7へ直送せずに分岐
させ、別途用意した粉絋石、粉コークス、石灰石粉およ
びバインダーから成る混合物とともに混合・造粒工程8
で造粒して塊状コークスの表面外殻にこれら混合物の被
膜を形成せしめて、二重構造の原燃料一体化複合物を製
造する.得られた一体化複合物は焼成工程9を経て高炉
に装入される. 上記の混合、造粒工程は例えば皿型造粒装置を使って実
施する. これとは別に慣用法による混合・造粒工程1、焼結工程
2、および破砕・整粒工程3を経た焼結絋も用意され、
高炉7に装入されてもよい.前述の一体化複合物を製造
する際、被膜を形成する原料混合体の構成種および組成
は特に限定されるものではないが、輸送および転勤時に
容易に粉化せずまた加熱焼成時には核の塊コークスの燃
焼を妨げるとともに焼成後はカルシウムフェライト相を
主体とした強固な被膜が形成されるように、微粉の高塩
基度混合物であることが望ましい.また一体化複合物の
被膜を形成する粉状の鉄鉱石の粒度については次の焼成
工程の加熱焼成の際に核となる塊コークスの酸化燃焼を
妨げるべく、ベレットフィードのような少な《とも平均
直径1鋼一以下の微粉鉄鉱石を使用することが望ましい
.また、塊コークスは平均直径10〜50曙一のものを
使用するのが好ましい. 次に、一体化複合物の核となる塊コークス量に対する外
殻被覆微粉鉄鉱石の重量比はより以上に重要であり、微
粉鉄鉱石被覆量が多すぎると被膜が厚くなって加熱焼成
時や輸送過程で被膜がI+離したり、高炉内での還元の
進行が妨げられる可能性があり、いずれも高炉操業にと
って好ましくない.またこれとは逆に被膜が薄すぎても
一体化複合物の造粒作業のバラツキや塊コークス粒子の
形状によっては一部コークスが露出する個所が発生し、
ロータリー・キルン内でのコークスの酸化燃焼や高炉内
でごく初期から還元ガスとの反応が起こって、不均一な
コークスの焼損、反応劣化および鉱石の還元反応が生じ
好ましくない.このような被覆用微粉鉄鉱石の通正配合
量について調査したところ、第3図に示すように、適正
な微粉鉱石量は核の塊コークス量に対して重量比でl:
1〜4:lの範囲に存在することが判明した. ここで試験に用いた一体化複合体は平均直径10〜30
vwの塊コークスを檎として1lII1径以下の微粉鉱
石(ペレフト製造用原料:インド産クドレムク)と石灰
石粉および生石灰の混合物をその外殻表面に皿型造粒機
を使って造粒被覆させたもので、微粉鉱石量と塊コーク
スとの重量比は0.5:]〜5;lの間で変化させた.
生石灰バインダーの量は一体化複合物の全重量に対し4
%配合した.このようにして得られた一体化複合物は横
型電気炉にて空気中1200℃、15分加熱された.鉱
石被覆剥離率(1)は直径1.0I1,長さ0.5+*
の150回転強度試験機中で試料20kgを25rp−
で200回回転衝撃後の直径1h+m未満の粒子の比率
へにより決定した. この結果によれば、第3図にグラフで示すように、微粉
鉱石量と塊コークスの重量比(o/c)が1=1より小
になると、塊コークス外殻の鉱石被膜層の厚さが十分で
はなく一部コークスの露出が生ずるために、コークスの
焼損率は急激に上昇する.従って、鉱石被覆量としては
塊コークスに対する重量比で1以上は必要となる. また、一体化複合物を高炉まで輸送する過程ではベルト
コンベア等の乗継ぎの落下衝撃により塊コークス外殻に
被覆させた微粉鉄鉱石の被膜はその一部が塊コークス表
面より剥離して粉化する.この粉化率、つまり鉱石被覆
剥離率は通常高炉操業で管理されている程度の量ならば
大きい障害とはならないが、第3図に示すように塊コー
クス量に対する微粉鉱石量の配合重量比が5を超えると
急激に増加するため、この重量比は4以下とすることが
必要である. 上記のように製造された原燃料一体化複合物は次の焼成
工程9でロータリー・キルンに装入され、排ガスで予熱
乾燥を受けた後最高1200〜1250℃に(1〜2時
間)加熱焼成され炉外に排出される.成晶である一体化
複合物は内部の核部分に塊コークスを残留させた状態で
その外殻表面をカルシウムフエライト相を主体とする強
固な焼結被膜で囲まれた有核構造を有する一体化複合物
となる.第4図はこのようにして得られた本発明にかか
る一体化複合物の略式断面図であり、核となる塊コーク
ス40はその外表面が微粉鉄鉱石の焼結体42で包囲さ
れている。
The amount of the binder to be blended is not particularly limited, but it is sufficient if it is about 3 to 6% by weight of the incorporated binder. In addition, when integrating, by adopting a double structure with lump coke as the core and a sintered wL structure on the outer shell, the reduction reaction of the sintered ore layer on the surface is promoted, and conversely, the core coke inside It is expected that the particles will be prevented from coming into contact with the gas in the furnace, thereby delaying the solution loss reaction and the reaction deterioration of coke. (Operation) Next, the present invention will be explained in more detail with reference to the accompanying drawings. FIG. 2 is a flowchart of the method for producing blast furnace charge according to the present invention.
After passing through the carbonization step 5, it is made into lump coke in the crushing and sizing step 6, but the entire amount or a part of the lump coke after the crushing and sizing step 6 is not sent directly to the blast furnace 7, but is branched and prepared separately. Mixing and granulation step 8 with a mixture consisting of powdered stone powder, coke powder, limestone powder, and binder.
A double-structure raw/fuel integrated composite is produced by granulating the coke and forming a film of the mixture on the surface shell of the lump coke. The obtained integrated composite is charged into a blast furnace through a firing process 9. The above mixing and granulation steps are carried out using, for example, a dish-type granulation device. Apart from this, sintered fibers are also prepared which have undergone mixing and granulation process 1, sintering process 2, and crushing and sizing process 3 using conventional methods.
It may also be charged into the blast furnace 7. When manufacturing the above-mentioned integrated composite, the composition and composition of the raw material mixture that forms the coating is not particularly limited, but it does not easily become powder during transportation or transfer, and it does not form a lump of core during heating and baking. It is desirable to use a mixture of fine powders with high basicity so as to prevent the combustion of coke and form a strong coating mainly composed of calcium ferrite phase after calcination. In addition, regarding the grain size of the powdered iron ore that forms the coating of the integrated composite, in order to prevent the oxidative combustion of the lump coke that becomes the core during the heating and firing process in the next firing process, the particle size of the powdered iron ore is It is desirable to use fine iron ore with a diameter of 1 steel or less. Furthermore, it is preferable to use lump coke with an average diameter of 10 to 50 mm. Next, the weight ratio of the fine iron ore coating on the outer shell to the amount of lump coke that forms the core of the integrated composite is even more important. During the transportation process, the coating may separate from I+ or the progress of reduction within the blast furnace may be hindered, both of which are unfavorable for blast furnace operation. On the other hand, even if the coating is too thin, there may be some areas where coke is exposed depending on variations in the granulation process of the integrated composite and the shape of the lump coke particles.
Oxidative combustion of coke in the rotary kiln and reaction with reducing gas in the blast furnace occur from the very beginning, resulting in uneven coke burnout, reaction deterioration, and ore reduction reactions, which are undesirable. When we investigated the normal blending amount of fine iron ore for coating, we found that, as shown in Figure 3, the appropriate amount of fine iron ore is 1:1 by weight relative to the amount of lump coke in the core.
It was found to exist in the range of 1 to 4:l. The integrated composites used here had an average diameter of 10 to 30 mm.
VW lump coke is used as a cucumber, and a mixture of fine ore with a diameter of 1lII or less (raw material for producing Peleft: Kudremukh from India), limestone powder, and quicklime is granulated and coated on the outer shell surface using a dish-type granulator. The weight ratio of the amount of fine ore to the lump coke was varied between 0.5:1 and 5:1.
The amount of quicklime binder is 4% relative to the total weight of the integrated composite.
% was added. The thus obtained integrated composite was heated in air at 1200°C for 15 minutes in a horizontal electric furnace. Ore coating peeling rate (1) is diameter 1.0I1, length 0.5+*
A 20kg sample was heated at 25rpm in a 150rpm strength testing machine.
The ratio of particles with a diameter of less than 1h+m was determined after 200 rotational impacts. According to this result, as shown in the graph in Figure 3, when the weight ratio (o/c) of fine ore to lump coke becomes smaller than 1=1, the thickness of the ore coating layer on the outer shell of lump coke increases. Because the amount of coke is not sufficient and some coke is exposed, the coke burnout rate increases rapidly. Therefore, the amount of ore covered must be at least 1 in weight ratio to lump coke. In addition, during the process of transporting the integrated composite to the blast furnace, part of the fine iron ore coating coated on the lump coke outer shell peels off from the surface of the lump coke and becomes powder due to the impact of falling from the conveyor belt, etc. do. This pulverization rate, that is, the ore coating peeling rate, is not a major problem if the amount is controlled in normal blast furnace operations, but as shown in Figure 3, the blending weight ratio of the amount of fine ore to the amount of lump coke is If it exceeds 5, it increases rapidly, so this weight ratio needs to be 4 or less. The raw/fuel integrated composite produced as described above is charged into a rotary kiln in the next firing step 9, and after being preheated and dried with exhaust gas, it is heated and fired at a maximum temperature of 1200 to 1250°C (1 to 2 hours). and is discharged outside the furnace. The integrated composite that is crystallized has a nucleated structure in which lump coke remains in the inner core part and the outer shell surface is surrounded by a strong sintered coating mainly composed of calcium ferrite phase. It becomes a composite. FIG. 4 is a schematic cross-sectional view of the thus obtained integrated composite according to the present invention, in which the core lump coke 40 is surrounded on its outer surface by a sintered body 42 of fine iron ore. .

本発明にかかる方法で得られる一体化複合物は、高炉装
入に際して従来の焼結鉱と塊コークスとの単位装入当た
りの絹合せにみられる割合と例えば同じ割合で焼結体と
塊コークスとを配合することにより、等価で従来の組合
せ装入との置き換えが可能となるため、最初、段階的に
本発明にかかる装入物の装入比率を上昇させていって最
終的には全量を本発明による上述の一体化複合物で置き
換えるようにしてもよい。
The integrated composite obtained by the method of the present invention is charged with sinter and lump coke in the same proportion as the conventional silk combination of sinter and lump coke per unit charge. By blending these, it is possible to equivalently replace the conventional combination charging, so initially, the charging ratio of the charges according to the present invention is increased step by step, and eventually the total amount is increased. may be replaced by the above-mentioned integrated composite according to the invention.

実施例 次に、本発明による効果を実際の高炉を使った実施例に
基づき説明する. 還元率 : JIS M8713 第1表には本発明方法による一体化複合物の配合構成と
ロータリー・キルン焼成後の成品品賞について、通常の
自溶性焼結鉱の品質試験法と同碌の方法で調査した結果
を示す.まず、一体化複合物の核には通常のコークス炉
で製造された冶金用の塊コークスを20〜40III1
に篩分けて整拉したものに、外殻被膜として2種のべレ
フトフィード(P.F.と略記)より成る微粉鉱石に石
灰石粉を加え、さらに生石灰をバインダーとして混合し
、水を添加しながら直径2購の皿型造粒機ででき上り直
径30〜50msに造粒を行った.造粒時水分は外数で
8.0%、塊コークス重量に対する微粉鉱石の重量比は
3。0を基準とした。
Example Next, the effects of the present invention will be explained based on an example using an actual blast furnace. Reduction rate: JIS M8713 Table 1 shows the composition of the integrated composite according to the method of the present invention and the product award after firing in a rotary kiln, using a method comparable to the quality testing method for ordinary self-fusing sintered ore. The results of the investigation are shown below. First, the core of the integrated composite is made of 20 to 40 lug coke for metallurgy produced in a normal coke oven.
Limestone powder is added to finely divided ore consisting of two types of beleft feed (abbreviated as P.F.) as an outer shell coating, quicklime is mixed as a binder, and water is added. The pellets were granulated using a dish-type granulator with a diameter of 2 to give a final diameter of 30 to 50 ms. The moisture content at the time of granulation was 8.0% in terms of external numbers, and the weight ratio of fine ore to the weight of lump coke was 3.0.

このように製造された一体化複合造粒物はロータリー・
キルンで最高1200℃で1時間加熱焼成し、一体化複
合物とした。焼成後の品質は第1表に示すように、通常
の自溶性焼結絋のそれと比較して何ら遜色なく、むしろ
還元率は焼結鉱の60−65%を上廻る結果が得られた
. 焼成後の一体化複合物の品質は、実際の高炉における通
常層状挿入操業時の0/C値が3.2であったので、1
チャージ当たりの鉱石装入量とコークス装入量の比率は
大差ないため、これら鉱石・コークスと直接置換装入す
る方式で比較操業を行った.なお、試験操業に用いた高
炉は通常のベル・了−マー型装入設備を有する内容積+
850 n{の小型高炉で焼結鉱配合率は85%である
The integrated composite granules produced in this way are rotary
It was fired in a kiln at a maximum temperature of 1200°C for 1 hour to form an integrated composite. As shown in Table 1, the quality after firing was no inferior to that of ordinary self-fusing sintered silk, and in fact, the reduction rate was 60-65% higher than that of sintered ore. The quality of the integrated composite after firing was 1 because the 0/C value during normal layered insertion operation in an actual blast furnace was 3.2.
Since the ratio between the amount of ore charged and the amount of coke charged per charge is not much different, a comparative operation was conducted using a method in which these ores and coke were directly replaced. The blast furnace used for the test operation has an internal volume +
The sintered ore content is 85% in a small blast furnace of 850 n{.

第2表には木例の高炉試験操業の結果を示す.一体化複
合物の置換・事は上述したように、高炉内全装入物(た
だし副原料を除く}を100としたときの値に対応する
。実施例1では一体化複合物置換率20%の、実施例2
は置損率40%の例を示した。
Table 2 shows the results of the blast furnace test operation using wood samples. As mentioned above, the replacement of the integrated composite corresponds to the value when the total charge in the blast furnace (excluding auxiliary raw materials) is set as 100. In Example 1, the integrated composite replacement rate is 20%. Example 2
shows an example with a placement loss rate of 40%.

この結果によれば、一体化複合物の置換率が増加するの
に伴って、全圧損、送風圧変動指数および燃料比の低下
とガス利用率の向上が明らかであり、原燃料を一体化す
ることによる高炉内コークス・鉱石混合層の制御効果が
十分に発渾され、高炉操業の安定化がより効果的に達成
されているのが分かる。さらに、この安定化効果に加え
て、層構造化することによる被1元性の向上は燃n比の
低減につながり、高炉操業成蹟の改善に寄与している. なお、詳細には説明していないが、本発明の通用に伴う
副次効果として、焼結tji製造プロセス用原料から大
量の微粉鉄鉱石が本発明方法の一体化複合物に供給され
るため、焼結原t4層の通気性が向上し、焼結操業の成
績向上も可能となる.(発明の効果) 以上詳述したように本発明にかかる方法の適用により、
高炉内コークス・鉱石混合層の制御が可能となり高炉操
業のより一層の安定化と高炉漂業成績の向上が可能とな
る.
According to the results, as the replacement rate of the integrated composite increases, it is obvious that the total pressure drop, blowing pressure fluctuation index and fuel ratio decrease and the gas utilization rate improves, and the raw fuel is integrated. It can be seen that the effect of controlling the coke/ore mixed layer in the blast furnace was sufficiently developed, and stabilization of blast furnace operation was achieved more effectively. Furthermore, in addition to this stabilizing effect, the improvement in unidimensionality due to the layered structure leads to a reduction in the fuel-N ratio, contributing to improvements in blast furnace operation. Although not explained in detail, as a side effect of the application of the present invention, a large amount of fine iron ore is supplied from the raw material for the sintered tji manufacturing process to the integrated composite of the method of the present invention. The air permeability of the sintered T4 layer is improved, making it possible to improve the performance of sintering operations. (Effect of the invention) As detailed above, by applying the method according to the present invention,
It becomes possible to control the coke and ore mixed layer in the blast furnace, making it possible to further stabilize blast furnace operation and improve blast furnace drifting performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来法による高炉装入物製造工程の概略フロ
ー図: 第2図は、本発明による同概略フロー図:第3図は、一
体化複合物の微粉鉱石盪/塊コークス比の変化による塊
コークス焼1員率および鉱石被覆?JI 幼率への影響
を示すグラフ:および第4図は、本発明にかかる一体化
複合物の略式断面図である. l、8:混合・造粒工程 2:焼結工程3、6:破砕・
整粒工程 4:粉砕・混合工程5:コークス炉   7
:高炉 9:焼成工程   40:塊コークス 42:焼結体 第1図 第2図 出顛人 住友金属工業株式会社 代理人 弁理士 広 瀬 章 一(外1名)第3図
Figure 1 is a schematic flow diagram of the blast furnace charge production process according to the conventional method; Figure 2 is a schematic flow diagram of the same process according to the present invention; Figure 3 is a diagram showing the fine ore coke/lump coke ratio of the integrated composite. Changes in lump coke burning rate and ore coverage? Graph showing the influence on JI juvenile rate: and FIG. 4 are schematic cross-sectional views of the integrated composite according to the present invention. l, 8: Mixing/granulation process 2: Sintering process 3, 6: Crushing/
Particle sizing process 4: Grinding/mixing process 5: Coke oven 7
: Blast furnace 9: Firing process 40: Lump coke 42: Sintered body Figure 1 Figure 2 Exhibitor Sumitomo Metal Industries Co., Ltd. Agent Patent attorney Shoichi Hirose (1 other person) Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)冶金用の塊コークスと、その外表面を包囲した、
前記塊コークスに対し重量比で1:1〜4:1になる量
の微粉鉄鉱石の焼結体とから成る高炉装入物。
(1) Metallurgical lump coke and surrounding its outer surface,
A blast furnace charge comprising a sintered body of fine iron ore in a weight ratio of 1:1 to 4:1 to the lump coke.
(2)冶金用の塊コークスの外表面にバインダーと共に
微粉鉄鉱石を前記塊コークスに対して重量比で1:1〜
4:1になるように造粒被覆して得た原燃料複合物を焼
成することを特徴とする高炉装入物の製造方法。
(2) Fine iron ore powder is added to the outer surface of the lump coke for metallurgy together with a binder at a weight ratio of 1:1 to the lump coke.
A method for producing a blast furnace charge, which comprises firing a raw material/fuel composite obtained by granulation and coating at a ratio of 4:1.
JP5085389A 1989-03-02 1989-03-02 Charging material for blast furnace and its production Pending JPH02232322A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5085389A JPH02232322A (en) 1989-03-02 1989-03-02 Charging material for blast furnace and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5085389A JPH02232322A (en) 1989-03-02 1989-03-02 Charging material for blast furnace and its production

Publications (1)

Publication Number Publication Date
JPH02232322A true JPH02232322A (en) 1990-09-14

Family

ID=12870281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5085389A Pending JPH02232322A (en) 1989-03-02 1989-03-02 Charging material for blast furnace and its production

Country Status (1)

Country Link
JP (1) JPH02232322A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011129388A1 (en) * 2010-04-14 2011-10-20 新日本製鐵株式会社 Process for production of sintered mineral

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011129388A1 (en) * 2010-04-14 2011-10-20 新日本製鐵株式会社 Process for production of sintered mineral
JP4870247B2 (en) * 2010-04-14 2012-02-08 新日本製鐵株式会社 Method for producing sintered ore
CN102844449A (en) * 2010-04-14 2012-12-26 新日本制铁株式会社 Process for production of sintered mineral
KR101311575B1 (en) * 2010-04-14 2013-09-26 신닛테츠스미킨 카부시키카이샤 Process for production of sintered mineral

Similar Documents

Publication Publication Date Title
EP3020834B1 (en) Carbon material-containing granulated particles in production of sintered ore, method for producing the same and method for producing sintered ore
EP1425427B1 (en) Iron ore briquetting
JP4627236B2 (en) Manufacturing method of carbonized material agglomerates
EA023830B1 (en) Method for producing an agglomerate made of fine material containing metal oxide for use as a blast furnace feed material
JPH0127133B2 (en)
WO2010041770A1 (en) Blast furnace operating method using carbon-containing unfired pellets
JPH02228428A (en) Charging material for blast furnace and its production
JP5114742B2 (en) Method for producing carbon-containing unfired pellets for blast furnace
JP2003138319A (en) Method for manufacturing raw material for sintering
TWI550100B (en) Process for the manufacture of ferrochrome
JP3840891B2 (en) High-grade fired agglomerate for iron making and method for producing the same
CN114934173A (en) Reinforced sintering method for fuel fractional addition
JP3395554B2 (en) Sinter production method
JPH02232322A (en) Charging material for blast furnace and its production
WO2005111248A1 (en) Semi-reduced sintered ore and method for production thereof
CN107674971B (en) Raw material treatment method
JP2003301205A (en) Method for charging blast furnace material
JP4228678B2 (en) Method for manufacturing raw materials for sintering
JP2001348623A (en) METHOD FOR PRODUCING HIGH QUALITY AND LOW SiO2 SINTERED ORE FOR BLAST FURNACE
JP2002226920A (en) Sintered ore manufacturing method, and sintered ore
JP7424339B2 (en) Raw material particles for producing agglomerates, method for producing raw material particles for producing agglomerates, agglomerates, method for producing agglomerates, and method for producing reduced iron
JP2001262241A (en) Method for producing sintered ore containing carbon
JP2002194410A (en) Method for operating rotary furnace hearth type reducing furnace, method for producing pig iron and granular iron oxide-reduced material
JPH02294418A (en) Manufacture of charging material in blast furnace
JPH05339653A (en) Pretreatment of sintered ore raw material and sintered ore raw material for iron making