JPS62130229A - Sintering operation method - Google Patents

Sintering operation method

Info

Publication number
JPS62130229A
JPS62130229A JP27122685A JP27122685A JPS62130229A JP S62130229 A JPS62130229 A JP S62130229A JP 27122685 A JP27122685 A JP 27122685A JP 27122685 A JP27122685 A JP 27122685A JP S62130229 A JPS62130229 A JP S62130229A
Authority
JP
Japan
Prior art keywords
ore
layer
pallet
melting
lower layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27122685A
Other languages
Japanese (ja)
Inventor
Hiroo Ono
小野 啓雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP27122685A priority Critical patent/JPS62130229A/en
Publication of JPS62130229A publication Critical patent/JPS62130229A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To prevent the overmelting of a lower layer and to improve the gas permeability by feeding easily meltable and hardly meltable ores onto the pallet of a DL type sintering apparatus to form upper and lower layers, respectively, and by carrying out sintering. CONSTITUTION:In an on-strand cooling or semi-strand cooling system in a DL type sintering apparatus, easily meltable ore having a high degree of melting is fed onto the pallet of the sintering apparatus to form an upper layer, hardly meltable ore having a low degree of melting is fed onto the pallet to form an lower layer. Thus, even when the internal temp. of the upper layer is low, the upper layer is melted and bonded, the overmelting of the lower layer is prevented and the gas permeability is improved.

Description

【発明の詳細な説明】 産業上の利用分野 この発明はDL型焼結機のオンストランドクーリング又
はセミストランドクーリング方式における通気性の改善
を目的とする焼結操業方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a sintering operation method for improving air permeability in on-strand cooling or semi-strand cooling systems of DL type sintering machines.

従来技術とその問題点 DL型焼結機では、層内通気性を確保するため、上層に
細粒原料を、下層に粗粒原料を装入する方法がとられて
いる。すなわち、通常操業では、前記の粒度偏析によっ
て層内通気性の確保とともに生産性および品質舎維持し
ている。
Prior art and its problems In the DL type sintering machine, a method is used in which fine-grain raw materials are charged in the upper layer and coarse-grain raw materials are charged in the lower layer in order to ensure intra-layer air permeability. That is, in normal operation, the above-mentioned particle size segregation ensures intra-layer air permeability and maintains productivity and quality.

しかしながら、オンストランドクーリング又はセミスト
ランドクーリングにおいては、下層部で熱過剰となり過
溶融から通気性悪化を起しやすく、生産性が著しく阻害
されるという問題がある。これは、上下層間のコークス
分布に大きな差がない場合に多く見られる。かかる対策
として、従来コークス配合比率を多くした原料を上層に
分布する、いわゆる二段装入法が採用されているが、原
料密度アップによる通気性の悪化、コークス燃焼時間延
長により生産率の低下を招くという問題がおった。
However, in on-strand cooling or semi-strand cooling, there is a problem in that excessive heat is generated in the lower layer, which tends to lead to overmelting and deterioration of air permeability, which significantly impedes productivity. This often occurs when there is no large difference in coke distribution between the upper and lower layers. As a countermeasure against this problem, the so-called two-stage charging method has traditionally been adopted, in which raw materials with a high coke blending ratio are distributed in the upper layer, but this increases the density of the raw materials, which worsens air permeability, and increases the coke combustion time, resulting in a decrease in production rate. There was the problem of inviting people.

発明の目的 この発明は、従来の前記問題を解決するためになされた
もので、溶融度の異なる鉱石をパレット高さ方向に分割
装入することにより、オンストランドクーリング又はセ
ミストランドクーリング方式における過溶融を防止し通
気性を確保し得る焼結操業方法を提案することを目的と
するものでおる。
Purpose of the Invention The present invention was made to solve the above-mentioned conventional problems, and by charging ores with different melting degrees in parts in the height direction of the pallet, over-melting can be avoided in on-strand cooling or semi-strand cooling. The purpose of this study is to propose a sintering operation method that can prevent this and ensure air permeability.

発明の構成 この発明の係る焼結操業方法は、オンストランドクーリ
ング又はセミストランドクーリング方式において、焼結
機パレット上原料層内の上層部に溶融度の高い高溶融性
鉱石を、下層部に難溶融性鉱石をそれぞれ分割装入する
ことを特徴とするものである。
Structure of the Invention The sintering operation method according to the present invention is based on the on-strand cooling or semi-strand cooling method, in which a high-melt ore with a high melting degree is placed in the upper layer of the raw material layer on the sintering machine pallet, and a highly meltable ore is placed in the lower layer. This method is characterized by charging each ore separately.

ここで、高溶融性鉱石と難溶融性鉱石は、一般にCaO
、5LO2、M2O3等の成分と粒度、反応界面積等に
より決定される。すなわち、下記(1)〜(1−6)式
で算出される溶融度指数の高い(溶けやすい)銘柄を高
溶融性鉱石と称し、溶融度指数の低い(溶けにくい)銘
柄を難溶融性鉱石と称し・ている。
Here, highly fusible ores and hardly fusible ores are generally CaO
, 5LO2, M2O3, etc., particle size, reaction interfacial area, etc. In other words, brands with a high (easily soluble) melting index calculated by the following formulas (1) to (1-6) are referred to as high-melting ores, and brands with a low (hard-to-melt) melting index are referred to as low-melting ores. It is called.

Q1゛:ある粒度成分における溶融度指数wi:粒度分
布比 Qi−1(1−v・Δt/ri )’   −(1−1
)Δt:溶融保持時間(分)(7以上の時間)T:溶融
限界温度、(℃] V:溶融速度(true 7分) ri:各粒度代表径(朋) T =1106 3.19CaO3,355102+2
1.22 A#203・・・(1−2)v = 0.0
147 t2−0.09  ただしV2O,05・・・
(1−3) ε2:高温粒子気孔率(%) et= 100  (I  V−d/P )   −(
14)V:体積変化比 d:見掛密度(f;l/d ) ρ:真密度(ykA ) V = 1−0.62ρ(1−m)    ・・・(1
−5)m:重量変化比 m = 1− r/Zoo        −(1−6
)X:結晶水(wt%) (以下余白) 溶融度指数で区分した代表的な高溶融性鉱石と難溶融性
鉱石を第1表に示す。
Q1゛: Meltability index wi for a certain particle size component: Particle size distribution ratio Qi-1 (1-v Δt/ri)' - (1-1
) Δt: Melting retention time (minutes) (time of 7 or more) T: Melting limit temperature, (°C) V: Melting rate (true 7 minutes) ri: Representative diameter of each particle size (tomo) T = 1106 3.19CaO3, 355102+2
1.22 A#203...(1-2)v = 0.0
147 t2-0.09 However, V2O, 05...
(1-3) ε2: High temperature particle porosity (%) et= 100 (IV-d/P) −(
14) V: Volume change ratio d: Apparent density (f; l/d) ρ: True density (ykA) V = 1-0.62ρ (1-m) ... (1
-5) m: Weight change ratio m = 1-r/Zoo -(1-6
)X: Water of crystallization (wt%) (blank below) Table 1 shows representative highly meltable ores and poorly meltable ores classified by meltability index.

第  1  表 焼結機パレット上層部に前記の高溶融性鉱石を下層部に
難溶融性鉱石を装入した場合、必然的に上層部の焼成は
早くなり、下層部は逆に遅くなるため過溶融になること
はなく、通気性が良好となる。
If the above-mentioned highly meltable ore is charged into the upper layer of the first sintering machine pallet and the refractory ore is charged into the lower layer, the firing of the upper layer will inevitably be faster and the lower layer will be slower, resulting in overheating. It does not melt and has good air permeability.

第1図はこの発明方法を実施するための焼結設備の一例
を示す概略図で、(1)は難溶融性鉱石原料槽、(2)
は易溶融性鉱石原料槽、(3) (4)はミキサー、(
5) (9)はサージホッパー、(10)は焼結機パレ
ット、(11)は点火炉である。すなわち、この発明方
法を実施する場合は、通常10〜15槽程度ある焼結原
料槽の1/3〜1/2を別系統とし、それぞれ難溶融性
鉱石用と易溶融性鉱石用とに分けて供給するごとく構成
する。
FIG. 1 is a schematic diagram showing an example of sintering equipment for carrying out the method of this invention, in which (1) is a refractory ore raw material tank, (2)
is an easily meltable ore raw material tank, (3) (4) is a mixer, (
5) (9) is a surge hopper, (10) is a sintering machine pallet, and (11) is an ignition furnace. That is, when carrying out the method of this invention, 1/3 to 1/2 of the sintering raw material tanks, which are usually around 10 to 15 tanks, are separated into separate systems, one for difficult-to-fusible ores and one for easily-to-fusible ores. It is configured so that it is supplied with

原料層(1)内のN溶融性鉱石(11)はミキサー(3
)を経てサージホッパー(5)からロールフィーダーに
よって切出され、デフレクタ−プレート上を転勤落下、
分級されて焼結機パレット(10)上へ装入される。同
様に、原料槽(2)内の高溶融性鉱石(12)はミキサ
ー(4)を経てサージホッパー(9)からロールフィー
ダーにて切出され、焼結機パレット(10)上のNFB
融性鉱石(11)の上に装入される。
The N meltable ore (11) in the raw material layer (1) is transferred to the mixer (3
), it is cut out from the surge hopper (5) by a roll feeder, transferred and dropped on the deflector plate,
It is classified and loaded onto the sintering machine pallet (10). Similarly, the highly meltable ore (12) in the raw material tank (2) is cut out by a roll feeder from a surge hopper (9) via a mixer (4), and is fed to the NFB on a sintering machine pallet (10).
It is charged on top of the fusible ore (11).

従って、パレット上原料層は下層部が難溶融性鉱石、上
層部が高溶融性鉱石で占められ、さらにそれぞれデフレ
クタ−プレートによる分級作用により中層部には易溶融
性鉱石の粗粒および難溶融性鉱石の細粒とが混合された
もので占められる。
Therefore, in the raw material layer on the pallet, the lower layer is occupied by refractory ore, the upper layer is occupied by highly fusible ore, and furthermore, due to the classification action of the deflector plate, the middle layer is occupied by coarse grains of easily fusible ore and hard to melt ore. It is dominated by a mixture of fine grains of ore.

このように、易溶重性鉱石原料が上層部に、難溶融性鉱
石原料が下層部にそれぞれ装入されると、点火炉通過後
の冷風吸引により上層部の層内温度が比較的低くても上
層部の溶融結合は十分に行なわれ、ざらに下層部が過溶
融になることはなく通気性が良好となる結果、焼成、冷
却ともに早くなり、生産率は大幅に向上する。一方晶質
は、回転強度および還元粉化指数はほとんど変化するこ
とはないが、被還元性は大幅に向上する。これは、全体
の気孔の増加とともに特に下層部での気孔率・増加が大
きいことによるものと推察される。なお、気孔の増加は
一般的には回転強度の低下につながりやすいが、オンス
トランドおよびセミストランドクーリング方式では冷却
速度が遅くその懸念はない。
In this way, when easily soluble heavy ore raw materials are charged into the upper layer and hard to melt ore raw materials are charged into the lower layer, the temperature inside the layer in the upper layer is relatively low due to the cold air sucked after passing through the ignition furnace. The upper layer is sufficiently fused and bonded, and the lower layer does not over-melt and has good air permeability, resulting in faster firing and cooling, and a significant increase in production rate. On the other hand, with crystalline materials, the rotational strength and reduction powdering index hardly change, but the reducibility is significantly improved. This is presumed to be due to the increase in the total number of pores and the large increase in porosity, especially in the lower layer. Note that an increase in pores generally tends to lead to a decrease in rotational strength, but with on-strand and semi-strand cooling methods, the cooling rate is slow and there is no such concern.

実  施  例 オンストランドクーリング方式のDL型焼結薇に前記第
1表に示す難溶融性鉱石と易溶融性鉱石を分割装入した
際の焼結操業時にあけるウィンドボックス内ガス温度パ
ターンを通常装入(従来例)と比較して第2図に示す。
Example When a DL type sintering vessel using an on-strand cooling method is charged with the refractory ore and easily fusible ore shown in Table 1 above, the gas temperature pattern in the wind box that is opened during the sintering operation is normally installed. Fig. 2 shows a comparison with the conventional type (conventional example).

また、本実施例にあける焼成ゾーンと冷却ゾーンの通気
度指数を比較して第2表に示す。ざらに、生産率および
品質を第3図に、パレット高さ方向別サンプルの気孔率
を第4図にそれぞれ示す。
Table 2 also shows a comparison of the air permeability index of the firing zone and the cooling zone provided in this example. Roughly speaking, the production rate and quality are shown in Figure 3, and the porosity of the samples according to the pallet height direction is shown in Figure 4.

第2図および第2表から明らかなごとく、通常装入時で
は下層部熱過剰による過溶融のため通気性が悪化し、焼
成完了点が遅くなり赤熱帯の肥大化で冷却が遅れるのに
対し、本発明の分割装入では焼成、冷却ともに早くなる
ことが明白である。
As is clear from Figure 2 and Table 2, during normal charging, air permeability deteriorates due to overmelting due to excess heat in the lower layer, the firing completion point is delayed, and cooling is delayed due to enlargement of the red tropics. It is clear that the split charging of the present invention speeds up both firing and cooling.

また、第3図より明らかなごとく、生産率は大幅に向上
し、回転強度および還元粉化指数に差はないものの、被
還元性は大きく好転した。これは、第4図から明らかな
ごとく、通常装入時は全体に気孔率が悪い上に中・下層
での過溶融による通気性の悪化が顕著に認められるが、
本発明の分割装入においては、全体の気孔の増加ととも
に特に下層部での気孔率増加が大きいことによるものと
推察される。
Furthermore, as is clear from FIG. 3, the production rate was significantly improved, and although there was no difference in rotational strength and reduction powdering index, the reducibility was greatly improved. As is clear from Figure 4, during normal charging, the porosity is poor overall, and the air permeability is noticeably deteriorated due to overmelting in the middle and lower layers.
This is presumed to be due to the fact that in the split charging of the present invention, the porosity increases particularly in the lower layer as well as the overall pores increase.

発明の詳細 な説明したごとく、この発明はパレット原料層内で易溶
融性鉱石を上層部に、難溶融性鉱石を下層部に偏析させ
て焼結する方法でおるから、コークス配合割合を変える
等の手段をこうじなくてもオンストランドクーリングお
よびセミストランドクーリング方式における下層部の熱
過剰(過溶融)は防止でき、層内通気性が大幅に改善さ
れる。
As explained in detail, this invention uses a method of sintering the pallet raw material layer by segregating the easily melting ore in the upper layer and the less melting ore in the lower layer, so it is possible to change the coke ratio etc. Excessive heat (overmelting) in the lower layer in on-strand cooling and semi-strand cooling methods can be prevented without resorting to the above measures, and intra-layer air permeability is greatly improved.

従って、この発明方法によれば、生産性の大幅な向上が
はかられ、また品質的にも被還元性のすぐれたものが得
られる効果を奏する。
Therefore, according to the method of the present invention, productivity can be greatly improved and products with excellent reducibility can be obtained in terms of quality.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明方法を実施するための焼結設備の一例
を示す概略図、第2図はこの発明の実施例にあけるウィ
ンドボックス内ガス温度パターンを示す図、第3図は同
上実施例における生産率と品質を示す図、第4図は同上
実施例にあけるパレット高さ方向別の気孔率を示す図で
ある。 1・・・難溶融性鉱石原料槽、2・・・易溶融性鉱石原
料槽、3,4・・・ミキサー、5,9・・・サージホッ
パー、11・・・難溶融性鉱石、12・・・易溶融性鉱
石。 出願人  住友金属工業株式会社 第1図 第2図 第3図 第4図 気孔率(チ)
Fig. 1 is a schematic diagram showing an example of sintering equipment for implementing the method of this invention, Fig. 2 is a diagram showing a gas temperature pattern in a wind box in an embodiment of the invention, and Fig. 3 is an example of the same as above. FIG. 4 is a diagram showing the porosity of each pallet in the same example in the height direction. DESCRIPTION OF SYMBOLS 1... Difficult to melt ore raw material tank, 2... Easily meltable ore raw material tank, 3, 4... Mixer, 5, 9... Surge hopper, 11... Difficult to melt ore, 12. ...Easily meltable ore. Applicant: Sumitomo Metal Industries, Ltd. Figure 1 Figure 2 Figure 3 Figure 4 Porosity (chi)

Claims (1)

【特許請求の範囲】[Claims] DL型焼結機の操業方法において、焼結機パレット上原
料層内の上層部に溶融度の高い易溶融性鉱石を、下層部
に溶融度の低い難溶融性鉱石をそれぞれ分割装入するこ
とを特徴とする焼結操業方法。
In the operating method of a DL type sintering machine, easily melting ore with a high melting degree is charged in the upper layer of the raw material layer on the sintering machine pallet, and refractory ore with a low melting degree is charged separately in the lower layer. A sintering operation method characterized by:
JP27122685A 1985-12-02 1985-12-02 Sintering operation method Pending JPS62130229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27122685A JPS62130229A (en) 1985-12-02 1985-12-02 Sintering operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27122685A JPS62130229A (en) 1985-12-02 1985-12-02 Sintering operation method

Publications (1)

Publication Number Publication Date
JPS62130229A true JPS62130229A (en) 1987-06-12

Family

ID=17497105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27122685A Pending JPS62130229A (en) 1985-12-02 1985-12-02 Sintering operation method

Country Status (1)

Country Link
JP (1) JPS62130229A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010032466A1 (en) * 2008-09-17 2010-03-25 新日本製鐵株式会社 Sintered ore manufacturing method
JP2012021213A (en) * 2010-07-16 2012-02-02 Nippon Steel Corp Method for manufacturing sintered ore

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010032466A1 (en) * 2008-09-17 2010-03-25 新日本製鐵株式会社 Sintered ore manufacturing method
JP4528362B2 (en) * 2008-09-17 2010-08-18 新日本製鐵株式会社 Method for producing sintered ore
CN102159733A (en) * 2008-09-17 2011-08-17 新日本制铁株式会社 Sintered ore manufacturing method
JPWO2010032466A1 (en) * 2008-09-17 2012-02-09 新日本製鐵株式会社 Method for producing sintered ore
JP2012021213A (en) * 2010-07-16 2012-02-02 Nippon Steel Corp Method for manufacturing sintered ore

Similar Documents

Publication Publication Date Title
US6270552B1 (en) Rotary hearth furnace for reducing oxides, and method of operating the furnace
JP5168802B2 (en) Method for producing sintered ore
JPS62130229A (en) Sintering operation method
EP0614993B1 (en) Method for producing sintered ore
JP3247276B2 (en) Blast furnace charging method
JP2002003910A (en) Method for operating blast furnace
JP5124969B2 (en) Sinter ore manufacturing method
JPS63140006A (en) Method for charging raw material into blast furnace
JP3700457B2 (en) Blast furnace operation method
JPH0819486B2 (en) Manufacturing method of sinter for blast furnace using high goethite ore as raw material
JPS62130227A (en) Method for sintering fine ore
JPH0881717A (en) Production of sintered ore
JPH0853719A (en) Charging of sintering raw material and its device
JP5581875B2 (en) Method for producing sintered ore containing MgO lump
JP2003096522A (en) Method for producing sintered ore for blast furnace and sintered ore for blast furnace
JPS6047887B2 (en) Sintered ore manufacturing method
JPS5935971B2 (en) How to process sintered ore
JP3395593B2 (en) Method for producing low silica sintered ore
JPH01219111A (en) Blast furnace operation method by using hot cracked ore
CN117295826A (en) Pig iron production method and ore raw material
JP2020117767A (en) Method for manufacturing sinter
JPH0873951A (en) Production of sintered ore
JPH01240627A (en) Method for sintering iron ore fines
JPH11117007A (en) Operation of blast furnace
JPH1072627A (en) Production of sintered ore