JPH01219111A - Blast furnace operation method by using hot cracked ore - Google Patents

Blast furnace operation method by using hot cracked ore

Info

Publication number
JPH01219111A
JPH01219111A JP4498488A JP4498488A JPH01219111A JP H01219111 A JPH01219111 A JP H01219111A JP 4498488 A JP4498488 A JP 4498488A JP 4498488 A JP4498488 A JP 4498488A JP H01219111 A JPH01219111 A JP H01219111A
Authority
JP
Japan
Prior art keywords
ores
blast furnace
furnace
ore
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4498488A
Other languages
Japanese (ja)
Other versions
JPH0625367B2 (en
Inventor
Yuji Iwanaga
祐治 岩永
Youichi Aminaga
網永 洋一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP4498488A priority Critical patent/JPH0625367B2/en
Publication of JPH01219111A publication Critical patent/JPH01219111A/en
Publication of JPH0625367B2 publication Critical patent/JPH0625367B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/008Composition or distribution of the charge

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To effectively utilize hot cracked ores of a low cost by charging the ores contg. the host cracked ores to the wall part of a blast furnace and the ores which do not contain said ores to the central part of the furnace at the time of charging the ores and coke alternately in a laminar state into the blast furnace. CONSTITUTION:The ferruginous raw materials are prepd. by previously dividing said materials to the raw materials 2A contg. the hot cracked ores and the raw materials 2B without contg. said ores. The coke 3 is first charged into the blast furnace and thereafter the raw materials 2b without contg. the hot cracked ores are charged therein except the part near the furnace wall 1 and the raw materials 2A contg. the hot cracked ores are charged near the wall 1 at the time of charging the raw materials into the blast furnace. The upper limit of the mixing rate of the hot cracked ores is preferably set at about 30wt.% of the total amt. of the ores (2A+2B). The substitutive utilization of the hot cracked ores without adversely affecting the blast furnace operation is thereby enabled.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高炉装入原料中の鉱石類として熱割れ鉱石を使
用する高炉操業方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method of operating a blast furnace using hot-cracked ore as an ore in a blast furnace charging material.

〔従来の技術〕[Conventional technology]

近代製鉄業における高炉操業においては、鉄鉱石原料の
ほとんどが焼結鉱またはペレットとして使用されている
In blast furnace operations in the modern steel industry, most of the iron ore raw material is used as sinter or pellets.

しかしながら、焼結鉱、ペレットは、その製造のために
大規模な設備建設ならびに多大のエネルギーを必要とし
、銑鉄製造コストを上昇させる結果になっている。した
がって、事前処理を行わない塊鉱石を高炉原料として少
しでも多く使用すれば、それだけコスト、ダウンにつな
がることになる。
However, the production of sintered ore and pellets requires construction of large-scale facilities and a large amount of energy, resulting in an increase in the cost of producing pig iron. Therefore, if more lump ore without pre-treatment is used as blast furnace raw material, the cost will be reduced accordingly.

一方、通常の高炉操業は周知のように炉頂より鉱石、焼
結鉱、ペレット等の原料とコークスを交互に装入し、高
炉下方の羽口より熱風を吹込み、前記原料を下方から予
熱、還元、溶解させながら上昇させ、一方溶解した原料
は溶銑となって炉底に溜り、炉底に溜った溶銑を出銑口
より取り出して行われる。
On the other hand, as is well known, in normal blast furnace operation, raw materials such as ore, sintered ore, and pellets and coke are alternately charged from the top of the furnace, and hot air is blown from the tuyere at the bottom of the blast furnace to preheat the raw materials from below. The melted raw material becomes hot metal and accumulates at the bottom of the furnace, and the hot metal accumulated at the bottom of the furnace is taken out from the tap hole.

以上のごとき高炉操業方法において、生産性ならびに溶
銑の品質を高めるためには、装入原料の安定した降下と
安定したガス流れが要求される。
In the above-described blast furnace operating method, in order to improve productivity and the quality of hot metal, stable descent of the charging material and stable gas flow are required.

(発明が解決しようする課題) しかしながら、塊鉱石のうち襞間性を有する鉱石は、高
炉に装入され高温のガスで急激に加熱されると割れを生
じる(本明細書において熱割れ鉱石とは、このような性
質を存する鉱石をいう)。
(Problems to be Solved by the Invention) However, among lump ores, ores with interfold properties crack when charged into a blast furnace and rapidly heated with high-temperature gas. , refers to ores that possess these properties).

この熱割れ鉱石は低コストである反面、高炉で使用する
と、粒径の低下した熱割れ鉱石がネl1粒部の原料が形
成する空間を埋める結果となり、これによって層全体の
空隙率を低下させるために、ガス流れの半径方向分布が
大幅に乱れ、通気性が悪化するという欠点を住じていた
。このために、熱割れ鉱石は低コストであるにもかかわ
らず、その鉱石の種類によっては全く使用されていなか
ったのである。
Although this hot-cracked ore is low-cost, when used in a blast furnace, the hot-cracked ore with a reduced grain size fills the space formed by the raw material of the nel 1 grain, thereby reducing the porosity of the entire layer. As a result, the radial distribution of gas flow is greatly disturbed, resulting in poor air permeability. For this reason, hot-cracked ores are not used at all, depending on the type of ore, despite their low cost.

本発明は、斯かる実情に鑑み、従来、高炉での使用が困
難あるいは不可能とされていた低コストな熱割れ鉱石を
有効に利用することができる高炉操業方法を提供するこ
とを目的とするものである。
In view of the above circumstances, the present invention aims to provide a blast furnace operating method that can effectively utilize low-cost hot cracking ore, which was conventionally considered difficult or impossible to use in a blast furnace. It is something.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の高炉操業方法は、前記目的を達成するために鉱
石類とコークスとを交互に所定割合で高炉内に層状装入
するに際して、前記鉱石類を熱割れ鉱石を含むものと、
含まないものに2分し、前者を炉壁部に後者を炉中心部
に装入することを特徴とするものである。
In order to achieve the above object, the blast furnace operating method of the present invention includes charging the ores and coke into the blast furnace alternately at a predetermined ratio in layers, the ores containing hot-crackable ores;
It is characterized in that it is divided into two parts, and the former is charged into the furnace wall and the latter into the furnace center.

ただし、ここでいう熱割れ鉱石とは、厳密には700℃
の電気炉の中に500gの試料(粒径15〜20鶴)を
入れた鉄箱を室温から投入して急加熱し、30分後に取
り出して冷却したものの粒度分布測定結果より粒径5鰭
以上の重量率が90%以下のものを意味する。
However, the heat cracking ore referred to here is strictly speaking a temperature of 700℃.
An iron box containing 500g of sample (particle size 15-20) was put into an electric furnace from room temperature, rapidly heated, and taken out after 30 minutes to cool.The particle size distribution measurement results showed that the particle size was 5 or more. It means that the weight percentage of is 90% or less.

〔作  用〕[For production]

以下、本発明を、その基礎となった各種の試験結果に基
づいて詳述する。
Hereinafter, the present invention will be explained in detail based on various test results on which the present invention is based.

本発明者らは、第1図に示される試験条件、すなわち、
垂直ゾンデ測定結果に基づいて得た高炉内の炉壁部、炉
中間部、炉中心部に近領した温度およびガス組成下にお
いて、加熱還元により軟化するまでの間の鉄原料層およ
びコークス層の層厚、圧力損失の准移ならびに実験終了
後室温における鉄原料層の粉化状況を調査した。
The present inventors undertook the test conditions shown in FIG. 1, namely:
Based on the vertical sonde measurement results, the iron raw material layer and coke layer before being softened by thermal reduction under the temperature and gas composition near the furnace wall, furnace middle, and furnace center in the blast furnace. The changes in layer thickness and pressure drop, as well as the powdering status of the iron raw material layer at room temperature after the experiment, were investigated.

通常の熱割れ試験は試料の入った鉄ボックスを電気炉内
へ入れて急熱(例えば室温から700℃に加熱)した後
、急冷して粒度分布を測定するものであるが、本試験に
おいては、高炉内各位置における熱割れの状況を比較す
るために、第1図に示すような条件下で試験を行った。
In a normal thermal cracking test, an iron box containing a sample is placed in an electric furnace, rapidly heated (e.g. heated from room temperature to 700°C), and then rapidly cooled to measure the particle size distribution. In order to compare the state of thermal cracking at various locations in the blast furnace, a test was conducted under the conditions shown in Figure 1.

第2図および第3図は前記調査結果、すなわち炉壁部、
炉中間部、炉中心部の各条件下で通気抵抗の温度による
変化および実験終了後の粒度分布を調査した結果を示し
たものである。なお、ここで、第2図の通気抵抗は層全
体の圧力損失および層厚の測定結果に基づき次のように
して算出した。
Figures 2 and 3 show the results of the above investigation, namely the furnace wall,
This figure shows the results of investigating changes in ventilation resistance due to temperature under various conditions in the middle part of the furnace and the center part of the furnace, and the particle size distribution after the end of the experiment. Note that the ventilation resistance shown in FIG. 2 was calculated as follows based on the measurement results of the pressure loss and layer thickness of the entire layer.

ΔP:圧力損失(bit/m) H:層高(m) ρ9 :ガスの密度(kg/n?) K :通気抵抗(ST処位) μ、ニガ大の粘性係数(kg/m−5)υ、;ガスの空
塔速度(m/s) β :ガス流れにより定まる定数(=0.2)第2図に
および第3図において、aで示される線は炉壁部での温
度、ガス組成条件における圧力損失の変化および粒度分
布(篩上累積重量割合)を示し、b、cで示される線は
、それぞれ炉中間部、炉中心部の条件における圧力損失
の変化(通気抵抗)および粒度分布(篩上累積重量割合
)を示している。
ΔP: Pressure loss (bit/m) H: Bed height (m) ρ9: Gas density (kg/n?) K: Ventilation resistance (ST position) μ, viscosity coefficient of bittern (kg/m-5) υ, ; Superficial velocity of gas (m/s) β: Constant determined by gas flow (=0.2) In Figures 2 and 3, the line a indicates the temperature at the furnace wall, the gas The lines b and c show the change in pressure drop and particle size distribution (accumulated weight percentage on the sieve) under the composition conditions, and the lines b and c show the change in pressure loss (ventilation resistance) and particle size under the conditions of the middle part of the furnace and the center of the furnace, respectively. The distribution (cumulative weight percentage on the sieve) is shown.

第2図および第3図に示される結果によれば、炉中心部
Cでは実験開始後、直ちに圧力損失が上昇し、実験終了
後の粒径も小さいことから粉化が顕著に進行したことが
わかる。一方、炉壁部では、第2図aに見られるように
圧力損失は低(、粒径も第3図aに見られるように粉化
による細粒の少ないことがわかる。この相違は炉壁部で
の昇温速度が遅いことから、熱割れ現象を回避できたた
めと判断される。このために炉壁部においては、空隙が
確保され、圧力損失は炉中心部での実験結果に比べて低
下したものとなる。
According to the results shown in Figures 2 and 3, the pressure drop immediately increased in the furnace center C after the start of the experiment, and the particle size after the experiment was also small, indicating that pulverization had progressed significantly. Recognize. On the other hand, in the furnace wall, as shown in Figure 2a, the pressure loss is low (and the particle size is also small, as seen in Figure 3a, due to pulverization. This is thought to be because the thermal cracking phenomenon was avoided because the temperature rise rate was slow in the furnace wall.For this reason, voids were secured in the furnace wall, and the pressure loss was lower than the experimental results at the furnace center. It becomes lower.

以上の実験結果に基づけば、高炉へ装入する鉄鉱石のう
ち熱割れ鉱石を含むものを炉壁部に装入すれば、シャフ
ト部での粉化が回避され、これにより炉壁部のガス流れ
を確保しつつ炉壁への熱負荷を軽減し、かつ原料の降下
をスムーズにすることが明らかとなる。
Based on the above experimental results, if iron ore containing hot-cracked ore is charged into the blast furnace, pulverization in the shaft can be avoided, and the gas in the furnace wall can be avoided. It is clear that this method reduces the heat load on the furnace wall while ensuring flow, and allows the raw materials to descend smoothly.

〔実施例〕〔Example〕

本発明に係る熱割れ鉱石を使用した高炉操業方法におい
ては、第4図に示すとと(、含鉄原料を熱割れ鉱石を含
む原料2Aと熱割れ鉱石を含まない原料2Bとにあらか
じめ分けて準備してお(。
In the method of operating a blast furnace using hot-cracking ore according to the present invention, as shown in FIG. Shio (.

そして、高炉への装入に際しては、コークス3を装入し
た後、熱割れ鉱石を含まない原料2Bを炉壁lの近傍を
除いて装入し、炉壁l近傍には熱割れ鉱石を含む原料2
Aを装入する。
When charging the blast furnace, after charging the coke 3, the raw material 2B that does not contain hot-cracked ore is charged except for the vicinity of the furnace wall l, and the raw material 2B that does not contain hot-crackable ore is charged near the furnace wall l. Raw material 2
Charge A.

ここで熱割れ鉱石を含む原料2Aとは、熱割れ鉱石を一
部含むものの他、全部が熱割れ鉱石のものを含むもので
ある。熱割れ鉱石を一部含む場合、残りは焼結鉱、ペレ
ット、熱割れ鉱石以外の塊鉱石等を適宜配合したもので
ある。熱割れ鉱石の混合率の上限については、混入量が
増加すると焼結鉱の量が減少し、本来のガス通過特性に
影響をきたすことから総鉱石量(2A+2B)に対して
重量%で30%程度とすることが好ましい。
Here, the raw material 2A containing heat-crackable ore is one that partially contains heat-crackable ore, as well as one that is entirely composed of heat-crackable ore. When a part of the hot cracking ore is included, the rest is a mixture of sintered ore, pellets, lump ore other than the hot cracking ore, etc. as appropriate. Regarding the upper limit of the mixing ratio of hot cracking ore, as the amount of mixed ore increases, the amount of sintered ore decreases, which affects the original gas passage characteristics, so the upper limit is 30% by weight based on the total amount of ore (2A + 2B). It is preferable to set it as approximately.

また熱割れ鉱石を含まない原料2Bとは、熱割れ鉱石を
実質的に含まないものを言い、大部分が焼結鉱、ペレッ
ト、熱割れ鉱石以外の塊鉱石等を適宜配合したものであ
る。
Moreover, the raw material 2B that does not contain hot cracking ore refers to one that does not substantially contain hot cracking ore, and most of the material contains sintered ore, pellets, lump ore other than hot cracking ore, etc. as appropriate.

熱割れ鉱石を含む原料2Aと熱割れ鉱石を含まない2B
との装入量比率は、後述するように操業状態を管理しな
がら適宜決定される。
Raw material 2A containing heat cracking ore and 2B containing no heat cracking ore
The charging ratio between the two is determined as appropriate while controlling the operating conditions, as will be described later.

2種類の原料を炉中心部と炉壁とに分けて装入するには
、炉径方向におけるコークス層と鉱石類層の分布を自由
に変えることができるムーバブルアーマや、ホッパー内
の装入物を炉頂部内中心部に送給する炉内装入用旋回シ
ュート(ムーバブルアーマおよび旋回シュートとも特開
昭61−227109号に開示)を有する装入装置を用
いればよい。
In order to charge two types of raw materials separately into the furnace center and the furnace wall, a movable armor that can freely change the distribution of the coke layer and ore layer in the radial direction of the furnace, and the charging material in the hopper are used. A charging device having a rotating chute for charging into the furnace (both the movable armor and the rotating chute are disclosed in Japanese Patent Application Laid-Open No. 61-227109) for feeding the material into the center of the top of the furnace may be used.

以上のようにして原料装入を行えば、熱割れ鉱石が昇温
速度の低い炉壁部に集中的に送給されることになるので
、粒度の低下をきたすことなしに炉壁側のガス流れを確
保しながら通気抵抗を下げ、安定した原料の降下が得ら
れるようになる。
If raw materials are charged as described above, the hot cracked ore will be fed intensively to the furnace wall where the temperature rise rate is low, so the gas on the furnace wall side will not decrease in particle size. While ensuring flow, ventilation resistance is lowered and a stable descent of raw materials can be obtained.

以上のごとき炉頂での原料装入の結果は4〜5時間で羽
口部にあられれ、羽目部における送風圧が変化するから
、その結果に基づいて炉壁部に装入する熱割れ鉱石を含
む原料の量を調整することにより、炉壁側のガス状態を
常時良好に維持することができる。
The result of charging raw materials at the top of the furnace as described above is that the hot-cracked ore is charged to the furnace wall based on the results, since the material is deposited at the tuyere in 4 to 5 hours and the blowing pressure at the tuyere changes. By adjusting the amount of the raw material containing , the gas condition on the furnace wall side can always be maintained in a good condition.

次に、本発明の実施結果について詳述する。Next, the results of implementing the present invention will be described in detail.

内容積1850iのベル式高炉で、焼結鉱とペレットの
合計量が原料総量の85重量%、残りの15重量%が塊
鉱石の原料を装入するにあたり、焼結鉱とペレットが9
6.4重量%、熱割れ鉱石以外の塊鉱石が3.5重量%
のものを炉中心側へ、焼結鉱とペレットが80.5重量
%、熱割れ鉱石が19.5重量%のものを炉壁側に装入
し、操業を行ったところ、大量の熱割れ鉱石を装入した
にもかかわらず長期にわたって安定した操業を継続する
ことができた。その操業結果を示すと第1表のようにな
る。
In a bell-type blast furnace with an internal volume of 1850 i, the total amount of sintered ore and pellets is 85% by weight of the total amount of raw materials, and the remaining 15% by weight is lump ore.
6.4% by weight, lump ore other than hot cracked ore 3.5% by weight
80.5% by weight of sintered ore and pellets, and 19.5% by weight of heat-cracked ore were charged into the furnace wall, and when the operation was started, a large amount of heat-cracked Despite the ore charging, stable operations were able to continue for a long period of time. The operational results are shown in Table 1.

第   1   表 第1表から明らかなように、本発明によれば、熱割れ鉱
石を大量に装入しても、炉体熱損失、炉頂ガス成分、送
風圧ともに安定し、むしろ通気性(第1表では、高炉圧
損指数で表示)、ガス利用率の向上環を図ることができ
、高炉操業を長期にわたって安定して操業することがで
きるのである。
Table 1 As is clear from Table 1, according to the present invention, even when a large amount of hot-cracked ore is charged, the furnace body heat loss, furnace top gas composition, and air blowing pressure are all stable, and the air permeability ( In Table 1, it is possible to improve the gas utilization rate (expressed as the blast furnace pressure loss index), and the blast furnace can be operated stably over a long period of time.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明は高炉装入原料
中の鉱石類を、高炉操業に悪影響を与えることなく熱割
れ鉱石に置換して使用することが可能になり、これによ
る操業コスト低減の効果は甚だ大きいものである。
As is clear from the above explanation, the present invention makes it possible to replace ores in the blast furnace charging raw material with heat-crackable ores without adversely affecting blast furnace operations, thereby reducing operating costs. The effect is enormous.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は高炉内各部に近似した温度およびガス組成等の
試験条件を示すグラフ、第2図は高炉内各部における各
温度毎の通気抵抗の変化を示すグラフ、第3図は高炉内
各部における篩目毎の篩上累積重量割合を示すグラフ、
第4r21は本発明における高炉への原料装入方法を示
す要部模式図である。 図中、l:炉壁、2A:熱割れ鉱石を含む原料、2B:
熱割れ鉱石台まない原料。 第 1 図 時間C分) 第2図 %103 温度(C) ミi3      l¥1 1Q       531 ふるい目(mm)
Figure 1 is a graph showing test conditions such as temperature and gas composition approximated to each part inside the blast furnace, Figure 2 is a graph showing changes in ventilation resistance at each temperature in each part inside the blast furnace, and Figure 3 is a graph showing changes in ventilation resistance at each part inside the blast furnace. A graph showing the cumulative weight ratio on the sieve for each sieve size,
No. 4r21 is a schematic diagram of main parts showing a method of charging raw materials into a blast furnace in the present invention. In the figure, l: furnace wall, 2A: raw material containing hot cracked ore, 2B:
Heat cracking ore table is not a raw material. Figure 1 Time C minutes) Figure 2 %103 Temperature (C) Mii3 l\1 1Q 531 Sieve mesh (mm)

Claims (1)

【特許請求の範囲】[Claims] 1、鉱石類とコークスとを交互に所定割合で高炉内に層
状装入する際にして、前記鉱石類を熱割れ鉱石を含むも
のと、含まないものに2分し、前者を炉壁部に後者を炉
中心部に装入することを特徴とする熱割れ鉱石を使用し
た高炉操業方法。
1. When ores and coke are charged alternately in a predetermined ratio into a blast furnace in layers, the ores are divided into two, one containing hot-cracked ore and one without, and the former is placed on the furnace wall. A method of operating a blast furnace using hot-cracked ore, characterized by charging the latter into the center of the furnace.
JP4498488A 1988-02-26 1988-02-26 Blast furnace operating method using hot cracked ore Expired - Fee Related JPH0625367B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4498488A JPH0625367B2 (en) 1988-02-26 1988-02-26 Blast furnace operating method using hot cracked ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4498488A JPH0625367B2 (en) 1988-02-26 1988-02-26 Blast furnace operating method using hot cracked ore

Publications (2)

Publication Number Publication Date
JPH01219111A true JPH01219111A (en) 1989-09-01
JPH0625367B2 JPH0625367B2 (en) 1994-04-06

Family

ID=12706728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4498488A Expired - Fee Related JPH0625367B2 (en) 1988-02-26 1988-02-26 Blast furnace operating method using hot cracked ore

Country Status (1)

Country Link
JP (1) JPH0625367B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010280926A (en) * 2009-06-02 2010-12-16 Sumitomo Metal Ind Ltd Method for operating blast furnace
JP2012092411A (en) * 2010-10-28 2012-05-17 Jfe Steel Corp Method for operating blast furnace

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010280926A (en) * 2009-06-02 2010-12-16 Sumitomo Metal Ind Ltd Method for operating blast furnace
JP2012092411A (en) * 2010-10-28 2012-05-17 Jfe Steel Corp Method for operating blast furnace

Also Published As

Publication number Publication date
JPH0625367B2 (en) 1994-04-06

Similar Documents

Publication Publication Date Title
JP5574064B2 (en) Raw material charging method to blast furnace
JP5910735B2 (en) Raw material charging method to blast furnace
US3928023A (en) Method of treating off gases from iron processes
KR100784150B1 (en) Apparatus for manufacturing compacted irons and apparatus for manufacturing molten irons
JPH01219111A (en) Blast furnace operation method by using hot cracked ore
JPH0733528B2 (en) Blast furnace operation method
JP2012097301A (en) Method for charging raw material into blast furnace
JP7339222B2 (en) Pig iron manufacturing method
KR102044317B1 (en) Manufacturing apparatus of molten iron and manufacturing method of molten iron
JPH0812975A (en) Iron ore-loaded formed coke, production of formed coke, and operation of blast furnace
JP4759985B2 (en) Blast furnace operation method
JPS63140006A (en) Method for charging raw material into blast furnace
EP4289977A1 (en) Pig iron production method
JP5581875B2 (en) Method for producing sintered ore containing MgO lump
JP3171066B2 (en) Blast furnace operation method
JP5966608B2 (en) Raw material charging method to blast furnace
JP2021025112A (en) Method for manufacturing sintered ore
JPH0379730A (en) Manufacture of sintered ore having excellent property to be reduced and resistance to powering during reduction
JP2921374B2 (en) Blast furnace operation method
JP2853557B2 (en) Blast furnace operation method
JPH1180845A (en) Production of low silica sintered ore
JP2724208B2 (en) Blast furnace operation method
Semberg Interactions between iron oxides and the additives olivine, quartzite and calcite in magnetite pellets
JPH06322375A (en) Production of formed coke
JPH0681015A (en) Operation of blast furnace

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees